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Abstract

The separation of a complex mixture based solely on second-order statistics

can be achieved using the Strong Uncorrelating Transform (SUT) if and only

if all sources have distinct circularity coefficients. However, in most problems

we do not know the circularity coefficients, and they must be estimated from

observed data. In this work, we propose a detector, based on the generalized

likelihood ratio test (GLRT), to test the separability of a complex Gaussian mix-

ture using the SUT. For the separable case (distinct circularity coefficients), the

maximum likelihood (ML) estimates are straightforward. On the other hand,

for the non-separable case (at least one circularity coefficient has multiplicity

greater than one), the ML estimates are much more difficult to obtain. To set

the threshold, we exploit Wilks’ theorem, which gives the asymptotic distri-

bution of the GLRT under the null hypothesis. Finally, numerical simulations

show the good performance of the proposed detector and the accuracy of Wilks’

approximation.
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1. Introduction

The blind separation of a linear mixture of complex independent sources

is an important problem with a range of applications, e.g. in biomedical im-

age analysis. See [1, 2, 3], and references therein. The Strong Uncorrelating

Transform (SUT) allows blind separation based solely on second-order statistics

[4, 5, 6], provided that these sources correlate with their complex conjugates and

that the strengths of these correlations differ from source to source. A complex

random variable x that correlates with its complex conjugate x∗ has a nonzero

complementary covariance E[x2] and is called improper or noncircular.

The circularity coefficient k = |E[x2]|/E[|x|2] takes values between 0 and

1 and measures how noncircular or improper a random variable is. This may

be illustrated by the density contours of a univariate complex Gaussian random

variable. These contours are ellipses, and the shape of these ellipses is controlled

by the circularity coefficients [7]. If a Gaussian random variable has circularity

coefficient k = 0, then its probability density contours are circular [8, 9, 10]; if it

has circularity coefficient k = 1, then its probability density contours degenerate

into a line in the complex plane.

The circularity coefficients are invariant to linear transformations. Thus, a

linear mixture of complex sources has the same set of circularity coefficients as

the original sources. This invariance property is exploited by the SUT for blind

separation. A necessary and sufficient condition for separability using the SUT is

that all circularity coefficients of the sources are distinct. It thus makes intuitive

sense that separation of the mixture should be easier if the circularity coefficients

are more clearly separated, and it should become more difficult if the circularity

coefficients are more clustered. This intuition is supported theoretically by [11].

In practice, the circularity coefficients are not known a priori and must be

estimated from the observed data. We are thus confronted with the question

whether or not a mixture is separable, based on a given set of observations.

This paper deals with this problem by deriving a generalized likelihood ratio

test (GLRT) to decide whether a mixture of complex-valued improper signals

2
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is separable or not. The test boils down to testing whether all circularity coeffi-

cients are distinct or whether there are circularity coefficients with multiplicity

greater than one. This paper extends preliminary results reported at a confer-

ence [12], where we did not include any details of the rather lengthy proofs.

The structure of our paper is as follows. In Section 2, we review how the

SUT enables ICA of complex sources. In Section 3, we formally define our hy-

pothesis testing problem, and in Section 4, we derive the GLRT. Finally, Section

5 presents simulation results that illustrate the performance of our detector.

1.1. Notation

In this paper we use bold-face upper-case letters to denote matrices, with

elements xk,l or [X]k,l; bold-face lower-case letters for column vectors, and light-

face lower case letters for scalar quantities. The superscripts (·)T and (·)H

denote transpose and Hermitian transpose, respectively. The determinant and

trace of a matrix A will be denoted, respectively, as det(A) and tr(A). The

notation A ∈ CM×N
(
A ∈ RM×N

)
will be used to denote that A is a complex

(real) matrix of dimension M ×N . For vectors, the notation x ∈ CM
(
x ∈ RM

)
denotes that x is a complex (real) vector of dimension M , and x ∼ CN (µ,R)

indicates that x is a complex circular Gaussian random vector of mean µ and

covariance matrix R. The expectation operator will be denoted as E[·]. The

notation IL is used to denote the identity matrix of size L×L, whereas IL×P is

a L×P matrix with ones in the main diagonal and zeros elsewhere. The matrix

0L×P denotes the zero matrix of size L×P . We use A1/2 to denote the positive

semidefinite square root matrix of the positive semidefinite matrix A. Finally,

diag(A) is a diagonal matrix formed by the main diagonal of A and diag(a) is

a diagonal matrix formed by the vector a.

2. ICA from second-order statistics

In this section, we present a review of independent component analysis (ICA)

of complex sources based solely on second-order statistics (SOS). This technique

3
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is based on the SUT [4, 5, 6]. Let us consider the instantaneous noiseless linear

complex ICA model

x = As, (1)

where x ∈ CP are the measurements, A ∈ CP×P is the unknown mixing ma-

trix, assumed to have full rank, and s ∈ CP are zero-mean sources, which are

assumed to be independent. Note that there is the same number of sources and

measurements. This is a safe assumption for overdetermined problems since

we can always apply a dimensionality reduction technique based on principal

component analysis (PCA). On the other hand, the case of fewer measurements

than sources can be ignored since there exists no solution using only SOS.

