
1

Belief consensus algorithms for fast distributed
target tracking in wireless sensor networks

Vladimir Savic, Henk Wymeersch, and Santiago Zazo

Abstract—In distributed target tracking for wireless sensor
networks, agreement on the target state can be achieved by
the construction and maintenance of a communication path,
in order to exchange information regarding local likelihood
functions. Such an approach lacks robustness to failures and
is not easily applicable to ad-hoc networks. To address this,
several methods have been proposed that allow agreement on the
global likelihood through fully distributed belief consensus (BC)
algorithms, operating on local likelihoods in distributed particle
filtering (DPF). However, a unified comparison of the convergence
speed and communication cost has not been performed. In this
paper, we provide such a comparison and propose a novel BC
algorithm based on belief propagation (BP). According to our
study, DPF based on metropolis belief consensus (MBC) is the
fastest in loopy graphs, while DPF based on BP consensus is the
fastest in tree graphs. Moreover, we found that BC-based DPF
methods have lower communication overhead than data flooding
when the network is sufficiently sparse.

Index Terms—Belief consensus, belief propagation, distributed
target tracking, particle filtering, wireless sensor networks.

I. INTRODUCTION

Distributed tracking in wireless sensor networks (WSN) [1]
is an important task for many applications in which central
unit is not available. For example, in emergency situations,
such as a fire, a nuclear disaster, or a mine collapse, a WSN
can be used to detect these phenomena. Once a phenomenon
is detected (e.g., increased temperature or radioactivity), the
sensors start to sense their neighbourhood and cooperatively
track people and assets. As sensors are low-cost devices that
may not survive during tracking, it is important to track in a
manner that is fully robust to sensors failures, and in such a
way that every sensor has the same belief of the target location.
Then, the rescue team can access the estimates, even if just
one sensor survives. As another potential application, sensor
nodes can also serve as actuators, which perform a specific
action (e.g., move towards the target) as a function of estimated

V. Savic was with the Signal Processing Applications Group, Univer-
sidad Politecnica de Madrid, Madrid, Spain, and he is now with the
Dept. of Electrical Engineering (ISY), Linköping University, Sweden (e-
mail: vladimir.savic@liu.se). H. Wymeersch is with the Dept. of Signals and
Systems, Chalmers University of Technology, Gothenburg, Sweden (e-mail:
henkw@chalmers.se). S. Zazo is with the Signal Processing Applications
Group, Universidad Politecnica de Madrid, Madrid, Spain (e-mail: santi-
ago@gaps.ssr.upm.es)

This work is supported by the Swedish Foundation for Strategic Research
(SSF) and ELLIIT; Swedish Research Council (VR), under grant no. 2010-
5889; the European Research Council, under grant COOPNET No. 258418;
program CONSOLIDER-INGENIO 2010 under the grant CSD2008-00010
COMONSENS; the European Commission under the grant FP7-ICT-2009-4-
248894-WHERE-2; and the FPU fellowship from Spanish Ministry of Science
and Innovation. Part of this work was presented at the 2012 European Signal
Processing Conference.

target’s position. In this case, to ensure compatible actions, a
unified view of the target’s position is crucial.

The traditional approach to target tracking is based on
Kalman filtering (KF) [2]. However, due to nonlinear rela-
tionships and possible non-Gaussian uncertainties, a particle
filter (PF) is preferred [3] in many scenarios. Therefore, the
focus of this paper will be on PF-based distributed tracking.
Many PF-based methods are based on the construction and
maintenance of a communication path, such as a spanning
tree or a Hamiltonian cycle. For example, in [4], low-power
sensors pass the parameters of likelihood functions to high-
power sensors, which are responsible to manage the low-
power nodes. In [5], a set of uncorrelated sensor cliques is
constructed, in which slave nodes have to transmit Gaussian
mixture parameters to the master node of the clique. The
master node performs the tracking, and forward estimates
to another clique. In [6], a Markov-chain distributed PF is
proposed, which does not route the information through the
graph during tracking. However, it requires that each node
knows the total number of communication links and the
number of communication links between each pair of nodes,
which can be obtained only by aggregating the data before
tracking. In [7], the authors propose an incremental approach,
in which the parameters of the likelihood are communicated
from sensor to sensor in order to approximate the posterior of
interest. Finally, there is also a different class of methods [8],
[9] that maintain disjoint sets of particles at different nodes,
and propagate them towards the predicted target position.
These type of methods, also know as leader-agent algorithms
(see [1] for an overview), lack robustness to failures, cause
excessive delays due to the sequential estimation, and do not
provide the estimates at each sensor without additional post-
processing routing phase.

These problems can be solved if each node broadcasts
observations until all the nodes have complete set of ob-
servations. Then, each node (acting like a fusion center)
performs the tracking. This method, known as data flooding
and used in non-centralized PF (NCPF) [10], is not scalable,
but can be competitive in some scenarios. Other solutions
consider distributed particle filtering (DPF) methods based on
consensus algorithms [11]–[17]. In [11], the global posterior
distribution is approximated with a Gaussian mixture, and
consensus is applied over the local parameters to compute
the global parameters. Similarly, [12], [13] use a Gaussian
approximation instead of a Gaussian mixture, and [14] can
use any distribution that belongs to an exponential family.
Randomized gossip consensus was used in [15] for distributed
target tracking. The main problem with these approaches

ar
X

iv
:1

20
2.

52
61

v4
 [

cs
.D

C
]

 3
0

Ju
l 2

01
3

2

is that the global likelihood function is represented in the
same parametric form as local likelihood functions, which
is questionable in certain scenarios. In [16], [17], consensus
is applied instead to the weights in the DPF, so that any
likelihood can be represented. However, an issue that arises
with these DPF approaches is that consensus can be slow.
In a setting where the target moves, only a finite time is
available to perform consensus [18], so the fastest possible
method should be employed. A recent and detailed overview
of DPF algorithms can be found in [1], but it does not analyze
the effect of different consensus techniques on convergence.

In this paper, we compare five algorithms for target track-
ing using distributed particle filtering (DPF) based on belief
consensus (BC):

1) standard belief consensus (SBC) [17];
2) randomized gossip (RG) [16];
3) broadcast gossip (BG) [19];
4) Metropolis belief consensus (MBC) [14]; and
5) one novel algorithm based on belief propagation (BP),

which we earlier proposed in [20].
To the best of our knowledge, this is the first study where

these methods are compared in a common setting. According
to our simulation study, DPF-MBC is the fastest in loopy
graphs, while DPF-BP is the fastest in tree graphs (typical
for tunnel-like environments). Moreover, we found that BC-
based DPF methods have lower communication overhead than
data flooding only in sparse networks.

The rest of this paper is organized as follows. In Section
II, we review centralized target tracking. In Section III, we
describe five BC algorithms for PF-based distributed target
tracking, including the novel based on BP. Simulation results
are shown in Section IV. Finally, Section V provides our
conclusions and suggestions for future work.

