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Abstract

We present a variational Bayesian method of joint image reconstruction and

point spread function (PSF) estimation when the PSF of the imaging device

is only partially known. To solve this semi-blind deconvolution problem, prior

distributions are specified for the PSF and the 3D image. Joint image recon-

struction and PSF estimation is then performed within a Bayesian framework,

using a variational algorithm to estimate the posterior distribution. The image

prior distribution imposes an explicit atomic measure that corresponds to im-

age sparsity. Importantly, the proposed Bayesian deconvolution algorithm does

not require hand tuning. Simulation results clearly demonstrate that the semi-

blind deconvolution algorithm compares favorably with previous Markov chain

Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly

outperforms mismatched non-blind algorithms that rely on the assumption of

the perfect knowledge of the PSF. The algorithm is illustrated on real data from

magnetic resonance force microscopy (MRFM).

Keywords: Variational Bayesian inference, posterior image distribution,

image reconstruction, hyperparameter estimation, MRFM experiment.

∗Corresponding author. Tel: +1 (734) 763-4497, fax: +1 (734) 763-8041
This research was partially supported by a grant from ARO, grant number W911NF-05-1-
0403.

Email addresses: seunpark@umich.edu (Se Un Park), nicolas.dobigeon@enseeiht.fr
(Nicolas Dobigeon), hero@umich.edu (Alfred O. Hero)

Preprint submitted to Elsevier October 17, 2018

ar
X

iv
:1

30
3.

38
66

v1
  [

ph
ys

ic
s.

da
ta

-a
n]

  1
5 

M
ar

 2
01

3



1. Introduction

The standard and popular image deconvolution techniques generally assume

that the space-invariant instrument response, i.e., the point spread function

(PSF), is perfectly known. However, in many practical situations, the true

PSF is either unknown or, at best, partially known. For example, in an opti-

cal system a perfectly known PSF does not exist because of light diffraction,

apparatus/lense aberration, out-of-focus, or image motion [1, 2]. Such imper-

fections are common in general imaging systems including MRFM, where there

exist additional model PSF errors in the sensitive magnetic resonance condition

[3]. In such circumstances, the PSF required in the reconstruction process is

mismatched with the true PSF. The quality of standard image reconstruction

techniques may suffer from this disparity. To deal with this mismatch, decon-

volution methods have been proposed to estimate the unknown image and the

PSF jointly. When prior knowledge of the PSF is available, these methods are

usually referred to as semi-blind deconvolution [4, 5] or myopic deconvolution

[6, 7, 8].

In this paper, we formulate the semi-blind deconvolution task as an estima-

tion problem in a Bayesian setting. Bayesian estimation has the great advantage

of offering a flexible framework to solve complex model-based problems. Prior

information available on the parameters to be estimated can be efficiently in-

cluded within the model, leading to an implicit regularization of our ill-posed

problem. In addition, the Bayes framework produces posterior estimates of un-

certainty, via posterior variance and posterior confidence intervals. Extending

our previous work, we propose a variational estimator for the parameters as

contrasted to the Monte Carlo approach in [9]. This extension is non-trivial.

Our variational Bayes algorithm iterates on a hidden variable domain associ-

ated with the mixture coefficients. This algorithm is faster, more scalable for

equivalent image reconstruction qualities in [9].

Like in [9], the PSF uncertainty is modeled as the deviation of the a priori

known PSF from the true PSF. Applying an eigendecomposition to the PSF co-
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variance, the deviation is represented as a linear combination of orthogonal PSF

bases with unknown coefficients that need to be estimated. Furthermore, we

assume the desired image is sparse, corresponding to the natural sparsity of the

molecular image. The image prior is a weighted sum of a sparsity inducing part

and a continuous distribution; a positive truncated Laplacian and atom at zero

(LAZE) prior1 [10]. Similar priors have been applied to estimating mixtures of

densities [11, 12, 13] and sparse, nonnegative hyperspectral unmixing [14]. Here

we introduce a hidden label variable for the contribution of the discrete mass

(empty pixel) and a continuous density function (non-empty pixel). Similar to

our ‘hybrid’ mixture model, inhomogeneous gamma-Gaussian mixture models

have been proposed in [15].

Bayesian inference of parameters from the posterior distribution generally

requires challenging computations, such as functional optimization and numer-

ical integration. One widely advocated strategy relies on approximations to

the minimum mean square error (MMSE) or maximum a posteriori (MAP) es-

timators using samples drawn from the posterior distribution. Generation of

these samples can be accomplished using Markov chain Monte Carlo methods

(MCMC) [16]. MCMC has been successfully adopted in numerous imaging prob-

lems such as image segmentation, denoising, and deblurring [17, 16]. Recently,

to solve blind deconvolution, two promising semi-blind MCMC methods have

been suggested [9, 18]. However, these sampling methods have the disadvantage

that convergence may be slow.

An alternative to Monte Carlo integration is a variational approximation to

the posterior distribution, and this approach is adopted in this paper. These

approximations have been extensively exploited to conduct inference in graph-

ical models [19]. If properly designed, they can produce an analytical poste-

rior distribution from which Bayesian estimators can be efficiently computed.