The idea behind ICA is to recover s without knowledge of A, utilizing only

the linearity of the model and the independence of the sources. For the linear

model (1), the sources are recovered as

ŝ = Bx, (2)

where B is the separating matrix. Since the technique is based only on the

independence of the sources, there exist some ambiguities. Any scaling of s, i.e.,

multiplication with a diagonal matrix, and any reordering of the components

of s, i.e., multiplication with a permutation matrix, preserves independence.

Hence, we can obtain B only up to a multiplication with a monomial matrix,

which is the product of a permutation and a diagonal matrix.

Typically, ICA for real sources is based on higher-order statistics, and if

there is more than one Gaussian source, it is only possible to recover s if the

sources have some temporal (sample-to-sample) correlation with different au-

tocorrelation functions [13]. Temporally uncorrelated complex sources, on the

other hand, may be separated based on SOS, provided that these satisfy certain

conditions. For complex random vectors, all the SOS information is contained

in two matrices: the covariance matrix Rss = E[ssH ] and the complementary

covariance matrix R̃ss = E[ssT ] [6]. The assumption of independent sources

implies a diagonal structure for both the covariance matrix Rss and the com-

plementary covariance matrix R̃ss. Moreover, taking into account the ambi-

4
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guities of the ICA problem, we may even make the stronger assumptions that

Rss = I and R̃ss = K, where K = diag (k1, . . . , kP ) and 1 ≥ k1 ≥ . . . ≥ kP ≥ 0.

The diagonal elements ki are the so-called circularity coefficients [5], which we

will derive momentarily. Under these assumptions, the covariance matrix of the

measurements is

Rxx = E
[
xxH

]
= ARssA

H = AAH , (3)

and the complementary covariance matrix is

R̃xx = E
[
xxT

]
= AR̃ssA

T = AKAT . (4)

To recover s, the separating matrix B must simultaneously diagonalize Rxx

and R̃xx, i.e., BRxxB
H and BR̃xxB

T must both be diagonal. To this end, we

first compute the coherence matrix

C = R−1/2
xx R̃xx (R∗xx)

−H/2
= R−1/2

xx R̃xxR
−T/2
xx , (5)

which appears in the canonical correlation analysis (CCA) [14] of the vectors

x and x∗ [6]. Then we obtain the Takagi factorization [15] of C, which is a

special singular value decomposition for complex and symmetric (not Hermitian

symmetric) matrices C = CT :

C = FKFT , (6)

where F ∈ CP×P is a unitary matrix and K = diag(k1, . . . , kP ) is a diagonal

matrix that contains the circularity coefficients. These circularity coefficients

are the canonical correlations between x and x∗. The separating matrix is now

given by the SUT

B = FHR−1/2
xx . (7)

The complex ICA model is separable if and only if all circularity coefficients are

distinct [4, 5]. Hence, it is possible to separate more than one complex Gaussian

source provided that they all have distinct circularity coefficients. Sources cor-

responding to identical circularity coefficients will end up in a unitary residual

mixture that cannot be separated.

5
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3. Problem formulation

In practice, we typically do not know the true circularity coefficients and have

to work with their estimates, which are affected by estimation errors. Hence,

even if some of the true circularity coefficients are identical, it is very likely that

their estimates are not. This raises the question of how to decide whether a

complex mixture can be separated using the SUT, based on estimated circularity

coefficients. This question may be cast as a hypothesis test, assuming Gaussian

signals. This assumption leads to a tractable analysis and useful detectors.

Moreover, a Gaussian can also be seen as a worst case [16] or least informative

(maximum entropy) [17] distribution.

We formulate the test as follows. Given a finite set of observations {xn}N−1
n=0 ,

H1 : The model is separable using the SUT,

H0 : The model is not separable using the SUT.
(8)

Let us now formally express this test. We know the model is not separable if

two or more circularity coefficients are equal, that is, two or more elements of

R̃ss are equal. Let D+ be the set of P × P diagonal matrices with elements in

[0, 1], and define D2+ as that subset of D+ where at least two of the diagonal

entries are identical. Then, the hypothesis test can be written as

H1 : R̃ss ∈ D+,

H0 : R̃ss ∈ D2+.
(9)

Under the alternative hypothesis, the complementary covariance matrix is con-

strained to be diagonal with elements in [0, 1]. Under the null hypothesis, the

complementary covariance matrix satisfies the same constraints, but it has at

least two repeated entries. Both hypotheses are composite since the circularity

coefficients are unknown, and they remain composite even after applying in-

variance techniques to reduce the number of unknown parameters [18, 19, 20].