II. OVERVIEW OF CENTRALIZED TARGET TRACKING

We assume that there is a number of static sensor nodes
with known positions and one moving target (e.g., a person or
vehicle) in some surveillance area. The target may be passive
or not willing to reveal its state, but the sensors are assumed
to periodically make observations that depend on their relative
position to the target. The goal of the WSN is to track the
state (e.g., position and velocity) of the target. In this section,
we describe a centralized approach to solve this problem, in
which all the observations are collected by a sensor that acts
as a fusion center.

A. System Model

The scenario under consideration is illustrated in Figure 1.
There are Ns static sensors with known two-dimensional (2D)
positions, ln (n = 1, 2, . . . , Ns) and one mobile target with an
unknown state xt at time t. The goal of the WSN is to estimate
xt at each (discrete) time t. We use the following state-space
model:

xt+1 = f(xt,ut) (1)

yn,t = gn(xt, vn,t), (2)

target

sensor

communication link

Fig. 1. Illustration of target tracking in a WSN. The goal of the WSN is to
track the position and velocity of the target.

where ut is process noise, yn,t is local observation of sensor
n at time t, and vn,t is its observation noise. We denote the
aggregation of all observations at time t by yt. The process
noise ut can be non-Gaussian, but since it is usually hard to
measure [2], [21], we can assume a Gaussian approximation
with sufficiently large variance, which is a common choice.

We denote by Gt the set of the nodes that have an
observation available at time t, and by Gn the set of all
neighbors of node n (irrespective of whether or not they
have an observation). The observation noise vn,t is distributed
according to pv(·), which is not necessarily Gaussian, and
typically depends on the particular measurement technique
(e.g., acoustic [22], RSS [23], RF tomography [24]) and the
environment. Observations at any time t are assumed to be
conditionally independent.

We assume that the network is connected (i.e., there is at
least a single path between any two nodes), and undirected (if
node n can receive a packet from node u, then node u can
receive a packet from node n). For simplicity, we assume ideal
probability of detection for both sensing and communication
range, but more complex models can easily be incorporated
[25]. In other words, a sensor can detect the target if the
distance between them is less than a certain value r, and
two sensors can communicate with each other if the distance
between them is less than R. Taking into account that radio
of a node is usually more powerful than its sensing devices
[9], [26], we assume R ≥ r.

B. Centralized Particle Filtering
We apply the Bayesian approach for this tracking problem

and recursively determine the posterior distribution p(xt|y1:t)
given the prior p(xt−1|y1:t−1), dynamic model p(xt|xt−1)
defined by (1), and the likelihood function p(yt|xt) defined by
(2). We assume that p(x0|y0) = p(x0) is initially available.
The posterior can be found using the standard prediction and
correction equations [3]:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3)

3

Algorithm 1 Centralized PF (CPF) (at time t)
1: for all particles m = 1 : Np do
2: Draw particle: x(m)

t ∼ p(xt|x(m)
t−1)

3: Compute weight: w(m)
t = w

(m)
t−1 · p(yt|x

(m)
t)

4: end for
5: Normalize: w(m)

t = w
(m)
t /

∑
m′
w

(m′)
t (for m = 1 : Np)

6: Compute estimates: x̂t =
∑
m
w

(m)
t x

(m)
t

7: Resample with replacement from {w(m)
t ,x

(m)
t }Np

m=1

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1). (4)

Due to the conditional independence among observations at
time t, the global likelihood function p(yt|xt) can be written
as the product of the local likelihoods:

p(yt|xt) ∝
∏
n∈Gt

p(yn,t|xt), (5)

where local likelihood p(yn,t|xt) is a function of state xt for
a given observation yn,t. For notational convenience we will
still write p(yn,t|xt) for n /∈ Gt, with the tacit assumption
that this function is equal to 1.

Since the observation noise is generally not Gaussian, and
the observation is not a linear function of the state, a traditional
Kalman filtering [2] approach cannot be used. Instead, we
apply the particle filter [3], in which the posterior distribution
is represented by a set of samples (particles) with associated
weights. A well-known solution is the sample-importance-
resampling (SIR) method, in which Np particles are drawn
from p(xt|xt−1), then weighted by the likelihood function,
p(yt|xt), and finally resampled in order to avoid degeneracy
problems (i.e., the situation in which all but one particle
have negligible weights). More advanced versions of PF also
exist [27]–[29], but we focus on SIR since the distributed
implementation of most PF-based methods is similar. We will
refer to PF with SIR as centralized PF (CPF). The CPF method
is summarized in Alg. 1. The CPF must be initialized with a
set of particles {w(m)

0 ,x
(m)
0 } drawn from p(x0).

This algorithm is run on one of the nodes in the WSN, which
serves as fusion center. The main drawbacks of the CPF are
[14], [30]: i) large energy consumption of the nodes which are
in proximity of the fusion center, ii) high communication cost
in large-scale networks; iii) the posterior distribution cannot
be accessed from any node in the network; and iv) the fusion
center has to know the locations, observations, and observation
models of all the nodes. In the following section we will focus
on distributed implementations of PF method, which alleviate
these problems.

III. DISTRIBUTED TARGET TRACKING

Our goal is to track the target in a distributed way, such
that all the nodes have a common view of the state of the
target. We will first describe a flooding approach (the NCPF),
followed by a general description of the DPF, which relies on
a belief consensus algorithm that is run as an inner loop. We
then describe 5 belief consensus methods, and finally quantify
the communication cost of DPF and NCPF.

Algorithm 2 Distributed PF (DPF) (at node n, at time t)
1: for all particles m = 1 : Np do
2: Draw particle: x(m)

t ∼ p(xn,t|x(m)
t−1)

3: Compute weight: w(m)
n,t =

w
(m)
t−1 · BC

(
p(y1,t|x(m)

t), ..., p(yNs,t|x
(m)
t)

)
4: end for
5: Normalize: w(m)

n,t = w
(m)
n,t /

∑
m′
w

(m′)
n,t (for m = 1 : Np)

6: ŵ
(m)
t = MC

(
w

(m)
1,t , ..., w

(m)
Ns,t

)
(for m = 1 : Np)

7: Normalize: ŵ(m)
t = ŵ

(m)
t /

∑
m′
ŵ

(m′)
t (for m = 1 : Np)

8: Compute estimates: x̂t =
∑
m
ŵ

(m)
t x

(m)
t

9: Resample with replacement from {ŵ(m)
t ,x

(m)
t }Np

m=1

A. Non-Centralized Particle Filter

In NCPF [10], every sensor broadcasts its observation,
observation model and an identifier, along with observations,
observation models and identifiers from neighbors. This flood-
ing procedure is repeated until every node has access to
all information, when a common posterior p(xt|y1:t) can
be determined. This approach is not scalable, but can be
competitive in some scenarios (see also Section III-D).

