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Abstract

In this paper, the Weiss-Weinstein bound is analyzed in treext of sources localization with a planar array
of sensors. Both conditional and unconditional sourceaigmdels are studied. First, some results are given in the
multiple sources context without specifying the structafehe steering matrix and of the noise covariance matrix.
Moreover, the case of an uniform or Gaussian prior are amdly8econd, these results are applied to the particular
case of a single source for two kinds of array geometries:raumiform linear array (elevation only) and an arbitrary
planar (azimuth and elevation) array.

Index Terms

Weiss-Weinstein bound, DOA estimation, array processing.

I. INTRODUCTION

Sources localization problem has been widely investigatdte literature with many applications such as radar,
sonar, medical imaging, etc. One of the objective is to esttinthe direction-of-arrival (DOA) of the sources using
an array of sensors.

In array processing, lower bounds on the mean square ereouswally used as a benchmark to evaluate
the ultimate performance of an estimator. There exist s¢wewer bounds in the literature. Depending on the
assumptions about the parameters of interest, there are thain kinds of lower bounds. When the parameters
are assumed to be deterministic (unknown), the main lowends on the (local) mean square error used are the
well known Cramér-Rao boundl[2] and the Barankin bound {8die particularly their approximations| [4]I[5]][6]
[7] [8]). When the parameters are assumed to be random withoavik prior distribution, these lower bounds on

the global mean square error are called Bayesian boundS{@he typical families of Bayesian bounds are the
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Ziv-Zakai family [10] [11] [12] and the Weiss-Weinstein féyn[L3] [14] [15] [L6]. Finally, when the parameter
vector is made from both deterministic and random pararsetie so-called hybrid bounds have been developed
[17] [18] [19] [20].

Since the DOA estimation is a non-linear problem, the orttleffect can appear and the estimators mean square
error exhibits three distinct behaviors depending on thaber of snapshots and/or on the signal to noise ratio(SNR)
[21]. At high SNR and/or for a high number of snapshats, in the asymptotic region, the outliers effect can
be neglected and the ultimate performance are describethébyctassical/Bayesian/hybrid) Cramér-Rao bound.
However, when the SNR and/or the number of snapshots degreeesoutliers effect lead to a quick increase of
the mean square error: this is the so-called thresholdtefiiedhis region, the behavior of the lower bounds are
not the same. Some bounds, generally called global bourataifRin, Ziv-Zakai, Weiss-Weinstein) can predict the
threshold while the others, called local bounds, like than®r-Rao bound or the Bhattacharyya bound cannot.
Finally, at low SNR and/or at low number of snapshoss, in the no-information region, the deterministic bounds
exceed the estimator mean square error due to the fact tnatdih not take into account the parameter support.
On the contrary, the Bayesian bounds exploit the parameiar ipformation leading to a "real” lower bound on
the global mean square error.

In this paper, we are interested in the Weiss-Weinstein dswvhich is known to be one of the tightest Bayesian
bound with the bounds of the Ziv-Zakai family. We will studyettwo main source models used in the literaturé [22]:
the unconditional (or stochastic) model where the souigeats are assumed to be Gaussian and the conditional (or
deterministic) model where the source signals are assumbkd teterministic. Surprisingly, in the context of array
processing, while closed-form expressions of the Ziv-Zdd@aind (more precisizely its extension by Bell et. al.
[23]) were proposed around 15 years ago for the unconditimoael, the results concerning the Weiss-Weinstein
bound are, most of the time, only conducted by way of comjmrtat Concerning the unconditional model, linl[24],
the Weiss-Weinstein bound has been evaluated by way of ciatigms and has been compared to the mean square
error of the MUSIC algorithm and classical Beamforming gsinparticular® x 8 element array antenna. In_[25],
the authors have introduced a numerical comparison betiheeBayesian Cramér-Rao bound, the Ziv-Zakai bound
and the Weiss-Weinstein bound for DOA estimation[In [2&]mnerical computations of the Weiss-Weinstein bound
to optimize sensor positions for non-uniform linear arragse been presented. Again in the unconditional model
context, in [27], by considering the matched-field estimragproblem, the authors have derived a semi closed-form
expression of a simplified version of the Weiss-Weinsteinrubfor the DOA estimation. Indeed, the integration
over the prior probability density function was not perfean The conditional model (with known waveforms) is
studied only in[[28], where a closed-form expression of th&/BVis given in the simple case of spectral analysis
and in [1] which is a simplified version of the bound.

While the primary goal of this paper is to give closed-formpessions of the Weiss-Weinstein bound for the DOA
estimation of a single source with an arbitrary planar awhgensors, under both conditional and unconditional
source signal models, we also provide partial closed-foxprassions of the bound which could be useful for

other problems. First, we study the general Gaussian ofsenvmodel with parameterized mean or parameterized
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covariance matrix. Indeed, one of the success of the Cr&aéris that, for this observation model, a closed-form
expression of the Fisher information matrix is availabhés tis the so-called Slepian-Bang formulal[29]. Such kind
of formulas have been less investigated in the context ohbstighter than the Cramér-rao bound. Second, some
results are given in the multiple sources context withowtc#figing the structure of the steering matrix and of the
noise covariance matrix. Finally, these results are agplethe particular case of a single source for two kinds
of array geometries: the non-uniform linear array (el@ratbonly) and the planar (azimuth and elevation) array.
Consequently, the aim of this paper is also to provide a toilof formulas which could be applied in other fields.
The Weiss-Weinstein bound is known to depend on parameé#ieictest points and other parameters generally
denoteds;. One particularity of this paper in comparison with the poesd works on the Weiss-Weinstein bound
is that we do not use the assumption= 1/2, Vi.

This paper is organized as follows. Sectidn Il is devotechodrray processing observation model which will be
used in the paper. In Sectiénllll, a short background on thes8A¥einstein bound is presented and two general
closed-form expressions which will be the cornerstone far array processing problems are derived. In Section
[Viwe apply these general results to the array processingl@mowithout specifying the structure of the steering
matrix. In Sectio V, we study the particular case of the naiferm linear array and of the planar array for which
we provide both closed-form expressions of the bound. Semelation results are proposed in Section VI. Finally,

Section V1] gives our conclusions.

Il. PROBLEM SETUP

In this section, the general observation model generakbbyl iis array signal processing is presented as well as the
first different assumptions used in the remain of the papatidalarly, the so-called conditional and unconditional

source models are emphasized.

A. Observations model

We consider the classical scenario of an array withsensors which receivedy complex bandpass signals
s(t)=[s1(t) s2(t)---sn (t)]". The output of the array is & x 1 complex vectory (¢) which can be modelled
as follows (seee.g., [30] or [22])

y(t)=A(0)s(t) +n(t), t=1,...,T, 1)

whereT is the number of snapshots, whete= [0, 05 - - - Hq]T is an unknown parameter vector of inteHesvhere
A (0) is the so-calledV/ x N steering matrix of the array response to the sources, andevthe M x 1 random

vectorn (t) is an additive noise.

INote that one source can be described by several param@tmrsequentlyg > N in general.
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B. Assumptions

« The unknown parameters of interest are assumed to be randbnama priori probability density function
p(0;), i =1,...,q. These random parameters are assumed to be statisticd#pandent such that tre
priori joint probability density function ip (8) = ﬁp (0;). We also assume that the parameter space, denoted
O, is a connected subset & (see [31]). =

« The noise vector is assumed to be complex Gaussian, stalfisindependent of the parameters, i.i.d., circular,
with zero mean and known covariance matfiXn (¢t)n'’ (t)] = R,. This assumption will be made more
restrictive in Sectioi V where it will be assumed tft, = ¢21. In any caseR,, is assumed to be a full
rank matrix.

« The steering matrixA (6) is assumed such that the observation model is identifialsem FSectior1ll to
Section 1V, the structure oA (0) is not specified in order to obtain the more general results.

« Concerning the source signals, two kinds of models have bestigated in the literature (seeg., [32] or

[22]) and will be alternatively used in this paper.

— M;: Unconditional or stochastic model: s(t) is assumed to be a complex circular random vector, i.i.g-, st
tistically independent of the noise, Gaussian with zer@mand known covariance matiix[s (t) s” (t)] =
Rs. Note that concerning the previous results on the Crana@r{found available in the literaturie [32],
the covariance matriR is assumed to be unknown. In this paper, we have made theesimgpdumption
that the covariance matriR is known. These assumptions have already been used for lthdat@n of
bounds more complex than the Cramér-Rao bound esge [27], [33], [34]).