Using the Gaussianity assumption, the hypothesis test (9) becomes

H1 : x ∼ CN
(
0,R(1)

xx

)
,

H0 : x ∼ CN
(
0,R(0)

xx

)
,

(10)

6
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where the augmented covariance matrices [6] are

R(i)
xx = E

[
x xH

]
=

R
(i)
xx R̃

(i)
xx

R̃
(i)∗
xx R

(i)∗
xx

 , i = {0, 1}, (11)

and x =
[
xT xH

]T
is an augmented vector constructed from placing x on top

of its complex conjugate x∗. Recalling the results from the previous section, the

covariance and complementary covariance matrices are

R(i)
xx = AAH , R̃(i)

xx = AKiA
T , (12)

with diagonal

K1 ∈ D+, K0 ∈ D2+. (13)

We are therefore testing the covariance structure of the augmented vector x.

4. Derivation of the GLRT

To solve the hypothesis test (10), we propose a generalized likelihood ratio

test (GLRT), which usually results in a simple detector with good performance

[21]. The generalized likelihood ratio is [21]

G =

max
A,K0∈D2+

p (X; A,K0)

max
A,K1∈D+

p (X; A,K1)
, (14)

where the data matrix is X = [x0, . . . ,xN−1], and p(·) denotes the probability

density function of the observations. The first step in the derivation is to find

the maximum likelihood (ML) estimates of the unknown parameters under each

hypothesis. In order to do that, let us introduce the log-likelihood1

log p
(
X; R(i)

xx

)
= − log det

(
R(i)
xx

)
− tr

(
(R(i)

xx)−1R̂
)
, (15)

1For the sake of notational simplicity, we will omit additive and multiplicative constants

that do not depend on the data.

7
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where the augmented sample covariance matrix is

R̂ =
1

N
XXH =

 R̂ ˆ̃R

ˆ̃R∗ R̂∗

 ∈ R.
Here, we have introduced the augmented data matrix X = [XT ,XH ]T , and R
denotes the set of augmented covariance matrices without further structure. In

the next subsections we find the ML estimates for the unknown parameters and

derive a closed-form GLRT.

4.1. ML estimates under the alternative hypothesis

We are only interested in the maximum value of the likelihood, attained by

substituting the unknown parameters with their maximum likelihood estimates,

rather than the estimates themselves. We also note that the augmented covari-

ance matrix under the alternative hypothesis does not have further structure

beyond being an augmented covariance matrix. This means that

max
A,K1∈D+

p (X; A,K1) = max
R

(1)
xx∈R

p
(
X; R(1)

xx

)
. (16)

For this, we only need to obtain the ML estimate of an augmented covariance

matrix, which is presented next.

Lemma 1. The ML estimate of R(1)
xx is

R̂
(1)

xx = R̂. (17)

Proof: The proof can be found, for instance, in [6].

Inserting this ML estimate into (15), the compressed log-likelihood becomes

log p
(
X; R̂

(1)

xx

)
= − log det

(
R̂
)
, (18)

which can be rewritten as

log p
(
X; R̂

(1)

xx

)
= − log det

(
R̂
)
− 1

2

P∑
i=1

log
(

1− k̂2
i

)
. (19)

In this expression, k̂i are the estimated circularity coefficients, which are given

by the singular values of the estimated coherence matrix

Ĉ = R̂−1/2 ˆ̃RR̂−T/2. (20)

8
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4.2. ML estimates under the null hypothesis

The ML estimates under the null hypothesis are much more difficult to

obtain. This is because we do not know the number of circularity coefficients

with multiplicity greater than one, and we do not know their multiplicities,

either. Nevertheless, it is well known that fewer constraints lead to greater

likelihood, so we can write

max
A,K0∈D2+

p (X; A,K0) = max
A,K0∈∪iDi

2

p (X; A,K0) , (21)

where Di2, i = 1, . . . , P −1, denotes the subset of D2+ where the ith and (i+1)th

entries are identical, and ∪iDi2 denotes the union of those sets. That is, the

maximum is achieved when exactly two circularity coefficients are identical,

while the others may vary. This is the worst case for H0, because it is closest

to H1. The test would obviously perform better if we knew in advance the

multiplicity for each repeated circularity coefficient. We may simplify the above

equation to obtain

max
A,K0∈D2+

p (X; A,K0) = max
i

max
A,K0∈Di

2

p (X; A,K0) . (22)

The unknown parameters in this equation are the circularity coefficients and

the mixing matrix. We will proceed as follows. We will establish the perhaps

unsurprising result that the ML estimates of the circularity coefficients are the

sample circularity coefficients with the exception of the repeated coefficient,

whose ML estimate is given by the average of the two corresponding estimated

coefficients. Furthermore, rather than estimating the mixing matrix itself, we

will estimate a linear transformation of it, which simplifies the derivations. To

be specific, we estimate the product of the mixing matrix and the SUT, which

results in an ML estimate of the inverse mixing matrix given by the SUT, with

the ith and (i + 1)th row scaled by some constants depending on the sample

circularity coefficients. In (22), we first obtain the ML estimates for a fixed i,

and then vary i from 1 to P − 1.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