B. Distributed Particle Filtering

For a distributed implementation of the PF, we want to avoid
exchanging observations, while at the same time maintaining
a common set of samples and weights at every time step.
If we can guarantee that the samples and weights at time
t − 1 are common, then common samples1 at time t can be
achieved by providing all nodes with the same seed for random
number generation (i.e., by ensuring that their pseudo-random
generators are in the same state at all times). Ensuring common
weights for all nodes can be achieved by means of a belief
consensus (BC) algorithm. BC formally aims to compute, in
a distributed fashion the product of a number of real-valued
functions over the same variable

BC(f1(x), f2(x), . . . , fNs
(x)) =

Ns∏
n=1

fn(x). (6)

However, most BC algorithms are not capable to achieve
exact consensus in a finite number of iterations (except BP
consensus in tree-like graphs; see Section III-C). As we require
exact consensus on the weights, we additionally apply max-
consensus2 [16], [31],

MC(f1(x), f2(x), . . . , fNs
(x)) = max

n
fn(x), (7)

which computes the exact maximum over all arguments in a
finite number of iterations (equal to the diameter of the graph).
In particular, max-consensus can be implemented as follows:

1Although different sample realizations is advantageous in many applica-
tions, this is not the case in DPF since one set of particles is sufficient for
one target.

2Min-consensus or average over min- and max-consensus can be also
applied [17].

4

denoting the function at iteration i at node n by f (i)
n (x) (with

f
(0)
n (x) = fn(x)) every node executes the following rule:

f (i)
n (x) = max

(
f (i−1)
n (x), max

u∈Gn

f (i−1)
u (x)

)
. (8)

Note that max-consensus is applied before computing the
estimates in order to avoid disagreement of the estimates over
network. This approach, already used in [16], [17], can be
considered as a consensus-based approach to synchronize the
particles for the next time instant. In addition, we assume that
time-slot synchronization is performed in distributed way us-
ing any appropriate standard technique, see [32] and references
therein.

The final algorithm is shown in Alg. 2. Observe that DPFs
operate on two distinct time scales: a slow time scale (related
to time slots) in which the target moves, and the observations
are taken, and a fast time scale (related to iterations) in which
BC/MC is executed for a specific time slot. Note also that
in comparison with CPF, DPF has the following advantages:
i) the energy consumption is balanced across the network;
ii) reduced communication cost in large-scale networks; iii)
every node has access to the posterior distribution; and iv)
no knowledge required of the locations, observations, or
observation models of any other node.

C. Belief Consensus Algorithms

Motivated by their scalability and robustness to failures
[33]–[36], we consider five variants of BC: standard BC
(SBC) [33], randomized gossip (RG) [35], [37], Metropolis
BC (MBC) [38], broadcast gossip (BG) [34], [35], and belief
propagation (BP) [36], [39] consensus. While BP consensus
has not been applied within DPF, the other four BCs have
already been applied [14], [16], [17], [19].

We will now describe these five distinct BC algorithms
corresponding to line 3 in Alg. 2. Although we use BC to
perform the consensus on particle weights, the algorithms will
be presented in general form (with continuous variables) in
order to relate them with the state-of-the-art algorithms.

1) Standard BC: Standard BC (SBC) [33] is defined in
following iterative form:

M (i)
n (xt) = M (i−1)

n (xt)
∏
u∈Gn

(
M

(i−1)
u (xt)

M
(i−1)
n (xt)

)ξ
, (9)

where M
(i)
n (xt) represents the approximation at iteration i

of the global likelihood of the variable xt, and ξ is update
rate, which depends on maximum node degree in the network
(ηmax = maxn |Gn|).3 The update rate ξ ≈ 1/ηmax provides
sufficiently fast convergence for the constant weight model
[31], [38]. Optimized constant weights [40] can be found using
distributed convex optimization [41], [42], but the optimization
is generally complex since the Laplacian matrix has to be
estimated at each node. We initialize (9) by

M (1)
n (xt) = p(yn,t|xt). (10)

3Note that the logarithm of (9) corresponds to standard average consensus
algorithm [33, eq. (4)]. All computations are done in the log-domain to avoid
numerical problems.

Convergence is guaranteed for all connected graphs in a sense
that [33], [38]

lim
i→∞

M (i)
n (xt) =

(∏
n′∈Gt

p(yn′,t|xt)

)1/Ns

, (11)

from which the desired quantity,
∏
n∈Gt

p(yn,t|xt), can easily
be found, for any value of xt ∈ {x(1)

t , . . . ,x
(Np)
t }. However,

in practical circumstances, we run SBC a finite number of
iterations (i = 1, 2, . . . , NSBC

i), so the result will be an
approximation of the real likelihood.

If the maximum node degree (ηmax) and number of nodes
(Ns) are not known a priori, we need to estimate them in
distributed way.4 The estimation of maximum node degree can
be done using max-consensus, while Ns can be determined
[43] by setting an initial state of one node to 1, and all others
to 0. By using average consensus [31], all nodes can obtain
the result 1/Ns, i.e., the inverse of the number of nodes in the
network.

SBC was used for consensus on weights in [17]. Moreover,
there are a number of specific instances of SBC (e.g.,
[11]–[13]) that represent the beliefs in parametric form (e.g.,
Gaussian, or Gaussian mixture), and make consensus on their
parameters.

2) BC based on Randomized Gossip: Gossip-based algo-
rithms [35] can be also used to achieve consensus in a scalable
and robust way. We consider randomized gossip (RG) [37].
In RG, it is assumed that all the nodes have internal clocks
that tick independently according to a rate of e.g., a Poisson
process [35]. When the clock of the n-th node ticks, node n
and one of its neighbors (randomly chosen) exchange their
current estimates, and make the update. In case of BC based
on RG, we need to achieve convergence to the geometrical
average, so at the i-th clock tick of node n, the nodes n and
u make the following operation:

M (i)
u (xt) = M (i)

n (xt) =
(
M (i−1)
u (xt)M

(i−1)
n (xt)

)1/2

(12)

where u ∈ Gn, and all other nodes r in the network
(r /∈ {n, u}) do not make any update (i.e., M (i)

r (xt) =

M
(i−1)
r (xt)). Initialization is done using (10). In order to

have the same communication cost as SBC, RG should run
approximately NRG

i = dNSBC
i Ns/2e iterations. Finally, we

again need to estimate Ns using the same approach as for
SBC.

RG has been used in [16] for consensus on weights, and a
specific instance (with Gaussian approximation) in [15].

3) BC based on Broadcast Gossip: The main problem of
RG is that once a node broadcasts data, only one of its
neighbors performs an update. It is natural to expect that if
all the neighbors perform an update, the convergence will
be faster. To address this problem, broadcast gossip (BG)
has been proposed [34], in which a randomly chosen node
broadcasts its current estimate, and all of its neighbors (within

4While any upper bound on ηmax guarantees convergence, estimation of
ηmax is preferable to increase convergence speed of SBC.

5

communication radius R) perform an update. It has been
shown [34] that, due to its asymmetric nature, BG converges
only in expectation to the real average value.5

In our case, we need to achieve convergence to the geomet-
rical average (11), so at the i-th clock tick of node n all the
nodes make the following operation:

M (i)
u (xt) =

{
M

(i−1)
u (xt)

γM
(i−1)
n (xt)

1−γ , u ∈ Gn
M

(i−1)
u (xt), otherwise.