— M5 Conditional or deterministic model: V¢, s(t) is assumed to be deterministic known. Note that, under
the conditional model assumption, the signal waveformshmaassumed either unknown or known. While
the conditional observation model with unknown waveforreerss more challenging, the conditional
model with known waveforms signals which will be used in thégper can be found in several applications

such as in mobile telecommunication and radar @ge[35], [36], [37], [3&], and [39]).

C. Likelihood of the observations

LetR, = E [y (t)y* ()] be the covariance matrix of the observation vegt¢t) . According to the aforemen-
tioned assumptions, it is easy to see that untiér, the observationy (¢) are distributed as a complex circular
Gaussian random vector with zero mean and covariance nay(9) = A(6)RsA % (0) + R,, while underMs,,
the observations (¢) are distributed as a complex circular Gaussian random wegth mean A(0)s (¢) and
covariance matriR, = R,. Moreover, in both case the observations are i.i.d..

Therefore, the likelihoodp (Y;0), of the full observations matriy = [y (1) y (2) ... y(T)] underM; is
given by

T
p(Y;0) = W exp (—;y O R, (0)y (U)v (2
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whereRy (0) = A(0)RsA (0) + R, and the likelihood undeM, is given by

T
p(Y;0) = e (—Z (v (t) = A@)s ()" R, (y(t) - A(0)s (t))> : ®3)

- T
aMT |Rn| t=1
Il. WEISSWEINSTEIN BOUND: GENERALITIES

In this Section, we first remind to the reader the structur¢hef Weiss-Weinstein bound on the mean square
error and the assumptions used to compute this bound. Seaogeneral result about the Gaussian observation
model with parameterized mean or parameterized covariaatex, which, to the best of our knowledge, does not
appear in the literature is presented. This result will befulsto study both the unconditional modét; and the

conditional modelM 5 in the next Section.

A. Background

The Weiss-Weinstein bound forgx 1 real parameter vectd is ag x ¢ matrix denotedWWB and is given
as follows [40]
WWB = HG 'H7, (4)

where theg x ¢ matrix H = [h; hy...h,] contains the so-called test-poirlig, i = 1, ..., ¢ such that® + h; € ©
Vh;. The k, [—element of they x ¢ matrix G is given by
E[(L** (Y;0 +hy,0) — L'~ (Y;0 — hy,0)) (L* (Y;0 +h;,0) — L' =% (Y;60 — h;,0))] 5)
E[L% (Y;0 + hg,0)]E[L5 (Y;0 + h;, 0)] ’
where the expectations are taken over the joint probabilépsity functionp (Y, 8) and where the function
L(Y;0+h,;,0)is defined byL (Y;0 + h;,0) = %. The elements; are such that; € [0,1],i=1,...,q.
Note that we have the following order relation [40]

{G}k,l =

Cov (é) —E [(é - 0) (é - O)T} ~ WWB, (6)

where A = B means that the matriA — B is a semi-positive definite matrix and whetov (9) is the global
(the expectation is taken over the joint pdfY, 8)) mean square error of any estimafbof the parameter vector
6. Finally, in order to obtain a tight bound, one has to maxe"W¥ WB over the test-pointh; ands; i = 1,...,q.
Note that this maximization can be done by using the tracBI6f 'H” or with respect to the Loewner partial

ordering [41]. In this paper we will use the trace HIG ~'H? which is enough to obtain tight results.

B. A general result on the Weiss-Weinstein bound and its application to the Gaussian observation models

An analytical result on the Weiss-Weinstein bound which wé useful in the following derivations and which
could be useful for other problems is derived in this partteNthat this result is independent of the parameter

vector sizeq and of the considered observation model.
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Let us denote the observation space. By rewriting the elements of ma#iXsee Eqn.[(5)) involved in the

Weiss-Weinstein bound, one obtains for the numerator ngg}k .
Ny, =E[(L**(Y;0 + hy,0) - L' (Y;0 —hy,0)) (L* (Y;0 +h;,0) — L' (Y;60 —h;, 0))]

// p* (Y,0+h,)p" (Y,0 +h) de0+// P (Y0 —hy)p' T (Y.0-hy)
Q Q

Sk+Sl 1(Y70) 1 Sk —S1 (Y’B)
P (Y,0+1,)p = (Y,0 — b)) P (Y, 0 — hy) p (Y, 0+ hy)
/ / s (Y 0) dY do— / / T (Y 0) dyae, (7)

and for the denominator denotddg;, ,

Digy,, =E[L* (Y;0 + hy, 0)]E[LV (Y;0 + hy, 6)]

p (Y,0+hy) (Y,0 +h))
// LY. 0) deG// (Y. 0) ——————2dYde. (8)
Let us now define a function («, 8,u,v) as
(Y,0 +u)p? (Y,0 +v)
(o, B,u,v) / / L (Y. 0) dYde, 9)

where(a, 8) € [0,1]* and whergu, v) are twog x 1 vectors such thal + u € © andf + v € ©. By identification,

it is easy to see that

{G}k,l =
n (sk, 51, g, hy) +n (1 — s, 1 — s, —hy, —hy) — 1 (s, 1 — 53, hg, —hy) —n (1 — 55, 51, —hy, hy)
n (Skaoahkao)n (O,Sl,O,hl)

Note that we choose the arbitrary notatibhg,, , = 7 (sk,0,h,0) 7 (0, s;,0,h;) for the denominator. The

. (10)

notationD{G}kwl =n(sg,1,hg,0)n(1,s,0,h;) or, even,D{G}M =1 (sk,0,hg, v)n(0,s;,u,h;) will lead to the
same result.

With Egn. [10), it is clear that the knowledgemf«, 3, u, v) for a particular problem leads to the Weiss-Weinstein
bound (without the maximization procedure over the testfg@and over the parameters. Surprisingly, this simple
expression is given ir_[40] only fos; = %, Vi and not for the general case.

Let us now detail this functiom (a, 8, u,v). The functionn («, 8,u,v) can be rewritten as

_ p“(0+U)p5(0+V)/p“(Y;0+U)pﬁ(Y;0+V)
niopu) = [ [ g Y0

o (6 +u)p® (0
:/@7’79 (@, 8,u,v) (ptfﬁ)_pl (59)+V)d0, (11)

where we define
[ p*(Y;0+u)p’ (Y;0+v)
Ur:) (a,ﬁ,u,v,@) - /Q paJrﬁ,l (er) dy. (12)

Our aim is to give the most general result. Consequently, didagus only on, («, 3, u, v) since thea priori

probability density function depends on the consideredlera.
An important remark pointed out in_[31] is that the integvatifor the parameter space is with respect to

the region{6 : p (6) > 0} . However, since the functions being integrated a@), p (6 +u), andp (0 +v),
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then the actual region of integration (where all the funtii@are positive) is the intersection of three regions,
{0:p(0)>0}N{O:p(@+u)>0}N{0:p(6+v)>0}. Note that, in order to simplify the notation we only
use © throughout this paper but this remark will be useful and iexgly specified in Sectioh TVB.

1) Gaussian observation model with parameterized covariance matrix: One calls (circular, i.i.d.) Gaussian
observation model with parameterized covariance matmmoeel such that the observation$t) ~ CA (0, Ry (0))
where 6 are the parameters of interest. Note thlat; is a special case of this model since the parameters of
interest appear only in the covariance matrix of the obdmma which has the following particular structure
Ry (0) = A(6)RsA% (0) + R,,. The closed-form expression @f, (o, 8,u,v) is given by:

Ry (6) "7V
Ry (6 + )" Ry (0 +v)["” [aRy (0 +u) + fRy (0 +v) — (o + 5~ Ry (6)]
The proof is given in Appendik]A. Note that, similar express are given in[[23] (Eqn. (B.15)) and [42] (p. 67,

7,76 (a,ﬁ,u,V) = T (13)

Eqgn. (52)) for the particular case whetie=s and5 =1 — s.

2) Gaussian observation model with parameterized mean: One calls (circular, i.i.d.) Gaussian observation model
with parameterized mean, a model such that the observagiétis~ CN (f (6) ,Ry) where@ are the parameters
of interest. Note thai\1, is a special case of this model since the parameters of gtteppear only in the mean of
the observations which has the following particular sutet; (6) = A(0)s (t) (andR, = R,,). The closed-form
expression ofy, (a, 5,u,v) is given in this case by

T
g (a, B,u,v) = =Y a(l—a) £ (0 + )Ry (0 +w)+B(1— B) £ (0 +v)Ry ' (0+)
t=1
+(1—a-p)(a+p)f7(0) R;lft (6) — 2Re {aBf (6 +u) R;lft (6+v)
to(l-—a-B) 1 O0+u)R,'E(O)+8(1—a-p)f (0+v)R;'E(0)}, (14)
or equivalently by
. 4 —1/2 2 —1/2 2
Inrig (@, B,0,v) = =3 a(1—a — §) HRy (£, (0 +u) — f, (0))H tap HRy (£ (0 +u) — £, (0 + v))H

t=1

801 —a-8) Ry (50 +v) —5.0) (15)

The details are given in AppendiX B.

