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Some results on the Weiss-Weinstein bound for
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array processing
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Abstract

In this paper, the Weiss-Weinstein bound is analyzed in the context of sources localization with a planar array

of sensors. Both conditional and unconditional source signal models are studied. First, some results are given in the

multiple sources context without specifying the structureof the steering matrix and of the noise covariance matrix.

Moreover, the case of an uniform or Gaussian prior are analyzed. Second, these results are applied to the particular

case of a single source for two kinds of array geometries: a non-uniform linear array (elevation only) and an arbitrary

planar (azimuth and elevation) array.

Index Terms

Weiss-Weinstein bound, DOA estimation, array processing.

I. I NTRODUCTION

Sources localization problem has been widely investigatedin the literature with many applications such as radar,

sonar, medical imaging, etc. One of the objective is to estimate the direction-of-arrival (DOA) of the sources using

an array of sensors.

In array processing, lower bounds on the mean square error are usually used as a benchmark to evaluate

the ultimate performance of an estimator. There exist several lower bounds in the literature. Depending on the

assumptions about the parameters of interest, there are three main kinds of lower bounds. When the parameters

are assumed to be deterministic (unknown), the main lower bounds on the (local) mean square error used are the

well known Cramér-Rao bound [2] and the Barankin bound [3] (more particularly their approximations [4] [5] [6]

[7] [8]). When the parameters are assumed to be random with a known prior distribution, these lower bounds on

the global mean square error are called Bayesian bounds [9].Some typical families of Bayesian bounds are the
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Ziv-Zakai family [10] [11] [12] and the Weiss-Weinstein family [13] [14] [15] [16]. Finally, when the parameter

vector is made from both deterministic and random parameters, the so-called hybrid bounds have been developed

[17] [18] [19] [20].

Since the DOA estimation is a non-linear problem, the outliers effect can appear and the estimators mean square

error exhibits three distinct behaviors depending on the number of snapshots and/or on the signal to noise ratio(SNR)

[21]. At high SNR and/or for a high number of snapshots,i.e., in the asymptotic region, the outliers effect can

be neglected and the ultimate performance are described by the (classical/Bayesian/hybrid) Cramér-Rao bound.

However, when the SNR and/or the number of snapshots decrease, the outliers effect lead to a quick increase of

the mean square error: this is the so-called threshold effect. In this region, the behavior of the lower bounds are

not the same. Some bounds, generally called global bounds (Barankin, Ziv-Zakai, Weiss-Weinstein) can predict the

threshold while the others, called local bounds, like the Cramér-Rao bound or the Bhattacharyya bound cannot.

Finally, at low SNR and/or at low number of snapshots,i.e., in the no-information region, the deterministic bounds

exceed the estimator mean square error due to the fact that they do not take into account the parameter support.

On the contrary, the Bayesian bounds exploit the parameter prior information leading to a ”real” lower bound on

the global mean square error.

In this paper, we are interested in the Weiss-Weinstein bounds which is known to be one of the tightest Bayesian

bound with the bounds of the Ziv-Zakai family. We will study the two main source models used in the literature [22]:

the unconditional (or stochastic) model where the source signals are assumed to be Gaussian and the conditional (or

deterministic) model where the source signals are assumed to be deterministic. Surprisingly, in the context of array

processing, while closed-form expressions of the Ziv-Zakai bound (more precisizely its extension by Bell et. al.

[23]) were proposed around 15 years ago for the unconditional model, the results concerning the Weiss-Weinstein

bound are, most of the time, only conducted by way of computations. Concerning the unconditional model, in [24],

the Weiss-Weinstein bound has been evaluated by way of computations and has been compared to the mean square

error of the MUSIC algorithm and classical Beamforming using a particular8× 8 element array antenna. In [25],

the authors have introduced a numerical comparison betweenthe Bayesian Cramér-Rao bound, the Ziv-Zakai bound

and the Weiss-Weinstein bound for DOA estimation. In [26], numerical computations of the Weiss-Weinstein bound

to optimize sensor positions for non-uniform linear arrayshave been presented. Again in the unconditional model

context, in [27], by considering the matched-field estimation problem, the authors have derived a semi closed-form

expression of a simplified version of the Weiss-Weinstein bound for the DOA estimation. Indeed, the integration

over the prior probability density function was not performed. The conditional model (with known waveforms) is

studied only in [28], where a closed-form expression of the WWB is given in the simple case of spectral analysis

and in [1] which is a simplified version of the bound.

While the primary goal of this paper is to give closed-form expressions of the Weiss-Weinstein bound for the DOA

estimation of a single source with an arbitrary planar arrayof sensors, under both conditional and unconditional

source signal models, we also provide partial closed-form expressions of the bound which could be useful for

other problems. First, we study the general Gaussian observation model with parameterized mean or parameterized
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covariance matrix. Indeed, one of the success of the Cramér-Rao is that, for this observation model, a closed-form

expression of the Fisher information matrix is available: this is the so-called Slepian-Bang formula [29]. Such kind

of formulas have been less investigated in the context of bounds tighter than the Cramér-rao bound. Second, some

results are given in the multiple sources context without specifying the structure of the steering matrix and of the

noise covariance matrix. Finally, these results are applied to the particular case of a single source for two kinds

of array geometries: the non-uniform linear array (elevation only) and the planar (azimuth and elevation) array.

Consequently, the aim of this paper is also to provide a textbook of formulas which could be applied in other fields.

The Weiss-Weinstein bound is known to depend on parameters called test points and other parameters generally

denotedsi. One particularity of this paper in comparison with the previous works on the Weiss-Weinstein bound

is that we do not use the assumptionsi = 1/2, ∀i.

This paper is organized as follows. Section II is devoted to the array processing observation model which will be

used in the paper. In Section III, a short background on the Weiss-Weinstein bound is presented and two general

closed-form expressions which will be the cornerstone for our array processing problems are derived. In Section

IV we apply these general results to the array processing problem without specifying the structure of the steering

matrix. In Section V, we study the particular case of the non-uniform linear array and of the planar array for which

we provide both closed-form expressions of the bound. Some simulation results are proposed in Section VI. Finally,

Section VII gives our conclusions.

II. PROBLEM SETUP

In this section, the general observation model generally used in array signal processing is presented as well as the

first different assumptions used in the remain of the paper. Particularly, the so-called conditional and unconditional

source models are emphasized.

A. Observations model

We consider the classical scenario of an array withM sensors which receivesN complex bandpass signals

s (t) = [s1 (t) s2 (t) · · · sN (t)]
T . The output of the array is aM × 1 complex vectory (t) which can be modelled

as follows (see,e.g., [30] or [22])

y (t) = A (θ) s (t) + n (t) , t = 1, . . . , T, (1)

whereT is the number of snapshots, whereθ = [θ1 θ2 · · · θq]
T is an unknown parameter vector of interest1, where

A (θ) is the so-calledM ×N steering matrix of the array response to the sources, and where theM × 1 random

vectorn (t) is an additive noise.

1Note that one source can be described by several parameters.Consequently,q > N in general.
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B. Assumptions

• The unknown parameters of interest are assumed to be random with an a priori probability density function

p (θi) , i = 1, . . . , q. These random parameters are assumed to be statistically independent such that thea

priori joint probability density function isp (θ) =
q
∏

i=1

p (θi). We also assume that the parameter space, denoted

Θ, is a connected subset ofRq (see [31]).

• The noise vector is assumed to be complex Gaussian, statistically independent of the parameters, i.i.d., circular,

with zero mean and known covariance matrixE
[

n (t)nH (t)
]

= Rn. This assumption will be made more

restrictive in Section V where it will be assumed thatRn = σ2
nI. In any case,Rn is assumed to be a full

rank matrix.

• The steering matrixA (θ) is assumed such that the observation model is identifiable. From Section III to

Section IV, the structure ofA (θ) is not specified in order to obtain the more general results.

• Concerning the source signals, two kinds of models have beeninvestigated in the literature (see,e.g., [32] or

[22]) and will be alternatively used in this paper.

– M1: Unconditional or stochastic model: s(t) is assumed to be a complex circular random vector, i.i.d., sta-

tistically independent of the noise, Gaussian with zero-mean and known covariance matrixE
[

s (t) sH (t)
]

=

Rs. Note that concerning the previous results on the Cramér-Rao bound available in the literature [32],

the covariance matrixRs is assumed to be unknown. In this paper, we have made the simpler assumption

that the covariance matrixRs is known. These assumptions have already been used for the calculation of

bounds more complex than the Cramér-Rao bound (see,e.g., [27], [33], [34]).

– M2: Conditional or deterministic model: ∀t, s(t) is assumed to be deterministic known. Note that, under

the conditional model assumption, the signal waveforms canbe assumed either unknown or known. While

the conditional observation model with unknown waveforms seems more challenging, the conditional

model with known waveforms signals which will be used in thispaper can be found in several applications

such as in mobile telecommunication and radar (seee.g. [35], [36], [37], [38], and [39]).

C. Likelihood of the observations

Let Ry = E
[

y (t)yH (t)
]

be the covariance matrix of the observation vectory (t) . According to the aforemen-

tioned assumptions, it is easy to see that underM1, the observationsy (t) are distributed as a complex circular

Gaussian random vector with zero mean and covariance matrixRy(θ) = A(θ)RsA
H(θ) +Rn while underM2,

the observationsy (t) are distributed as a complex circular Gaussian random vector with meanA(θ)s (t) and

covariance matrixRy = Rn. Moreover, in both case the observations are i.i.d..