(13)
where 0 < γ < 1 is the mixing parameter. Again, initialization
is done using (10). To synchronize communication cost with
previous BC methods, we run BG NBG

i = NSBC
i Ns iterations.

It is again necessary to apply average consensus to estimate
Ns.

A variant of this method, with particle compression based
on support vector machine, has been already applied in [19].

Comment: Regarding the choice of γ, it has been shown in
[34] that its optimal value depends on the algebraic connec-
tivity of the graph, which is the second smallest eigenvalue
of the Laplacian matrix [31], [34]. However, this parameter is
not available in the distributed scenario, so an empirical study
has been used [34] to find the optimal value of γ. Therefore,
we will model γ as a function of average node degree η̄ in
the network, since η̄ can be easily estimated using average
consensus. We found that an optimal γ can be modeled as

γ(η̄) = 1− ae−bη̄ ∈ (0, 1), (14)

with parameters a and b, which can be estimated by
calibration.

4) Metropolis BC: An important problem of the SBC
method is that it uses a constant weight model, i.e., ξnu = ξ
for each link (n, u) in the graph, which will not provide
good performance in asymmetrical graphs. Instead of this
model, we can use so-called Metropolis weights, which should
provide faster convergence [38]. For our problem, this leads
to Metropolis BC (MBC), with the following update rule:

M (i)
n (xt) = M (i−1)

n (xt)
ξnn

∏
u∈Gn

M (i−1)
u (xt)

ξnu , (15)

where the weight on an link {n, u} is given by:

ξnu = ξun =

{
1/max(ηn, ηu), for u 6= n
1−

∑
u′∈Gn

ξu′n, for u = n.
(16)

The initialization is the same as for other BC methods, and
the number of iterations is the same as for SBC (NMBC

i =
NSBC
i). This approach also guarantees convergence [38] to

(11).6 As we can see, this method is more suitable than SBC
for distributed implementation, since a node needs to know
only the local degrees of its neighbors. However, Ns still has
to be estimated.

5Note that the underlying communication graph is still undirected, since all
the nodes have to be capable to broadcast their estimates (even if they don’t
do so at each iteration).

6Provided that the graph is not bipartite. Otherwise, max(ηn, ηu) should
be replaced with max(ηn, ηu) + 1.

1, 1,(|)t tp y x

3, 3,(|)t tp y x

2, 2,(|)t tp y x

1,tx

3,tx

2,tx
1, 2,()t t x x

1, 3,()t t x x

2, 3,()t t x x

4,tx

4, 4,(|)t tp y x

3, 4,()t t x x

Fig. 2. Example of a graphical model for BP consensus, for a network with
4 sensors.

A specific instance of MBC, in which the beliefs belong to
the exponential family, is used in [14].

5) BC based on Belief Propagation: Belief propagation
(BP) [36], [39] is a way of organizing the global computation
of marginal beliefs in terms of smaller local computations
within the graph. To adapt it for BC, we define the following
function:

f(x1,t,x2,t, . . . ,xNs,t) =
∏
n

p(yn,t|xn,t)
∏
u∈Gn

δ(xn,t − xu,t).

(17)
Running BP on the corresponding graphical model (see exam-
ple in Figure 2) yields the marginals Mn(xn,t) of the function
f(x1,t,x2,t, . . . ,xNs,t). It is easily verified that for every n

Mn(xn,t) =
∑

xu 6=n,t

f(x1,t,x2,t, . . . ,xNs,t) (18)

=
∏
n′

p(yn′,t|xn,t). (19)

The BP message passing equations are now as follows: the
belief at iteration i is given by [25, eq. (8)]

M (i)
n (xn,t) ∝ p(yn,t|xn,t)

∏
u∈Gn

m(i)
un(xn,t), (20)

while the message from node u ∈ Gn to node n is given by
[25, eq. (9)]

m(i)
un(xn,t) ∝

∫
xu,t

δ(xn,t − xu,t)
M

(i−1)
u (xu,t)

m
(i−1)
nu (xu,t)

dxu,t(21)

=
M

(i−1)
u (xn,t)

m
(i−1)
nu (xn,t)

. (22)

We note that since all variables are the same, we can write

6

xn,t = xu,t = xt. Some manipulation yields (see A)

M (i)
n (xt) ∝M (i−2)

n (xt)
∏
u∈Gn

(
M

(i−1)
u (xt)

M
(i−2)
n (xt)

)
, (23)

which represents the consensus algorithm based on BP. Since
BP consensus uses the same protocol as SBC and MBC,
we should run it NBP

i = NSBC
i iterations. This method is

initialized by M
(1)
n (xt) = p(yn,t|xt). We also need to set

M
(2)
n (xt) in order to run the algorithm defined by (23). Using

(20) and (21), and assuming that m(1)
nu(xt) = 1, we find

M (2)
n (xt) = p(yn,t|xt)

∏
u∈Gn

p(yu,t|xt). (24)

BP consensus (as a specific instance of BP) guarantees
convergence to C

∏
n p(yn,t|xt) for cycle-free network graphs

[39], [44], [45], where C is an irrelevant normalization con-
stant.7 When the network has cycles, the beliefs are only
approximations of the true marginals given by (19) (more de-
tails in A). Comparing BP consensus with previous consensus
methods, we can see that BP-consensus agrees on product of
all local evidences (not the Ns-th root of the product), and does
not rely on knowledge of any other parameters. Therefore, it
is more robust to the changes in the network.

D. Communication Cost Analysis

In this section, we analyze the communication cost of the
DPF methods, and compare with the cost of NCPF. We denote
by Npack the number of packets that any node n broadcasts at
any time t. We assume that one packet can contain P scalar
values (mapping from scalars to bits is not considered). In
most hardware platforms, P � 1, and the energy required
to transmit one packet does not significantly depend on the
amount of data within it. In this analysis, we neglect the cost
of determining ηmax, η̄, and Ns and the cost of time-slot
synchronization. Consequently, all DPF methods will have the
same communication cost.

1) Cost of DPF: At every iteration (except the first),
nodes transmit Np weights. In addition, nodes must perform
MC, which also requires transmission of the weights in each
iteration. The number of iterations of the BC8 is Nit. The
number of iterations of the MC is equal to the diameter of the
graph Dg . Thus, the average cost of DPF per node and per
time slot is

NDPF
pack ≈

⌈
Np
P

⌉
(Dg +Nit − 1). (25)

We see that the DPF methods are fully scalable, since increas-
ing the number of the nodes in a fixed deployment area will
not significantly affect the cost. Although beyond the scope
of this paper, we mention that if one prefers to use parametric
approximations [11]–[14] instead of consensus on weights,
only parameters of the beliefs should be transmitted in each
iteration.

7It is irrelevant since the weights in Alg. 2 will be normalized later anyway.
8We use NSBC

i to count iterations (Nit = NSBC
i). All other DPF methods

run the number of iterations which ensures the same communication cost as
explained in Section III-C.