IV. GENERAL APPLICATION TO ARRAY PROCESSING

In the previous Section, it has been shown that the Weissidtégn bound computation (or, at least, the makix
computation) is reduced to the knowledge of the functidn, 3, u, v) given by Eqn.[(P). As one can see in Egn.
(I0), the elements of the matri® depend om («, 3, u, v) for particular values ofy, 3, u, andv. Consequently,
the goal of this Section is to detail these particular fundifor our model given by Eqri](1). Since Edn. (9) can
be decomposed into deterministic part (in the sense wheréy (o, 8, u,v) (see Eqn.[(12)) only depends on the
likelihood function) and eBayesian part (when we have to integraté, (o, 5, u, v) over thea priori probability

density function of the parameters), we will first focus oe farticular functiong, («, 8, u, v) by using the results
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of the previous Section on the Gaussian observation modelpgirameterized mean or covariance matrix. Second,
we will detail the passage fromy (, 8,u,v) to n(a, 3,u,v) in the particular case whene(6;) is a uniform

probability density functiorvi. Another result will also be given in the case of a Gaussiaor.pr

A. Analysis of 7y (e, 8,1, V)

We will now detail the particular functiong, (o, 5,u,v) involved in the different elements ({fG}kJ, k,l €
{1,q}2 for both modelsM; and M.

1) Unconditional observation model M;: Under the unconditional modeVt,, by using Egn.[(TI3), one obtains

straightforwardly the functiong, (o, 3,u, v) involved in the element$G}, , = {G},

, R. (6 T(sk+sl—1)
n9(8k7sl’hk7hl) = Ts Ts l y—(1)| —1 1
IRy (6+hy)| "k Ry (0+hy)| "t |5, Ry ! (6+hg)+s1 Ry ' (0+h1)— (s +s1—1)R5 ' (6)]

, (1=sk=51)|Ry (0—h;)| TV R, (—h;)|T(s1=1)
el s bl — B@ Ry (0—hy)| Ry (0—hy)|
o(L = sk, 1 = s, —hy,, ~h) |<1—sk>R;1<efhk>(+<1f§l>R;1<9—hl>(f<1—)skfsl>R;1<e>|T’
. B Ch [Ry (0)[7 (1= [Ry (0—y)| "(e1 -1
o8k 1 = s, e, —h) = \Ry<e+hk>|“k|skR;1<9(+hk>+)<1fsz>R;1<ezhz>f)<sk—sl>R;1<e>|T’
1 e ) — Ry () 7(1=%) Ry (0=, )[TC% 1
o (1= i 51—l B = o e R (6 LRy (0 ) (RS (B)]
_ IRy (0)|7 (k1)

IRy (6+h1)| 7k s, Ry L (6+hy) —(si—1)Ry *(0)|

(s1-1)
1(0, 51,0, 1) = Ry (0)1 .
(0, 51,0, ) iRy (6+h)—(si— )Ry " (8)]”

T

(16)

ﬁ@(ska 01 hka O)

IRy (8+hy)[ Tt

The diagonal elements & are obtained by letting = [ in the above equations.
2) Conditional observation model Ms: Under the conditional modeMs, by using Eqn.[(T5) withf; (6) =

A (0)s(t) and Ry = R, one obtains straightforwardly the functiorg (, 8,u,v) involved in the elements
{G}k,z = {G}l,k
In g (s, s, e, ) = s (sk + 51— 1) Co (B, 0) + 51 (s + 51 — 1) (g (1, 0) — sp51Cg (hi, hy)
lnﬁg (1 — Sk, 1 — s;,—hy, —hl) = (Sk — 1) (Sk + 57 — 1) CB (—hk,O) =+ (Sl — 1) (Sk + 5 — 1) <9 (—hl,O)
— (1= sk) (1 = s1) o (—hy, —hy),

In7g (sk, 1 — 51, hy, —hy) = sp (sk. — 51) g (hg, 0) + (1 — 1) (s — 51) (g (—hy,0) + s (51 — 1) (g (hx, —hy),
Infg (1 — sk, s1, —hg, hy) = (s — 1) (sg — s1) Co (—hg, 0) + s (51 — s1) Co (M1, 0) + (s, — 1) 51Cp (—hy, b)),
lnﬁg (Sk,o,hk,O) = Sk (S}C — 1) CB (hk,O) 5
hlf]g (07 S, 07 hl) =5 (Sl - 1) CH (hlv 0) )
(17)
where we define
T 2
Cop) =D ||Ra 2 (A0 + 1) ~AO+p)s()] - (18)
t=1

The diagonal elements & are obtained by letting = [ in the above equations. Note that, since we are working

on matrix G, all the previously proposed results are made whatever tingber of test-points.
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B. Analysis of  (a, 8,u,v) with a uniform prior

Of course, the analysis of («, 3,u,v) given by Eqn.[(Ill) can only be conducted by specifying ahgriori
probability density functions of the parameters. Consatjyethe results provided here are very specific. However,
note that, in general, this aspect is less emphasized iritdratlire where most of the authors give results without
specifying the prior probability density functions and qmute the rest of the bound numerically (see e.gl, [27] [25]
[43)).

We assume that all the parametérdave a uniform prior distribution over the interJal, b;] and are statistically
independent. We will also assume one test-point per paemnaherwise there is no possibility to obtain (pseudo)

closed-form expressions. Consequently, the mdtiis such that
H = Diag ([h1 ha - hy]), (19)

and the vectoh,, i = 1,.. ., q, takes the valué, at thei** row and zero elsewhere. So, in this analysis, the vector
u takes the value; at thei’” row and zero elsewhere and the vectorakes the value; at thej** row and zero

elsewhere (of course, we can have j). Under these assumptions(a, 5, u, v) can be rewntteH\ fori#£j

, 0; + u; pBH—i—v)pﬁ g
n(a,B,u,v) = /@770 (v, B, u, V) all poHrL 1 ((9 )paJrﬁ 1( 1:[ p(0x)d
S /@ / / o (0, B, 1, v) d6;d0,d (8] {0,,6,}) (20)
H b, — ax)
[ai,bi — ul] if u; > 0, [aj,bj — ’Uj] if v > 0, . .
where; = ando; = . Fori = j, one can haver = +u,
[a; —ug, b;] if u; <O, [a; —v;,b5] if v; <O,

then one obtains

, 0; +u;) p? (0; £ u;) 1
n(avﬂauvv_:tu)_/@ne(aaﬂvu’v) ( pa-l-ﬁli H
k=1
k#1
/ 779 a,B,u,v==u)dd;d(0/{6;}). (21)
(Sl 1 ()

= ¢
H bk—ak

. . la; + wi, by — u;] if u; >0, L
In the last equation, ifv = —u, then©; = , while, if v = u, then©9; =
[ai —ui, by + ul] if u; <0,
[ai,bi — ul] if u; > 0,

[ai — Uz,bl] if U; < O,
Depending on the structure @, («, 8,u,v), n(a, B,u,v) has to be computed numerically or a closed-form

expression can be found.

2|n this case, one has to have a particular attention to tlegiation domain as mentionned in Secfion 11I-B. It will nat the case for the

Gaussian prior since the supportRs

November 29, 2012 DRAFT



10

Another particular case which appears sometimes is wheruthgion ), («, 8, u, v) does not depend ofl

(see, [[28] [9] [12] [23] [[25] [26] [31] [33] and SectionlV of th paper). In this casejy (o, 5,u,v) is denoted

7 (o, 3,1, v) and one obtains from Eqri_(20)

ﬁ(aaﬁaua V) Iql b
77 (CY, Ba U., V) = dek db'l d97
a @1 @j

— k
(br = ar) \ iy

-

1
i — ai —|uil) (b —a; — |vj])
(bl_az) (b;—a;) : n(aaﬁauav)a

—_~ >
=

and from Egn.[(211)

nesgny —w = Co 0 ),
and
bi —a; —2u4l) ,
n(a,ﬁ,u,vz—u)z((b?fai)lunn(a,ﬁ,u,v).