Compared to MCMC, variational methods are of lower computational complex-

1A Laplace distribution as a prior distribution acts as a sparse regularization using `1
norm. This can be seen by taking negative logarithm on the distribution.
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ity, since they avoid stochastic simulation. However, variational Bayes (VB)

approaches have intrinsic limits; the convergence to the true distribution is

not guaranteed, even though the posterior distribution will be asymptotically

normal with mean equal to the maximum likelihood estimator under suitable

conditions [20]. In addition, variational Bayes approximations can be easily im-

plemented for only a limited number of statistical models. For example, this

method is difficult to apply when latent variables have distributions that do not

belong to the exponential family (e.g. a discrete distribution [9]). For mixture

distributions, variational estimators in Gaussian mixtures and in exponential

family converge locally to maximum likelihood estimator [21, 22]. The theo-

retical convergence properties for sparse mixture models, such as our proposed

model, are as yet unknown. This has not hindered the application of VB to

sparse models to problems in our sparse image mixture model. Another possi-

ble intrinsic limit of the variational Bayes approach, particularly in (semi)-blind

deconvolution, is that the posterior covariance structure cannot be effectively

estimated nor recovered, unless the true joint distributions have independent

individual distributions. This is primarily because VB algorithms are based on

minimizing the KL-divergence between the true distribution and the VB ap-

proximating distribution, which is assumed to be factorized with respect to the

individual parameters.

However, despite these limits, VB approaches have been widely applied with

success to many different engineering problems [23, 24, 25, 26]. A principal

contribution of this paper is the development and implementation of a VB al-

gorithm for mixture distributions in a hierarchical Bayesian model. Similarly,

the framework permits a Gaussian prior [27] or a Student’s-t prior [28] for the

PSF. We present comparisons of our variational solution to other blind decon-

volution methods. These include the total variation (TV) prior for the PSF [29]

and natural sharp edge priors for images with PSF regularization [30]. We also

compare to basis kernels [28], the mixture model algorithm of Fergus et al. [31],

and the related method of Shan et al. [32] under a motion blur model.

To implement variational Bayesian inference, prior distributions and the
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instrument-dependent likelihood function are specified. Then the posterior dis-

tributions are estimated by minimizing the Kullback-Leibler (KL) distance be-

tween the model and the empirical distribution. Simulations conducted on syn-

thetic images show that the resulting myopic deconvolution algorithm outper-

forms previous mismatched non-blind algorithms and competes with the previ-

ous MCMC-based semi-blind method [9] with lower computational complexity.

We illustrate the proposed method on real data from magnetic resonance

force microscopy (MRFM) experiments. MRFM is an emerging molecular imag-

ing modality that has the potential for achieving 3D atomic scale resolution

[33, 34, 35]. Recently, MRFM has successfully demonstrated imaging [36, 37] of

a tobacco mosaic virus [38]. The 3D image reconstruction problem for MRFM

experiments was investigated with Wiener filters [39, 40, 37], iterative least

square reconstruction approaches [41, 38, 42], and recently the Bayesian esti-

mation framework [10, 43, 8, 9]. The drawback of these approaches is that they

require prior knowledge on the PSF. However, in many practical situations of

MRFM imaging, the exact PSF, i.e., the response of the MRFM tip, is only

partially known [3]. The proposed semi-blind reconstruction method accounts

for this partial knowledge.

The rest of this paper is organized as follows. Section 2 formulates the

imaging deconvolution problem in a hierarchical Bayesian framework. Section

3 covers the variational methodology and our proposed solutions. Section 4

reports simulation results and an application to the real MRFM data. Section

5 discusses our findings and concludes.

2. Formulation

2.1. Image Model

As in [9, 43], the image model is defined as:

y = Hx + n = T (κ,x) + n, (1)
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where y is a P × 1 vectorized measurement, x = [x1, . . . , xN ]T � 0 is an N × 1

vectorized sparse image to be recovered, T (κ, ·) is a convolution operator with

the PSF κ, H = [h1, . . . ,hN ] is an equivalent system matrix, and n is the

measurement noise vector. In this work, the noise vector n is assumed to be

Gaussian2, n ∼ N
(
0, σ2IP

)
. The PSF κ is assumed to be unknown but a

nominal PSF estimate κ0 is available. The semi-blind deconvolution problem

addressed in this paper consists of the joint estimation of x and κ from the

noisy measurements y and nominal PSF κ0.

2.2. PSF Basis Expansion

The nominal PSF κ0 is assumed to be generated with known parameters

(gathered in the vector ζ0) tuned during imaging experiments. However, due to

model mismatch and experimental errors, the true PSF κ may deviate from the

nominal PSF κ0. If the generation model for PSFs is complex, direct estimation

of a parameter deviation, ∆ζ = ζtrue − ζ0, is difficult.

We model the PSF κ (resp. {H}) as a perturbation about a nominal PSF

κ0 (resp. {H0}) with K basis vectors κk, k = 1, . . . ,K, that span a subspace

representing possible perturbations ∆κ. We empirically determined this basis

using the following PSF variational eigendecomposition approach. A number

of PSFs κ̃ are generated following the PSF generation model with parameters

ζ randomly drawn according to Gaussian distribution3 centered at the nom-

inal values ζ0. Then a standard principal component analysis (PCA) of the

residuals {κ̃j − κ0}j=1,... is used to identify K principal axes that are associ-

ated with the basis vectors κk. The necessary number of basis vectors, K, is

determined empirically by detecting a knee at the scree plot. The first few

eigenfunctions, corresponding to the first few largest eigenvalues, explain major

portion of the observed perturbations. If there is no PSF generation model, then

we can decompose the support region of the true (suspected) PSF to produce

2N (µ,Σ) denotes a Gaussian random variable with mean µ and covariance matrix Σ.
3 The variances of the Gaussian distributions are carefully tuned so that their standard

deviations produce a minimal volume ellipsoid that contains the set of valid PSFs.
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an orthonormal basis. The necessary number of the bases is again chosen to

explain most support areas that have major portion/energy of the desired PSF.

This approach is presented in our experiment with Gaussian PSFs.

We use a basis expansion to present κ(c) as the following linear approxima-

tion to κ,

κ(c) = κ0 +

K∑
i=1

ciκi, (2)

where the {ci} determine the PSF relative to this bases. With this parameter-

ization, the objective of semi-blind deconvolution is to estimate the unknown

image, x, and the linear expansion coefficients c = [c1, . . . , cK ]T .