We shall start with the augmented covariance matrix, given by

R(0)
xx =

A 0P

0P A∗


︸ ︷︷ ︸

A

 I K0

K0 I


︸ ︷︷ ︸

K0

AH 0P

0P AT


︸ ︷︷ ︸

AH

,

where K0 = diag(k1, . . . , ki, ki, . . . , kP ). This allows us to rewrite the log-

likelihood as

log p (X; A,K0) = log det
(
A−1A−H

)
− log det (K0)− tr

(
K−1

0 S
)
, (23)

where

S =

 S S̃

S̃∗ S∗

 =

A−1R̂A−H A−1 ˆ̃RA−T

A−∗ ˆ̃R∗A−H A−∗R̂∗A−T


is the augmented covariance matrix of A−1x. We use Takagi’s factorization of

the sample coherence matrix

Ĉ = R̂−1/2 ˆ̃RR̂−T/2 = F̂K̂F̂T , (24)

where K̂ is a diagonal matrix containing the sample circularity coefficients. We

also introduce the matrix W−1 = B̂A = F̂HR̂−1/2A−1, which may be seen as

the residual matrix, i.e., the combined effect of mixing and separating matrices.

In case of perfect separation, it should be a monomial matrix. Then, (23) may

be rewritten as

log p (X; W,K0) = − log det
(
R̂
)

+ log det
(
WWH

)
− 1

2
log det (K0)− 1

2
tr
(
K−1

0 S
)
. (25)

We now need to maximize (25) with respect to the transformed parameters W

and K0.

First, we find the ML estimate of K0, for which the repeated entry occurs

in K0 at positions i and i+ 1. Taking into account the problem invariances, we

may relax the restrictions that K0 must have 1s on the main diagonal and that

the diagonal elements of K0 must be in [0, 1], since these can also be imposed

when estimating A (or W). The ML estimate is presented in the following

lemma.

10
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Lemma 2. The ML estimate of K0 is given by

K̂0 =

 Î K̂0

K̂∗0 Î∗

 , (26)

where Î and K̂0 are diagonal matrices composed by the diagonal elements of S

and S̃, respectively, with the exception of the ith and (i+ 1)th entries of either

matrix, which are replaced by their respective averages. That is,

Î = diag(s11, . . . , γ, γ, . . . , sP,P ), K̂0 = diag(s̃11, . . . , γ̃, γ̃, . . . , s̃P,P ), (27)

with the averages given by

γ =
1

2
(si,i + si+1,i+1), γ̃ =

1

2
(s̃i,i + s̃i+1,i+1). (28)

Proof: Let us introduce a simple permutation of the elements of x (which

does not modify the value of the likelihood), such that

K = PKPT =


K1,1 02 · · · 02

02 K2,2 · · · 02

...
...

. . .
...

02 02 · · · KP,P

 (29)

where

Kii = E

si
s∗i

[s∗i si

] , (30)

and, consequently,

S =


S1,1 S1,2 · · · S1,P

S2,1 S2,2 · · · S2,P

...
...

. . .
...

SP,1 SP,2 · · · SP,P

 = PSPT . (31)

Therefore, (25) becomes

log p (X; A,K0) = − log det
(
R̂
)

+ log det
(
WWH

)
− 1

2
log det

(
K0

)
− 1

2
tr
(
K
−1

0 S
)
. (32)

11
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The likelihood in (32) is maximized with respect to K under the constraint

Ki,i = Ki+1,i+1 by the block-diagonal matrix

K̂ = diag
(
S1,1, . . . ,Γ,Γ, . . . ,SP,P

)
, (33)

where

Γ =
1

2

(
Si,i + Si+1,i+1

)
(34)

The proof is concluded after inverting the permutation.

Using (26) the compressed likelihood is

log p
(
X; W, K̂0

)
= − log det

(
R̂
)

+ log det
(
WWH

)
− 1

2
log det

(
K̂0

)
, (35)

which has to be maximized with respect to W. Here, we only give the result

and relegate the proof to an appendix.

Lemma 3. The ML estimate of W is given by

Ŵ = diag(1, . . . , 1︸ ︷︷ ︸
i−1 ones

,
√

1 + χ,
√

1− χ, 1, . . . , 1︸ ︷︷ ︸
P−i−1 ones

) (36)

where

χ =

2−
(
k̂2
i + k̂2

i+1

)
− 2

√(
1− k̂2

i

)(
1− k̂2

i+1

)
(
k̂2
i − k̂2

i+1

) . (37)

Proof: See Appendix A.

Using the ML estimate Ŵ, it is easy to show that the ML estimate of the inverse

mixing matrix—the separation matrix—is

Â−1 = ŴF̂HR̂−1/2. (38)

Hence, the ML estimate of the inverse mixing matrix is just the estimated SUT,

but with its ith and (i+ 1)th rows scaled.

Finally, let ĥ2
l = 1 − k̂2

l and insert the ML estimates into the likelihood.

