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Abstract 

One-class detector is an option to deal with the problem of detecting an unknown signal in a background noise, 

as it is only necessary to know the noise distribution. Thus a Gaussian copula is proposed to capture the 

dependence among the noise samples, meanwhile the marginals can be estimated using well known methods. 

We show that classical energy detectors are particular cases of the proposed one-class detector, when Gaussian 

noise distribution is assumed, but are inappropriate in other cases. Experiments combining simulated noise and 

real acoustic events have confirmed the superiority of the proposed detectors when noise is non-Gaussian. An 

interpretation of the methods in terms of the Edgeworth expansion is also included. 

 

Keywords: signal detection, one-class detector, copula, energy detector 

 

Table captions:  

Table I. Description of the different synthetic noise models considered 

Table II. Description of the different steps for the implementation of the detectors 

  

Figure captions: 

Figure 1. Sequence of real acoustic events generated to verify the different detectors. 

Figure 2. ROC curves: Independent Gaussian noise (left) and non-independent Gaussian noise (right) 

Figure 3. ROC curves: Independent uniform noise (left) and independent Gamma noise (right) 

Figure 4. ROC curves: Non-independent uniform noise (left) and non-independent gamma noise 

(right) 
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Unknown signal detection by one-class detector based on Gaussian copula 

 

Antonio Soriano, Luis Vergara, Jorge Moragues, Ramón Miralles 

Abstract 

One-class detector is an option to deal with the problem of detecting an unknown signal in a background noise, 

as it is only necessary to know the noise distribution. Thus a Gaussian copula is proposed to capture the 

dependence among the noise samples, meanwhile the marginals can be estimated using well known methods. 

We show that classical energy detectors are particular cases of the proposed one-class detector, when Gaussian 

noise distribution is assumed, but are inappropriate in other cases. Experiments combining simulated noise and 

real acoustic events have confirmed the superiority of the proposed detectors when noise is non-Gaussian. An 

interpretation of the methods in terms of the Edgeworth expansion is also included. 

 

1. Introduction 

Signal detection in a random background noise is a classical problem in detection theory. Starting from the 

popular matched filter [1], which requires perfect knowledge of the signal waveform, different methods exist to 

deal with the practical problem of partial or null knowledge about the signal. Thus, energy detector [2] has been 

shown to be optimal if both the noise and the signal are independent zero-mean Gaussian random processes. On 

the other hand, subspace matched filter is optimal if noise is independent Gaussian and the signal lies in a known 

subspace. Different extensions of the energy detector [3] [4] and the subspace matched filter [2] [5] exist for the 

non-independent and/or non-Gaussian cases. 

A different approach comes from recognizing that unknown signal detection is conceptually a one-class 

classifier problem [6], where the “noise” class may be learned (both in the Gaussian and non-Gaussian 

scenarios), but there is no possibility to learn the “signal” class. This can be also considered inside the so called 

novelty detection problem [7]. Both approaches converge under the likelihood ratio framework. It is well-known 

[1] that the optimum test is given by (hypothesis 1H indicates presence of signal and noise, hypothesis 0H that 

only noise is present) 

   
 
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where  / if Hx is the multidimensional probability density function (PDF) of the observation vector 

 1 2 ...
T

Nx x xx conditioned to hypothesis iH , and   is a threshold selected to fit an acceptable probability 

of false alarm (Neyman-Pearson criteria) or to minimize a defined cost (Bayes approach).   x is the 
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likelihood ratio (LR) whose computation obviously requires knowledge of both  1/f Hx and  0/f Hx . 

However, if the signal is totally unknown, a simpler option is to assume that  1/f Hx is constant [6] leading 

to the one-class test 

   
1 1

0 0

1

0 0/ ln / ln

H H

H H

f H f H   
 

 
x x                             .                          (2) 

Notice that   1

0/f H


x is a measure of the degree of departure of x from the distribution of the “noise” class. 

In this paper we will focus in the one-class test of equation (2). Thus, the basic problem will be the estimation 

of the multidimensional PDF  0/f Hx . In case of statistical independence among the components of the 

noise,  0/f Hx will simply be the product of the marginals, so that available parametric and nonparametric 

unidimensional methods are applicable. However, the most difficult aspect regarding estimation of  0/f Hx

is capturing the possible statistical dependence of the noise. There exist multidimensional nonparametric 

methods [8], but parametric extensions are not so obvious, except in the multivariate Gaussian model, where a 

correlation matrix parameterizes the dependence. A more flexible possibility is based on the use of copulas [9]. 

