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Abstract

We consider the Blind Source Separation (BSS) problem in the noisy context.

We propose a new methodology in order to enhance separation performances

in terms of efficiency and robustness. Our approach consists in denoising the

observed signals through the minimization of their total variation, and then

minimizing divergence separation criteria combined with the total variation

of the estimated source signals. We show by the way that the method leads

to some projection problems that are solved by means of projected gradient

algorithms. The effeciency and robustness of the proposed algorithm using

Hellinger divergence, are illustrated and compared with the classical mutual

information approach, through numerical simulations.
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1. Introduction

Blind Source Separation (BSS) is one of the most attractive research topics

in signal processing nowadays. It has received attention because of numerous

potential applications such as e.g. speech recognition systems [1], wireless

digital communications [2] and biomedical signal processing [3, 4]. The main

goal of BSS is to recover a set of source signals from unknown mixtures of

them yielded by a set of sensors. These observed signals are assumed to be

linear mixtures of the source signals. When the source signals are assumed to

be statistically independent and at most one component is gaussian, the BSS

principle consists in recovering this statistical property lost by the mixture

process, see e.g. [5], [6], [7], [8] and the references therein. One can find

numerous BSS algorithm that are based on the above principle. However,

the considered mixture model is very often noise free or with a sufficiently

high signal to noise ratio. In practice, the noise is an important problem that

has to be considered carefully. Indeed, it changes seriously the structure of

the estimation problem and makes it more difficult to tackle.

In this paper, we propose a separation process based on the minimization of

measures of dependence under constraints that take into account the char-

acteristics of the signals and the noise. Basically, it combines separating

criteria using divergences between probability densities with regularization

terms based on the Total-Variation (TV) of the signals. We use such sort

of regularization because it allows a minimal assumption of the regularity

of the signals, such that non-smooth signals with bounded variations. This

results in two steps: a denoising step of the observed signals, and a second
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step of simultaneous estimation and denoising of the source signals.

We will take as measures of dependence the class of Dϕ-divergences between

probability densities of the random signals. These criteria extend the mu-

tual information (MI) approach (c.f. e.g. [9]) and share common features

with the methods based on Renyi’s distances (c.f. [6]) and β-divergences

(c.f. e.g. [10], [11]). The choice of Dϕ-divergences is justified by the fol-

lowing arguments. The divergences are convex functions which simplify the

computation of their optimizers. Moreover, these criteria lead to efficient

estimates as maximum likelihood (ML) method for less-noisy signals, and a

suitable choice of divergences, such as Hellinger one, may improve the ML

approach for noisy signals (c.f. e.g. [12], [13] and [14]). We expect that the

use of Hellinger divergence combined with variational methods improves the

separation performance for noisy mixed source signals.

The paper is organized as follows. In section 2, the convolutive BSS model

is presented in a noisy framework. Section 3 deals with divergence criteria

and their properties. In section 4, we describe our approach. Section 5

illustrates how to implement the proposed approach using both numerical

and statistical techniques. In section 6, the method is used to separate noisy

mixed images and signals.
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2. The BSS model

Let us consider the linear convolutive BSS model in a noisy context. Here,

the observed signals

x0(t) := (x01(t), . . . , x
0
M(t))τ ∈ RM ,

where M denotes the number of the observed signals, is an unknown convo-

lutive mixture of M source signals

s0(t) := (s01(t), . . . , s
0
M(t))τ ∈ RM ,

trough the convolutive mixing system up to an (unknown) additive noise

n(t) ∈ RM :

x0(t) := A ? s (t) + n (t)

:= x (t) + n (t) ,
(1)

where “?” denotes the convolutive product,

x(t) := A ? s (t)

is the noise-free mixed vector signals, A is the mixing operator and s(t) is the

vector of source signals, to be estimated as precisely as possible. We assume

that the mixing operator is invertible and that the components of the source

vector are mutually statistically independent. The BSS, in the noiseless case,

consists in finding a demixing system B operating on the observations as

y(t) := B ? x (t) , (2)

such that the components of the vector y ∈ RM , called the output vector,

will be statistically independent. It is known see e.g. [7], that this leads
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to a consistent estimation of the source signals up to a permutation and a

scalar filtering, provided that the source signals are statistically independent

and that at most one source component is gaussian. This scalar filtering can

eventually be reduced to a simple delay when sources are i.i.d. signals.