C. Analysis of (o, 8,1, v) with a Gaussian prior

(22)

(23)

(24)

Finally, one can mention that if the prior is now assumed tGhassiani.e., 0; ~ N (u;,0?) Vi andijg (o, 8,1, v)

does not depend oft one obtains after a straightforward calculation

“ (0 i acr ;

:’f](a,B,U,V) exp <_% <Oé(1 20()’I,LZ 4 ﬂ(l 2[‘3)1)])) 7

gy O'j

, P (0; + ;)
n(avﬂvuv‘f:u):n(aaﬂvuvv)\émdei

(a+ﬂ)(1—a—ﬂ)U?)’

2
207

= ﬁ(a,ﬂ,u,v)exp <_

and
A a9i+ i)ﬂei— z)
’[7(04’57]_17\7:—u):’r](a,ﬂauav)/Rp ( pa:l:ﬁ]i(él) -
(a+ﬂ—a2—52+2aﬂ)ug>

2
20;

do;

:ﬁ(a,ﬂ,u,v)exp <_

V. SPECIFIC APPLICATIONS TO ARRAY PROCESSINGDOA ESTIMATION

(25)

(26)

(27)

We now consider the application of the Weiss-Weinstein ldownthe particular context of source localization.

Indeed, until now, the structure of the steering matAiX@) for a particular problem has not been used in the

proposed (semi) closed-form expressions. Consequeh#ggetprevious results can be applied to a large class of

estimation problems such as far-field and near-field solomssgization, passive localization with polarized array

of sensors, or radar (known waveforms).
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Here, we want to focus on the direction-of-arrival estimatof a single source in the far-field area with narrow-
band signal. In this case, the steering matAx6) becomes a steering vector denot@@) (except for one
preliminary result concerning the conditional model whigili be given whatever the number of sources in Section
[V-A2). The structure of this vector will be specified by theabysis of two kinds of array geometry: the non-uniform
linear array from which only one angle-of-arrival can beirated @ becomes a scalar) and the arbitrary planar
array from which both azimuth and elevation can be estiméddoecomes & x 1 vector). In any cases, the array
always consists oMM identical, omnidirectional sensors. Both model; and M, will be considered and the noise
will be assumed spatially uncorrelateld;, = o21. Since we focus on the single source scenario, the variahce o
the source signad (t) is denotedr? for the modelM;.

The general structure of th&"* element of the steering vector is as follows

2

{a(G)}i—exp<j)\riT0),i—l,...,M (28)

where@ represents the parameter vector, whergenotes the wavelength, and wheredenotes the coordinate of
the i* sensor position with respect to a given referential. In ioing, r; will be a scalar or & x 1 vector

depending on the context (linear array or planar array).

A. Preliminary results

Since our analysis is now reduced to the single source casejiwe here some other closed-form expressions
which will be useful when we will detail the specific lineardaplanar arrays.

1) Unconditional observation model M;: In order to detail the set of function®, given by Eqn.[(Ib), one
has to find closed-form expressions of the determin®t(6 + u)| and of determinants having the following
structure:|m R (1) + maRyH(02)| with my +my = 1 or |miRy(81) + maRy 1 (62) + msRy*(03)| with

m1 + me +mg = 1. Under My, the observation covariance matrix is now given by
Ry () = o%a(0)a™ (0) + o21. (29)
Concerning the calculation dR (6 + u)|, it is easy to find

Ry (8 +u)| = 02 <1+ ;’—j ||a(0—|—u)|2). (30)

n

Moreover, after calculation detailed in Appendik C, oneaiid for the other determinants

1
— =7 (1= eimi a0 + mag, |la(62)]*
(02)

—1Mm1pama (||aH(91)a(02)

‘mlRy_l(Hl) + ng;l(eg)’ =

I

~ la@)I? la@2)1*)) @D
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and

]mlR_l(Hl) + ng_l(eg) + ng_l 03 ‘ =

(021) (1 — ka@k la(0x)]]” — —Zkakamk/ka/ (Ha (0r)a(O)

~ [1a(®x) I la(@x)]*)

k=1 k=1k'=1
k! #k
3
2
(Tma) | T 00 =335 3 [ @as | a0
k=1 k=1k/=1 k''=
k’#kk”#k’;ﬁk
a'’(6s)a(02)a’ (61)a(03)a (65)a(0:1) + a (65)a(01)a (61)a(02)a (62)a(03))) (32)
where
0.2
P = > k=1,2,3. (33)

o2 ||a(@)|* + o2’
2) Conditional observation model Ms: Note that the results proposed here are in the context of ambar of
sources. Under the conditional model, the set of functigngiven by Eqn.[(1l7) is linked to the functiafy (u, p)
given by Eqn.[(IB). In this analysis, the vectortakes the valug:; at thei® row and zero elsewhere and the
vector p takes the valug; at the j** row and zero elsewhere (of course, one canshasj). In Appendix(D, the

calculation of the following closed-form expressions {gr(u, p) are detailed.

o If (m—1)p+1<i j<mp, wherep denotes the number of parameters per source, then, we have

=S s 1, S R e (45 67 ) )

i=1j=1

2T p 2T p 2T 2T
X (exp <—j SR um) — exp <_]7ri pm>) (exp (j N um) — exp (j L P 34)

o Otherwise, if(m —1)p+1<i<mpand(n—1)p+1<j <np, then we have

Co (B, p) =

iu{s bl ZZ{R e (5 6 ) 0 oo (<050 ) oo (5570 )
+ZH{S a2 ii{f{ '}, exp (J—( ;= ')‘9n) exp <—j27wr?pn) exp (j%wrfpn)
—2Re (Z_; {s(®)}, {s®},

1=175=1

M M o o
X ZZ {R, 1}” exp ( ( "0, r?@m)) exp (—jTr;fFum) exp (jTr;‘-Fpn>) . (35)

In particular, if one assumeR,, = o1, then, several simplifications can be done:

o If (m—1)p+1<i,j<mp, then

23" oo (<25 oo (2570 ) 3

November 29, 2012 DRAFT
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source

it sensor

Fig. 1. 3D source localization using a planar array antenna.

where we note that the functiafy (i, p) does not depend on the paramefler

« Otherwise, if(m—l)p+1 <i<mp and(n—l)p+1§j < np, then

Co QZ exp (— 2 um) i +—%Z exp (— 2 pn)
—9Re <U—1%;exp <j27”rf(0n—em)) exp( ]277% um> exp( )Z{s N (st }) (37)

It is clear that the proposed above formulas for both the nditmnal and the conditional models can be applied

(0}, ]1°

to any kind of array geometry and whatever the number of ssutdowever, they generally depend on the parameter
vector@. This means that, in general, the calculation of the setétfonsyn will have to be performed numerically
(except if one is able to find a closed-form expression of Effi)). In the following we present a kind of array
geometry where, fortunately, the set of functiofswill not depend ord leading to a straightforward calculation

of the bound.

B. 3D Source localization with a planar array

We first consider the problem of DOA estimation of a singleroarband source in the far field area by using
an arbitrary planar array. In fact, we start by this genee#tirsy because the non-uniform linear array is clearly a
particular case of this array. Without loss of generalitg, assume that the sensors of this array lay orncthg plan
with Cartesian coordinates (see Hig. 1). Therefore, théovag contains the coordinate of thé" sensor position

with respect to this referential.e., r; = [d., dyi]T, 1=1,...,M. From [28), the steering vector is given by

2 T
a(f) = [exp ( 3 —(dgu+dy v)) ...exp (j;(dm,u + dva))} , (38)
where, as in[[23], the parameter vector of intered? is [u v]T where

u = sin ¢ cos ¢,
@ cos ¢ (39)
v = sin psin ¢,
and wherep and ¢ represent the elevation and azimuth angles of the sourspectvely. The parameters space

is such thatu € [—1,1] andv € [—1,1]. Therefore, we assume that they both follow a uniform distion over

November 29, 2012 DRAFT
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[-1,1]. Note that from a physical point of view, it should be more p&img to choose a uniform prior fop

and ¢. This will lead to a probability density functions far and v not uniform. To the best of our knowledge,
this assumption has only been used in the context of lowend®win [25]. Unfortunately, such prior leads to an
untractable expression of the bound (see Eqn. (21) of [Z5ihsequently, other authors have generally not specified
the prior leading to semi closed-form expressions of bouhdsthat it remains a numerical integration to perform
over the parameters) [25] [43] [27]. On the other hand, ineottd obtain a closed-form expression, authors have
generally used a simplified assumptiore, a uniform prior directly onu andv (see, for example[ [26] [44])in

this paper, we have followed the same way by expecting atsiigidification of performance with respect to a
more physical model and in order to be able to get closed-fxpressions of the bound.