2.3. Determination of Priors

The priors on the PSF, the image, and the noise are constructed as latent

variables in a hierarchical Bayesian model.

2.3.1. Likelihood function

Under the hypothesis that the noise in (1) is white Gaussian, the likelihood

function takes the form

p
(
y|x, c, σ2

)
=

(
1

2πσ2

)P
2

×

exp

(
−‖y − T (κ (c) ,x)‖2

2σ2

)
, (3)

where ‖·‖ denotes the `2 norm ‖x‖2 = xTx.

2.3.2. Image and label priors

To induce sparsity and positivity of the image, we use an image prior con-

sisting of “a mixture of a point mass at zero and a single-sided exponential

distribution” [10, 43, 9]. This prior is a convex combination of an atom at zero

and an exponential distribution:

p(xi|a,w) = (1− w)δ(xi) + wg(xi|a). (4)
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In (4), δ(·) is the Dirac delta function, w = P (xi 6= 0) is the prior proba-

bility of a non-zero pixel and g(xi|a) = 1
a exp

(
−xi

a

)
1R∗+(xi) is a single-sided

exponential distribution where R∗+ is a set of positive real numbers and 1E(·)

denotes the indicator function on the set E:

1E(x) =

 1, if x ∈ E;

0, otherwise.
(5)

A distinctive property of the image prior (4) is that it can be expressed as a

latent variable model

p(xi|a, zi) = (1− zi)δ(xi) + zig(xi|a), (6)

where the binary variables {zi}N1 are independent and identically distributed

and indicate if the pixel xi is active

zi =

 1, if xi 6= 0;

0, otherwise.
(7)

and have the Bernoulli probabilities: zi ∼ Ber(w).

The prior distribution of pixel value xi in (4) can be rewritten conditionally

upon latent variable zi

p (xi|zi = 0) = δ (xi) ,

p (xi|a, zi = 1) = g (xi|a) ,

which can be summarized in the following factorized form

p(xi|a, zi) = δ(xi)
1−zig(xi|a)zi . (8)

By assuming each component xi to be conditionally independent given zi and
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a, the following conditional prior distribution is obtained for x:

p(x|a, z) =

N∏
i=1

[
δ(xi)

1−zig(xi|a)zi
]

(9)

where z = [z1, . . . , zN ].

This factorized form will turn out to be crucial for simplifying the variational

Bayes reconstruction algorithm in Section 3.

2.3.3. PSF parameter prior

We assume that the PSF parameters c1, . . . , cK are independent and ck is

uniformly distributed over intervals

Sk = [−∆ck,∆ck] . (10)

These intervals are specified a priori and are associated with error tolerances

of the imaging instrument. The joint prior distribution of c = [c1, . . . , cK ]
T

is

therefore:

p (c) =

K∏
k=1

1

2∆ck
1Sk (ck) . (11)

2.3.4. Noise variance prior

A conjugate inverse-Gamma distribution with parameters ς0 and ς1 is as-

sumed as the prior distribution for the noise variance (See Appendix A.1 for

the details of this distribution):

σ2|ς0, ς1 ∼ IG (ς0, ς1) . (12)

The parameters ς0 and ς1 will be fixed to a number small enough to obtain a

vague hyperprior, unless we have good prior knowledge.

2.4. Hyperparameter Priors

As reported in [10, 43], the values of the hyperparameters {a,w} greatly

impact the quality of the deconvolution. Following the approach in [9], we
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propose to include them within the Bayesian model, leading to a second level of

hierarchy in the Bayesian paradigm. This hierarchical Bayesian model requires

the definition of prior distributions for these hyperparameters, also referred to

as hyperpriors which are defined below.

2.4.1. Hyperparameter a

A conjugate inverse-Gamma distribution is assumed for the Laplacian scale

parameter a:

a|α ∼ IG (α0, α1) , (13)

with α = [α0, α1]
T

. The parameters α0 and α1 will be fixed to a number small

enough to obtain a vague hyperprior, unless we have good prior knowledge.

2.4.2. Hyperparameter w

We assume a Beta random variable with parameters (β0, β1), which are

iteratively updated in accordance with data fidelity. The parameter values will

reflect the degree of prior knowledge and we set β0 = β1 = 1 to obtain a non-

informative prior. (See Appendix A.2 for the details of this distribution)

w ∼ B(β0, β1). (14)

2.5. Posterior Distribution

The conditional relationships between variables is illustrated in Fig. 1. The

resulting posterior of hidden variables given the observation is

p(x, a, z, w, c, σ2|y) ∝ p(y|x, c, σ2)

× p(x|a, z)p(z|w)p(w)p(a)p(c)p(σ2). (15)

Since it is too complex to derive exact Bayesian estimators from this posterior,

a variational approximation of this distribution is proposed in the next section.
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Figure 1: Conditional relationships between variables. A node at an arrow tail conditions the
node at the arrow head.

3. Variational Approximation

3.1. Basics of Variational Inference

In this section, we show how to approximate the posterior densities within a

variational Bayes framework. Denote by U the set of all hidden parameter vari-

ables including the image variable x in the model, denoted byM. The hierarchi-

cal model implies the Markov representation p(y,U|M) = p(y|U,M)p(U|M).