Then, after some tedious but straightforward algebra, the compressed likelihood

12
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becomes

log p
(
X,Ŵ, K̂0

)
= max

i

− log det
(
R̂
)
−

P∑
l=1

l 6=i,i+1

log ĥl

+ log

(
2

ĥiĥi+1 − k̂ik̂i+1 + 1

) . (39)

4.3. A closed-form GLRT

Using the transformed circularity coefficients ĥi, the compressed likelihood

under H1, given by (19), may be rewritten as

log p
(
X; R̂

(1)

xx

)
= − log det

(
R̂
)
−

P∑
i=1

log ĥi. (40)

The GLRT is finally obtained by inserting the expressions for the compressed

likelihoods, given by (39) and (40), into (14). This yields the GLRT

G = max
i

{
f(k̂−1

i , k̂−1
i+1)− f(k̂i, k̂i+1)

}H0

≷
H1

η, (41)

where

f(a, b) =
[(

1− a2
) (

1− b2
)]−1/2

. (42)

An alternative form of the GLRT may be derived as follows. Because k̂i,

which is the canonical correlation between ŝi and ŝ∗i , is bounded between 0 and

1, it may also be expressed as k̂i = cos(αi). The angle αi is the estimated

principal angle [22], i.e., the angle between ŝi and ŝ∗i . The GLRT may be

alternatively expressed in terms of the principal angles as

G = max
i

{
cos(αi − αi+1) + cos(αi + αi+1)− 2

cos(αi − αi+1)− cos(αi + αi+1)

}H0

≷
H1

η. (43)

This shows that the GLR is only a function of the sum and difference of principal

angles.

The GLR is depicted in Figure A.1, which shows a plot of G as a function

of αi and αi+1 for some fixed i. Different colors denote the critical regions for

different values of the threshold. As can be seen in the figure, large values of G

are obtained for αi ≈ αi+1, which agrees with the fact that H0 is selected for

large values of G . The largest value of the GLR is G = −1 for αi = αi+1.

13
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4.4. Asymptotic distribution of the GLR

In order to set the threshold η for the GLRT, we need to determine the

probability of false alarm pfa. For a hypothesis test with composite hypotheses,

the probability of false alarm is determined by the worst-case selection of the

unknown parameters [18]. In our case this happens when exactly two circularity

coefficients are different. Hence,

pfa = sup
K0∈D2+

pfa(K0), (44)

where pfa(K0) denotes the probability of false alarm for a fixed matrix K0. As

one might expect, deriving the exact distribution of the GLR is very difficult.

Instead, we employ Wilks’ Theorem [23], which states that, under some regular-

ity conditions, the log-GLR under H0 has an asymptotic χ2
ρ distribution with ρ

degrees of freedom, where ρ is the difference between the number of unknown

parameters under H1 and H0.

The number of free parameters under H1 is 2P 2 +P , accounting for 2P 2 real

elements in A, and P circularity coefficients. Under H0, there is one repeated

circularity coefficient, so there are only P−1 degrees of freedom for choosing the

circularity coefficients. Moreover, there is a unitary residual mixture of the two

sources that have the same circularity coefficient, which takes away one further

degree of freedom. In total, there are 2P 2 +P −2 degrees of freedom under H0.

Wilks’ Theorem now says that, as the number of observations tends to infinity,

N →∞, the log-GLR is distributed as2

−2 log G = 2N log

(
2
ĥiĥi+1 − k̂ik̂i+1 + 1

ĥiĥi+1

)
a∼χ2

2. (45)

We can use this asymptotic distribution to determine the threshold for a given

probability of false alarm.

One final comment is in order. Other works, e.g., [24, 25], obtain the thresh-

old through simulations. At first, this might seem useless, but in problems where

2We now have to take into account the previously ignored additive and multiplicative

constant terms.
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the distribution of the statistic under H0 does not depend on unknown param-

eters, it does, in fact, make sense. Nevertheless, for our particular problem, the

distribution under the null hypothesis depends on unknown parameters, so we

may not use this approach.

5. Numerical results

In this section, we evaluate the performance of the proposed GLRT using

Monte Carlo simulations. First, we present receiver operating characteristic

(ROC) curves and probability of missed detection. Second, we evaluate the

accuracy of Wilks’ approximation of the null distribution for a finite number of

samples.

5.1. Performance of the GLRT

We consider P = 4 complex Gaussian sources. In the first four examples,

the circularity coefficients under H1 are 0.9, 0.6, 0.35 and 0.1. Under H0, we

consider different numbers and orders of repeated circularity coefficients:

1. 0.9, 0.35, 0.35 and 0.1 (two identical circularity coefficients)

2. 0.6, 0.6, 0.35 and 0.35 (two pairs of circularity coefficients)

3. 0.9, 0.35, 0.35 and 0.35 (three identical circularity coefficients)

4. 0.35, 0.35, 0.35 and 0.35 (four identical circularity coefficients).

Finally, in the fifth example, the circularity coefficients underH1 are 0.9, 0.6, 0.35

and 0.25 and 0.9, 0.6, 0.35 and 0.35 under H0. That is, under H1 the circularity

coefficients are fairly close.