We choose the matrix of test points such that
hy O
H=|h, h,)= [ ] : (40)

Then, we havef+h, = [u + h, o7 and@+h, = [u v + h,]T. Moreover, we now have two elements
s; €[0,1], i = 1,2 for which we will prefer the notatios,, ands,,, respectively.

4
Ty

1) Unconditional observation model Mi: Under My, let us setUsyr =
{Gluw {Gluw

{G}UU {G}vu

(1 ‘h“ ) <1 +28u( — QSU)USNR <M2 —

expressions of the elements of mat€ix= are given by (see AppendiX E for the proof):

.

(=% day o)

Ny (1 21— 5,)(25. — DUswa ( - | £ o iz ))
—2(1 — |hu|) <1+su(1—su)Usz <M - k%_) exp (=55 doy fru) ))
(Gl = - S CX8)
5 M
(1_%) <1+su<1—su>USNR (M?— > exp (—j 5 da, hu) ))
k=1
(1 \hv\) <1 +25,(1 — 25,)Usnr <M2 - f: exp (=55 dy, ho) ))
k=1
+ (1 - @) <1 +2(1 = su)(28y — 1)Usnr <M2 - ’ é{: exp (—j & dy, ho) ))
—2(1 — |hl) <1 + $v(1 — sv)Usnr <M - (_j%dykhv) ))
(Gl = , (42)

(=55 dy o)

T

2
(1 — @) <1 + Su(l — SU)USNR <M2 —
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2
2

Su Sy (H Z exp (—j2F (dg o P 7dykhu))

M

> exp (—j3Edy; hu)
k=1

M
> exp (— g—d hy)

1-UsNr | +5u(l =54 —50)

+5u(1 — 50 — 5u)

U
_Susv(l — Su — Su)

2 M2>
e
Z CXP( %dyk hv) %

2mdg, h M 27 (dg, hy —dy, b
p (-5 2 CXP<J’7W( S m)
k=1 K

2mdy, h M 2mdg, h M 27 (day, hy —dayy hy)
+ Z exp (—J#) > exp (3#) > exp (—]M
k=1

:m

o

X

[e]
o]

X k=1 5 k=1 5
(_<j2TﬂdykhU) -M exXp (_j%dfkh“)
M Wk
-M kzlcxp(fj%'(dzkhufdykhv M|+ M3

2
(1 —54)(1 — 5) (H E exp (525 (day hu — dykhu))H — M2>

2
_ M2>
2
_ M2>
U o
N —(1 — su)(1 — sy )(qursvfl)%X
2mdy, hy \ M 27dg, hy 27 (dg) hu—dy, ho)
kZ exp( e )kZ exp (—]7k )kZ exp( kv )

2mdy, h 2mdg, h 27 (dipy by — g F
+Zexp( —j ”)Zexp(iﬂmk ")Zexp< l(fk“; yk‘v))

2

1—-UsnNRr +(1 = su)(Su + 50 — 1) (HZ exp(]—d ho )

+(1 — 8u)(Su + Sv — i‘ Z exp (g—d hoy )

2

7MHEcxp( J2md, h)

7M”Zcxp( j2md,, )

&
)

2
—M2>
202
—su(l —5y)(s0 — Su)ﬂ?—

Z exp( 27"dykhv) Z exp( 27rdmkhu) Z exp( Qﬂ(dtkhu+dykhu))
k=

2nd h 2mdg, h M 27 (dg, hu+dy, ho)
+§ch1} (g5 U) E CXP( j S “)k;cxxo (Jimk Xk

2

-M sz exp (—j &= (day hu — dykhv))H + M3
=1

su(l — sy) (

1—-UsnNr +su(sv — su) (H E exp (— 72 day hu )

M
E exp (7j2T"'(dIkhu + dyk hu))

F(1 = 50) (50 — 5u) (H 2 exp (35 dy, o)

_ MH S exp (~5% oy )

2
Z exp (7j2T”(dIkhu+dykhu)) *M2>

2
— M2>
2
- M2>
_ Y 2

c2mdy, hy \ M 2mdg, hu \ M 27 (dgy ha+dy; ho)

Z exp (J+) Z exp (J—k) Z exp *J%

k=1 k=1 k=1
2mday hu

M 2mdy, h M 27 (dg, hy+dy, h
+kz exp (*J‘W) Z cxp( f)kz exp OM)
=1 =

2

M Y
7MH Z exp (JT"dy

-M Hz exp (—j 2= (day hu + dy, ho)) H + M3

Su (1 — su) (

1—-Usn~nr 484 (Su — Sv) (H exp (—j 2T ds h)

+(1 - Su)(su - Su) (” Z exp (_j%dykhv)
k=1

U2 o2
—8u(1 — su)(Su — sv)%x

M
> exp (—j 5 dy, ho)

k=1

-M

‘ —MH ) exp( J2mdy, h)

M
-M ” > exp (=5 2 (day hu + dyy ho)) + M3
k=1

15

{G}uv =

November 29, 2012

M
(1 + su(1 — su)UsNR <M2 - H > exp (—j3Ede) hu)
k=1

By —-T
)) (1 +55(1 —su)Usnr (M2 —

M o
2 exp (=33 dy, ho)

e

(43)
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and, of course{G},, = {G},.. Consequently, the unconditional Weiss-Weinstein bosrixd 2 matrix given by:
UWWB = HG 'HT

_ 1 hi{G}uv _huhv{G}uu
- {G}uu{G}ow — {G}2, —hyho{G}luw h2{G}uu ’

(44)

which has to be optimized ovey,, s,, h,, and h,. Concerning the optimization over, and s,, several other
works in the literature have suggested to simply use= s, = 1/2. Most of the time, numerical simulations
of this simplified bound compared with the bound obtainedrafiptimization overs, and s, leads to the same
results while their is no formal proof of this fact (se€é [9gead1 footnote 17). Note that, thanks to the expressions
obtained in the next Section concerning the linear arraywiliebe able to prove that = 1/2 is a (maybe not
unique) correct choice for any linear array. In the case ef fifanar array treated in this Section, we will only
check this property by simulation.

In the particular case wherg, = s, = 1/2 one obtains the following simplified expressions

M 2 -
2 (1 B} 21 1)) (1+ Usyn (M? — |12 exp (—4 da, hu) ))
(G = — (49)

2 2 72T )
(1- 1) <1+%<M?— ))

2(1- L) — 20— o) 1+ Lspm (M2 - 2 o (=5 dyh)

(1—’;”)2<1+%<M2_ 2>>_2T

-T
M 2
-2 (1 + —USiVR <M2 - kz exp (—j%ﬂ(dzkhu + dykhv)) ))
=1
{G}uv - " 3 —T "
(1 + —USfR <M2 - kzl exp (—j%ﬂdzkhu) )) (1 + —USfR <M2 - kzl exp (—jQT”dykhv)

Again, the Weiss-Weinstein bound is obtained by using thevakexpressions in Eqri._(44) and after an opti-

M "
kgl exp (—] T’Tdmkhu)

{G}vv = ) (46)

M s
kgl exp (—j Ldy, hv)

and

M
kz_:l exp (—jQT”(dzkhu — dy, hv))

2

mization over the test points. The optimization over thé pesnts can be done over a search grid or by using the
ambiguity diagram of the array in order to reduce signifiatite computational cost (see [18], [27], [34], [45],
[48]).
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2) Conditional observation model Ms: Under Mo, let us setCsyp = 02 Z |s(t)]|>. The closed-form expres-

sions of the elements of matri& are given by (see AppendiX F for the proof)

(1-Lpl) exp <4su(2su — 1)Csnr <M - k; cos (%ﬂdzkhu)»

n (1 - "2—‘) exp <4(25u 1) (su — 1) %dwkhu)>
—2(1 — |hu|) exp (23u(su —1)Csnr (M - k%l cos (%’szkhu)»

M
CsNR (M— > cos(
k=1

)