Therefore, the likelihood,p (Y; θ) , of the full observations matrixY = [y (1) y (2) . . . y (T )] underM1 is

given by

p (Y; θ) =
1

πMT |Ry(θ)|
T
exp

(

−
T
∑

t=1

y (t)
H
R−1

y (θ)y (t)

)

, (2)
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whereRy(θ) = A(θ)RsA
H(θ) +Rn and the likelihood underM2 is given by

p (Y; θ) =
1

πMT |Rn|
T
exp

(

−
T
∑

t=1

(y (t)−A (θ) s (t))
H
R−1

n (y (t)−A (θ) s (t))

)

. (3)

III. W EISS-WEINSTEIN BOUND: GENERALITIES

In this Section, we first remind to the reader the structure ofthe Weiss-Weinstein bound on the mean square

error and the assumptions used to compute this bound. Second, a general result about the Gaussian observation

model with parameterized mean or parameterized covariancematrix, which, to the best of our knowledge, does not

appear in the literature is presented. This result will be useful to study both the unconditional modelM1 and the

conditional modelM2 in the next Section.

A. Background

The Weiss-Weinstein bound for aq × 1 real parameter vectorθ is a q × q matrix denotedWWB and is given

as follows [40]

WWB = HG−1HT , (4)

where theq× q matrix H = [h1 h2 . . .hq] contains the so-called test-pointshi, i = 1, . . . , q such thatθ + hi ∈ Θ

∀hi. Thek, l−element of theq × q matrix G is given by

{G}k,l =
E
[(

Lsk (Y; θ + hk, θ)− L1−sk (Y; θ − hk, θ)
) (

Lsl (Y; θ + hl, θ)− L1−sl (Y; θ − hl, θ)
)]

E [Lsk (Y; θ + hk, θ)]E [Lsl (Y; θ + hl, θ)]
, (5)

where the expectations are taken over the joint probabilitydensity functionp (Y, θ) and where the function

L (Y; θ + hi, θ) is defined byL (Y; θ + hi, θ) =
p(Y,θ+hi)

p(Y,θ) . The elementssi are such thatsi ∈ [0, 1], i = 1, . . . , q.

Note that we have the following order relation [40]

Cov
(

θ̂
)

= E

[

(

θ̂ − θ
)(

θ̂ − θ
)T
]

� WWB, (6)

whereA � B means that the matrixA −B is a semi-positive definite matrix and whereCov
(

θ̂
)

is the global

(the expectation is taken over the joint pdfp (Y, θ)) mean square error of any estimatorθ̂ of the parameter vector

θ. Finally, in order to obtain a tight bound, one has to maximizeWWB over the test-pointshi andsi i = 1, . . . , q.

Note that this maximization can be done by using the trace ofHG−1HT or with respect to the Loewner partial

ordering [41]. In this paper we will use the trace ofHG−1HT which is enough to obtain tight results.

B. A general result on the Weiss-Weinstein bound and its application to the Gaussian observation models

An analytical result on the Weiss-Weinstein bound which will be useful in the following derivations and which

could be useful for other problems is derived in this part. Note that this result is independent of the parameter

vector sizeq and of the considered observation model.

November 29, 2012 DRAFT



6

Let us denoteΩ the observation space. By rewriting the elements of matrixG (see Eqn. (5)) involved in the

Weiss-Weinstein bound, one obtains for the numerator denotedN{G}
k,l
,

N{G}k,l
= E

[(

Lsk (Y; θ + hk, θ)− L1−sk (Y; θ − hk, θ)
) (

Lsl (Y; θ + hl, θ)− L1−sl (Y; θ − hl, θ)
)]

=

∫

Θ

∫

Ω

psk (Y, θ + hk) p
sl (Y, θ + hl)

psk+sl−1 (Y, θ)
dYdθ+

∫

Θ

∫

Ω

p1−sk (Y, θ − hk) p
1−sl (Y, θ − hl)

p1−sk−sl (Y, θ)
dYdθ

−

∫

Θ

∫

Ω

psk (Y, θ + hk) p
1−sl (Y, θ − hl)

psk−sl (Y, θ)
dYdθ−

∫

Θ

∫

Ω

p1−sk (Y, θ − hk) p
sl (Y, θ + hl)

psl−sk (Y, θ)
dYdθ, (7)

and for the denominator denotedD{G}k,l
,

D{G}
k,l

= E [Lsk (Y; θ + hk, θ)]E [Lsl (Y; θ + hl, θ)]

=

∫

Θ

∫

Ω

psk (Y, θ + hk)

psk−1 (Y, θ)
dYdθ

∫

Θ

∫

Ω

psl (Y, θ + hl)

psl−1 (Y, θ)
dYdθ. (8)

Let us now define a functionη (α, β,u,v) as

η (α, β,u,v) =

∫

Θ

∫

Ω

pα (Y, θ + u) pβ (Y, θ + v)

pα+β−1 (Y, θ)
dYdθ, (9)

where(α, β) ∈ [0, 1]
2 and where(u,v) are twoq×1 vectors such thatθ + u ∈ Θ andθ + v ∈ Θ. By identification,

it is easy to see that

{G}k,l =

η (sk, sl,hk,hl) + η (1− sk, 1− sl,−hk,−hl)− η (sk, 1− sl,hk,−hl)− η (1− sk, sl,−hk,hl)

η (sk, 0,hk,0) η (0, sl,0,hl)
. (10)

Note that we choose the arbitrary notationD{G}k,l
= η (sk, 0,hk,0) η (0, sl,0,hl) for the denominator. The

notationD{G}
k,l

= η (sk, 1,hk,0) η (1, sl,0,hl) or, even,D{G}
k,l

= η (sk, 0,hk,v) η (0, sl,u,hl) will lead to the

same result.

With Eqn. (10), it is clear that the knowledge ofη (α, β,u,v) for a particular problem leads to the Weiss-Weinstein

bound (without the maximization procedure over the test-points and over the parameterssi). Surprisingly, this simple

expression is given in [40] only forsi = 1
2 , ∀i and not for the general case.

Let us now detail this functionη (α, β,u,v). The functionη (α, β,u,v) can be rewritten as

η (α, β,u,v) =

∫

Θ

pα (θ + u) pβ (θ + v)

pα+β−1 (θ)

∫

Ω

pα (Y; θ + u) pβ (Y; θ + v)

pα+β−1 (Y; θ)
dYdθ

=

∫

Θ

ήθ (α, β,u,v)
pα (θ + u) pβ (θ + v)

pα+β−1 (θ)
dθ, (11)

where we define

ήθ (α, β,u,v, θ) =

∫

Ω

pα (Y; θ + u) pβ (Y; θ + v)

pα+β−1 (Y; θ)
dY. (12)

Our aim is to give the most general result. Consequently, we will focus only on ήθ (α, β,u,v) since thea priori

probability density function depends on the considered problem.

An important remark pointed out in [31] is that the integration for the parameter space is with respect to

the region{θ : p (θ) > 0} . However, since the functions being integrated arep (θ) , p (θ + u) , and p (θ + v) ,

November 29, 2012 DRAFT
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then the actual region of integration (where all the functions are positive) is the intersection of three regions,

{θ : p (θ) > 0} ∩ {θ : p (θ + u) > 0} ∩ {θ : p (θ + v) > 0} . Note that, in order to simplify the notation we only

useΘ throughout this paper but this remark will be useful and explictely specified in Section IV-B.

1) Gaussian observation model with parameterized covariance matrix: One calls (circular, i.i.d.) Gaussian

observation model with parameterized covariance matrix, amodel such that the observationsy (t) ∼ CN (0,Ry (θ))

whereθ are the parameters of interest. Note thatM1 is a special case of this model since the parameters of

interest appear only in the covariance matrix of the observations which has the following particular structure

Ry(θ) = A(θ)RsA
H(θ) +Rn. The closed-form expression ofήθ (α, β,u,v) is given by:

ήθ (α, β,u,v) =
|Ry(θ)|

T (α+β−1)

|Ry(θ + u)|Tα |Ry(θ + v)|Tβ ∣
∣αR−1

y (θ + u) + βR−1
y (θ + v)− (α+ β − 1)R−1

y (θ)
∣

∣

T
. (13)

The proof is given in Appendix A. Note that, similar expressions are given in [23] (Eqn. (B.15)) and [42] (p. 67,

Eqn. (52)) for the particular case whereα = s andβ = 1− s.

2) Gaussian observation model with parameterized mean: One calls (circular, i.i.d.) Gaussian observation model

with parameterized mean, a model such that the observationsy (t) ∼ CN (f (θ) ,Ry) whereθ are the parameters

of interest. Note thatM2 is a special case of this model since the parameters of interest appear only in the mean of

the observations which has the following particular structure ft (θ) = A(θ)s (t) (andRy = Rn). The closed-form

expression of́η
θ
(α, β,u,v) is given in this case by

ln ήθ (α, β,u,v) = −
T
∑

t=1

α (1− α) fHt (θ + u)R−1
y ft (θ + u)+β (1− β) fHt (θ + v)R−1

y ft (θ + v)

+ (1− α− β) (α+ β) fHt (θ)R−1
y ft (θ)− 2Re

{

αβfHt (θ + u)R−1
y ft (θ + v)

+α (1− α− β) fHt (θ + u)R−1
y ft (θ) + β (1− α− β) fHt (θ + v)R−1

y ft (θ)
}

, (14)

or equivalently by

ln ήθ (α, β,u,v) = −
T
∑

t=1

α (1− α− β)
∥

∥

∥R
−1/2
y (ft (θ + u)− ft (θ))

∥

∥

∥

2

+ αβ
∥

∥

∥R
−1/2
y (ft (θ + u)− ft (θ + v))

∥

∥

∥

2

+β (1− α− β)
∥

∥

∥R
−1/2
y (ft (θ + v)− ft (θ))

∥

∥

∥

2

. (15)

The details are given in Appendix B.