Figure A.2 shows the receiver operating characteristic (ROC) curves for N =

250 samples. As there is no other existing test for this problem, we cannot

compare our results with any competitor. We notice that Example 4 performs

best since all circularity coefficients are equal and, therefore, the two hypotheses

are most separated. We also notice that three identical circularity coefficients

are easier to detect than two pairs of identical circularity coefficients. Moreover,

15
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the case with fairly close circularity coefficients performs the worst. Of course,

these statements only hold for this particular setup, and the results will change

depending on the specific values of the circularity coefficients, in particular, how

much separated they are. Figure A.3 shows the probability of missed detection

pm vs. number of samples for a fixed probability of false alarm pfa = 0.01, where

similar conclusions can be drawn. Most notably, the slope or error exponent

[17] differs among the four examples. This supports our intuition about the

separation between the hypotheses, since the error exponent is given by the

Kullback-Leibler divergence [17], which can be considered a “distance” between

probability density functions.

5.2. Distribution of the GLR under the null hypothesis

In this section, we analyze Wilks’ χ2 approximation of the GLR distribution

under H0. We consider P = 4 signals with circularity coefficients 0.9, 0.35, 0.35

and 0.1. In this example, exactly two circularity coefficients are identical, which

is the worst case in terms of probability of false alarm. First, we consider a large

number of samples, N = 1000, and obtain the empirical cumulative distribution

function (ECDF) and the χ2
2 approximation. As can be seen in Figure A.4, the

approximation is very good.

While the χ2 approximation is an asymptotic result, it works reasonably well

even in the cases of small to moderate number of samples. This can be seen

in Figure A.5a, which compares the empirically determined threshold required

to achieve pfa = 0.1 with the threshold obtained using Wilks’ theorem, for

different sample sizes N . Nevertheless, one might be concerned that errors in

the selection of the threshold may lead to larger than desired probabilities of false

alarm. This concern is unfounded, though, as can be verified in Figure A.5b:

The actual value of the probability of false alarm is smaller than the asymptotic

value, yet obviously at the expense of a smaller probability of detection, as can

be seen in Figure A.5c.
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6. Conclusions

ICA of complex sources based on second-order statistics can be achieved

using the strong uncorrelating transform if and only if all sources have distinct

circularity coefficients. However, in most practical applications, we do not know

the circularity coefficients. We have developed a generalized likelihood ratio test

(GLRT) for separability. The maximum likelihood estimates under the alter-

native hypothesis (“all circularity coefficients are distinct”) are straightforward,

but under the null hypothesis, their derivation is rather involved. The threshold

selection for the proposed GLRT is a difficult problem since 1) we cannot obtain

the theoretical distributions and 2) even after applying invariance techniquesH0

remains composite, which prevents the use of simulations to select the thresh-

old. Hence, we have used Wilks’ theorem to derive the asymptotic distribution

of the statistic under the null hypothesis. Finally, simulation results show the

good performance of the detector and the accuracy of the approximation of the

distribution under H0, even for small and moderate number of samples.
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Appendix A. Proof of Lemma 3

One of the indeterminacies of the ICA problem is the energy of the sources.

In the problem statement we included a unit-energy constraint for the sources.

However, in the ML estimation of the covariance matrices we drop that con-

straint since it is easier to constrain the norm of the columns of the mixing
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matrix. After some manipulations, these constraints are equivalent to

sl,l = ‖wl‖2 = 1, s̃l,l =

P∑
m=1

k̂mw
2
l,m ∈ [0, 1] , (A.1)

for l 6= i, i+ 1, and

γ =
1

2

(
‖wi‖2 + ‖wi+1‖2

)
= 1, γ̃ =

1

2

i+1∑
l=i

P∑
m=1

k̂mw
2
l,m ∈ [0, 1] , (A.2)

where wl denotes the lth row of the matrix W. Without loss of generality, we

introduce a permutation such that W = [WT
A WT

B ]T with

WA =



w1

...

wi−1

wi+2

...

wP


, WB =

 wi

wi+1

 . (A.3)

That is, we group together all rows of W that correspond to sources with distinct

circularity coefficients. With this permutation the constraints become

diag(WAWH
A ) = IP−2, [WAK̂WT

A]l,l ∈ [0, 1] , (A.4)

1

2
tr(WBWH

B ) = 1,
1

2
tr(WBK̂WT

B) ∈ [0, 1] , (A.5)

where l = 1, . . . , P − 2. Now we may write the compressed likelihood in (35) as

log p
(
X; WA,WB , K̂0

)
= − log det

(
R̂
)

+ log det
(
WWH

)
− 1

2
log det

[
IP−2 − diag(WAK̂WT

A)
]
− log

[
1− 1

4
tr2(WBK̂WT

B)

]
. (A.6)

Lemma 4. The likelihood given by (A.6) subject to the constraints (A.4) and

(A.5) is maximized for WBWH
A = 02×P .