{G},. = 5 M ’ (48)
(1 — %) exp <4su(su —1)Csnr <M — > cos (Qfdzkhu)))
k=1
(1 L2 ‘) exp (481)(251} —1)Csnr <M - é{:l cos (Q%dykh’”)))
n (1 \hu\) exp <4(2sv —1)(sy — 1)Csnr (M — k%jl cos (%”dykhv))>
—2(1 — |ho|) exp <2su(8u —1)Csnr (M - % cos (%dykh”))>
(G}, = @

| 2 A 2
(1 - T) exp | 4sy(sy — 1)Csngr ( M — 3 cos (35dy, hy)
k=1

M
25y (su + 8y —1)CsNr (M — > cos (z{dmkhu)>
k=
exp 4254 (su + sv —1)CsNr (M —
M
—254,8,CsNR (M - Z cos (2 (day hu —
2(sy — 1)(su + 8y — 1)CsnNr (M E Cos(%dzkhu)>

+ exp

—exp
+2su(sy —1)CsNr (M -
2(8u — 1)(su — $v)CsNR (M —

—exp | +2s.(s0 —su)Csnr (M -

M
+2(su — 1)s4CsNRr (M — > cos (FE(dey hu + dy,, hu)))
k=1

{G}uu = M
M — > cos (Q{dykhv)

1)Csnr <M - % coS (Q{dmkhu)>) exp <2sv(sv —1)Csnr (
k=1 k=1 (50)

exp <2su(su —

and {G}., = {G},.. Consequently, the conditional Weiss-Weinstein bound is 2 matrix given by using the
above equations in Eqri._{44). As for the unconditional cédsege sets, = s, = 1/2, one obtains the following

simplified expressions
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2 (1 )~ 201~ ) exp (-5 (M 5 cos () ) )

e e[ (0 Lwmra))
ot (e (a fen)
(1= %) exp ( Csnr (M z cos (2=d,, )))
2exp (— Cspn (M - k; <05 (2 (duy 1 ))
{G},, = e (_Csém (M_écos (3 ot + dy o) ))) (53)

M M ’
exp <_CS2NR <2M - ;;1 cos (QT”dzkhu) — kzl coS (g{dykhv)>)
By using the above expressions in Eqn.](44) and after an ggtion over the test points, one obtains the

Weiss-Weinstein bound.

C. Source localization with a non-uniform linear array

We now briefly consider the DOA estimation of a single narrcand source in the far area by using a non-
uniform linear array antenna. Without loss of generaligt, Us assume that the linear array antenna lays on the
Oz axis of the coordinate system (see Hi§. 1), consequefifly= 0, Vi. The sensor positions vector is denoted
[dy, -..ds,,]. By letting § = sin ¢, wherey denotes the elevation angle of the source, the steeringviscthen

given by
27 T
a(f) = |exp demH ...exp /\ dIMH . (54)

We assume that the parametefollows a uniform distribution ovef—1,1]. As in Sectior IV-B and since the
parameter of interest is a scalar, mathk of the test points becomes a scalar denoigd In the same way,
there is only one element < [0, 1] which will be simply denoted. The closed-form expressions given here are
straightforwardly obtained from the aforementioned rissah the planar array about the element denQ@duu .

We will continue to use the previously introduced notatiéhsyr = m andCsng = 02 Z ()]
1) Unconditional observation model M;: The closed-form expression of the uncondmonal Welssrmtem

bound, denoted WW B, is given by
M 2 —2T
> exp (—j%’rdzkh(;) ))
k=1
T

h2 (1 - @)z <1+s(1 — $)Usnr (M - 7
)
)

UWWB =

(_]QTﬂdmkhO)

a-19)

<1 + 28(1 - QS)USNR <M2 —
M Y
;;1 exp (—j & dq, he)

=
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+ (1 + 2(1 - S)(QS - 1)USNR <M2 —

M

-2 (1 — |h9|) <1 + 8(1 - S)USNR <M2 —

(55)
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In order to find one optimal value of that maximizesHG ~'H”, Vhy we have considered the derivative of

HG 'H” w.r.t. s. The calculation (not reported here) is straightforward &ris easy to see thaﬁ’HGa%lHT =
o

=

0. Consequently, the Weiss-Weinstein bound has just to benagd overhy and is simplified leading to

ng (1- 1) <1 + Usyn <M2 = ))

2 =T
2(1—@)—2(1—|hel)<1+%<w— ))

In the classical case of a uniform linear arrée.( d,, = d), this expression can be still simplified by noticing
that f: exp (—jQTﬂdmkhg) =M exp (—jQ%ihg) .

2)kélonditional observation model Ms: The closed-form expression of the conditional Weiss-Weinsbound
CWW B is given by

M 2
g::l exp (—j & dy, ho)

UWW B = sup
ho

(56)

A .4
kgl exp (—j T”dmkhg)

CWWB = (57)

. M
hZ (1 - %) exp (45(3 —1)Csnr (JV[ — Y cos (Q{dmkhg)))

k=1

M
exp (45(23 —1)Csnr (JV[ — Y cos (Q{dmkhg)))

(1 - %) = M
+ exp (4(25 —1)(s—1)Csnr (JV[ — Y cos (QT’Tdmkhg)))
k=1

—2(1 — |ho|) exp (23(5 ~1)Csnr (M - gjl cos (%dmkhe)))

Again, it is easy to check thafHS H_

HG'H”, Vhy is s = 1. The Weiss-Weinstein bound is then simplified as follows

2 [hol 2 = 27
hg (1 — T) exp | —Csnr | M — > cos (Tdmkhg)
CWW B = sup h=1 =
he 2 (1 - %) -2 (1 - |h9|)exp <_%CSNR (M - Z COSs (%dzkhg))>
k=1

In the classical case of a uniform linear arrée.( d,, = d), this expression can be still simplified by noticing
M
that > cos (QT”dmkhg) = M cos (%h(,).
k=1

= 0. Consequently, one optimal value efthat maximizes

s=

=

(58)

VI. SIMULATION RESULTS AND ANALYSIS

As an illustration of the previously derived results, wetfitensider the scenario proposed (in][23] Fig.i.B,,

the DOA estimation under the unconditional model using aifioum circular array consisting o/ = 16 sensors
with a half-wavelength inter-sensors spacing. The numbgshapshots i§" = 100. Since the array is symmetric,
the performance estimation concerning the parametenrsdv are the same, this is why only the performance with
respect to the parametersis given in Fig[2. The Weiss-Weinstein bound is computedai&iqgn. [45), [(46) and
(47). The Ziv-Zakai bound is computed using Eqn. (24)[in [ZBie empirical global mean square error (MSE)
of the maximuma posteriori (MAP) estimator is obtained ove@000 Monte Carlo trials. As in[[23] Fig. (1b), one
observes that both the Weiss-Weinstein bound and the ZmaiZzound are tight w.r.t. the MSE of the MAP and
capture the SNR threshold. Note that,[in|[23] Fig. (1b), theis&fWeinstein bound was computed numerically only.

November 29, 2012 DRAFT



20

¢ R --Z7ZBofu
. o —\WWB of u
10 ¢ MAP ofu
107
P 3
n
2 10
107
107
-6
10 ‘ ‘ ‘ ‘ ‘
-35 -30 -25 -20 -15 -10 -5

SNR [dB]
Fig. 2. Ziv-Zakai bound, Weiss-Weinstein bound and emairldSE of the MAP estimator: unconditional case.

To the best of our knowledge, their are no closed-form exgiwes of the Ziv-Zakai bound for the conditional
model available in the literature. In this case, we consBigrsource localization using a V-shaped array. Indeed,
it has been shown that this kind of array is able to outperfotner classical planar arrays, more particularly the
uniform circular array[[4i7]. This array is made from two beches of uniform linear arrays with 6 sensors located
on each branches and one sensor located at the origin. Weed&nihe angle between these two branches. The
sensors are equally spaced with a half-wavelength. The aupfbsnapshots i€ = 20. Fig.[3 shows the behavior
of the Weiss-Weinstein bound with respect to the openindeadlg One can observe that wheh varies, the
estimation performance concerning the estimation of patamu varies slightly. On the contrary, the estimation
performance concerning the estimation of parameter strongly dependent oA. When A increases fron)° to
90°, the Weiss-Weinstein bound ofdecreases, as well as the SNR threshold. [Big. 3 also showatkad0° is
the optimal value, which is different with the optimal valde= 53.13° in [47] since the assumptions concerning

the source signal are not the same.

VII. CONCLUSION

In this paper, the Weiss-Weinstein bound on the mean squaoe leas been studied in the array processing
context. In order to analyze the unconditional and cond#isignal source models, the structure of the bound has

been detailed for both Gaussian observation models withnpeterized mean or parameterized covariance matrix.