The estimated source signals obtained by a direct BSS, for the noisy case,

can be written into the form

y0(t) := B ? x0 (t)

:= B ? A ? s (t) +B ? n (t)

:= y(t) + n1(t),

(3)

where y(t) := B ? A ? s (t) and n1 (t) := B ? n (t). That is, the “noisy”

estimated source y0 is the sum of y, the “ideal” estimated source, and the

noise n1. Ideally, we would like to retrieve y by denoising y0, but this is

rather difficult since the noise n1 is unknown. Authors have considered the

BSS in the noisy case. In [15], the authors propose a two-step approach by

combining the fractional lower order statistic for the mixing estimation and

minimum entropy criterion for noise-free source component estimation. The

performance of this method depends on a non linear function properly chosen

with relation to the source distribution and the characteristic of the noise.

In [16], a whitening procedure is proposed to reduce the noise effect. Both

methods are concerned by the linear instantaneous case. For linear convolu-

tuve mixtures, in [17], the authors propose a robust algorithm against noise.

They assume that noise could be decomposed in coherent and incoherent

contributions. To increase robustness of their BSS algorithms against uncor-

related noise, bias removal techniques must be considered. In general, the
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BSS framework for convolutive mixture was presented for the noiseless case.

The robustness of the existing methods against the noise is often checked

afterward. Our objective here is to propose a new strategy which takes into

account the presence of the noise. The method is mainly based on a double

action : (a) a denoising of the observed signal x0 before demixing; (b) a si-

multaneous BSS-denoising procedure which aims to get a noiseless estimation

of source. Both of the actions lead to a regularized optimization problem.

Notice that total variations methods are also used in image processing, see

e.g. [18, 19, 20].

3. The divergences between probability densities

Let ϕ be a convex function from [0,+∞] into [0,+∞] such that ϕ(1) = 0.

For any probabilities Q and P on RM such that Q is absolutely continuous

with respect to P , the Dϕ-divergence between Q and P is defined through

Dϕ(Q,P ) :=

∫
RM

ϕ

(
dQ

dP
(t)

)
dP (t), (4)

in which dQ
dP

(·) denotes the Radon-Nikodym derivative of Q with respect to

P , and t := (t1, . . . , tM)τ ∈ RM . If Q is not absolutely continuous with

respect to P , we set Dϕ(Q,P ) = +∞. For any probability P , the function

Q 7→ Dϕ(Q,P ) is convex and nonnegative. If Q = P , then Dϕ(Q,P ) = 0.

Furthermore, if the function x 7→ ϕ(x) is strictly convex on a neighborhood

of x = 1, we have the following fundamental property

Dϕ(Q,P ) = 0 iff Q = P. (5)

All the above properties are presented and proved in [21] and [22]. Note that

if both Q and P have densities with respect to the Lebesgue measure on RM ,
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denoted q(·) and p(·) respectively, then the divergence (4) in this case can be

written as

Dϕ(Q,P ) :=

∫
RM

ϕ

(
q(t)

p(t)

)
p(t) dt. (6)

Widely used in information theory, the Kullback-Leibler divergence, noted

KL-divergence, is associated to the real convex function ϕ(x) = x log x−x+1.

It is defined through

KL(Q,P ) :=

∫
RM

log

(
dQ

dP
(t)

)
dQ(t). (7)

The modified Kullback-Leibler divergence, noted KLm divergence, is associ-

ated to the convex function ϕ(x) = − log x+ x− 1, i.e.,

KLm(Q,P ) :=

∫
RM
− log

(
dQ

dP
(t)

)
dP (t). (8)