Proof: The expression for the determinant of a block matrix allows us to

write

det
(
WWH

)
= det

(
WAWH

A

)
det
(
WBWH

B

)
det (IP −Q) , (A.7)
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where

Q =
(
WBWH

B

)−1/2
WBWH

A

(
WAWH

A

)−1
WAWH

B

(
WBWH

B

)−1/2
. (A.8)

The likelihood in (A.6) is maximized when this determinant is maximized. Be-

cause Q is positive definite, any solution that does not satisfy WBWH
A = 02×P

would decrease the determinant. The proof now follows since the remaining

terms do not depend on the inner products of the rows of W.

Using Lemma 4, the ML estimation problem aims at maximizing

log p
(
X; WA,WB , K̂0

)
= − log det

(
R̂
)

+log det
(
WAWH

A

)
+log det

(
WBWH

B

)
− 1

2
log det

[
IP−2 − diag(WAK̂WT

A)
]
− log

[
1− 1

4
tr2(WBK̂WT

B)

]
, (A.9)

subject to

diag(WAWH
A ) = IP−2, [WAK̂WT

A]l,l ∈ [0, 1] , (A.10)

tr(WBWH
B ) = 2, tr(WBK̂WT

B) ∈ [0, 2] , (A.11)

WBWH
A = 02×P , (A.12)

where l = 1, . . . , P − 2. It is clear that the above optimization problem is

separable except for the constraint WBWH
A = 02×P . Thus, we will first ignore

that constraint and optimize with respect to WA, but then enforce it in the

optimization with respect to WB .

Lemma 5. The ML estimate of WA is ŴA = IP−2×P .

Proof: We have to maximize

log p
(
X; WA,WB , K̂0

)
= log det

(
WAWH

A

)
− 1

2
log det

[
IP−2 − diag(WAK̂WT

A)
]
, (A.13)

subject to

diag(WAWH
A ) = IP−2, [WAK̂pW

T
A]l,l ∈ [0, 1] . (A.14)
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We begin by noting that WA must be real since [WAK̂WT
A]l,l ∈ [0, 1]. Because

of this and k̂l ∈ [0, 1], any solution that satisfies diag(WAWH
A ) = IP−2 also

fulfils [WAK̂pW
T
A]l,l ∈ [0, 1]. The second constraint in (A.14) can therefore

be dropped. We now consider the two terms in (A.13) separately. First ob-

serve that, by Hadamard’s inequality [26], the determinant is maximized when

WAWT
A is diagonal, and using the first constraint in (A.14) yields ŴA =

IP−2×P . On the other hand, the second term in (A.13) is Schur-convex [26],

and it is maximized when WAK̂pW
T
A is diagonal [26]. Now we use both the

constraint (A.14) and the fact that K̂p is diagonal to conclude ŴA = IP−2×P .

Since both terms in (A.13) are maximized for the same WA, we have the solu-

tion to the optimization problem.

So far, the compressed likelihood is

log p
(
X; ŴA,WB , K̂0

)
= − log det

(
R̂
)

+ log det
(
WBWH

B

)
− 1

2

P∑
l=1

l 6=i,i+1

log
(

1− k̂2
l

)
− log

[
1− 1

4
tr2(WBK̂WT

B)

]
. (A.15)

The next lemma presents the ML estimate of WB .

Lemma 6. The ML estimate of WB is given by

ŴB =

0 · · · 0
√

1 + χ 0

0 · · · 0 0
√

1− χ

 , (A.16)

where

χ =

2−
(
k̂2
i + k̂2

i+1

)
− 2

√(
1− k̂2

i

)(
1− k̂2

i+1

)
(
k̂2
i − k̂2

i+1

) . (A.17)

Proof: The ML estimate of WB is the solution to the optimization problem

maximize
WB

log det
(
WBWH

B

)
− log

[
1− 1

4
tr2(WBK̂WT

B)

]
, (A.18)

subject to tr
(
WBWH

B

)
= 2,

tr
(
WBK̂pW

T
B

)
∈ [0, 2],

WBŴH
A = 02×P .
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The last constraint directly implies WB = [02×P−2 W̄B ], which yields the

simplified optimization problem

maximize
W̄B

log det
(
W̄BW̄H

B

)
− log

[
1− 1

4
tr2(W̄BK̂rW̄

T
B)

]
, (A.19)

subject to tr
(
W̄BW̄H

B

)
= 2,

tr
(
W̄BK̂rW̄

T
B

)
∈ [0, 2],

where K̂r = diag
(
k̂i, k̂i+1

)
is a (reduced) diagonal matrix containing the es-

timated circularity coefficients of the identically distributed sources. Following

arguments similar to those in the previous proof, W̄B must be a real matrix

and we can drop the last constraint in (A.19). Using the eigenvalue decom-

position (EVD) of W̄H
BW̄B = W̄T

BW̄B and the results in [27], it is easy to

show that W̄T
BW̄B must be diagonal to maximize the likelihood. Hence, letting

W̄T
BW̄B = diag(1 + χ, 1− χ), the ML estimation problem reduces to

maximize
χ

log
(
1− χ2

)
− log

[
1− 1

4

(
k̂i + k̂i+1 + (k̂i − k̂i+1)χ

)2
]
, (A.20)

subject to 0 ≤ χ ≤ 1.