APPENDIX
A. Closed-form expression of 7, («, 5, u, v) under the Gaussian observation model with parameterized covariance
Sincey (t) ~ CN (0,Ry (0)), one has,

IRy (0)" 7D

T
e (v V) = X —g H -1
o B ) = ST R (0w |Ry<0+v>|”é e p( = ym)“’ 9
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2 —— A=10 [DEG]
o 11 A=45 [DEG]
a - = A=60 [DEG]
% - = = =90 [DEG]
10| P A=10[DEG], s=1/2
B A=45 [DEG], s=1/2
* A=60 [DEG], s=1/2
_s| ¢ A=00[DEG] s=112 | ‘
-15 -10 -5 0
SNR [dB]

Z — =10 [DEG]
o 11111 A=45 [DEG]
Q107 mm A=60 [DEG]
g = = =A=90 [DEG]
P A=10 [DEG], s=1/2
B A=45 [DEG], s=1/2
107 % A=60 [DEG], s=1/2
& £=90 [DEG], s=1/2 |, . b
-15 -10 -5 0
SNR [dB]

Fig. 3. Weiss-Weinstein bounds of the V-shaped array vthet.opening angle\.

whereI'™! = aR; (0 +u) + SR, ' (0 +v) — (o + 3 — 1)R; (). Then, since

T
exp { ZyH }dY = gMT |I‘| (60)

t=1
one has
IRy ()"~ |p|" Ry (0)[" (7Y
By (0 +w)" Ry (0 + )7 [Ry(6+u)|™ [Ry (6 +v)[7 0|

Ur) (avﬂvuv V) = (61)

B. Closed-form expression of 7, («, 8,1, v) under the Gaussian observation model with parameterized mean

Sincey (t) ~ CN (f; (8) ,Ry), one has

flg (o, B,u,v) = m/exp <—Z§ (ﬂ) dy, (62)
Yo

WitlE
W =aly—f0+uw) "Ry (y—£0+w)+B(y -0 +v)" Ry (y — £ (6 +V))
+(1—a-p)(y—£f(0)" Ry (y— £ (0))
=y"Ry'y+af! (0 +u)Ry'E (0 +u) +8£7 (0 + V)R, (0+v)+(1—a—B) £ (0) R, ' (0)

—2Re {y"Ry" (af; (0 +u) + B (0 +v) + (1 —a— B)f (0))}. (63)
3For simplicity, the dependance arof £ andy is not emphasized.
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Let us setx =y — (af; (8 +u) + 8f, (0 + v) + (1 — a — 3) £, (0)). Consequently,
xHR;1x=yHR;1y—2Re{yHR;1 (af, (0 +u)+ B (0+v)+(1—a—pB)£(0))}
+ (of/ (0 +u)+ 887 (0 +v)+ (1 —a—B) £ (0)) Ry (af, (0 +u) + B, (6 +v) + (1 — o — B) £ (9){64)

And £ (t) can be rewritten as
() =x"Ry'x +£(1), (65)

where
EW)=a(l—a)ff (@+u)R,', (0 +u)+8(1—B)f (0 +v)R,', (0 +v)
+(1—a-B)(a+p)t (O)R,'f (0) — 2Re {aBt (6 +u) R, 'f; (0 + V)
+a(l—a-B) T (@+u)R, ' (0)+B(1—a—B)F (0+Vv)R, ' (6)}. (66)

Note thaté (¢) is independent ofk. By defining X =[x (1),x(2),...,x(T)], the function7y (e, 8, u,v)

becomes
1 ) ] .,
Mg (o, B, 0, V) = ——— / exp <—ZXHR;1X +& (t)) dX = exp (—Z{ (t)) , (67)
MTIRy|" Jo t=1 t=1
_ T
S|ncem fQ exp <—tz:1XHRy1X> dX =1.

C. Closed-form expressions of |m1 Ry (61) + maRy ' (62)] and |miRy 1 (61) + maRy ! (02) + msRy ! (63)]

Note that this calculation is actually an extension of thseulieobtained in[[27] Appendix A in whichn; =

mo = % andms = 0, but follows the same method. The inversel§ can be deduced from the Woodbury formula

R_l(O) — i <IM _ Uza(e)aH(e) )
o2 '

Y o2 |a(8)|”* + o2
Then,
3 3
_ 1 Uza(ek)aH(ek)
mkR 1(0k) = — my <I — 5 . (68)
; Y U%; o2 |[a(8x)|* + o2

Since the rank of(6;)a’’ (6;,) is equal tol and sincef; # 0, # 03 (except forh, = h; = 0), the above
3
matrix hasM — 3 eigenvalues equal tg_)% >~ my and3 eigenvalues corresponding to the eigenvectors made from
" k=1
the linear combination oa(olﬁ a(f2), anda(0s): a(01) + pa(62) + ga(f3). The determinant will then be the

product of thesell eigenvalugs Let us set

0.2

0, = s ., k=123 (69)
" o2 fa(0n))? + 02

Then, the three aforementioned eigenvalues denbdteulist satisfy:

3
(kaR;l(ek)> (a(61) + pa(62) + qa(03)) = A (a(61) + pa(62) + qa(8s)) . (70)
k=1

“Note that we are only interested by the eigenvalues. Coesgiguthe linear combination of ai(61), a(82), anda(63) can be written
a(01) + pa(62) + qa(03) instead ofra(61) + pa(62) + qa(03)

November 29, 2012 DRAFT



23

By using Eqn.[(6B) in the above equation and after a factbomavith respect ta(6,), a(02), anda(f3) one

obtains
(96 —maey a(01)]* — pmigp,a’ (01)a(62) — qm1901aH(01)a(93)) a(61)
+ (—mapyal (82)a(01) + p (v — maps [a(8:)]°) — amaspya” (02)a(03) ) a(82) (71)
+ (~mapsa (85)a(81) — maespal (03)a(02) + q (v — maps a0)]%) ) a(8s) = 0,

Wherg

r=1-02\ (72)

Consequently, the coefficients aff), a(0-), anda(f3) are equals to zero leading to a system of three equations
with two unknown § and ¢). Solving the two first equations to f%d) and ¢, and applying the solution into the

last equation, one obtains the following polynomial equaf «
3

P =273 o Ja@) —izzmkwkmm, (Ila™ @)a(@r)* ~ la@0)I* [a@)IF)  (75)
k=1 k=1k'=1
k! #k

—mimamag s (1a(01)| a(02) I [a(8s) > — [[a” (02)a(8s)||” (1) (76)

— [[af(01)a(82)||” [la(83)]* - [|a™ (83)a(01)||” [[a” (82)|]” + a™ (03)a(82)a™ (6:)a(03)a™ (B2)a(0:) (77)
aH(03)a(01)aH(01)a(02)aH(02)a(03)) =0

Since we are only interested by the product of the three eaees, we do not have to solve this polynomial

3
in A and only the opposite of the last term is required. This lead&qn. [31) with >~ m; = 1. Of course, the
k=1

2

closed-form expression (ﬁangl(Ol) +m2R;1(02)\ is obtained by lettingns = 0 and > m; = 1 in Eqn.
k=1

32).

D. Closed-form expressions of (4 (1, p)

Remind that the functio, (i, p) is defined by Eqn.[(18). Let us defineas the number of parameters per
sources (assumed to be constant for each sources). Thémutvlbss of generality, the full parameter vectbr
T
can be decomposed #s= [0{ .. 05{,} where®; = [0;1...0;,]", i =1,...,N with ¢ = Np. Remind that

p=1[0...p...0" andp = 0...p;.. .O]T. It exists two distinct cases to study: when both indeand j are

3
5Note that, from Eqn[{36),5" ms = 1.
k=1

6p andq are given by

magpyall (62) (migra(®1)a’ (01) + (v — mip, a(01)]|?) T) a(6s) .
p ’
migiall (01) (mapya(@2)al (62) + (v — map, [la(62)]) 1) a(8s)
and
(2= m1gy a@DI2) (= = mags [2(02)]1) — m1pimagyal (O1)a(62)a” (82)a(61) -
q =

migiall (01) (magya(82)al (62) + (= — map, |a(62)]?) 1) a(8s)
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such thatm — I)p+1<i<mp,m=1,...,Nand(m—1)p+1<j <mporwhen(m—1)p+1<i<mp,
m=1,...,Nand(n—1)p+1<j<np, n=1,...,N with m # n. Therefore let us denote:

p, =10---0 h; 0---0" eRP o
r if m—-—1)p+1<i,j<mp (78)
and
=100 h; omoTeRq_ —Dp+1<i< _
Hom = | ]T g ) (P P=TPith m £ . (79)
P, =1[0---0 h; 0---0]" €RP, (n=1)p+1<j<np
1) The case where (m — 1)p+ 1 <14,j < mp: In this case, one has:
A(0+H)_A(0+p):[00 a(0m+um)_a(0m+pm) 0"'0]€(CPXN7 (80)
and consequently,
2 L )
Co (1) = | Ry (@(On+12,) —a(@mtp,))|| D2 IHs @}, (82)
t=1