It is also called mutual information. Other divergences, widely used in statis-

tics, are the χ2 and modified χ2 (χ2
m) divergences, associated respectively to

the convex functions ϕ(x) = 1
2
(x−1)2 and ϕ(x) = 1

2
(x−1)2/x. The Hellinger

(H) distance is also a Dϕ-divergence. It is associated to the convex function

ϕ(x) = 2(
√
x− 1)2, namely,

H(Q,P ) :=

∫
RM

2

(√
dQ(t)

dP (t)
− 1

)2

dP (t). (9)

All the above examples of Dϕ-divergences belong to the class of the so-called

“power divergences” introduced by [23] and which are defined through the

real convex functions

ϕα : x ∈ R∗+ 7→ ϕα(x) :=
xα − αx+ α− 1

α(α− 1)
(10)
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for all α ∈ R\ {0, 1},

ϕ0(x) := − log x+ x− 1,

and

ϕ1(x) := x log x− x+ 1.

The table 1 gives, according to the choice of ϕα, the associatedDϕα-divergence.

Those divergences have been used in statistics, see e.g. [24], [25], [26], [12],

[14] and [27] among others. It has been proved that the use of divergences in

statistics extends the well known maximum likelihood approach, and leads

to estimates with similar efficiency properties even better in some cases; the

particular choice of Hellinger distance improves the maximum likelihood ap-

proach in terms of efficiency-robustness for noisy data, see e.g. [12], [14] and

[27]. We expect that the use in BSS of divergences other than mutual infor-

mation, such as Hellinger one, may lead to better results for noisy mixture

signals.

4. The proposed approach

The aim here is to get a good approximation of y from (3) and to make their

components statistically independent, in order to give a consistent estimation

of the source signal vector s(t). Our approach proceeds in two steps. Step 1 :

denoising the observed signal x0. Step 2 : a blind source separation combined

with a denoising of the estimated source y0. Let us sketch the main features

of each step.
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4.1. Denoising the observed signal

Let x0(t) := (x1(t), . . . , xM(t))τ , be the noisy observed random vector signal,

which writes into the form

x0(t) := x(t) + n(t).

We would reconstruct the ideal observed signal

x(t) := (x1(t), ..., xM(t))τ

from

x0(t) := (x01(t), ..., x
0
M(t))τ

by means of the following variational problem

xi = arg min
wi∈X

{
1

2
E
(
|wi − x0i

∣∣2) + λE (θ (|w′i|))
}
, (11)

for all i ∈ {1, ...,M}, where λ > 0 is a penalization parameter, θ(·) is a

well chosen function, w′i(t) the first derivative of wi(t) with respect to t,

and X is an appropriate space. E(·) denotes the mathematical expectation.

Notice that the first term of (11) is the fidelity term while the second one

controls the variation of wi. The Euler-Lagrange equation corresponding to

this optimization problem writes formally

wi − λ
(
θ′(|wi′|)
|wi′|

w′i

)′
= x0i . (12)

In practice, the function θ(·) is chosen to encourage smoothing in regions

where the variations of the signal are weak, that is |w′| ≈ 0, and to preserve

discontinuities where |w′| is strong. The total variation case corresponds

to the choice θ(x) = x which will be adopted here. One can make other
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choices like θ(x) =
√

1 + x2. The natural space for treating the continuous

variational problem (11), when θ(x) = x, is X := BV ([0, T ], the space of all

real valued functions on the interval [0, T ] with bounded variation (see e.g.

[28], [29]), where T is the observation time of the signals. The treatment of

the continuous problem is a mathematical question which is beyond the scope

of this paper. Here, we consider only the corresponding discrete problem

which will be presented and solved in section 5.1 hereafter.

4.2. The simultaneous BSS-denoising procedure

The purpose of this second step is to reconstruct an estimated source signals

y from the partially denoised observed signal x. Following the arguments of

the last section, our approach consists in minimizing, with respect to B, a

statistical estimate of the following criterion

J (y) := Jsep (y) + Jreg (y) . (13)

Here y(t) := B ? x(t), t ∈ [0, T ], where x := (x1, . . . , xM)τ is obtained from

(11). The first term Jsep(·) is a measure of dependence between the random

components of y := (y1, . . . , yM)τ , and Jreg(·) is a regularization term which

takes the form

Jreg (y) :=
∑M

i=1

[
γ
2
E (|yi − y0i |2) + µE (θ (|y′i|))