2) Cost of NCPF: In contrast to DPF, NCPF does not
require transmission of the weights, but only the local data
as described in Section III-A. We denote the number of these
scalar values as Ndata. The amount of data will accumulate
with iterations since the node has to transmit its own data and
all received data. Since the number of iterations is equal to
Dg , the cost can be approximated by:

NNCPF
pack ≈

Dg−1∑
k=0

⌈
η̄kNdata

P

⌉
, (26)

where we approximate the degree of the each node with
average network degree (η̄), and

∑k
i=0 η̄

i by η̄k.
3) Comparison between DPF and NCPF: Making the rea-

sonable assumption that Nit = Dg + 1, we can quantify when
DPF is preferred over NCPF, i.e., when NDPF

pack < NNCPF
pack :⌈

Np
P

⌉
<

1

2Dg

Dg−1∑
k=0

⌈
η̄kNdata

P

⌉
. (27)

This condition is important in order to avoid over-using of
consensus-based methods. For example, if the network is fully-
connected (Dg = 1), or if the packet size is sufficiently
large to afford transmission of all accumulated data (i.e.,
P > η̄Dg−1Ndata), NCPF should be applied. On the other
hand, if the communication radius is very small (i.e., if Dg is
very large), DPF methods should be applied.

A similar comparison can be done with CPF, but its cost
depends on many factors [1], including the routing protocol,
and the position of the fusion center. In general, the cost
of CPF is much smaller than NCPF since there is only one
(instead of Ns) fusion center. However, even with reduced
cost, CPF is not a good alternative due to the uneven energy
consumption over nodes, and since the posterior cannot be
accessed from any node (see also Section II-B).

Regarding computational complexity, DPF methods require
O(|Gn|NitNp) operations per node at time t, while NCPF
requires only O(|Gt|Np) operations per node. However, the
energy consumption in typical hardware platforms is mainly
caused by communication, while internal computation is very
cheap [30]. Therefore, DPF methods are still preferred over
NCPF.

IV. SIMULATION RESULTS

A. Simulation Setup and Performance Metrics

We assume that there are Ns = 25 sensors semi-randomly9

deployed in a 100m x 100m area. The positions of these
sensors are perfectly known. There is also one target in the
area, with state xt = [x1,t x2,t ẋ1,t ẋ2,t]

T , where x1,t and
x2,t represent 2D position of the target, and ẋ1,t and ẋ2,t

the 2D velocity of the target. The target moves with constant
amplitude of the speed of 5m/s, according to Gaussian random
walk, given by

xt+1 =

[
I2 TsI2

02 I2

]
xt +

[
T 2
s

2 I2

TsI2

]
ut, (28)

9Semi-random network is created by adding jitter to a regular 2D grid.

7

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate [m]

y
−

c
o
o
rd

in
a
te

 [
m

]

(a)

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

x−coordinate [m]

y
−

c
o
o
rd

in
a
te

 [
m

]

(b)

Fig. 3. Illustrations of the target track in: (a) semi-random, and (b) tree network, for R = 45 m. The start point of the track is marked with a small black
disc, and the end point with an X. Sensors are marked with the squares, and communication links with dashed lines.

where Ts is the sampling interval (here set to 1 second), and
I2 and 02 represent the identity and zero 2 × 2 matrices,
respectively. The process noise ut is distributed according to
zero-mean Gaussian with covariance matrix 0.5I2 (m/s2)2.
The target is tracked for Nt = 50 seconds.

We set the sensing radius to r = 25m, and consider two
values of communication radius: R = 25m and R = 45m
(corresponding to η̄ = 3.08 and η̄ = 9.44, respectively).
In addition, we consider a tree configuration created as a
spanning tree10 from semi-random network. An example of
a target track in a loopy and tree network is shown in Figure
3. The inclusion of tree topologies is motivated by certain
target tracking applications, such as tunnels.

We assume that the observations are distances to the target,
i.e., for n ∈ Gt,

yn,t = gn(xt) =
∥∥∥ln − [x1,t x2,t]

T
∥∥∥+ vn,t. (29)

The observation noise vn,t is distributed according to Gaussian
mixture with two components, a typical model in presence of
non-line-of-sight signals. The parameters of this noise are set
to following values: means (1m, 10m), variances (1m2, 1m2)
and mixture weights (0.9, 0.1).

For mixing parameter in BG, given by (14), we set a = 0.49,
and b = 0.17 found by calibration. We use Np = 500 particles.
The results are averaged over NR = 500 Monte Carlo runs.
In each run, we generate different network, track, observations
and particle seed.

We will compare five DPF methods (DPF-SBC, DPF-MBC,
DPF-RG, DPF-BG, and DPF-BP). Moreover, as a benchmark,
we show the performance of the exact approach, which corre-
sponds to performance of CPF and NCPF. We consider root-
mean-square error (RMSE) in the position error erms,t and
erms as a performance metrics. Introducing en,t,s as the target
positioning error (i.e., Euclidean distance between the true
and estimated position of the target) at node n, at time t in

10Tree configurations should not be created using an online algorithm
since it would require a routing of data. We simply assumed that the tree
configuration is established offline or is an inherent property of the network.

simulation run s, we have

erms,t =

√∑Ns

n=1

∑NR

s=1 e
2
n,t,s

NsNR
, erms =

√∑Nt

t=1 e
2
rms,t

Nt
(30)

B. Performance Results

We first investigate the RMSE erms as a function of the
number of iterations Nit, for different communication radii
and network topologies. The results are shown in Figure
4. We can draw a number of conclusions. As expected,
exact methods provide the best RMSE performance, as they
compute the exact likelihood corresponding to (5). Secondly,
all DPF methods (except for DPF-BP) are capable to reach
asymptotically the performance of the exact approach. Among
the DPF methods in the semi-random topology (Figures 4a
and 4c), DPF-MBC provides the fastest convergence, for both
considered communication radii, though DPF-BG and DPF-
SBC achieve similar performance for R = 45 m. DPF-BP
achieves a minimal RMSE for Nit = Dg + 1, since then all
local likelihoods are available at each node (see also A). A
further increase of the number of iterations will only increase
the amount of over-counting of the local likelihoods, thus
leading to biased beliefs. In the tree topology (Figures 4b and
4d), the situation is very different: DPF-BP provides the fastest
convergence and exact result after Dg+1 iterations. However,
note that Dg is typically higher for tree networks than loopy
networks. Finally, we also see that: i) increasing R increases
the convergence speed of all DPFs, and ii) DPF-RG performs
the worst for both considered radii and configurations.