IV. GENERAL APPLICATION TO ARRAY PROCESSING

In the previous Section, it has been shown that the Weiss-Weinstein bound computation (or, at least, the matrixG

computation) is reduced to the knowledge of the functionη (α, β,u,v) given by Eqn. (9). As one can see in Eqn.

(10), the elements of the matrixG depend onη (α, β,u,v) for particular values ofα, β, u, andv. Consequently,

the goal of this Section is to detail these particular functions for our model given by Eqn. (1). Since Eqn. (9) can

be decomposed into adeterministic part (in the sense wheréηθ (α, β,u,v) (see Eqn. (12)) only depends on the

likelihood function) and aBayesian part (when we have to integratéηθ (α, β,u,v) over thea priori probability

density function of the parameters), we will first focus on the particular functionśηθ (α, β,u,v) by using the results
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of the previous Section on the Gaussian observation model with parameterized mean or covariance matrix. Second,

we will detail the passage froḿηθ (α, β,u,v) to η (α, β,u,v) in the particular case wherep (θi) is a uniform

probability density function∀i. Another result will also be given in the case of a Gaussian prior.

A. Analysis of ήθ (α, β,u,v)

We will now detail the particular functionśη
θ
(α, β,u,v) involved in the different elements of{G}k,l , k, l ∈

{1, q}2 for both modelsM1 andM2.

1) Unconditional observation model M1: Under the unconditional modelM1, by using Eqn. (13), one obtains

straightforwardly the functionśηθ (α, β,u,v) involved in the elements{G}k,l = {G}l,k






































































ή
θ
(sk, sl,hk,hl) =

|Ry(θ)|
T(sk+sl−1)

|Ry(θ+hk)|
Tsk |Ry(θ+hl)|

Tsl |skR−1
y (θ+hk)+slR

−1
y (θ+hl)−(sk+sl−1)R−1

y (θ)|T
,

ήθ(1− sk, 1− sl,−hk,−hl) =
|Ry(θ)|

T(1−sk−sl)|Ry(θ−hk)|
T(sk−1)|Ry(θ−hl)|

T(sl−1)

|(1−sk)R
−1
y (θ−hk)+(1−sl)R

−1
y (θ−hl)−(1−sk−sl)R

−1
y (θ)|T

,

ήθ(sk, 1− sl,hk,−hl) =
|Ry(θ)|

T(sk−sl)|Ry(θ−hl)|
T(sl−1)

|Ry(θ+hk)|
Tsk |skR−1

y (θ+hk)+(1−sl)R
−1
y (θ−hl)−(sk−sl)R

−1
y (θ)|T

,

ή
θ
(1− sk, sl,−hk,hl) =

|Ry(θ)|
T(sl−sk)|Ry(θ−hk)|

T(sk−1)

|Ry(θ+hl)|
Tsl |(1−sk)R

−1
y (θ−hk)+slR

−1
y (θ+hl)−(sl−sk)R

−1
y (θ)|T

,

ήθ(sk, 0,hk,0) =
|Ry(θ)|

T(sk−1)

|Ry(θ+hk)|
Tsk |skR−1

y (θ+hk)−(sk−1)R−1
y (θ)|T

,

ήθ(0, sl,0,hl) =
|Ry(θ)|

T(sl−1)

|Ry(θ+hl)|
Tsl |slR−1

y (θ+hl)−(sl−1)R−1
y (θ)|T

.

(16)

The diagonal elements ofG are obtained by lettingk = l in the above equations.

2) Conditional observation model M2: Under the conditional modelM2, by using Eqn. (15) withft (θ) =

A (θ) s (t) and Ry = Rn one obtains straightforwardly the functionsή
θ
(α, β,u,v) involved in the elements

{G}k,l = {G}l,k


































































ln ήθ (sk, sl,hk,hl) = sk (sk + sl − 1) ζθ (hk,0) + sl (sk + sl − 1) ζθ (hl,0)− skslζθ (hk,hl) ,

ln ήθ (1− sk, 1− sl,−hk,−hl) = (sk − 1) (sk + sl − 1) ζθ (−hk,0) + (sl − 1) (sk + sl − 1) ζθ (−hl,0)

− (1− sk) (1− sl) ζθ (−hk,−hl) ,

ln ήθ (sk, 1− sl,hk,−hl) = sk (sk − sl) ζθ (hk,0) + (1− sl) (sk − sl) ζθ (−hl,0) + sk (sl − 1) ζθ (hk,−hl) ,

ln ή
θ
(1− sk, sl,−hk,hl) = (sk − 1) (sk − sl) ζθ (−hk,0) + sl (sl − sk) ζθ (hl,0) + (sk − 1) slζθ (−hk,hl) ,

ln ήθ (sk, 0,hk,0) = sk (sk − 1) ζθ (hk,0) ,

ln ή
θ
(0, sl,0,hl) = sl (sl − 1) ζ

θ
(hl,0) ,

(17)

where we define

ζθ (µ,ρ) =

T
∑

t=1

∥

∥

∥R
−1/2
n (A (θ + µ)−A (θ + ρ)) s (t)

∥

∥

∥

2

. (18)

The diagonal elements ofG are obtained by lettingk = l in the above equations. Note that, since we are working

on matrixG, all the previously proposed results are made whatever the number of test-points.
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B. Analysis of η (α, β,u,v) with a uniform prior

Of course, the analysis ofη (α, β,u,v) given by Eqn. (11) can only be conducted by specifying thea priori

probability density functions of the parameters. Consequently, the results provided here are very specific. However,

note that, in general, this aspect is less emphasized in the literature where most of the authors give results without

specifying the prior probability density functions and compute the rest of the bound numerically (see e.g., [27] [25]

[43]).

We assume that all the parametersθi have a uniform prior distribution over the interval[ai, bi] and are statistically

independent. We will also assume one test-point per parameter, otherwise there is no possibility to obtain (pseudo)

closed-form expressions. Consequently, the matrixH is such that

H = Diag ([h1 h2 · · ·hq]) , (19)

and the vectorhi, i = 1, . . . , q, takes the valuehi at theith row and zero elsewhere. So, in this analysis, the vector

u takes the valueui at theith row and zero elsewhere and the vectorv takes the valuevj at thejth row and zero

elsewhere (of course, we can havei = j). Under these assumptions,η (α, β,u,v) can be rewritten2 for i 6= j

η (α, β,u,v) =

∫

Θ

ήθ (α, β,u,v)
pα (θi + ui) p

β (θj + vj) p
β (θi) p

α (θj)

pα+β−1 (θi) pα+β−1 (θj)

q
∏

k=1
k 6=i,k 6=j

p (θk) dθ

=
1

q
∏

k=1

(bk − ak)

∫

Θq−2

∫

Θj

∫

Θi

ή
θ
(α, β,u,v) dθidθjd (θ/ {θi, θj}) , (20)

whereΘi =







[ai, bi − ui] if ui > 0,

[ai − ui, bi] if ui < 0,
andΘj =







[aj , bj − vj ] if vj > 0,

[aj − vj , bj] if vj < 0,
. For i = j, one can havev = ±u,

then one obtains

η (α, β,u,v = ±u) =

∫

Θ

ή
θ
(α, β,u,v)

pα (θi + ui) p
β (θi ± ui)

pα+β−1 (θi)

q
∏

k=1
k 6=i

p (θk) dθ

=
1

q
∏

k=1

(bk − ak)

∫

Θq−1

∫

Θi

ήθ (α, β,u,v = ±u)dθid (θ/ {θi}) . (21)

In the last equation, ifv = −u, then Θi =







[ai + ui, bi − ui] if ui > 0,

[ai − ui, bi + ui] if ui < 0,
, while, if v = u, then Θi =







[ai, bi − ui] if ui > 0,

[ai − ui, bi] if ui < 0,
.

Depending on the structure of́ηθ (α, β,u,v) , η (α, β,u,v) has to be computed numerically or a closed-form

expression can be found.