]
, (14)

where θ(·) is defined as in section 4.1, yi and y0i are respectively the ith com-

ponent of y and y0 := B ? x0, for all i ∈ {1, ...,M}. y′ is the first derivative

of y. Notice that the first term is the fidelity term while the second one

controls the variation of y. The reals γ > 0 and µ > 0 are regularization
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parameters. We use as measure of statistical dependence between the com-

ponents y1, . . . , yM of the random vector y, the Dϕ-divergence between the

product density
∏M

i=1 fyi(·) of the marginal densities fyi of the components

yi, i ∈ {1, . . . ,M}, and the joint density fy(·) of the random vector y. Since

we deal with convolutive mixtures, it is easy to show that the independence

between two scalar random sources y1(n) and y2(n) (for all n) is not suffi-

cient to separate the system. That is why additional constraints must be

stated to ensure the mutual independence of the output signal components

yi(t), i ∈ {1, ...,M}. To make it easier to understand, let us consider now a

bidimensional random vector y(n) := (y1(n), y2(n))τ . In order to separate

the signals, the independence of the components y1(n1) and y2(n2) is needed

for all n1 and n2. In other words, the independence of y1(n) and y2(n − k),

for all n and at all lags k, is necessary to ensure separation. As in [30, 31],

we define the separating criterion Jsep by

Jsep (y) :=
∑

q Iϕ (yq) , (15)

where

q := (q1 = 0, q2, ..., qM)τ ∈ {0} × ZM−1

is an integer vector,

yq(n) := (yq11 (n), . . . , yqMM (n))τ

:= (y1(n− q1), ..., yM(n− qM))τ ,
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and Iϕ (yq) is the Iϕ-divergence of the random vector yq(n), which we define

to be the Dϕ-divergence between the densities
∏M

i=1 fyiqi (·) and fyq(·), i.e.,

Iϕ (yq) := Dϕ

(
M∏
i=1

fyiqi , fyq

)

=

∫
RM

ϕ

(∏M
i=1 fyiqi (ti)

fyq(t)

)
fyq(t) dt,

(16)

where t := (t1, . . . , tM)τ . Notice that the particular choice ϕ(x) := − log x+

x − 1 leads to the mutual information of the random vector yq(n). Notice

also, from property (5), that Iϕ(yq) ≥ 0, and

Iϕ(yq) = 0 iff the components of yq are independent. (17)

Moreover, the above criterion (16) can be written as follows

Iϕ (yq) = E

[
ϕ

(∏M
i=1 fyqii (yqii )

fyq(yq)

)]
. (18)

5. Discretization and statistical estimation

We now present how to make operational the above method described in

section 4, by the use of numerical and statistical techniques. In the sequel,

continuous scalar random signals are sampled at a period Te. To each con-

tinuous scalar signal u(t), we associate a vector (u(1), ..., u(N))τ ∈ X := RN

defined by u(k) := u(kTe), for all k = 1, . . . , N. This vector is denoted by

U := (u(1), ..., u(N))τ .

The vector space X := RN is equipped with the euclidian inner product

〈U, V 〉 :=
N∑
k=1

u(k)v(k),
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for all U, V ∈ X. The numerical first derivative of any U ∈ X, denoted

U ′ := (u′(1), ..., u′(N))τ , belongs to X, and is defined by

u′(k) :=
u(k + 1)− u(k)

Te
, for all k = 1, . . . , N − 1, (19)

and u′(N) = 0. Due to the discretization of the first derivatives and in order

to avoid the edge effect, we define also the backward derivative of any U ∈ X,

denoted

U∗ := (u∗(1), ..., u∗(N))τ ,

by

u∗(1) :=
u(1)

Te
, u∗(N) := −u(N − 1)

Te

and

u∗(k) :=
u(k)− u(k − 1)

Te
for all k = 2, . . . , N − 1.

Here, the backward derivatives (·)∗ is the discrete adjoint operator of −(·)′.