Secondly, in Figure 5, we analyze the RMSE erms,t as a
function of time for the track and the networks from Figure
3. We consider the case in which R = 45 m, and Nit is
set to provide the optimal performance of DPF-BP. Here, in
each Monte Carlo run, we generate different observations and
particle seeds, but keep the same track and the network. In
case of semi-random network (Figure 3a), we see that all
DPFs (except DPF-RG) provide the performance close to the

8

2 5 8 11 14 17 20 23
1

2

3

4

5

6

7

8

9

number of iterations

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(a)

2 5 8 11 14 17 20 23
1

2

3

4

5

6

7

8

9

number of iterations

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(b)

2 5 8 11 14 17 20 23
1

2

3

4

5

6

7

8

9

number of iterations

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(c)

2 5 8 11 14 17 20 23
1

2

3

4

5

6

7

8

9

number of iterations

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(d)

Fig. 4. RMSE of DPF methods as a function of the number of iterations for (a) semi-random (R = 25 m), (b) tree (R = 25 m), (c) semi-random
(R = 45m), and (d) tree (R = 45m).

exact approach. On the other hand, in the tree network, DPF-
BP performance overlaps with the exact approach. In general,
DPF-BP can be used in all configurations, if we know (or are
able to estimate) Dg . However, in practice, the network may
have no knowledge of Dg , so DPF-BP would lead to biased
results.

Finally, we evaluate the communication cost per node, by
analyzing the average number of packets per node as a function
of the communication radius R for Nit = dL/Re + 1. Here
L is the diameter of the deployment area (L = 100

√
2 m,

in our case). We consider networks with 25 and 100 nodes,
and packet sizes of P = 1, P = Np, and P = 5Np, where
Np = 500, and Ndata = 9 (i.e., it includes 2 scalars for the
position, 6 scalars for the observation model, and 1 scalar for
the observation). To count the number of packets, we simulated
the degree of each node in all networks, and applied equations
(25)–(26). As we can see from Figure 6, DPF-based methods
provide nearly constant communication cost as a function of

R, since (25) only depends linearly on Dg , and it does not
depend on Ns. Thus, these methods are scalable. On the other
hand, the communication cost of NCPF is highly sensitive to
R and Ns: the cost increases as R increases (while dL/Re is
fixed), and decreases significantly when dL/Re decrements its
value (e.g., for R = 50

√
2). Overall, decreasing dL/Re has

the largest effect (see (26)), so the total cost has a decreasing
tendency with R. In addition, since the increased Ns affects η̄,
the communication cost will be significantly larger. Regarding
the effect of P, we can see that larger values of P will make
NCPF cheaper, as more data can be aggregated in one packet.
Finally, comparing with NCPF, we can see that DPF methods
have a lower communication cost for R < 70m, except when
P is very large (as in Figure 6c).

C. Discussion

According to previous results, we can see that BC-based
DPF methods should be applied only in sparse networks, i.e.,

9

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

time [s]

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(a)

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

time [s]

R
M

S
E

 [
m

]

exact

DPF−SBC

DPF−RG

DPF−MBC

DPF−BG

DPF−BP

(b)

Fig. 5. RMSE of DPF methods as a function of time for: (a) semi-random network from Figure 3a (Nit = 4), and (b) tree network from Figure 3b,
(Nit = 7).

40 60 80 100 120 140
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

communication radius [m]

a
v
g

.
n

u
m

b
e

r
o

f
p

a
c
k
e

ts

DPFs

NCPF (25 nodes)

NCPF (100 nodes)

(a)

40 60 80 100 120 140
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

communication radius [m]

a
v
g

.
n

u
m

b
e

r
o

f
p

a
c
k
e

ts

DPFs

NCPF (25 nodes)

NCPF (100 nodes)

(b)

40 60 80 100 120 140
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

communication radius [m]

a
v
g

.
n

u
m

b
e

r
o

f
p

a
c
k
e

ts

DPFs

NCPF (25 nodes)

NCPF (100 nodes)

(c)

Fig. 6. Communication cost comparison as a function of the communication radius, for: (a) P = 1, (b) P = Np, and (c) P = 5Np.

in networks with relatively high diameter. Otherwise, NCPF
may be used since it is cheaper to flood a few scalars instead of
iteratively broadcasting weights or parameters of the likelihood
function. Moreover, we found that DPF-MBC is the fastest in
loopy graphs, closely followed by DPF-SBC, and DPF-BG.
Hence, DPF-MBC is preferred in unconstrained areas in which
the loops are expected, such as conference halls, airports, and
warehouses [21]. On the other hand, DPF-BP is only suitable
for confined areas, in which long chains of sensors, globally
forming a tree, are deployed. Typical examples are subway,
roadway and mine tunnels [46], [47]. Note that the robustness
is decreased in tree graphs since a node failure can break the
graph into two subgraphs. However, taking into account all
other benefits of DPF methods (especially, scalability), they
are still preferred over leader-agent methods in tree graphs.

V. CONCLUSION

We have studied DPF for target tracking and compared five
consensus methods in a unified scenario, in terms of RMSE
performance and communication cost. The five methods in-
clude four from literature (SBC, RG, MBC, and BG), and

one novel method based on BP. According to our results,
DPF-MBC should be used in loopy networks, while DPF-
BP is preferred in tree networks. We also found that BC-
based DPF methods have lower communication overhead than
NCPF (based on data flooding) in sparse networks. Further
research is required to estimate the diameter of the graph
in distributed way, to reduce the bias of DPF-BP in loopy
networks, and to assess the impact of medium access control
on the communication delay.

APPENDIX

From (22), we know that

m(i)
un(xt) ∝

M
(i−1)
u (xt)

m
(i−1)
nu (xt)

, (31)

where we removed index n since all the nodes have the same
variable (xn,t = xu,t = xt). The denominator of (31) is the
message from node n to node u in the previous iteration, and
can be expressed as

m(i−1)
nu (xt) ∝

M
(i−2)
n (xt)

m
(i−2)
un (xt)

. (32)

10

Combining previous two equations, we get the recursive
expression for the messages

m(i)
un(xt) ∝

M
(i−1)
u (xt)

M
(i−2)
n (xt)

m(i−2)
un (xt) (33)

Combining (20) and (33), we find a recursive expression for
the beliefs:

M (i)
n (xt) ∝ p(yn,t|xt)

∏
u∈Gn

(
M

(i−1)
u (xt)

M
(i−2)
n (xt)

m(i−2)
un (xt)

)

= M (i−2)
n (xt)

∏
u∈Gn

(
M

(i−1)
u (xt)

M
(i−2)
n (xt)

)
. (34)

In this appendix, we provide a deeper analysis of conver-
gence behavior of BP consensus in loopy graphs. It is well-
known [39] that BP consensus (as a special case of standard
BP) converges to the exact solution after a finite number of
iterations in cycle-free graphs. Using an appropriate message
schedule, this number of iterations is equal to Dg + 1, where
Dg is the diameter of the graph (i.e., the maximum hop-
distance between any two nodes). However, for general graphs,
it is straightforward to show (using equation (23)) that the
beliefs of BP consensus after Dg + 1 iterations is given by