2In this case, one has to have a particular attention to the integration domain as mentionned in Section III-B. It will not be the case for the

Gaussian prior since the support isR.
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Another particular case which appears sometimes is when thefunction ήθ (α, β,u,v) does not depend onθ

(see, [28] [9] [12] [23] [25] [26] [31] [33] and Section V of this paper). In this case,́ηθ (α, β,u,v) is denoted

ή (α, β,u,v) and one obtains from Eqn. (20)

η (α, β,u,v) =
ή (α, β,u,v)
q
∏

k=1

(bk − ak)









q
∏

k=1
k 6=i,k 6=j

∫ bk

ak

dθk









∫

Θi

dθi

∫

Θj

dθj

=
(bi − ai − |ui|) (bj − aj − |vj |)

(bi − ai) (bj − aj)
ή (α, β,u,v) , (22)

and from Eqn. (21)

η (α, β,u,v = u) =
(bi − ai − |ui|)

(bi − ai)
ή (α, β,u,v) , (23)

and

η (α, β,u,v = −u) =
(bi − ai − 2 |ui|)

(bi − ai)
ή (α, β,u,v) . (24)

C. Analysis of η (α, β,u,v) with a Gaussian prior

Finally, one can mention that if the prior is now assumed to beGaussian,i.e., θi ∼ N
(

µi, σ
2
i

)

∀i andήθ (α, β,u,v)

does not depend onθ one obtains after a straightforward calculation

η (α, β,u,v) = ή (α, β,u,v)

∫

R

pα (θi + ui)

pα−1 (θi)
dθi

∫

R

pβ (θj + vj)

pβ−1 (θj)
dθj

= ή (α, β,u,v) exp

(

−
1

2

(

α (1− α)u2
i

σ2
i

+
β (1− β) v2j

σ2
j

))

, (25)

η (α, β,u,v = u) = ή (α, β,u,v)

∫

R

pα+β (θi + ui)

pα+β−1 (θi)
dθi

= ή (α, β,u,v) exp

(

−
(α+ β) (1− α− β)u2

i

2σ2
i

)

, (26)

and

η (α, β,u,v = −u) = ή (α, β,u,v)

∫

R

pα (θi + ui) p
β (θi − ui)

pα+β−1 (θi)
dθi

= ή (α, β,u,v) exp

(

−

(

α+ β − α2 − β2 + 2αβ
)

u2
i

2σ2
i

)

. (27)

V. SPECIFIC APPLICATIONS TO ARRAY PROCESSING: DOA ESTIMATION

We now consider the application of the Weiss-Weinstein bound in the particular context of source localization.

Indeed, until now, the structure of the steering matrixA (θ) for a particular problem has not been used in the

proposed (semi) closed-form expressions. Consequently, these previous results can be applied to a large class of

estimation problems such as far-field and near-field sourceslocalization, passive localization with polarized array

of sensors, or radar (known waveforms).
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Here, we want to focus on the direction-of-arrival estimation of a single source in the far-field area with narrow-

band signal. In this case, the steering matrixA (θ) becomes a steering vector denoteda (θ) (except for one

preliminary result concerning the conditional model whichwill be given whatever the number of sources in Section

V-A2). The structure of this vector will be specified by the analysis of two kinds of array geometry: the non-uniform

linear array from which only one angle-of-arrival can be estimated (θ becomes a scalar) and the arbitrary planar

array from which both azimuth and elevation can be estimated(θ becomes a2× 1 vector). In any cases, the array

always consists ofM identical, omnidirectional sensors. Both modelM1 andM2 will be considered and the noise

will be assumed spatially uncorrelated:Rn = σ2
nI. Since we focus on the single source scenario, the variance of

the source signals (t) is denotedσ2
s for the modelM1.

The general structure of theith element of the steering vector is as follows

{a (θ)}i = exp

(

j
2π

λ
rTi θ

)

, i = 1, . . . ,M (28)

whereθ represents the parameter vector, whereλ denotes the wavelength, and whereri denotes the coordinate of

the ith sensor position with respect to a given referential. In the following, ri will be a scalar or a2 × 1 vector

depending on the context (linear array or planar array).

A. Preliminary results

Since our analysis is now reduced to the single source case, we give here some other closed-form expressions

which will be useful when we will detail the specific linear and planar arrays.

1) Unconditional observation model M1: In order to detail the set of functionśηθ given by Eqn. (16), one

has to find closed-form expressions of the determinant|Ry(θ + u)| and of determinants having the following

structure:
∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2)

∣

∣ with m1 + m2 = 1 or
∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2) +m3R

−1
y (θ3)

∣

∣ with

m1 +m2 +m3 = 1. UnderM1, the observation covariance matrix is now given by

Ry(θ) = σ2
sa(θ)a

H(θ) + σ2
nIM . (29)

Concerning the calculation of|Ry(θ + u)|, it is easy to find

|Ry(θ + u)| = σ2M
n

(

1 +
σ2
s

σ2
n

‖a(θ + u)‖2
)

. (30)

Moreover, after calculation detailed in Appendix C, one obtains for the other determinants

∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2)

∣

∣ =
1

(σ2
n)

M

(

1− ϕ1m1 ‖a(θ1)‖
2
+m2ϕ2 ‖a(θ2)‖

2

−ϕ1m1ϕ2m2

(

∥

∥aH(θ1)a(θ2)
∥

∥

2
− ‖a(θ1)‖

2 ‖a(θ2)‖
2
))

(31)
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and

∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2) +m3R

−1
y (θ3)

∣

∣ =

1

(σ2
n)

M

(

1−
3
∑

k=1

mkϕk ‖a(θk)‖
2 −

1

2

3
∑

k=1

3
∑

k′=1
k′ 6=k

mkϕkmk′ϕk′

(

∥

∥aH(θk)a(θk′)
∥

∥

2
− ‖a(θk)‖

2 ‖a(θk′)‖2
)

−

(

3
∏

k=1

mkϕk

)







3
∏

k=1

‖a(θk)‖
2 −

1

2

3
∑

k=1

3
∑

k′=1
k′ 6=k

3
∑

k′′=1
k′′ 6=k′ 6=k

∥

∥aH(θk)a(θk′ )
∥

∥

2
‖a(θk′′)‖2

+aH(θ3)a(θ2)a
H(θ1)a(θ3)a

H(θ2)a(θ1) + aH(θ3)a(θ1)a
H(θ1)a(θ2)a

H(θ2)a(θ3)
))

, (32)

where

ϕk =
σ2
s

σ2
s ‖a(θk)‖

2
+ σ2

n

, k = 1, 2, 3. (33)

2) Conditional observation model M2: Note that the results proposed here are in the context of any number of

sources. Under the conditional model, the set of functionsήθ given by Eqn. (17) is linked to the functionζθ (µ,ρ)

given by Eqn. (18). In this analysis, the vectorµ takes the valueµi at the ith row and zero elsewhere and the

vectorρ takes the valueρj at thejth row and zero elsewhere (of course, one can hasi = j). In Appendix D, the

calculation of the following closed-form expressions forζ
θ
(µ,ρ) are detailed.

• If (m− 1) p+ 1 ≤ i, j ≤ mp, wherep denotes the number of parameters per source, then, we have

ζθ (µ,ρ) =

T
∑

t=1

‖{s (t)}m‖2
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j
2π

λ

(

rTj − rTi
)

θm

)

×

(

exp

(

−j
2π

λ
rTi µm

)

− exp

(

−j
2π

λ
rTi ρm

))(

exp

(

j
2π

λ
rTj µm

)

− exp

(

j
2π

λ
rTj ρm

))

.(34)

• Otherwise, if(m− 1) p+ 1 ≤ i ≤ mp and (n− 1) p+ 1 ≤ j ≤ np, then we have

ζθ (µ,ρ) =

T
∑

t=1

‖{s (t)}m‖2
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j
2π

λ

(

rTj − rTi
)

θm

)

exp

(

−j
2π

λ
rTi µm

)

exp

(

j
2π

λ
rTj µm

)

+

T
∑

t=1

‖{s (t)}n‖
2

M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j
2π

λ

(

rTj − rTi
)

θn

)

exp

(

−j
2π

λ
rTi ρn

)

exp

(

j
2π

λ
rTj ρn

)

−2Re

(

T
∑

t=1

{s (t)}∗m {s (t)}n

×
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j
2π

λ

(

rTj θn − rTi θm

)

)

exp

(

−j
2π

λ
rTi µm

)

exp

(

j
2π

λ
rTj ρn

)



 . (35)

In particular, if one assumesRn = σ2
nI, then, several simplifications can be done:

• If (m− 1) p+ 1 ≤ i, j ≤ mp, then

ζθ (µ,ρ) =
1

σ2
n

M
∑

i=1

∥

∥

∥

∥

exp

(

−j
2π

λ
rTi µm

)

− exp

(

−j
2π

λ
rTi ρm

)∥

∥

∥

∥

2 T
∑

t=1

‖{s (t)}m‖2 , (36)
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Fig. 1. 3D source localization using a planar array antenna.

where we note that the functionζ
θ
(µ,ρ) does not depend on the parameterθ.

• Otherwise, if(m− 1) p+ 1 ≤ i ≤ mp and (n− 1) p+ 1 ≤ j ≤ np, then

ζθ (µ,ρ) =
1

σ2
n

M
∑

i=1

∥

∥

∥

∥

exp

(

−j
2π

λ
rTi µm

)∥

∥

∥

∥

2 T
∑

t=1

‖{s (t)}m‖2 +
1

σ2
n

M
∑

i=1

∥

∥

∥

∥

exp

(

−j
2π

λ
rTi ρn

)∥

∥

∥

∥

2 T
∑

t=1

‖{s (t)}n‖
2

−2Re

(

1

σ2
n

M
∑

i=1

exp

(

j
2π

λ
rTi (θn − θm)

)

exp

(

−j
2π

λ
rTi µm

)

exp

(

j
2π

λ
rTi ρn

) T
∑

t=1

{s (t)}∗m {s (t)}n

)

(37)

It is clear that the proposed above formulas for both the unconditional and the conditional models can be applied

to any kind of array geometry and whatever the number of sources. However, they generally depend on the parameter

vectorθ. This means that, in general, the calculation of the set of functionsη will have to be performed numerically

(except if one is able to find a closed-form expression of Eqn.(11)). In the following we present a kind of array

geometry where, fortunately, the set of functionsήθ will not depend onθ leading to a straightforward calculation

of the bound.