Our objective is to compute the posterior p(x|y,M) =
∫
p(y|U,M)p(U|M)dU\x/p(y|M),

where U\x is a set of variables in U except x. Let q be any arbitrary distribution

of U. Then

ln p(y|M) = L(q) + KL(q‖p) (16)

with

L(q) =

∫
q(U|M) ln

(
p(y,U|M)

q(U|M)

)
dU (17)

KL(q‖p) = −
∫
q(U|M) ln

(
p(U|y,M)

q(U|M)

)
dU. (18)

We observe that maximizing the lower bound L(q) is equivalent to mini-

mizing the Kullback-Leibler (KL) divergence KL(q‖p). Consequently, instead

of directly evaluating p(y|M) given M, we will specify a distribution q(U|M)

that approximates the posterior p(U|y,M). The best approximation maximizes

L(q). We present Algorithm 1 that iteratively increases the value of L(q) by

updating posterior surrogate densities. To obtain a tractable approximating

distribution q, we will assume a factorized form as q(U) =
∏
j q(Uj) where
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U has been partitioned into disjoint groups Uj . Subject to this factorization

constraint, the optimal distribution q∗ (U) =
∏
j q
∗(Uj) is given by

ln q∗j (Uj) = E\Uj
[ln p(U,y)] + (const), ∀j (19)

where E\Uj
denotes the expectation4 with respect to all factors Ui except i = j.

We will call q∗(U) the posterior surrogate for p.

3.2. Suggested Factorization

Based on our assumptions on the image and hidden parameters, the random

vector is U , {θ,φ} = {x, a, z, w, c, σ2} with θ = {x, z, c} and φ =
{
a,w, σ2

}
.

We propose the following factorized approximating distribution

q(U) = q(x, a, z, w, c, σ2) = q(x, z, c)q(a,w, σ2). (20)

Ignoring constants5, (19) leads to

ln q(a,w, σ2) = E\a ln p(x|a, z)p(a)︸ ︷︷ ︸
ln q(a)

+

E\w ln p(z|w)p(w)︸ ︷︷ ︸
ln q(w)

+ E\σ2 ln p(y|x, σ2)p(σ2)︸ ︷︷ ︸
ln q(σ2)

(21)

which induces the factorization

q(φ) = q(a)q(w)q(σ2). (22)

4In the sequel, we use both E [·] and 〈·〉 to denote the expectation. To make our expressions
more compact, we use subscripts to denote expectation with respect to the random variables
in the subscripts. These notations with the subscripts of ‘\v’ denote expectation with respect
to all random variables except for the variable v. e.g. E\Uj

5In the sequel, constant terms with respect to the variables of interest can be omitted in
equations.
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Similarly, the factorized distribution for x, z and c is

q (θ) =

[∏
i

q(xi|zi)

]
q(z)q(c) (23)

leading to the fully factorized distribution

q (θ,φ) =

[∏
i

q(xi|zi)

]
q(a)q(z)q(w)q(c)q(σ2) (24)

3.3. Approximating Distribution q

In this section, we specify the marginal distributions in the approximated

posterior distribution required in (24). More details are described in Appendix

B. The parameters for the posterior distributions are evaluated iteratively due

to the mutual dependence of the parameters in the distributions for the hidden

variables, as illustrated in Algorithm 1.

3.3.1. Posterior surrogate for a

q(a) = IG(α̃0, α̃1), (25)

with α̃0 = α0 +
∑
〈zi〉, α̃1 = α1 +

∑
〈zixi〉.

3.3.2. Posterior surrogate for w

q(w) = B(β̃0, β̃1), (26)

with β̃0 = β0 +N −
∑
〈zi〉, β̃1 = β1 +

∑
〈zi〉.

3.3.3. Posterior surrogate for σ2

q(σ2) = IG(ς̃0, ς̃1), (27)

with ς̃0 = P/2+ς0, ς̃1 = 〈‖y−Hx‖2〉/2+ς1, and 〈‖y−Hx‖2〉 = ‖y−〈H〉〈x〉‖2+∑
var[xi]

[
‖〈κ〉‖2 +

∑
l σcl‖κl‖2

]
+
∑
l σcl‖Hl〈x〉‖2, where σcl is the variance of
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the Gaussian distribution q(cl) given in (33) and var[xi] is computed under the

distribution q(xi) defined in the next section and described in Appendix B.3.

3.3.4. Posterior surrogate for x

We first note that

ln q(x, z) = ln q(x|z)q(z) = E
[
ln p(y|x, σ2)p(x|a, z)p(z|w)

]
. (28)

The conditional density of x given z is p(x|a, z) =
∏N
i gzi(xi), where g0(xi) ,

δ(xi), g1(xi) , g(xi|a). Therefore, the conditional posterior surrogate for xi is

q(xi|zi = 0) = δ(xi), (29)

q(xi|zi = 1) = φ+(µi, ηi), (30)

where φ+(µ, σ2) is a positively truncated-Gaussian density function with the

hidden mean µ and variance σ2, ηi = 1/[〈‖hi‖2〉〈1/σ2〉], µi = ηi[〈hTi ei〉〈1/σ2〉−

〈1/a〉], ei = y−Hx−i, x−i is x except for the ith entry replaced with 0, and hi

is the ith column of H. Therefore,

q(xi) = q(zi = 0)δ(xi) + q(zi = 1)φ+(µi, ηi), (31)

which is a Bernoulli truncated-Gaussian density.

3.3.5. Posterior surrogate for z

For i = 1, . . . , N ,

q(zi = 1) = 1/[1 + C ′i] and q(zi = 0) = 1− q(zi = 1), (32)

with C ′i = exp(Ci/2 × ς̃0/ς̃1 + µiα̃0/α̃1 + ln α̃1 − ψ(α̃0) + ψ(β̃0) − ψ(β̃1)). ψ is

the digamma function and Ci = 〈‖hi‖2〉(µ2
i + ηi)− 2〈eTi hi〉µi.
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3.3.6. Posterior surrogate for c

For j = 1, . . . ,K,

q(cj) = φ(µcj , σcj ), (33)

where φ(µ, σ) is the probability density function for the normal distribution with

the mean µ and variance σ, µcj =
〈xTHjTy − xHjTH0x−

∑
l 6=j x

THjTHlclx〉
〈xTHjTHjx〉

,

and 1/σcj = 〈1/σ2〉〈xTHjTHjx〉.