That is, for all U, V ∈ X, we have

〈U∗, V 〉 = −〈U, V ′〉. (20)

All these definitions are extended in a natural way to elements of the cartesian

product space XM . Elements of the vector space X will be denoted by capital

symbols, while the elements of the vector space XM are denoted by bold

capital symbols, which can be considered as M ×N dimension matrices.

5.1. The denoising of the discrete observed signal

In this section, we show how to estimate in practice x(t) from the noisy

observation x0(t). Recall that this estimation is obtained by solving the

discrete version of the optimization problem (11) in which the mathematical
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expectation is estimated trough the time mean. We start with the following

proposition which gives a simple characterization of the solution (see [19] for

a proof).

Proposition 1. The discrete version of the problem (11) has a unique solu-

tion given by

X = X0 − ΠλGX
0, (21)

where ΠλG is the euclidian orthogonal projection operator on the convex set

λG with G := {V∗ | V ∈ XM , |vi(k)| ≤ 1, ∀(i, k) ∈ {1, . . . ,M}×{1, . . . , N}}.

Thus, to compute X we are lead to compute the projection operator ΠλG on

the convex set λG, i.e., the projection of the observed signal matrix X0 on

the set λG:

X = arg min
W∈λG

∥∥W −X0
∥∥2 .

In other words, if D denotes the convex set given by

D := {V ∈ X | ∀k = 1, . . . N, |v(k)| ≤ 1} ,

it is equivalent to compute the projection operator ΠD, i.e., to solve the

problem

X = arg min
V∈DM

(∥∥λV∗ −X0
∥∥2) . (22)

If ρ > 0 denotes a real number, the optimality condition for the problem (22)

could be written as follows

Vi = ΠD

(
Vi − 2λρ

(
λV ∗i −X0

i

)′)
, ∀i = 1, ...,M, (23)

where ΠD(·) is the orthogonal projection on D. It is straightforward to see

that

∀V ∈ X, (ΠDV ) (k) =


v(k)
|v(k)| , if |v(k)| ≥ 1,

v(k), else,
(24)
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for all k = 1, ..., N. In order to solve the problem (22), one can use a projected

gradient method, that is

Data: X0 the observed signal

Result: X the denoised observed vector

Initialization : X(0) = X0. Given ε > 0, λ > 0 and ρ > 0 suitably

choosen

do

• update X :

for i = 1, . . . ,M

X
(p+1)
i = ΠD

(
X

(p)
i − 2λρ

(
λ
(
X

(p)
i

)∗
−X0

i

)′)
until ‖X(p+1) −X(p)‖ < ε

X = X(p+1).

Algorithm 1: The denoising step.

Proposition 2. The sequence X(p) converges to X, when p → ∞, if λ and

ρ satisfy the following condition

λ2ρ <
T 2
e

4
. (25)

Proof of proposition 2. If we analyze this algorithm, component by com-

ponent, we have ∀i ∈ {1, ...,M},∥∥∥X(p)
i −Xi

∥∥∥ =

∥∥∥∥X(p)
i −Xi + 2λ2ρ

((
X

(p)
i −Xi

)∗)′∥∥∥∥
=

∥∥∥(I + 2λ2ρ∆
) (
X

(p)
i −Xi

)∥∥∥
≤

∥∥(I + 2λ2ρ∆
∥∥∥∥∥X(p)

i −Xi

∥∥∥ ,
(26)

where ∆ is the second order derivative operator defined by ∀V ∈ X,∆(V ) :=

(V ∗)′ = V ′′. Since the eigenvalues of ∆ are negative, the sequence
∥∥X(p) −X

∥∥
15



is necessary decreasing. Hence, it converges when

λ2ρ <
1

‖∆‖
,

where ‖∆‖ is defined by

‖∆‖ := sup
V ∈X

〈−∆V, V 〉
‖V ‖2

.

According to (20), we have, ∀V ∈ X,

〈−∆V, V 〉 = ‖V ′‖2

=
N−1∑
k=1

(
v(k + 1)− v(k)

Te

)2

≤ 4

T 2
e

‖V ‖2,

which ends the proof of proposition 2.