B. 3D Source localization with a planar array

We first consider the problem of DOA estimation of a single narrow band source in the far field area by using

an arbitrary planar array. In fact, we start by this general setting because the non-uniform linear array is clearly a

particular case of this array. Without loss of generality, we assume that the sensors of this array lay on thexOy plan

with Cartesian coordinates (see Fig. 1). Therefore, the vector ri contains the coordinate of theith sensor position

with respect to this referential,i.e., ri = [dxi
dyi

]
T
, i = 1, . . . ,M . From (28), the steering vector is given by

a(θ) =

[

exp

(

j
2π

λ
(dx1u+ dy

1
v)

)

. . . exp

(

j
2π

λ
(dxM

u+ dyM
v)

)]T

, (38)

where, as in [23], the parameter vector of interest isθ = [u v]T where






u = sinϕ cosφ,

v = sinϕ sinφ,
(39)

and whereϕ andφ represent the elevation and azimuth angles of the source, respectively. The parameters space

is such thatu ∈ [−1, 1] and v ∈ [−1, 1]. Therefore, we assume that they both follow a uniform distribution over
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[−1, 1]. Note that from a physical point of view, it should be more tempting to choose a uniform prior forϕ

andφ. This will lead to a probability density functions foru and v not uniform. To the best of our knowledge,

this assumption has only been used in the context of lower bounds in [25]. Unfortunately, such prior leads to an

untractable expression of the bound (see Eqn. (21) of [25]).Consequently, other authors have generally not specified

the prior leading to semi closed-form expressions of bounds(i.e. that it remains a numerical integration to perform

over the parameters) [25] [43] [27]. On the other hand, in order to obtain a closed-form expression, authors have

generally used a simplified assumption,i.e. a uniform prior directly onu and v (see, for example, [26] [44]). In

this paper, we have followed the same way by expecting a slight modification of performance with respect to a

more physical model and in order to be able to get closed-formexpressions of the bound.

We choose the matrix of test points such that

H = [hu hv] =





hu 0

0 hv



 . (40)

Then, we have:θ+hu = [u + hu v]T and θ+hv = [u v + hv]
T . Moreover, we now have two elements

si ∈ [0, 1] , i = 1, 2 for which we will prefer the notationsu andsv, respectively.

1) Unconditional observation model M1: Under M1, let us setUSNR =
σ4
s

σ2
n(Mσ2

s+σ2
n)

. The closed-form

expressions of the elements of matrixG =





{G}uu {G}uv

{G}vu {G}vv



 are given by (see Appendix E for the proof):

{G}uu =





















(

1− |hu|
2

)

(

1 + 2su(1− 2su)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ
dxk

hu

)

∥

∥

∥

∥

2
))−T

+
(

1− |hu|
2

)

(

1 + 2(1− su)(2su − 1)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ
dxk

hu

)

∥

∥

∥

∥

2
))−T

−2 (1− |hu|)

(

1 + su(1− su)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 4π
λ
dxk

hu

)

∥

∥

∥

∥

2
))−T





















(

1− |hu|
2

)2
(

1 + su(1 − su)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2
))−2T

, (41)

{G}vv =





















(

1− |hv |
2

)

(

1 + 2sv(1− 2sv)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ
dykhv

)

∥

∥

∥

∥

2
))−T

+
(

1− |hv|
2

)

(

1 + 2(1− sv)(2sv − 1)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ
dykhv

)

∥

∥

∥

∥

2
))−T

−2 (1− |hv |)

(

1 + sv(1− sv)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 4π
λ
dykhv

)

∥

∥

∥

∥

2
))−T





















(

1− |hv|
2

)2
(

1 + sv(1 − sv)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dyk

hv

)

∥

∥

∥

∥

2
))−2T

, (42)
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{G}uv =




















































































































































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∑
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∑
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∑
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∑
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∥

∥

∥
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∥

∥
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(43)
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and, of course,{G}uv = {G}vu. Consequently, the unconditional Weiss-Weinstein bound is 2×2 matrix given by:

UWWB = HG−1HT

=
1

{G}uu{G}vv − {G}2uv





h2
u{G}vv −huhv{G}uv

−huhv{G}uv h2
v{G}uu



 , (44)

which has to be optimized oversu, sv, hu, and hv. Concerning the optimization oversu and sv, several other

works in the literature have suggested to simply usesu = sv = 1/2. Most of the time, numerical simulations

of this simplified bound compared with the bound obtained after optimization oversu and sv leads to the same

results while their is no formal proof of this fact (see [9] page 41 footnote 17). Note that, thanks to the expressions

obtained in the next Section concerning the linear array, wewill be able to prove thats = 1/2 is a (maybe not

unique) correct choice for any linear array. In the case of the planar array treated in this Section, we will only

check this property by simulation.

In the particular case wheresu = sv = 1/2 one obtains the following simplified expressions

{G}uu =

2
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1− |hu|
2

)

− 2 (1− |hu|)
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∥

∥

∥
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∥

∥
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∥

∥

∥
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∥
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∥

∥

2
))−2T

, (45)

{G}vv =

2
(

1− |hv|
2

)

− 2 (1− |hv|)

(

1 + USNR

4
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∥

∥

∥

∥
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∥

∥

∥
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))−T

(

1− |hv|
2
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∥

∥

∥

∥
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)

∥

∥

∥

∥

2
))−2T

, (46)

and

{G}uv =













2

(
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4

(
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∥

∥

∥

∥
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)
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∥

∥
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∥

∥
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∥

∥

∥
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
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∥
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(
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hu

)

∥

∥

∥

∥
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∥

∥
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∥
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∥

∥

∥

∥

2
))−T

.

(47)

Again, the Weiss-Weinstein bound is obtained by using the above expressions in Eqn. (44) and after an opti-

mization over the test points. The optimization over the test points can be done over a search grid or by using the

ambiguity diagram of the array in order to reduce significantly the computational cost (see [18], [27], [34], [45],

[46]).
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2) Conditional observation model M2: UnderM2, let us setCSNR = 1
σ2
n

T
∑

t=1
‖s(t)‖2. The closed-form expres-

sions of the elements of matrixG are given by (see Appendix F for the proof):

{G}uu =















(

1− |hu|
2

)

exp

(

4su(2su − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ
dxk

hu

)

))

+
(

1− |hu|
2

)

exp

(
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(

M −
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∑
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(
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)

))

−2(1− |hu|) exp

(
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(
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∑
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(
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))














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2

)2
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(
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(
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M
∑
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(

2π
λ dxk
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)

)) , (48)

{G}vv =















(

1− |hv |
2

)

exp

(

4sv(2sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ
dykhv

)

))

+
(

1− |hv |
2

)

exp

(

4(2sv − 1)(sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ
dykhv

)

))

−2(1− |hv |) exp

(

2sv(sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

4π
λ
dykhv

)

))















(

1− |hv|
2

)2

exp

(

4sv(sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dyk

hv

)

)) , (49)

{G}uv =



































































exp











2su(su + sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dxk
hu

)

)

+2sv(su + sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dyk
hv

)

)

−2susvCSNR

(

M −
M
∑

k=1

cos
(

2π
λ

(dxk
hu − dyk

hv)
)

)











+exp











2(su − 1)(su + sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dxk
hu

)

)

+2(sv − 1)(su + sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dyk
hv

)

)

−2(1 − su)(1 − sv)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

(dxk
hu − dyk

hv)
)

)











− exp











2su(su − sv)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dxk
hu

)

)

+2(1 − sv)(su − sv)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dyk
hv

)

)

+2su(sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

(dxk
hu + dyk

hv)
)

)











− exp











2(su − 1)(su − sv)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dxk
hu

)

)

+2sv(sv − su)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ

dyk
hv

)

)

+2(su − 1)svCSNR

(

M −
M
∑

k=1

cos
(

2π
λ

(dxk
hu + dyk

hv)
)

)













































































exp

(

2su(su − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hu

)

))

exp

(

2sv(sv − 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dyk

hv

)

)) ,

(50)

and {G}uv = {G}vu. Consequently, the conditional Weiss-Weinstein bound is2 × 2 matrix given by using the

above equations in Eqn. (44). As for the unconditional case,if we set su = sv = 1/2, one obtains the following

simplified expressions

November 29, 2012 DRAFT



18

{G}uu =

2
(

1− |hu|
2

)

− 2(1− |hu|) exp

(

−CSNR

2

(

M −
M
∑

k=1

cos
(

4π
λ dxk

hu

)

))

(

1− |hu|
2

)2

exp

(

−CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hu

)

)) , (51)

{G}vv =

2
(

1− |hv|
2

)

− 2(1− |hv|) exp

(

−CSNR

2

(

M −
M
∑

k=1

cos
(

4π
λ dyk

hv

)

))

(

1− |hv|
2

)2

exp

(

−CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dyk

hv

)

)) , (52)

{G}uv =









2 exp

(

−CSNR

2

(

M −
M
∑

k=1

cos
(

2π
λ (dxk

hu − dyk
hv)
)

))

−2 exp

(

−CSNR

2

(

M −
M
∑

k=1

cos
(

2π
λ (dxk

hu + dyk
hv)
)

))









exp

(

−CSNR

2

(

2M −
M
∑

k=1

cos
(

2π
λ dxk

hu

)

−
M
∑

k=1

cos
(

2π
λ dyk

hv

)

)) . (53)

By using the above expressions in Eqn. (44) and after an optimization over the test points, one obtains the

Weiss-Weinstein bound.