Algorithm 1 VB semi-blind image reconstruction algorithm
1: % Initialization:

2: Initialize estimates 〈x(0)〉, 〈z(0)〉, and w(0), and set c = 0 to have κ̂(0) = κ0,

3: % Iterations:

4: for t = 1, 2, . . . , do

5: Evaluate α̃
(t)
0 , α̃

(t)
1 in (25) by using 〈x(t−1)〉, 〈z(t−1)〉,

6: Evaluate β̃
(t)
0 , β̃

(t)
1 in (26) by using 〈z(t−1)〉,

7: Evaluate ς̃
(t)
0 , ς̃

(t)
1 in (27) from 〈‖y −Hx‖2〉,

8: for i = 1, 2, . . . , N do
9: Evaluate necessary statistics (µi, ηi) for q(xi|zi = 1) in (29),

10: Evaluate q(zi = 1) in (32),
11: Evaluate 〈xi〉, var[xi],
12: For l = 1, . . . ,K, evaluate µcl , 1/σcl for q(cl) in (33),
13: end for
14: end for

The final iterative algorithm is presented in Algorithm 1, where required

shaping parameters under distributional assumptions and related statistics are

iteratively updated.

4. Simulation Results

We first present numerical results obtained for Gaussian and typical MRFM

PSFs, shown in Fig. 2 and Fig. 6, respectively. Then the proposed variational

algorithm is applied to a tobacco virus MRFM data set. There are many pos-

sible approaches to selecting hyperparameters, including the non-informative

approach of [9] and the expectation-maximization approach of [12]. In our ex-

periments, hyper-parameters ς0, ς1, α0, and α1 for the densities are chosen based
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on the framework advocated in [9]. This leads to the vague priors corresponding

to selecting small values ς0 = ς1 = α0 = α1 = 1. For w, the noninformative

initialization is made by setting β0 = β1 = 1, which gives flexibility to the sur-

rogate posterior density for w. The resulting prior Beta distribution for w is a

uniform distribution on [0, 1] for the mean proportion of non-zero pixels.

w ∼ B(β0, β1) ∼ U ([0, 1]) . (34)

The initial image used to initialize the algorithm is obtained from one Landwe-

ber iteration [44].

4.1. Simulation with Gaussian PSF

The true image x used to generate the data, observation y, the true PSF, and

the initial, mismatched PSF are shown in Fig. 2. Some quantities of interest,

computed from the outputs of the variational algorithm are depicted as functions

of the iteration number in Fig. 3. These plots indicate that convergence to the

steady state is achieved after few iterations. In Fig. 3, E [w] and E [1/a] get

close to the true level but E
[
1/σ2

]
shows a deviation from the true values.

This large deviation implies that our estimation of noise level is conservative;

the estimated noise level is larger than the true level. This relates to the large

deviation in projection error from noise level (Fig. 3(a)). The drastic changes in

the initial steps seen in the curves of E [1/a] ,E [w] are due to the imperfect prior

knowledge (initialization). The final estimated PSF and reconstructed image

are depicted in Fig. 4, along with the reconstructed variances and posterior

probability of zi 6= 0. We decomposed the support region of the true PSF to

produce orthonormal bases {κi}i shown in Fig. 5. We extracted 4 bases because

these four PSF bases clearly explain the significant part of the true Gaussian

PSF. In other words, little energy resides outside of this basis set in PSF space.

The reconstructed PSF clearly matches the true one, as seen in Fig. 2 and

Fig. 4. Note that the restored image is slightly attenuated while the restored

PSF is amplified because of intrinsic scale ambiguity.
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(a) True image x (b) Obsevation

(c) True PSF (d) Mismatched PSF

Figure 2: Experiment with Gaussian PSF: true image, observation, true PSF, and mismatched
PSF (κ0).

(a) log ‖y − EHEx‖2
(solid line) and noise
level (dashed line)

(b) log ‖xtrue − Ex‖2 (c) E[1/a] (solid line)
and true value (dashed
line)

(d) E
[
1/σ2

]
(solid line)

and true value (dashed
line)

(e) E[w] (solid line) and
true value (dashed line)

(f) E[c]. Four PSF coef-
ficients.

Figure 3: Result of Algorithm 1: curves of residual, error, E [1/a] ,E
[
1/σ2

]
,E [w] ,E [c], as

functions of number of iterations. These curves show how fast the convergence is achieved.

4.2. Simulation with MRFM type PSFs

The true image x used to generate the data, observation y, the true PSF,

and the initial, mismatched PSF are shown in Fig. 6. The PSF models the PSF

of the MRFM instrument, derived by Mamin et al. [3]. The convergence of

the algorithm is achieved after the 10th iteration. The reconstructed image can
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(a) Estimated PSF (b) Estimated image

(c) Variance map (d) Weight map

Figure 4: (a) Restored PSF, (b) image, (c) map of pixel-wise (posterior) variance, and (d)
weight map. κ̂ = Eκ is close to the true one. A pixel-wise weight shown in (d) is the posterior
probability of the pixel being a nonzero signal.

be compared to the true image in Fig. 7, where the pixel-wise variances and

posterior probability of zi 6= 0 are rendered. The PSF bases are obtained by

the procedure proposed in Section 2.2 with the simplified MRFM PSF model

and the nominal parameter values [10]. Specifically, by detecting a knee K = 4

at the scree plot, explaining more than 98.69% of the observed perturbations

(Fig. 3 in [9]), we use the first four eigenfunctions, corresponding to the first four

largest eigenvalues. The resulting K = 4 principal basis vectors are depicted

in Fig. 8. The reconstructed PSF with the bases clearly matches the true one,

as seen in Fig. 6 and Fig. 7.