Afterwards, the filtered observed signal X will be considered as the denoised

version of the observed signal X0. Now, we investigate the BSS step.

5.2. An algorithm for the simultanous BSS-denoising

In this section, we apply the gradient approach to separate convolutive mix-

tures based on the minimization of a statistical estimate of the criterion (13).

Let us assume that the discrete separating system form of (2) is defined by

y(n) := B ? x(n) :=
L∑
k=0

Bkx(n− k), ∀n = 1, . . . , N, (27)

where B := (B0, B1, . . . , BL) are finite impulse response (FIR) filters with

maximum degree L. To estimate the M ×M dimension matrices Bk, lead-

ing to estimated sources outputs, we expose hereafter how to estimate the
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criterion J(B) := J(y) (by abuse of notation) and how to compute the min-

imizer in B := (B0, B1, . . . , BL) of the proposed estimate. Denote by Ĵ(B)

the estimate of the criterion J(B). The criterion J(B), under assumption

(27), writes

J(B) := Jsep(B) + Jreg(B), (28)

where

Jsep(B) :=
∑

q∈{0}×{−2L,...,2L}M−1

Iϕ(yq) (29)

and

Jreg(B) :=
M∑
i=1

[γ
2
E
(
|yi − y0i |2

)
+ µE (θ (|y′i|))

]
. (30)

From the formula (18), we propose to estimate the criterion (29) through

Ĵsep(B) :=
∑

q∈{0}×{−2L,...,2L}M−1

Îϕ(yq), (31)

where

Îϕ (yq) :=
1

N

N∑
n=1

ϕ

(∏M
i=1 f̂yqii (yqii (n))

f̂yq(yq(n))

)
(32)

in which f̂yqii (·) denotes the kernel estimate of the marginal density fyqii (·),

for all i ∈ {1, . . . ,M}, and f̂yq(·) is the kernel estimate of the joint density

fyq(·), i.e.,

f̂yqii (ui) :=
1

Nhi

N∑
n=1

k

(
yqii (n)− ui

hi

)
, (33)

∀i ∈ {1, . . . ,M} , and

f̂yq(u) :=
1

Nh1 · · ·hM

N∑
n=1

M∏
i=1

k

(
yqii (n)− ui

hi

)
, (34)
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in which h1, . . . , hM are the bandwidths and k(·) the kernel. Here we take

k(·) to be the standard univariate gaussian density x ∈ R 7→ k(x) :=

1√
2π

exp{−x2/2}, and we consider the “optimal” bandwidths

hi := σ̂i(3/4)−1/5N−1/5,

where σ̂i is the empirical standard deviation of the scalar data yqii (1), . . . , yqii (N),

for all i ∈ {1, . . . ,M}; see e.g. [32].

The second term Jreg(·) can be estimated as in section 5.1 by discretization

and replacing the mathematical expectation E(·) by the time mean Ê(·), as

follows

Ĵreg(B) :=
M∑
i=1

(γ
2
Ê
(
|yi − y0i |2

)
+ µÊ (θ (|y′i|))

)
. (35)

Hence the problem leads to minimize in B := (B0, B1, . . . , BL) the following

estimate of the criterion J(B)

Ĵ(B) := Ĵsep(B) + Ĵreg(B), (36)

where Ĵsep(B) and Ĵreg(B) are given by (31) and (35), respectively. The

minimizer, denote it B̂, can be computed using gradient descent type algo-

rithms. For this, we need the computation of the gradient, according to each

Bk, k = 0, 1 . . . , L, of the estimated criterion Ĵ(B). The following proposition

gives the explicit formula of the gradient.
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Proposition 3. Let us consider Ĵ(B) defined by (36). Then,

∂Ĵ(B)

∂Bk

=
∑

q∈{0}×{−2L,...,2L}M−1

∂Îϕ(yq)

∂Bk

+γÊ
[(
y − y0

)
(n)
(
x− x0

)
(n− k)τ

]
+µÊ

[(
θ′ (|y′(n)|)y′(n)

|y′(n)|

)∗
x(n− k)τ

]
.