C. Source localization with a non-uniform linear array

We now briefly consider the DOA estimation of a single narrow band source in the far area by using a non-

uniform linear array antenna. Without loss of generality, let us assume that the linear array antenna lays on the

Ox axis of the coordinate system (see Fig. 1), consequently,dyi
= 0, ∀i. The sensor positions vector is denoted

[dx1 . . . dxM
] . By letting θ = sinϕ, whereϕ denotes the elevation angle of the source, the steering vector is then

given by

a(θ) =

[

exp

(

j
2π

λ
dx1θ

)

. . . exp

(

j
2π

λ
dxM

θ

)]T

. (54)

We assume that the parameterθ follows a uniform distribution over[−1, 1]. As in Section IV-B and since the

parameter of interest is a scalar, matrixH of the test points becomes a scalar denotedhθ. In the same way,

there is only one elementsi ∈ [0, 1] which will be simply denoteds. The closed-form expressions given here are

straightforwardly obtained from the aforementioned results on the planar array about the element denoted{G}uu .

We will continue to use the previously introduced notationsUSNR =
σ4
s

σ2
n(Mσ2

s+σ2
n)

andCSNR = 1
σ2
n

T
∑

t=1
‖s(t)‖2 .

1) Unconditional observation model M1: The closed-form expression of the unconditional Weiss-Weinstein

bound, denotedUWWB, is given by

UWWB =

h2
θ

(

1− |hθ|
2

)2
(

1 + s(1− s)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−2T

























(

1− |hθ|
2

)













(

1 + 2s(1− 2s)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−T

+

(

1 + 2(1− s)(2s− 1)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−T













−2 (1− |hθ|)

(

1 + s(1− s)USNR

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 4π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−T

























.

(55)
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In order to find one optimal value ofs that maximizesHG−1HT , ∀hθ we have considered the derivative of

HG−1HT w.r.t. s. The calculation (not reported here) is straightforward and it is easy to see that∂HG−1HT

∂s

∣

∣

∣

s= 1
2

=

0. Consequently, the Weiss-Weinstein bound has just to be optimized overhθ and is simplified leading to

UWWB = sup
hθ

h2
θ

(

1− |hθ|
2

)2
(

1 + USNR

4

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−2T

2
(

1− |hθ|
2

)

− 2 (1− |hθ|)

(

1 + USNR

4

(

M2 −

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 4π
λ dxk

hθ

)

∥

∥

∥

∥

2
))−T

. (56)

In the classical case of a uniform linear array (i.e., dxk
= d), this expression can be still simplified by noticing

that
M
∑

k=1

exp
(

−j 2π
λ dxk

hθ

)

=M exp
(

−j 2πd
λ hθ

)

.

2) Conditional observation model M2: The closed-form expression of the conditional Weiss-Weinstein bound

CWWB is given by

CWWB =

h2
θ

(

1− |hθ|
2

)2

exp

(

4s(s− 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hθ

)

))

















(

1− |hθ|
2

)









exp

(

4s(2s− 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hθ

)

))

+exp

(

4(2s− 1)(s− 1)CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hθ

)

))









−2 (1− |hθ|) exp

(

2s(s− 1)CSNR

(

M −
M
∑

k=1

cos
(

4π
λ dxk

hθ

)

))

















. (57)

Again, it is easy to check that∂HG−1HT

∂s

∣

∣

∣

s= 1
2

= 0. Consequently, one optimal value ofs that maximizes

HG−1HT , ∀hθ is s = 1
2 . The Weiss-Weinstein bound is then simplified as follows

CWWB = sup
hθ

h2
θ

(

1− |hθ|
2

)2

exp

(

−CSNR

(

M −
M
∑

k=1

cos
(

2π
λ dxk

hθ

)

))

2
(

1− |hθ|
2

)

− 2 (1− |hθ|) exp

(

− 1
2CSNR

(

M −
M
∑

k=1

cos
(

4π
λ dxk

hθ

)

)) . (58)

In the classical case of a uniform linear array (i.e., dxk
= d), this expression can be still simplified by noticing

that
M
∑

k=1

cos
(

2π
λ dxk

hθ

)

= M cos
(

2πd
λ hθ

)

.

VI. SIMULATION RESULTS AND ANALYSIS

As an illustration of the previously derived results, we first consider the scenario proposed in [23] Fig. 5,i.e.,

the DOA estimation under the unconditional model using an uniform circular array consisting ofM = 16 sensors

with a half-wavelength inter-sensors spacing. The numbersof snapshots isT = 100. Since the array is symmetric,

the performance estimation concerning the parametersu andv are the same, this is why only the performance with

respect to the parametersu is given in Fig. 2. The Weiss-Weinstein bound is computed using Eqn. (45), (46) and

(47). The Ziv-Zakai bound is computed using Eqn. (24) in [23]. The empirical global mean square error (MSE)

of the maximuma posteriori (MAP) estimator is obtained over2000 Monte Carlo trials. As in [23] Fig. (1b), one

observes that both the Weiss-Weinstein bound and the Ziv-Zakai bound are tight w.r.t. the MSE of the MAP and

capture the SNR threshold. Note that, in [23] Fig. (1b), the Weiss-Weinstein bound was computed numerically only.
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Fig. 2. Ziv-Zakai bound, Weiss-Weinstein bound and empirical MSE of the MAP estimator: unconditional case.

To the best of our knowledge, their are no closed-form expressions of the Ziv-Zakai bound for the conditional

model available in the literature. In this case, we consider3D source localization using a V-shaped array. Indeed,

it has been shown that this kind of array is able to outperformother classical planar arrays, more particularly the

uniform circular array [47]. This array is made from two branches of uniform linear arrays with 6 sensors located

on each branches and one sensor located at the origin. We denote ∆ the angle between these two branches. The

sensors are equally spaced with a half-wavelength. The number of snapshots isT = 20. Fig. 3 shows the behavior

of the Weiss-Weinstein bound with respect to the opening angle ∆. One can observe that when∆ varies, the

estimation performance concerning the estimation of parameteru varies slightly. On the contrary, the estimation

performance concerning the estimation of parameterv is strongly dependent on∆. When∆ increases from0◦ to

90◦, the Weiss-Weinstein bound ofv decreases, as well as the SNR threshold. Fig. 3 also shows that ∆ = 90◦ is

the optimal value, which is different with the optimal value∆ = 53.13◦ in [47] since the assumptions concerning

the source signal are not the same.

VII. C ONCLUSION

In this paper, the Weiss-Weinstein bound on the mean square error has been studied in the array processing

context. In order to analyze the unconditional and conditional signal source models, the structure of the bound has

been detailed for both Gaussian observation models with parameterized mean or parameterized covariance matrix.

APPENDIX

A. Closed-form expression of ήθ (α, β,u,v) under the Gaussian observation model with parameterized covariance

Sincey (t) ∼ CN (0,Ry (θ)), one has,

ήθ (α, β,u,v) =
|Ry(θ)|

T (α+β−1)

πMT |Ry(θ + u)|Tα |Ry(θ + v)|Tβ

∫

Ω

exp

(

−
T
∑

t=1

yH(t)Γ−1y(t)

)

dY, (59)
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Fig. 3. Weiss-Weinstein bounds of the V-shaped array w.r.t.the opening angle∆.

whereΓ−1 = αR−1
y (θ + u) + βR−1

y (θ + v)− (α+ β − 1)R−1
y (θ). Then, since

∫

Ω

exp

{

−
T
∑

t=1

yH(t)Γ−1y(t)

}

dY = πMT |Γ|T , (60)

one has

ήθ (α, β,u,v) =
|Ry(θ)|

T (α+β−1) |Γ|T

|Ry(θ + u)|Tα |Ry(θ + v)|Tβ
=

|Ry(θ)|
T (α+β−1)

|Ry(θ + u)|Tα |Ry(θ + v)|Tβ |Γ−1|T
(61)

B. Closed-form expression of ή
θ
(α, β,u,v) under the Gaussian observation model with parameterized mean

Sincey (t) ∼ CN (ft (θ) ,Ry) , one has

ήθ (α, β,u,v) =
1

πMT |Ry|
T

∫

Ω

exp

(

−
T
∑

t=1

ξ (t)

)

dY, (62)

with3

ξ (t) = α (y − ft (θ + u))
H
R−1

y (y − ft (θ + u)) + β (y − ft (θ + v))
H
R−1

y (y − ft (θ + v))

+ (1− α− β) (y − ft (θ))
H
R−1

y (y − ft (θ))

= yHR−1
y y+αfHt (θ + u)R−1

y ft (θ + u)+βfHt (θ + v)R−1
y ft (θ + v) + (1− α− β) fHt (θ)R−1

y ft (θ)

−2Re
{

yHR−1
y (αft (θ + u) + βft (θ + v) + (1− α− β) ft (θ))

}

. (63)