4.3. Comparison with PSF-mismatched reconstruction

The results from the variational deconvolution algorithm with a mismatched

Gaussian PSF and a MRFM type PSF are presented in Fig. 9 and Fig. 10, re-

spectively; the relevant PSFs and observations are presented in Fig. 2 in Section

4.1 and in Fig. 6 in Section 4.2, respectively. Compared with the results of our

VB semi-blind algorithm (Algorithm 1), shown in Fig. 4 and Fig. 7, the recon-

structed images from the mismatched non-blind VB algorithm in Fig. 9 and
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(a) The first basis κ1 (b) The second basis κ2

(c) The third basis κ3 (d) The fourth basis κ4

Figure 5: PSF bases, κ1, . . . ,κ4, for Gaussian PSF.

Fig. 10, respectively, inaccurately estimate signal locations and blur most of the

non-zero values.

Additional experiments (not shown here) establish that the PSF estimator

is very accurate when the algorithm is initialized with the true image.

4.4. Comparison with other algorithms

To quantify the comparison, we performed experiments with the same set

of four sparse images and the MRFM type PSFs as used in [9]. By generating

100 different noise realizations for 100 independent trials with each true image,

we measured errors according to various criteria. We tested four sparse images

with sparsity levels ‖x‖0 = 6, 11, 18, 30.

Under these criteria6, Fig. 11 visualizes the reconstruction error performance

for several measures of error. From these figures we conclude that the VB semi-

blind algorithm performs at least as well as the previous MCMC semi-blind al-

6 Note that the `0 norm has been normalized. The true image has value 1; ‖x̂‖0/‖x‖0 is
used for MCMC method; E [w] ×N/‖x‖0 for variational method since this method does not
produce zero pixels but E [w].
Note also that, for our simulated data, the (normalized) true noise levels are ‖n‖2/‖x‖0 =
0.1475, 0.2975, 0.2831, 0.3062 for ‖x‖0 = 6, 11, 18, 30, respectively.
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(a) True image x (b) Obsevation

(c) True PSF (d) Mismatched PSF

Figure 6: Experiment with simplified MRFM PSF: true image, observation, true PSF, and
mismatched PSF (κ0).

gorithm. In addition, the VB method outperforms AM [45] and the mismatched

non-blind MCMC [43] methods. In terms of PSF estimation, for very sparse

images the VB semi-blind method seems to outperform the MCMC method.

Also, the proposed VB semi-blind method converges more quickly and requires

fewer iterations. For example, the VB semi-blind algorithm converges in ap-

proximately 9.6 seconds after 12 iterations, but the previous MCMC algorithm

takes more than 19.2 seconds after 40 iterations to achieve convergence7.

In addition, we made comparisons between our sparse image reconstruction

method and other state-of-the-art blind deconvolution methods [27, 29, 30, 28,

31, 32], as shown in our previous work [9]. These algorithms were initialized with

the nominal, mismatched PSF and were applied to the same sparse image as our

experiment above. For a fair comparison, we made a sparse prior modification

in the image model of other algorithms, as needed. Most of these methods do

not assume or fit into the sparse model in our experiments, thus leading to poor

performance in terms of image and PSF estimation errors. Among these tested

7 The convergence here is defined as the state where the change in estimation curves over
time is negligible.
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(a) Estimated PSF (b) Estimated image

(c) Variance map (d) Weight map

Figure 7: Restored PSF and image with pixel-wise variance and weight map. κ̂ = Eκ is close
to the true one.

algorithms, two of them, proposed by Tzikas et al. [28] and Almeida et al. [30],

produced non-trivial and convergent solutions and the corresponding results are

compared to ours in Fig. 11. By using basis kernels the method proposed by

Tzikas et al. [28] uses a similar PSF model to ours. Because a sparse image

prior is not assumed in their algorithm [28], we applied their suggested PSF

model along with our sparse image prior for a fair comparison. The method

proposed by Almeida et al. [30] exploits the sharp edge property in natural

images and uses initial, high regularization for effective PSF estimation. Both

of these perform worse than our VB method as seen in Fig. 11. The remaining

algorithms [27, 29, 31, 32], which focus on photo image reconstruction or motion

blur, either produce a trivial solution (x̂ ≈ y) or are a special case of Tzikas’s

model [28].

To show lower bound our myopic reconstruction algorithm, we used the Iter-

ative Shrinkage/Thresholding (IST) algorithm with a true PSF. This algorithm

effectively restores sparse images with a sparsity constraint [46]. We demon-

strate comparisons of the computation time8 of our proposed reconstruction

8Matlab is used under Windows 7 Enterprise and HP-Z200 (Quad 2.66 GHz) platform.
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(a) The first basis κ1 (b) The second basis κ2

(c) The third basis κ3 (d) The fourth basis κ4

Figure 8: PSF bases, κ1, . . . ,κ4, for MRFM PSF.

algorithm to that of others in Table 1.

Table 1: Computation time of algorithms (in seconds), for the data in Fig. 6.

Our method 9.58

semi-blind MC [9] 19.20

Bayesian nonblind [43] 3.61

AM [45] 0.40

Almeida’s method [30] 5.63

Amizic’s method [29] 5.69

Tzikas’s method [28] 20.31

(oracle) IST [46] 0.09

4.5. Application to tobacco mosaic virus (TMV) data

We applied the proposed variational semi-blind sparse deconvolution algo-

rithm to the tobacco mosaic virus data, made available by our IBM collaborators

[38], shown in the first row in Fig. 12. Our algorithm is easily modifiable to these

3D raw image data and 3D PSF with an additional dimension in dealing with

basis functions to evaluate each voxel value xi. The noise is assumed Gaussian
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(a) True image (b) Estimated image

(c) Variance map (d) Weight map

Figure 9: (mismatched) Non-blind result with a mismatched Gaussian PSF.