Due to Eqn.[(2B), one has
2
|Ra'2 @ (On+i2,,) — 2 (Ontp,,)|| =

M M 2w 2w 2
ZZ {Rl’_ll}i)j exXp (]T (I‘f - r?) 0m> (exp <_¢77er’m> — €Xp <_]Tr?pm)>

i=1j=1

(o () o (1224702 -

In particular, in the case whei,, = 021 one obtains

(=55t ) o (=55 )
exp | — —r Ko | —exp —JTI‘ P

2) Thecase where (m —1)p+1 <i < mp and where (n —1)p+ 1 < j < np: Without loss generality, we

2

[Ra (@(Btit,0) — 2 (Ot p,)|| = QZ (83)

assume that > m. Then,
A +p)~AB+p)=[a(0)—a(0) a0 +m,) —a(0n) a0, —al@,+p,) a@y)—a@y)
=00 a(@n+tp,)—a(0n,) 00 a(d,) —a(@,+p,) 0--0], (84)

and consequently,

T
0 (1p) =Y [RaY2 (@ (Onth,) —a(0m)) {5 ()}, + (a(0a) — a(8ntp,) s (1)}, (85)
t=1
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Let us setr = Ra /2 (a(0,n+p,,) — a(0m))and o = Ra /% (a(0,) — a(0,+p,)) . Then,(p (11, p) can be

rewritten

I3 {s (D)}, + e{s ()}, I°

M=

Co (1, p) =

1

~~
Il

(148 O}, + " o {s (O} {8 (O}, + (s (O}, s O}, + 2" e s ()}, I7)

Il
ok

1

ey s )’ + e QZ”{S )bal* 4 2Re (% QZ{S i {s )}, ) (86)

By using the structure of the steering matAx it leads to

~~
Il

:lZUZ (R} oxp G5 (v —x7) Om) exp (=5 50rf p) exp (G505 )

B 212 (R} exp (G5 (ef —xl) 00) exp (=557x] p,) exp (5571] pn) (87)
=l
;:132 {R 1}”exp( (TH —rlo ))exp (—j%”r?um) exp (j%”rfpn).

E. Proof of Eqn. (@1), (42) and (43)
In fact, one only has to prove Eqih.{43) since Eqnl (41) &ndl €48 be obtained by letting, = h, ands, = s,
in Eqn. [43) and by usingh,,, s,,) for Eqn. [41) and k., s,,) for Eqn. [42). By plugging Eqn[{30) anf{32) into

Eqn. [16), and by considering the following expressions
a’ (0 + h,)a(0 + h,) = z exp (jZ(dy,hy — dy,hy)) = (a7 (0 + h,)a(d + h,))"

af’(0 + h,)a(0) = Zexp($32“d h.), andaf (6 +h,)a(6 — h,) = Zexp( J3dy, b)),

2 —T
_ M2>

2
Z exp —j )\dwkh ) —M2>

2
- M2
U o?
—S“SU(l — Sy — Sv SNR X

Eiwp(zm h)E:wp( 2 h)z;ap(%ﬁL__@gg)
+k§1exp( yk v)Zexp( Qmi phu )Zexp( M)

2 2

one obtains the closed-form expressions for the set of femet, (o, 5,u, v)

Susv D (—J & (day hu — dy, 1))

1—-UsnNr +5u(1 — Sy — o)

2, hy)

+5,(1 — 5y — Syp)

ﬁ@(suu Sv, hu7 h’U) =

(=35 dy )| = (=35 dayhiu)

(ﬁ%@mfmmmH+Ms

(88)
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ﬁe(l — Su, 1- Sv, _hua _hv) =

M
(- 51— 5) (Hg exp (2 (day b — dyu )

2

A 2
kz:: exp (jT”dmkhu)

Zexp(jkd h)

1—Usnr | +(1—5u)(8u+ 8, —1)

+(1—8p)(8u+ 80— 1)

—(1_su)(1_sv)(su+sv—1)Mx
Zexp( 27rd o )Zexp( 27rd P )Zexp( 27 (day,
+Eexp( j 21y h)Zexp(%d h)Zexp(

k=1 )
(_j%ﬂdzk hu)

2 (d

(_joﬂdyk hv)

(=52 (dyy b dykhv))H Y

ﬁ@(sun 1- Sv, huu _hv) =

M
su(l — sy) Z exp (_j%(dmhu +dy, hv))

2
_ M2>

kZexp(]kd hw)

M
1-—- USNR +Su(3v - Su)
k=1

+(1 - Sv)(sv - Su)

2
—8u(1 — 8y)(8y — SU)%X

ZGXP( 2md, h)Zexp( 271'd P )Zexp(

2
(_j%dzk hu)

(J,\d )

(=32 (duyhu + dykhv))" + M3

November 29, 2012
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_ M2>
2

_ M2>

27 (duy by, ho)
jr)

dykhv))

o hu—dy Bo)
X

2

+Zexp( j 27y h)Zexp( j 2mde h)zexp(M)

2
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(90)
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7,70(1 — Suy Sv, _hu7 hv) =

M
Su(1 — 8y) <
k=1

M
1- USNR +Sv(8u - Sv)
k=1

2 _T
(_jQTF(dIkhu +dykhv)) _M2>

2
_ M2>

M > 2 )
;—21 exp (—j & dy, ho)|| — M

+(1 - Su)(su - Sv) (

— (1 = 84) (50 — SU)UE'NRUEL % (91)
de L Qmi s 7(da, hu+dy, hy)
ZeXP( )ZGXP( )Eexp( jrtstt)
Qmi o Qmi L 27 (dy B +d L)
+3 ex ex ex Tk T W Y
52 exp (<22558)  exp (5 ) = exp(j )
X M 2 2
—M 1;—:1 exp (—jz%dykhv) (—jz%dmkhu)
M
—M || exp (—jQT”(dmkhu + dykhv))" + M3
k=1
2 7T
2
ﬁ@(sua 07 hua O) = 1 + Su(l - SU)USNR M2 - Zexp (_]Tﬂ-dzkhu> 5 (92)
k=1
and 7
, _ 2
N9(0, 84,0, ) = [ 1+ 5,(1 — 8, )Usng | M* — Zexp ( dukh ) ‘ ) (93)

One notices that the set of functiorig («, 8, u,v) does not depend ofl. Consequently, it is also easy to
obtain the Weiss-Weinstein bound (throughout the set o€tfans 7 («, 5,u, v)) by using the results of Section
IV-Bl whatever the considered prior afh (only the mtegralf@ %ﬁgfde has to be calculated or computed

numerically). In our case of a uniform prior, the results sirightforward and leads to Eqi.{41).1(42) aind (43).

F. Proof of Eqn. (48), (49) and (&0)

The set of functiong, («, 8, u, v) is given by Eqn.[(TI7). So, it only remains the calculationwfdtions(, (u, p)
from Eqn. [I8). Sinc&R,, = ¢21, one obtains
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M
Ce(hua 0) = <0(_hua O) = 20snr (M - kz Cos (QTﬂdmkhu)> )
=1
M
Con0) = Co(-h,0) = 20syr (M - % cos (%’fdykhv)) ,
=1
M
Ce(hua _hu) = <0(_hu, hu) = 2CSNR (M - kz COSs (%dmkhu)> )
=1
M
Ce(hlh _h’u) = gg(_hva hv) = 2CSNR (M - kz—:l CoSs (%Tdykhv)> )
Ce(hm hv) = <0(hva hu) = hv (94)
M
= Qe(—hv, _hu) = 2CSNR (M Z (Tﬂ(dwkh dykhv))) )
Ce(_huahv) = <0(hua _hv) = CB hu
= Cg(—hmhu) = 2OSNR M — Z COb(zﬂ(dmkh +dykh )))
Ce(huv hU) = Ce(hva hv) = CB( CB( hv) =0.

Again, since the set of functior, (u, p) does not depend ofy, the set of functiongj, («, 5, u, v) is given by
plugging the above equations into Eqn.](17) and does notrdeped. Consequently, as in unconditional case, the
set of functions («, 5,u, v) is obtained by using the results of Section TV-B whateverdbasidered prior om.

In our case of a uniform prior, the results are straightfodvand leads to Eqnl_(#8), (49) arld {50).
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