3For simplicity, the dependance ont of f andy is not emphasized.
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Let us setx = y − (αft (θ + u) + βft (θ + v) + (1− α− β) ft (θ)). Consequently,

xHR−1
y x = yHR−1

y y − 2Re
{

yHR−1
y (αft (θ + u) + βft (θ + v) + (1− α− β) ft (θ))

}

+
(

αfHt (θ + u) + βfHt (θ + v) + (1− α− β) fHt (θ)
)

R−1
y (αft (θ + u) + βft (θ + v) + (1− α− β) ft (θ))(64)

And ξ (t) can be rewritten as

ξ (t) = xHR−1
y x+ ξ́ (t) , (65)

where

ξ́ (t) = α (1− α) fHt (θ + u)R−1
y ft (θ + u)+β (1− β) fHt (θ + v)R−1

y ft (θ + v)

+ (1− α− β) (α+ β) fHt (θ)R−1
y ft (θ)− 2Re

{

αβfHt (θ + u)R−1
y ft (θ + v)

+ α (1− α− β) fHt (θ + u)R−1
y ft (θ) + β (1− α− β) fHt (θ + v)R−1

y ft (θ)
}

. (66)

Note that ξ́ (t) is independent ofx. By defining X = [x (1) ,x (2) , . . . ,x (T )], the function ήθ (α, β,u,v)

becomes

ήθ (α, β,u,v) =
1

πMT |Ry|
T

∫

Ω

exp

(

−
T
∑

t=1

xHR−1
y x+ ξ́ (t)

)

dX = exp

(

−
T
∑

t=1

ξ́ (t)

)

, (67)

since 1
πMT |Ry|

T

∫

Ω exp

(

−
T
∑

t=1
xHR−1

y x

)

dX =1.

C. Closed-form expressions of
∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2)

∣

∣ and
∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2) +m3R

−1
y (θ3)

∣

∣

Note that this calculation is actually an extension of the result obtained in [27] Appendix A in whichm1 =

m2 = 1
2 andm3 = 0, but follows the same method. The inverse ofRy can be deduced from the Woodbury formula

R−1
y (θ) =

1

σ2
n

(

IM −
σ2
sa(θ)a

H(θ)

σ2
s ‖a(θ)‖

2
+ σ2

n

)

.

Then,
3
∑

k=1

mkR
−1
y (θk) =

1

σ2
n

3
∑

k=1

mk

(

I−
σ2
sa(θk)a

H(θk)

σ2
s ‖a(θk)‖

2 + σ2
n

)

. (68)

Since the rank ofa(θk)a
H(θk) is equal to1 and sinceθ1 6= θ2 6= θ3 (except forhk = hl = 0), the above

matrix hasM − 3 eigenvalues equal to1σ2
n

3
∑

k=1

mk and3 eigenvalues corresponding to the eigenvectors made from

the linear combination ofa(θ1), a(θ2), anda(θ3): a(θ1) + pa(θ2) + qa(θ3). The determinant will then be the

product of theseM eigenvalues4. Let us set

ϕk =
σ2
s

σ2
s ‖a(θk)‖

2
+ σ2

n

, k = 1, 2, 3. (69)

Then, the three aforementioned eigenvalues denotedλ must satisfy:
(

3
∑

k=1

mkR
−1
y (θk)

)

(a(θ1) + pa(θ2) + qa(θ3)) = λ (a(θ1) + pa(θ2) + qa(θ3)) . (70)

4Note that we are only interested by the eigenvalues. Consequently, the linear combination of ofa(θ1), a(θ2), anda(θ3) can be written

a(θ1) + pa(θ2) + qa(θ3) instead ofra(θ1) + pa(θ2) + qa(θ3)
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By using Eqn. (68) in the above equation and after a factorization with respect toa(θ1), a(θ2), anda(θ3) one

obtains
(

x−m1ϕ1 ‖a(θ1)‖
2 − pm1ϕ1a

H(θ1)a(θ2)− qm1ϕ1a
H(θ1)a(θ3)

)

a(θ1)

+
(

−m2ϕ2a
H(θ2)a(θ1) + p

(

x−m2ϕ2 ‖a(θ2)‖
2
)

− qm2ϕ2a
H(θ2)a(θ3)

)

a(θ2)

+
(

−m3ϕ3a
H(θ3)a(θ1)−m3ϕ3pa

H(θ3)a(θ2) + q
(

x−m3ϕ3 ‖a(θ3)‖
2
))

a(θ3) = 0,

(71)

where5

x = 1− σ2
nλ. (72)

Consequently, the coefficients ofa(θ1), a(θ2), anda(θ3) are equals to zero leading to a system of three equations

with two unknown (p and q). Solving the two first equations to find6 p and q, and applying the solution into the

last equation, one obtains the following polynomial equation of x

x3 − x2
3
∑

k=1

mkϕk ‖a(θk)‖
2 −

x

2

3
∑

k=1

3
∑

k′=1
k′ 6=k

mkϕkmk′ϕk′

(

∥

∥aH(θk)a(θk′)
∥

∥

2
− ‖a(θk)‖

2 ‖a(θk′ )‖2
)

(75)

−m1m2m3ϕ1ϕ2ϕ3

(

‖a(θ1)‖
2 ‖a(θ2)‖

2 ‖a(θ3)‖
2 −

∥

∥aH(θ2)a(θ3)
∥

∥

2
‖a(θ1)‖

2 (76)

−
∥

∥aH(θ1)a(θ2)
∥

∥

2
‖a(θ3)‖

2 −
∥

∥aH(θ3)a(θ1)
∥

∥

2 ∥
∥aH(θ2)

∥

∥

2
+ aH(θ3)a(θ2)a

H(θ1)a(θ3)a
H(θ2)a(θ1)(77)

+aH(θ3)a(θ1)a
H(θ1)a(θ2)a

H(θ2)a(θ3)
)

= 0

Since we are only interested by the product of the three eigenvalues, we do not have to solve this polynomial

in λ and only the opposite of the last term is required. This leadsto Eqn. (31) with
3
∑

k=1

mk = 1. Of course, the

closed-form expression of
∣

∣m1R
−1
y (θ1) +m2R

−1
y (θ2)

∣

∣ is obtained by lettingm3 = 0 and
2
∑

k=1

mk = 1 in Eqn.

(32).

D. Closed-form expressions of ζθ (µ,ρ)

Remind that the functionζθ (µ,ρ) is defined by Eqn. (18). Let us definep as the number of parameters per

sources (assumed to be constant for each sources). Then, without loss of generality, the full parameter vectorθ

can be decomposed asθ =
[

θT
1 . . . θT

N

]T

whereθi = [θi,1 . . . θi,p]
T
, i = 1, . . . , N with q = Np. Remind that

µ = [0 . . . µi . . . 0]
T andρ =

[

0 . . . ρj . . . 0
]T

. It exists two distinct cases to study: when both indexi and j are

5Note that, from Eqn. (16),
3
∑

k=1

mk = 1.

6p andq are given by

p =
m2ϕ2a

H(θ2)
(

m1ϕ1a(θ1)aH (θ1) +
(

x−m1ϕ1 ‖a(θ1)‖
2

)

I
)

a(θ3)

m1ϕ1a
H(θ1)

(

m2ϕ2a(θ2)aH (θ2) +
(

x−m2ϕ2 ‖a(θ2)‖
2

)

I
)

a(θ3)
, (73)

and

q =

(

x−m1ϕ1 ‖a(θ1)‖
2

)(

x−m2ϕ2 ‖a(θ2)‖
2

)

−m1ϕ1m2ϕ2a
H(θ1)a(θ2)aH(θ2)a(θ1)

m1ϕ1a
H (θ1)

(

m2ϕ2a(θ2)aH (θ2) +
(

x−m2ϕ2 ‖a(θ2)‖
2

)

I
)

a(θ3)
. (74)
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such that(m− 1)p+ 1 ≤ i ≤ mp, m = 1, . . . , N and(m− 1)p+ 1 ≤ j ≤ mp or when(m− 1)p+ 1 ≤ i ≤ mp,

m = 1, . . . , N and (n− 1)p+ 1 ≤ j ≤ np, n = 1, . . . , N with m 6= n. Therefore let us denote:






µm = [0 · · · 0 hi 0 · · · 0]T ∈ Rp

ρm = [0 · · · 0 hj 0 · · · 0]T ∈ Rp
if (m− 1) p+ 1 ≤ i, j ≤ mp (78)

and 





µm = [0 · · · 0 hi 0 · · · 0]T ∈ Rp,

ρn = [0 · · · 0 hj 0 · · · 0]T ∈ Rp,
if







(m− 1) p+ 1 ≤ i ≤ mp

(n− 1) p+ 1 ≤ j ≤ np
, with m 6= n. (79)

1) The case where (m− 1) p+ 1 ≤ i, j ≤ mp: In this case, one has:

A (θ + µ)−A (θ + ρ) = [0 · · ·0 a (θm+µm)− a (θm+ρm) 0 · · ·0] ∈ C
p×N , (80)

and consequently,

ζ
θ
(µ,ρ) =

∥

∥

∥R
−1/2
n (a (θm+µm)− a (θm+ρm))

∥

∥

∥

2 T
∑

t=1

‖{s (t)}m‖2 . (81)

Due to Eqn. (28), one has
∥

∥

∥R
−1/2
n (a (θm+µm)− a (θm+ρm))

∥

∥

∥

2

=

M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j
2π

λ

(

rTj − rTi
)

θm

)(

exp

(

−j
2π

λ
rTi µm

)