M (Dg+1)
n (xt) ∝

∏
u∈Gt

p(yu,t|xt)αu,n,t (35)

where αu,n,t ≥ 1 is an exponent (αu,n,t ∈ N) of node pair
(u, n) at time t. In case of cycle-free graphs and some specific
symmetric graphs (see later examples), αu,n,t = 1, so the
estimated belief is equal to desired global likelihood (given by
(5)). That means that DPF-BP, after Dg+1 iterations, provides
(at each node) an estimate exactly the same as CPF/NCPF.
In case of αu,t,n > 1, the observation from node u at time
t is over-counted at node n. To understand the overcounting
behavior, we determine αmax, the maximum value (maximized
over n and u) of αu,n,t after Dg + 1 iterations. Note that
running more than Dg + 1 iterations is unnecessary, as it will
increase the α-values. While for the general case this problem
is hard, we limit ourselves to some best- and the worst-case
examples. In particular, we consider 4 representative graph
configurations, shown in Figure 7:

1) Fully-connected graph (clique): For the example in Fig-
ure 7a, Dg = 1, so the belief at second iterations is given
by (24). Since the graph is fully-connected, we know that
set Gn includes all nodes in the graph except node n
(which is locally available). Therefore, αmax = 1, so BP
consensus is correct.

2) Single-cycle graph with even number of nodes: For the
example in Figure 7b, Dg = 2, so we need to run 3
iterations of BP. In the second iteration, node 1 will obtain
likelihood from nodes 2 and 3, but in the third iteration it
will obtain likelihood from node 4 twice (through nodes
2 and 3). Therefore, αmax = 2.

3) Single-cycle graph with odd number of nodes: For the
example in Figure 7c, again Dg = 2, so we need to run
3 iterations of BP. In the second iteration, node 1 will
obtain likelihood from nodes 2 and 3, and in the third

1 2

3 4

1 2

3 4

1 2

3 4

5

1 2

3

45

6
7

(a) (b)

(c) (d)

8

Fig. 7. Example graphs: (a) fully-connected graph (Dg = 1), (b) single-
cycle graph with even number of nodes (Dg = 2), (c) single-cycle graph
with odd number of nodes (Dg = 2), and (d) single-cycle graph with added
short loop(s) (Dg = 3).

TABLE I
ESTIMATES OF BP CONSENSUS (FIRST 3 ITERATIONS) FOR THE GRAPH IN

FIGURE 7C. THE LOCAL LIKELIHOOD p(yu,t|xt) IS MARKED BY φu,t .

iter. 1 iter. 2 iter. 3

node 1 φ1,t φ1,tφ2,tφ3,t φ1,tφ2,tφ3,tφ4,tφ5,t

node 2 φ2,t φ1,tφ2,tφ5,t φ1,tφ2,tφ3,tφ4,tφ5,t

node 3 φ3,t φ1,tφ3,tφ4,t φ1,tφ2,tφ3,tφ4,tφ5,t

node 4 φ4,t φ3,tφ4,tφ5,t φ1,tφ2,tφ3,tφ4,tφ5,t

node 5 φ5,t φ2,tφ4,tφ5,t φ1,tφ2,tφ3,tφ4,tφ5,t

iteration it will obtain likelihood from nodes 4 and 5.
Therefore, αmax = 1, so BP consensus is correct.

4) Graph with short loops: For the example in Figure 7d
(without node 8), Dg = 3, so we need 4 iterations of
BP. After 4 iterations, nodes 1 and 6 will have triple-
counted their own local likelihoods (since it has its
own information, as well as messages received due to
the clockwise and counter-clockwise circulation through
short loop11 1-6-7). Therefore, αmax = 3. If we consider
the case with node 8 and two dashed links (in Figure 7d),
αmax = 5. This reasoning can be generalized to a case
with Nshort−loops short loops (which all contain the link
1-6), αmax = 1 + 2Nshort−loops.

All previous claims can be easily proved using (23) and
(24). As example, we show in Table I the estimates for the
cycle-graph with odd number of nodes.

Taking into account that the fourth case is the worst-case
scenario, we can conclude that in the worst-case αmax = 1 +
2Nshort−loops. This is not a promising conclusion, since αmax

can be unbounded, for fixed Dg , as the number of nodes grows.
Therefore, the configurations in which there are many short
loops over the same link, are not preferable for BP consensus.

11A short loop is defined as a loop that consists of 3 nodes.

11

REFERENCES

[1] O. Hlinka, F. Hlawatsch, and P. M. Djuric, “Distributed particle filtering
in agent networks: A survey, classification, and comparison,” IEEE
Signal Processing Magazine, vol. 30, pp. 61–81, Jan. 2013.

[2] G. Welch and G. Bishop, “An introduction to the Kalman filter,” tech.
rep., University of North Carolina at Chapel Hill, July 2006.

[3] M. S. Arulampalam, S. Maskell, N. G. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, Feb.
2002.

[4] M. Coates, “Distributed particle filters for sensor networks,” in Proc. of
3rd Workshop on Information Processing in Sensor Networks (IPSN),
pp. 99–107, April 2004.

[5] X. Sheng, Y.-H. Hu, and P. Ramanathan, “Distributed particle filter with
GMM approximation for multiple targets localization and tracking in
wireless sensor network,” in Proc. of Fourth Int. Symp. Information
Processing in Sensor Networks (IPSN), pp. 181–188, April 2005.

[6] S. H. Lee and M. West, “Markov chain distributed particle filters
(MCDPF),” in Proc. of 48th IEEE Conf. held jointly with the 2009 28th
Chinese Control Conf Decision and Control (CDC/CCC), pp. 5496–
5501, Dec. 2009.

[7] O. Hlinka, P. M. Djuric, and F. Hlawatsch, “Time-space-sequential
distributed particle filtering with low-rate communications,” in Proc. of
Asilomar Conf., pp. 196–200, Nov. 2009.

[8] M. Coates and G. Ing, “Sensor network particle filters: motes as
particles,” in in Proc. of IEEE Workshop on Statistical Signal Processing
(SSP), July 2005.

[9] B. Jiang and B. Ravindran, “Completely distributed particle filters for
target tracking in sensor networks,” in Proc. of IEEE Int. Parallel &
Distributed Processing Symp., pp. 334–344, May 2011.

[10] P. M. Djuric, J. Beaudeau, and M. Bugallo, “Non-centralized target
tracking with mobile agents,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5928–5931, May 2011.

[11] D. Gu, “Distributed particle filter for target tracking,” in Proc. of IEEE
Int. Conf. on Robotics and Automation (ICRA), pp. 3856–3861, April
2007.

[12] D. Gu, J. Sun, Z. Hu, and H. Li, “Consensus based distributed particle
filter in sensor networks,” in Proc. of Int. Conf. Information and
Automation, pp. 302–307, June 2008.

[13] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djuric, and M. Rupp,
“Distributed gaussian particle filtering using likelihood consensus,” in
Proc. of IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3756–3759, May 2011.

[14] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and M. Rupp, “Likelihood
consensus and its application to distributed particle filtering,” IEEE
Transactions on Signal Processing, vol. 60, pp. 4334–4349, Aug. 2012.