Ignoring the constraint and taking the derivative of the objective function with

respect to χ, the solution is one of the two roots of a second-degree polynomial.

Finally, it is easy to check that only one of these roots fulfils the constraint and

it is indeed a maximum.
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arability of a complex-valued mixture based on the strong uncorrelating

transform, in: 2012 IEEE Int. Work. Machine Learning for Signal Process.,

Santander, Spain, 2012.

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[13] A. Cichocki, S. I. Amari, Adaptive Blind Signal and Image Processing,

John Wiley, 2002.

[14] H. Hotelling, Relations between two sets of variates, Biometrika 28 (1936)

321–377.

[15] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press,

Cambridge, UK, 1985.

[16] J. Villares, G. Vázquez, The Gaussian assumption in second-order esti-

mation problems in digital communications, IEEE Trans. Signal Process.

55 (10) (2007) 4994–5002.

[17] T. M. Cover, J. A. Thomas, Elements of Information Theory, Wiley-

Interscience, 2006.

[18] L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time

Series Analysis, Addison - Wesley, 1991.

[19] T. S. Ferguson, Mathematical statistics, New York: Academic Press, 1967.

[20] E. L. Lehmann, Testing Statistical Hypotheses, Springer texts in Statistics,

1986.

[21] K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis, New York:

Academic, 1979.

[22] L. L. Scharf, C. T. Mullis, Canonical coordinates and the geometry of

inference, rate and capacity, IEEE Trans. Signal Process. 48 (3) (2000)

824–831.

[23] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-

ory, Vol. II, Prentice Hall, 1998.

[24] A. T. Walden, P. Rubin-Delanchy, On testing for impropriety of complex-

valued Gaussian vectors, IEEE Trans. Signal Process. 57 (3) (2009) 825–

834.

23



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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Figure 1: Plot of the contours of G (in linear scale) as a function of αi and αi+1.
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Figure A.1: Plot of the contours of G (in linear scale) as a function of αi and

αi+1.
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Figure 2: ROC curves for five different examples with P = 4 sources and N =

250 samples.
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Figure A.2: ROC curves for five different examples with P = 4 sources and

N = 250 samples.
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Figure 3: Probability of missed detection vs. number of samples in four different

examples with P = 4 sources, for a fixed probability of false alarm pfa = 0.01.

The circularity coefficients for each example are shown in the legend.
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Figure A.3: Probability of missed detection vs. number of samples in the first

four examples. The number of sources is P = 4, and we consider a fixed proba-

bility of false alarm pfa = 0.01.
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Figure 4: Empirical cumulative distribution function (ECDF) and χ2 ap-

proximation for an example with P = 4 sources with circularity coefficients

{0.9, 0.35, 0.35, 0.1}, and N = 1000 samples.
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Figure A.4: Empirical cumulative distribution function (ECDF) and χ2 ap-

proximation for an example with P = 4 sources with circularity coefficients

{0.9, 0.35, 0.35, 0.1}, and N = 1000 samples.
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(a) Threshold required to achieve pfa = 0.1 for different number of samples using the χ2

approximation and the empirically determined value.
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(b) Probability of false alarm for different number of samples obtained using the χ2 approx-

imation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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(a) Threshold required to achieve pfa = 0.1 for different number of samples using the χ2
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(b) Probability of false alarm for different number of samples obtained using the χ2 approx-

imation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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(b) Probability of false alarm for different number of samples using the χ2 approximation

and the empirically determined value.
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(a) Threshold required to achieve pfa = 0.1 for different number of samples using the χ2
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(b) Probability of false alarm for different number of samples using the χ2 approximation

and the empirically determined value.
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(c) Probability of detection for different number of samples using the threshold obtained

through the χ2 approximation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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(c) Probability of detection for different number of samples using the threshold obtained

through the χ2 approximation and the empirically determined value.

Figure A.5: Comparison between empirical results and Wilks’ approximation.
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Figure 4: Empirical cumulative distribution function (ECDF) and χ2 ap-

proximation for an example with P = 4 sources with circularity coefficients

{0.9, 0.35, 0.35, 0.1}, and N = 1000 samples.
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(a) Threshold required to achieve pfa = 0.1 for different number of samples using the χ2
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(b) Probability of false alarm for different number of samples obtained using the χ2 approx-

imation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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Figure 3: Probability of missed detection vs. number of samples in four different

examples with P = 4 sources, for a fixed probability of false alarm pfa = 0.01.

The circularity coefficients for each example are shown in the legend.
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(b) Probability of false alarm for different number of samples obtained using the χ2 approx-

imation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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Figure 2: ROC curves for five different examples with P = 4 sources and N =

250 samples.
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(a) Threshold required to achieve pfa = 0.1 for different number of samples using the χ2
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(b) Probability of false alarm for different number of samples using the χ2 approximation

and the empirically determined value.
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(c) Probability of detection for different number of samples using the threshold obtained

through the χ2 approximation and the empirically determined value.

Figure 5: Comparison between empirical results and Wilks’ approximation.
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