Remark 1. 1) In the particular case of mutual information, i.e., when

ϕ(x) = − log x, we can write

Îϕ(yq) = Ê
[
log f̂yq(yq(n))

]
−

M∑
i=1

Ê
[
log f̂yqii (yqii (n))

]
,

and then

∂Îϕ(yq)

∂Bk

= Ê

[
(∂/∂Bk)f̂yq(yq(n))

f̂yq(yq(n))

]

−
M∑
i=1

Ê

[
(∂/∂Bk)f̂yqii (yqii (n))

f̂yqii (yqii (n))

]
,

where, ∀i = 1, . . . ,M,

∂

∂Bk

f̂yqii (yqii (n)) =
1

Nh2i

N∑
j=1

k′
(
yqii (j)− yqii (n)

hi

)
(xqi(j − k)− xqi(n− k))τ

and
∂

∂Bk

f̂yq(yq(n)) =

1

Nh1 · · ·hM

N∑
j=1

∂

∂Bk

M∏
i=1

k

(
yqii (j)− yqii (n)

hi

)
.

19



2) For any differentiable function ϕ, we have

∂Îϕ(yq)

∂Bk

= Ê

[
ϕ′

(∏M
i=1 f̂yqii (yqii (n))

f̂yq(yq(n))

)

× ∂

∂Bk

∏M
i=1 f̂yqii (yqii (n))

f̂yq(yq(n))

]
.

We can then derive the following algorithm.

Data: X0 the observed signal

Result: Y the estimated source signal

Initialization : Compute X = X0 − ΠDX
0 from algorithm 1

Given ε > 0, B
(0)
k , k ∈ {0, 1, . . . , L}, Y(0) := B(0) ?X and τ > 0

do

• update Bk

for k = 0, 1, . . . , L,

B
(p+1)
k = B

(p)
k − τ

∂Ĵ
(
B(p)

)
∂B

(p)
k

• update Y

y(p+1)(n) =
L∑
k=0

B
(p+1)
k x(n− k)

until ‖B(p+1)
k −B(p)

k ‖ < ε

Algorithm 2: The separation algorithm.

6. Numerical results

In this section, we present simulation results for the proposed method. We

dealt with three kinds of samples, namely observations obtained by a noisy

instantaneous mixture of two images, a convolutive mixture of two i.i.d. uni-

form source signals, and a convolutive mixture of two source signals drawn
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from the 4-ASK alphabet. The separation performance was evaluated in

term of the signal-to-interference ratio (SIR) for each output yi. Recall that

the SIR is defined by

SIRi := 10 log10

(
Ê (y2i )

Ê (y2i |si=0)

)
, i = 1, . . . ,M,

where Ê (y2i |si=0) stands for the time mean of the mixture y2i from which the

source signal si is cancelled.

The mixtures have been separated using mutual information (MI) method

described in ([30, 31]), MI method where the data are pre-whitened (MI Wh)

and our proposed algorithm, denoted H TV, using the separation criterion

(36) described in sections 5.1 and 5.2, for the particular choice of Hellinger

divergence (i.e., the Dϕα-divergence with α = 0.5) combined with the total

variation. Since the criterion (36) is computationally expensive in the con-

volutive case, we implemented here a somehow stochastic version, where the

sum is reduced to one term qi, randomly chosen from the set {−2L, ..., 2L},

at each iteration. Concerning the penalization parameters, also called “hy-

perparameters”, they are chosen (small enough) in an ad hoc manner. There

exists methods to dynamically tuned these parameters in order to control the

trade-off between conformance to data and conformance to the prior. We re-

fer to [33] for a comparative study and a way to choose them objectively.