[36, 38] and the four PSF bases are obtained by the procedure proposed in 2.2

with the physical MRFM PSF model and the nominal parameter values [3]. The

reconstruction of the 6th layer is shown in Fig. 12(b), and is consistent with the

results obtained by other methods. (see [9, 43].) The estimated deviation in

PSF is small, as predicted in [9].

While they now exhibit similar smoothness, the VB and MCMC images are

still somewhat different since each algorithm follows different iterative trajectory

in the high dimensional space of 3D images, thus converging possibly to slightly

different stopping points near the maximum of the surrogate distribution. We

conclude that the two images from VB and MCMC are comparable in that both

represent the 2D SEM image well, but VB is significantly faster.

4.6. Discussion

In blind deconvolution, joint identifiability is a common issue. For example,

because of scale ambiguity, the unicity cannot be guaranteed in a general set-

ting. It is not proven in our solution either. However, the shift/time ambiguity

issue noticed in [47] is implicitly addressed in our method using a nominal and

basis PSFs. Moreover, our constraint on the PSF space using a basis approach
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(a) True image (b) Estimated image

(c) Variance map (d) Weight map

Figure 10: (mismatched) Non-blind result with a mismatched MRFM type PSF.

effectively excludes a delta function as a PSF solution, thus avoiding the trivial

solution. Secondly, the PSF solution is restricted to this linear spanning space,

starting form the initial, mismatched PSF. We can, therefore, reasonably expect

that the solution provided by the algorithm is close to the true PSF, away from

the trivial solution or the initial PSF.

To resolve scale ambiguity in a MCMC Bayesian framework, stochastic samplers

are proposed in [47] by imposing a fixed variance on a certain distribution9. An-

other approach to resolve the scale ambiguity is to assume a hidden scale variable

that is multiplied to the PSF and dividing the image (or vice versa.), where the

scale is drawn along each iteration of the Gibbs sampler [48].

5. Conclusion

We suggested a novel variational solution to a semi-blind sparse deconvolu-

tion problem. Our method uses Bayesian inference for image and PSF restora-

tion with a sparsity-inducing image prior via the variational Bayes approxima-

9We note that this MCMC method designed for 1D signal deconvolution is not efficient for
analyzing 2D and 3D images, since the grouped and marginalized samplers are usually slow
to converge requiring hundreds of iterations [47].
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(a) ‖x̂‖0/‖x‖0 (b) ‖ x
‖x‖ −

x̂
‖x̂‖‖

2
2/‖x‖0

(c) ‖y − ŷ‖22/‖x‖0 (d) ‖ κ̂
‖κ̂‖ −

κ
‖κ‖‖

2
2

Figure 11: For various image sparsity levels (x-axis: log10 ‖x‖0), performance of several blind,
semi-blind, and nonblind deconvolution algorithms: the proposed method (red), AM (blue),
Almeida’s method (green), Tzikas’s method (cyan), semi-blind MC (black), mismatched non-
blind MC (magenta). Errors are illustrated with standard deviations. (a): Estimated sparsity.
Normalized true level is 1 (black circles). (b): Normalized error in reconstructed image. For
the lower bound, information about the true PSF is only available to the oracle IST (black
circles). (c): Residual (projection) error. The noise level appears in black circles. (d): PSF
recovery error, as a performance gauge of our semi-blind method. At the initial stage of the
algorithm, ‖ κ0

‖κ0‖
− κ
‖κ‖‖

2
2 = 0.5627. (Some of the sparsity measure and residual errors are

too large to be plotted together with results from other algorithms.)

tion. Its power in automatically producing all required parameter values from

the data merits further attention for the extraction of image properties and

retrieval of necessary features.

From the simulation results, we conclude that the performance of the VB

method competes with MCMC methods in sparse image estimation, while re-

quiring fewer computations. Compared to a non-blind algorithm whose mis-

matched PSF leads to imprecise and blurred signal locations in the restored

image, the VB semi-blind algorithm correctly produces sparse image estimates.

The benefits of this solution compared to the previous solution [9] are faster
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(a) TMV raw data.

(b) VB estimate (c) MC estimate (d) SEM [38]

Figure 12: (a) TMV raw data, (b) estimated virus image by VB, (c) estimated virus image
by MCMC [9], and (d) virus image from electron microscope [38].

convergence and stability of the method.

Appendix A. Useful Distributions

Appendix A.1. Inverse Gamma Distribution

The density of an inverse Gamma random variableX ∼ IG(a, b) is
ba

Γ(a)
x−a−1 exp(− b

x
),

for x ∈ (0,∞). EX−1 = a/b and E ln(X) = ln(b)− ψ(a).

Appendix A.2. Beta Distribution

The density of a Beta random variable X ∼ B(a, b) is
Γ(a)Γ(b)

Γ(a+ b)
xb−1(1−x)a−1, for

x ∈ (0, 1), with Γ(c) =
∫∞
0
tc−1e−tdt. The mean of B(a, b) is b

a+b
and E ln(B(a, b)) =

ψ(b)− ψ(a+ b), where ψ is a digamma function.