[15] B. N. Oreshkin and M. J. Coates, “Asynchronous distributed particle
filter via decentralized evaluation of gaussian products,” in Proc. of 13th
Conf. on Information Fusion (FUSION), pp. 1–8, July 2010.

[16] D. Ustebay, M. Coates, and M. Rabbat, “Distributed auxiliary particle
filters using selective gossip,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3296–3299, May 2011.

[17] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis, “Set-membership
constrained particle filter: Distributed adaptation for sensor networks,”
IEEE Trans. on Signal Processing, vol. 59, pp. 4122–4138, Sept. 2011.

[18] C. Lindberg, L. S. Muppirisetty, K-M. Dahlén, V. Savic, and H. Wymeer-
sch. “MAC Delay in Belief Consensus for Distributed Tracking,” in
Proc. of 10th Workshop on Positioning, Navigation and Communication
(WPNC), March 2013.

[19] H. Q. Liu, H. C. So, F. K. W. Chan, and K. W. K. Lui, “Distributed
particle filter for target tracking in sensor networks,” Progress In
Electromagnetics Research, vol. 11, pp. 171–182, 2009.

[20] V. Savic, H. Wymeersch, and S. Zazo, “Distributed target tracking based
on belief propagation consensus,” in Proc. of the 20th European Signal
Processing Conference (EUSIPCO), pp. 544–548, Aug. 2012.

[21] V. Savic, A. Athalye, M. Bolic, and P. M. Djuric, “Particle filtering for
indoor RFID tag tracking,” in Proc. of IEEE Statistical Signal Processing
Workshop (SSP), pp. 193 –196, June 2011.

[22] N. Ahmed, M. Rutten, T. Bessell, S. S. Kanhere, N. Gordon, and
S. Jha, “Detection and tracking using particle-filter-based wireless sensor
networks,” IEEE Transactions on Mobile Computing, vol. 9, pp. 1332–
1345, Sept. 2010.

[23] A. Oka and L. Lampe, “Distributed target tracking using signal strength
measurements by a wireless sensor network,” IEEE Journal on Selected
Areas in Communications, vol. 28, pp. 1006–1015, Sept. 2010.

[24] X. Chen, A. Edelstein, Y. Li, M. Coates, M. Rabbat, and A. Men,
“Sequential Monte Carlo for simultaneous passive device-free tracking
and sensor localization using received signal strength measurements,”
in Proc. of IEEE/ACM Int. Conf. on Information Processing in Sensor
Networks (IPSN), pp. 342–353, April 2011.

[25] A. T. Ihler, J. W. I. Fisher, R. L. Moses, and A. S. Willsky, “Non-
parametric belief propagation for self-localization of sensor networks,”
IEEE Journal on Selected Areas in Communications, vol. 23, pp. 809–
819, April 2005.

[26] A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem, “Distributed
online localization in sensor networks using a moving target,” in Proc.
of 3rd Int. Symp. on Information Processing in Sensor Networks (IPSN),
pp. 61–70, April 2004.

[27] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” Journal of the American Statistical Association, vol. 94, pp. 590–
599, June 1999.

[28] R. van der Merwe, A. Doucet, N. D. Freitas, and E. Wan, “The unscented
particle filter,” in Proc. of Advances in Neural Information Processing
Systems, Nov. 2001.

[29] J. H. Kotecha and P. M. Djuric, “Gaussian sum particle filtering,” IEEE
Transactions on Signal Processing, vol. 51, pp. 2602–1612, Oct. 2003.

[30] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses, and
N. S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, pp. 54–69,
July 2005.

[31] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on
Automatic Control, vol. 49, pp. 1520 – 1533, Sept. 2004.

[32] M. Leng and Y.-C. Wu, “Distributed clock synchronization for wireless
sensor networks using belief propagation,” IEEE Transactions on Signal
Processing, vol. 59, pp. 5404 –5414, Nov. 2011.

[33] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S. Shamma, “Belief
consensus and distributed hypothesis testing in sensor networks,” in
Proc. of NESC Worskhop, pp. 169–182, Springer Verlag, 2006.

[34] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast
gossip algorithms for consensus,” IEEE Transactions on Signal Process-
ing, vol. 57, pp. 2748–2761, July 2009.

[35] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. of the IEEE,
vol. 98, pp. 1847–1864, Nov. 2010.

[36] C. Crick and A. Pfeffer, “Loopy belief propagation as a basis for com-
munication in sensor networks,” in Uncertainty in Artificial Intelligence,
pp. 159–166, Aug. 2003.

[37] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip al-
gorithms,” IEEE Transactions on Information Theory, vol. 52, pp. 2508–
2530, June 2006.

[38] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[39] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo: Morgan Kaufmann, 1988.

[40] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, pp. 33–46, 2007.

[41] B. Johansson, On Distributed Optimization in Networked Systems. PhD
thesis, KTH, Stockholm, Sweden, Dec. 2008.

[42] D. Mosk-Aoyama, T. Roughgarden, and D. Shah, “Fully distributed
algorithms for convex optimization problems,” SIAM Journal on Op-
timization, vol. 20, pp. 3260–3279, Oct. 2010.

[43] T.-D. Pham, H. Q. Ngo, V.-D. Le, S. Lee, and Y.-K. Lee, “Broadcast
gossip based distributed hypothesis testing in wireless sensor networks,”
in Proc. of Int. Conf. on Advanced Technologies for Communications,
pp. 84–87, Oct. 2009.

[44] J. S. Yedidia, W. T. Freeman, and Y. Weiss, Understanding belief
propagation and its generalizations, pp. 239–269. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2003.

[45] Y. Weiss, “Correctness of local probability propagation in graphical
models with loops,” Neural Computation, vol. 12, pp. 1–41, Jan. 2000.

[46] V. Savic, H. Wymeersch and E. G. Larsson, “Simultaneous sensor
localization and target tracking in mine tunnels,” in IEEE Proc. of Intl.
Conf. on Information Fusion, July 2013.

[47] A. Chehri, P. Fortier, and P. M. Tardif, “Characterization of the ultra-
wideband channel in confined environments with diffracting rough sur-
faces,” Wireless Personal Communications (Springer), vol. 62, pp. 859–
877, Feb. 2012.

	I Introduction
	II Overview of Centralized Target Tracking
	II-A System Model
	II-B Centralized Particle Filtering

	III Distributed Target Tracking
	III-A Non-Centralized Particle Filter
	III-B Distributed Particle Filtering
	III-C Belief Consensus Algorithms
	III-C1 Standard BC
	III-C2 BC based on Randomized Gossip
	III-C3 BC based on Broadcast Gossip
	III-C4 Metropolis BC
	III-C5 BC based on Belief Propagation

	III-D Communication Cost Analysis
	III-D1 Cost of DPF
	III-D2 Cost of NCPF
	III-D3 Comparison between DPF and NCPF

	IV Simulation Results
	IV-A Simulation Setup and Performance Metrics
	IV-B Performance Results
	IV-C Discussion

	V Conclusion
	Appendix
	References