− exp

(

−j
2π

λ
rTi ρm

))

×

(

exp

(

j
2π

λ
rTj µm

)

− exp

(

j
2π

λ
rTj ρm

))

. (82)

In particular, in the case whereRn = σ2
nI one obtains

∥

∥

∥R
−1/2
n (a (θm+µm)− a (θm+ρm))

∥

∥

∥

2

=
1

σ2
n

M
∑

i=1

∥

∥

∥

∥

exp

(

−j
2π

λ
rTi µm

)

− exp

(

−j
2π

λ
rTi ρm

)∥

∥

∥

∥

2

. (83)

2) The case where (m− 1) p + 1 ≤ i ≤ mp and where (n− 1) p + 1 ≤ j ≤ np: Without loss generality, we

assume thatn > m. Then,

A (θ + µ)−A (θ + ρ) = [a (θ1)− a (θ1) · · ·a (θm + µm)− a (θm) · · · a (θn)− a (θn + ρn) · · · a (θN )− a (θN )]

= [0 · · ·0 a (θm+µm)− a (θm) 0 · · ·0 a (θm)− a (θn+ρn) 0 · · ·0] , (84)

and consequently,

ζθ (µ,ρ) =

T
∑

t=1

∥

∥

∥R
−1/2
n (a (θm+µm)− a (θm)) {s (t)}m + (a (θn)− a (θn+ρn)) {s (t)}n

∥

∥

∥

2

. (85)
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Let us setκ = R
−1/2
n (a (θm+µm)− a (θm))and̺ = R

−1/2
n (a (θn)− a (θn+ρn)) . Then,ζθ (µ,ρ) can be

rewritten

ζθ (µ,ρ) =

T
∑

t=1

‖κ {s (t)}m + ̺ {s (t)}n‖
2

=
T
∑

t=1

(

κ
H
κ ‖{s (t)}m‖2 + κ

H̺ {s (t)}∗m {s (t)}n + ̺H
κ {s (t)}m {s (t)}∗n + ̺H̺ ‖{s (t)}n‖

2
)

= κ
H
κ

T
∑

t=1

‖{s (t)}m‖2 + ̺H̺

T
∑

t=1

‖{s (t)}n‖
2
+ 2Re

(

κ
H̺

T
∑

t=1

{s (t)}∗m {s (t)}n

)

. (86)

By using the structure of the steering matrixA, it leads to


































κHκ =
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j 2π
λ

(

rTj − rTi
)

θm

)

exp
(

−j 2π
λ rTi µm

)

exp
(

j 2π
λ rTj µm

)

,

̺H̺ =
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j 2π
λ

(

rTj − rTi
)

θn

)

exp
(

−j 2π
λ rTi ρn

)

exp
(

j 2π
λ rTj ρn

)

,

κH̺ = −
M
∑

i=1

M
∑

j=1

{

R−1
n

}

i,j
exp

(

j 2π
λ

(

rTj θn − rTi θm

))

exp
(

−j 2π
λ rTi µm

)

exp
(

j 2π
λ rTj ρn

)

.

(87)

E. Proof of Eqn. (41), (42) and (43)

In fact, one only has to prove Eqn. (43) since Eqn. (41) and (42) can be obtained by lettinghu = hv andsu = sv

in Eqn. (43) and by using(hu, su) for Eqn. (41) and(hv, sv) for Eqn. (42). By plugging Eqn. (30) and (32) into

Eqn. (16), and by considering the following expressions

aH(θ + hu)a(θ + hv) =
M
∑

i=1

exp
(

j 2π
λ (dyi

hv − dxi
hu)
)

=
(

aH(θ + hv)a(θ + hu)
)H

,

aH(θ ± hu)a(θ) =
M
∑

i=1

exp
(

∓j 2π
λ dxi

hu

)

, andaH(θ + hu)a(θ − hu) =
M
∑

i=1

exp
(

−j 4π
λ dxi

hu

)

,

one obtains the closed-form expressions for the set of functions ήθ (α, β,u,v)

ήθ(su, sv,hu,hv) =































































1− USNR























susv

(

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ (dxk

hu − dyk
hv)
)

∥

∥

∥

∥

2

−M2

)

+su(1 − su − sv)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M2

)

+sv(1− su − sv)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M2

)























−susv(1− su − sv)
U2

SNRσ2
n

σ2
s

×

×



























M
∑

k=1

exp
(

j
2πdyk

hv

λ

) M
∑

k=1

exp
(

−j
2πdxk

hu

λ

) M
∑

k=1

exp
(

j
2π(dxk

hu−dyk
hv)

λ

)

+
M
∑

k=1

exp
(

−j
2πdyk

hv

λ

) M
∑

k=1

exp
(

j
2πdxk

hu

λ

) M
∑

k=1

exp
(

−j
2π(dxk

hu−dyk
hv)

λ

)

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ (dxk

hu − dyk
hv)
)

∥

∥

∥

∥

2

+M3

























































































−T

(88)
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ήθ(1− su, 1− sv,−hu,−hv) =






























































1− USNR























(1− su)(1 − sv)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

j 2π
λ (dxk

hu − dyk
hv)
)

∥

∥

∥

∥

2

−M2

)

+(1− su)(su + sv − 1)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M2

)

+(1− sv)(su + sv − 1)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M2

)























−(1− su)(1 − sv)(su + sv − 1)
U2

SNRσ2
n

σ2
s

×

×



























M
∑

k=1

exp
(

j
2πdyk

hv

λ

) M
∑

k=1

exp
(

−j
2πdxk

hu

λ

) M
∑

k=1

exp
(

j
2π(dxk

hu−dyk
hv)

λ

)

+
M
∑

k=1

exp
(

−j
2πdyk

hv

λ

) M
∑

k=1

exp
(

j
2πdxk

hu

λ

) M
∑

k=1

exp
(

−j
2π(dxk

hu−dyk
hv)

λ

)

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ (dxk

hu − dyk
hv)
)

∥

∥

∥

∥

2

+M3

























































































−T

(89)

ήθ(su, 1− sv,hu,−hv) =






























































1− USNR























su(1− sv)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ (dxk

hu + dyk
hv)
)

∥

∥

∥

∥

2

−M2

)

+su(sv − su)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M2

)

+(1− sv)(sv − su)

(

∥

∥

∥

∥

M
∑

k=1

exp
(

j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M2

)























−su(1− sv)(sv − su)
U2

SNRσ2
n

σ2
s

×

×



























M
∑

k=1

exp
(

j
2πdyk

hv

λ

) M
∑

k=1

exp
(

j
2πdxk

hu

λ

) M
∑

k=1

exp
(

−j
2π(dxk

hu+dyk
hv)

λ

)

+
M
∑

k=1

exp
(

−j
2πdyk

hv

λ

) M
∑

k=1

exp
(

−j
2πdxk

hu

λ

) M
∑

k=1

exp
(

j
2π(dxk

hu+dyk
hv)

λ

)

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

j 2π
λ dyk

hv

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ dxk

hu

)

∥

∥

∥

∥

2

−M

∥

∥

∥

∥

M
∑

k=1

exp
(

−j 2π
λ (dxk

hu + dyk
hv)
)

∥

∥

∥

∥

2

+M3

























































































−T

(90)
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ήθ(1− su, sv,−hu,hv) =





















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(91)

ήθ(su, 0,hu,0) =



1 + su(1− su)USNR



M2 −

∥

∥

∥

∥

∥

M
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exp
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λ
dxk
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)

∥

∥

∥

∥

∥

2





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, (92)

and

ήθ(0, sv,0,hv) =



1 + sv(1− sv)USNR



M2 −

∥

∥

∥

∥

∥

M
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exp

(
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)

∥

∥

∥

∥

∥

2








−T

. (93)

One notices that the set of functionsήθ (α, β,u,v) does not depend onθ. Consequently, it is also easy to

obtain the Weiss-Weinstein bound (throughout the set of functionsη (α, β,u,v)) by using the results of Section

IV-B whatever the considered prior onθ (only the integral
∫

Θ
pα+β(θ+u)
pα+β−1(θ)

dθ has to be calculated or computed

numerically). In our case of a uniform prior, the results arestraightforward and leads to Eqn. (41), (42) and (43).

F. Proof of Eqn. (48), (49) and (50)

The set of functionśη
θ
(α, β,u,v) is given by Eqn. (17). So, it only remains the calculation of functionsζ

θ
(µ,ρ)

from Eqn. (18). SinceRn = σ2
nI, one obtains
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M
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)
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M
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)

)

,
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θ
(−hv,hv) = 2CSNR

(
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M
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cos
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4π
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ζθ(hu,hv) = ζθ(hv,hu) = ζθ(−hu,−hv)
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cos
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(
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M
∑
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cos
(

2π
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)

,

ζ
θ
(hu,hu) = ζ

θ
(hv,hv) = ζ

θ
(−hu,−hu) = ζ

θ
(−hv,−hv) = 0.

(94)

Again, since the set of functionsζ
θ
(µ,ρ) does not depend onθ, the set of functionśη

θ
(α, β,u,v) is given by

plugging the above equations into Eqn. (17) and does not depend onθ. Consequently, as in unconditional case, the

set of functionsη (α, β,u,v) is obtained by using the results of Section IV-B whatever theconsidered prior onθ.

In our case of a uniform prior, the results are straightforward and leads to Eqn. (48), (49) and (50).
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