6.1. Example 1: Instantaneous case : noisy mixed images

In this example, we show the capability of the proposed algorithm using

H TV to successfully separate two noisy mixed images and compare its per-

formance with the classical MI algorithm that does not take into account
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the noise. The dimensions of the synthesized images which are used in this

experiment are 256× 256 pixels and the mixing matrix is

A(z) =

 0.55 0.45

0.45 0.55

 .
The two original images, shown in figure 1, are mixed by the above mixing

matrix, at which we add a gaussian noise. The signal to noise ratio (SNR) is

defined as the power of the signal to the power of the noise and it is expressed

in decibels. We take SNR = −22.4 dB. The mixed images so obtained are

shown in figure 2. The gradient descent parameter for MI and H TV is taken

τ = 0.05. For H TV method, in the denoising step, see algorithm 1, we take

ρ = 0.25, λ = 0.01 and ε = 0.001, and in the second step, see algorithm

2, we chose γ = 0.0001 and µ = 0.1. To quantify the performance of the

used algorithms, we consider the so-called peak signal to noise ratio (PSNR)

defined by

PSNRi :=
∑
j

(
max(ujor)

2lc

‖ujapp − ujor‖2

)
, i = 1, 2, (37)

where l × c is the size of the image, j is the red (R), the green (G) or the

blue (B) components of the image, uor is the original image and uapp is the

restored image.

The results, illustrated in figures 3 and 4 and presented in table 2, show that

H TV method provides a better visual quality of separation than the MI one.

6.2. Example 2

We compare the three methods, namely MI, MI Wh and H TV. We inves-

tigate the impact of the data set length, N , on the separation accuracy in
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the first experiment, and the impact of the noise in the second experiment

for a fixed signal sample length N . Indeed, in BSS approach, computational

complexity increases with the data length. Thus, by optimizing the number

of signal sample lengths, the computational complexity and operation time

could be reduced. An additive white gaussian noise (AWGN) has been added

to the observed signals. We take SNR =−20 dB, iteration number = 2000

and for every N , we consider 2 source signals drawn from the 4-ASK alpha-

bet {−3,−1, 1, 3}. The study was carried out on set of 50 Monte Carlo runs

of random 4-ASK source signals for different length N . The source signals

were linearly mixed through the following RIF filters

A(z) =

 1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

 .
Figure 5 shows the averaged SIRs versus data length N for the three algo-

rithms. We can see that the best separation accuracy for the three methods

is achieved since N = 5000. For any considered signal sample length, we

see that H TV is the best. In the second experiment, we take N = 5000.

The iteration number = 5000, and we let the SNR varying between −30 dB

and 0 dB. For each SNR level the experiment is repeated 100 times with

different realizations of i.i.d. uniform random sources mixed by the above

RIFs. Figure 6 shows the averaged SIRs versus SNR for the three algorithms.

For both experiments, the gradient descent parameter, for MI, MI Wh and

H TV, is taken τ = 0.2. For H TV method, the hyperparameters are chosen

to be ρ = 0.25, λ = 0.01, ε = 0.001, γ = 0.0001 and µ = 0.1.
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6.3. Example 3

Here, the source signals were linearly mixed through a randomly generated

RIF filters of length 6 from uniform law on [0, 1]. The number of observations

is taken equals 5000. The simulations are repeated 25 times with different

realizations of i.i.d. uniform random sources. We consider two experiments.

In the first one, we investigate, for the three criteria MI, MI Wh and H TV,

the convergence of the corresponding descent gradient algorithms, in terms of

the number of iterations. We add to the observed mixed sources an AWGN

with SNR = −20 dB. The results are illustrated in figure 7. We can see

that the rate of convergence is comparable for the three methods, but the

separation is better for the H TV one. In the second experiment, we inves-

tigate the impact of the noise on the separation performance. We consider

the same source signals as above for a fixed length N = 5000, and we add

an AWGN with different SNR values. The results are presented in Figure 8.

This experiment shows that the H TV approach outperform MI and MI Wh.

The parameters for all algorithms are taken to be the same as in example 2.

7. Conclusion

An efficient and robust algorithm for convolutive BSS in presence of noise is

presented. This algorithm makes use of divergence separation criteria and

variational methods to control the noise. It proceeds in two steps : a pre-

processing which consists in reducing the noise on the data, and a second one

minimizing a separation criterion based on divergences regularized through

total variation. This regularization prevents from the error model and allows

to denoise the estimate output. For the particular choice of the Hellinger
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divergence, the simulation results show the high accuracy of this approach

in terms of efficiency, and robustness against the noise, compared with the

classical mutual information approach.
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