Appendix A.3. Positively Truncated Gaussian Distribution

The density of a truncated Gaussian random variable xi is denoted by xi ∼
N+(xi;µ, η), and its statistics used in the paper are

E [xi|xi > 0] = E [N+(xi;µ, η)]

= µ+
√
η

φ(−µ/√η)

1− Φ0(−µ/√η)
,

E
[
x2i |xi > 0

]
= var[xi|xi > 0] + (E [xi|xi > 0])2

= η + µ(E [xi|xi > 0]),

where Φ0 is a cumulative distribution function for the standard normal distribution.
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Appendix B. Derivations of q(·)

In this section, we derive the posterior densities defined by variational Bayes frame-

work in Section 3.

Appendix B.1. Derivation of q(c)

We denote the expected value of the squared residual term by R = E‖y −Hx‖2.

For cl, l = 1, . . . ,K,

R =E‖y −H0x−
∑
l 6=j

Hlxcl −Hjxcj‖2

=c2j 〈xTHjTHjx〉 − 2cj〈xTHjTy − xHjTH0x

−
∑
l 6=j

xTHjTHlclx〉+ const,

where Hj is the convolution matrix corresponding to the convolution with κj . For i 6= j

and i, j > 0, E(Hix)T (Hjx) = tr(HiTHj(cov(x) + 〈x〉〈xT 〉)) = (Hi〈x〉)T (Hj〈x〉),
since tr(HiTHjcov(x)) = tr(HiD

T
HjD) =

∑
k d

2
kh

i
kh

j
k = 0. Here, cov(x) is approxi-

mated as a diagonal matrix D2 = diag(d21, . . . , d
2
n). This is reasonable, especially when

the expected recovered signal x̂ exhibits high sparsity. Likewise, E(H0x)T (Hjx) =

κT0 κj
∑
i var[xi]+(H0〈x〉)T (Hj〈x〉) and E(Hjx)T (Hjx) = ‖κj‖2

∑
i var[xi]+‖Hj〈x〉‖2.

Then, we factorize E
[
− R

2σ2

]
= −

(cj−µcj
)2

2σcj
, with µcj =

〈xTHjT y−xHjTH0x−
∑

l 6=j xTHjTHlclx〉
〈xTHjTHjx〉

,

1/σcj = 〈1/σ2〉〈xTHjTHjx〉.
If we set the prior, p(cj), to be a uniform distribution over a wide range of the

real line that covers error tolerances, we obtain a normally distributed variational

density q(cj) = φ(µcj , σcj ) with its mean µcj and variance σcj defined above, because

ln q(cj) = E
[
− R

2σ2

]
. By the independence assumption, q(c) =

∏
q(cj), so q(c) can be

easily evaluated.

Appendix B.2. Derivation of q(σ2)

We evaluate R ignoring edge effects; R = ‖y − 〈H〉〈x〉‖2 +
∑

var[xi][‖〈κ〉‖2 +∑
l σcl‖κl‖

2] +
∑
l σcl‖H

l〈x〉‖2. ‖κ‖2 is a kernel energy in `2 sense and the variance

terms add uncertainty, due to the uncertainty in κ, to the estimation of density.

Applying (19), (ignoring constants)

ln q(σ2) = E\σ2

[
ln p(y|x, c, σ2)p(σ2)p(x|a,w)p(w)p(a)

]
= Ex,c

[
ln p(y|x, σ2)

]
+ ln p(σ2)

= −
Ex,c

[
‖y −Hx‖2

]
2σ2

− P

2
lnσ2 + ln p(σ2).

IG(ς̃0, ς̃1) , q(σ2) = IG(P/2 + ς0, 〈‖y −Hx‖2〉/2 + ς1).

(E\σ2 denotes expectation with respect to all variables except σ2.)
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Appendix B.3. Derivation of q(x)

For xi, i = 1, . . . , N , R = E‖ei − hixi‖2 with ei = y − Hx−i = y − H0x−i −∑
lH

lclx−i, hi = [H0 +
∑

Hlcl]i = h0
i +

∑
hlicl = (ith column of H). Ignoring

constants, R = 〈‖hi‖2〉x2i − 2〈hTi ei〉xi.
Using the orthogonality of the kernel bases and uncorrelatedness of cl’s, we derive

the following terms (necessary to evaluate R): 〈‖hi‖2〉 = ‖h0
i ‖2 +

∑
l σcl‖h

l
i‖2 and,

〈hTi ei〉 = 〈hTi 〉(y − 〈H〉〈x−i〉)−
∑
l var[cl]h

l
i
T
Hl〈x−i〉.

Then, var[xi] = w′iE
[
x2i |xi > 0

]
− w′2i (E [xi|xi > 0])2, E [xi] = w′iE [xi|xi > 0],

where w′i = q(zi = 1) is the posterior weight for the normal distribution and 1−w′i is

the weight for the delta function. The required statistics of xi that are used to derive

the distribution above are obtained by applying Appendix A.3.

Appendix B.4. Derivation of q(z)

To derive q(zi = 1) = 〈zi〉, we evaluate the unnormalized version q̂(zi) of q(zi) and

normalize it. ln q̂(zi = 1) = E\zi

[
− ‖ei−hixi‖2

2σ2 − ln a− xi
a

+ lnw
]

with xi ∼ N+(µi, ηi)

and ln q̂(zi = 0) = E\zi

[
− ‖ei‖

2

2σ2 + ln(1− w)
]

with xi = 0. The normalized version of

the weight is q(zi = 1) = 1/[1 + C′i]. C
′
i = exp(ln q̂(zi = 0)−ln q̂(zi = 1)) = exp(Ci/2×

〈1/σ2〉+µ〈1/a〉+〈ln a〉+〈ln(1−w)−lnw〉 = exp(Ci/2×ς̃0/ς̃1+µα̃0/α̃1+ln α̃1−ψ(α̃0)+

ψ(β̃0)− ψ(β̃1)). ψ is a digamma function and Ci = 〈‖hi‖2〉(µ2
i + ηi)− 2〈eTi hi〉µi.
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