Although they have been a matter of research in the financial area since long time ago [10], [11], they only are 

recently being applied in signal detection problems [12],[13],[14], mainly in the context of fusion of 

heterogeneous detectors. Copula model factorizes  0/f Hx  in the marginals and a multidimensional PDF of 

uniformly distributed variables (copula density) which captures the dependence. Copulas allow defining a 

variety of parametric dependence models. On the other hand copula densities may be combined with both 

parametric and nonparametric estimation of the marginals. 

The main contribution of this paper is to propose a new detector for unknown signal detection having general 

applicability in non-Gaussian and non-independent noise scenarios. It is based on approaching the problem as 

a one-class or novelty detection problem so that only the multivariate noise distribution is to be required. This 

latter is estimated assuming a Gaussian copula model. This particular type of copula has been selected due to 

its simplicity of implementation, general applicability, and because it leads to a natural extension of classical 

methods, based upon the energy computation, which are only optimum in Gaussian scenarios. As far as we 

know, this is the first time that a one-class copula approach has been proposed for unknown signal detection. 

In the next section of this paper we present the copula-based one-class detector. In particular, a Gaussian copula 

is proposed to capture possible dependences. We show that classical energy detectors are particular cases of the 

proposed one-class detector for both independent and non-independent noise. Experimental results are presented 

in Section 3, where real acoustic events are corrupted by simulated noises, having different probability densities, 

to illustrate the improved performance of the new proposed detector. An interpretation, in terms of the 
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Edgeworth expansion is given in Section 4 about this superior performance, to reinforce the general interest of 

the Gaussian copula. Conclusions end the communication. 

 

2. One-class detector based on Gaussian copula 

Let us focus in the problem of detecting an unknown signal vector ܛ ൌ ሾݏଵ …  in a noise background vector ࢀேሿݏ

ܟ ൌ ሾݓଵ ܠ ,ଵܪ Under .ࢀேሿݓ… ൌ ܛ ൅ ܠ ,଴ܪ and under , ܟ ൌ  We are going to use a copula to model the .  ܟ

multidimensional noise density ݂ሺܟሻ ൌ ݂ሺܠ ⁄଴ܪ ሻ. Let  F w be the corresponding multidimensional 

cumulative distribution function (CDF) i.e., ݂ሺܟሻ ൌ
డಿ൫ிሺܟ	ሻ൯

డ௪భడ௫௪మ,…,డ௪ಿ
. The Sklar’s theorem [15] stays that there 

exists a unique copula function such that  

ሻܟሺܨ ൌ ,ଵሻݓଵሺܨ൫ܥ ,ଶሻݓଶሺܨ … ,  (3)																																.													ேሻ൯ݓேሺܨ

Where ܨ௡ሺݓ௡ሻ is the marginal CDF of random variable ݓ௡, so the random variable  ݑ௡ ൌ  ௡ሻ is uniformlyݓ௡ሺܨ

distributed in the interval [0,1]. Deriving (3) we may express ݂ሺܟሻ in the form: 

 

݂ሺܟሻ ൌ
߲ே

…,ଶݓଵ߲ݓ߲ , ேݓ߲
,ଵሻݓଵሺܨ൫ܥ ,ଶሻݓଶሺܨ … , ேሻ൯ݓேሺܨ ൌ 

 

ൌ ଵ݂ሺݓଵሻ ଶ݂ሺݓଶሻ… ே݂ሺݓேሻ ൈ ܿ൫ܨଵሺݓଵሻ, ,ଶሻݓଶሺܨ … ,  ேሻ൯.    (4)ݓேሺܨ

 

Where ܿሺܪ/ܝ଴ሻ ൌ
డಿ൫஼ሺܝ/ுబ	ሻ൯

డ௨భడ௨మ,…,డ௨ಿ
 is the copula density. There are a number of possible parametric copulas with 

its corresponding copula densities, but we will focus on the Gaussian copula [16] due to its simplicity, general 

applicability and straightforward connection with classical energy detectors. A Gaussian copula assumes that if 

the uniform random variables ݑ௡ ൌ  ௡ሻ are transformed into standard Gaussian variables (ones having zeroݓ௡ሺܨ

mean and unit variance), then the multidimensional PDF in the transformed domain is multivariate Gaussian. 

Let us call ݒ௡ to the transformed variable, i.e.,  ݒ௡ ൌ Φିଵሺݑ௡ሻ, where Φሺ∙ሻ is the CDF of a standard Gaussian 

random variable. Then, it is assumed that  

௩݂ሺܞሻ ൌ
1

ேߨ2 ଶ⁄ ଵ/ଶ|࢜܀|
൉ exp ቆെ

ܞ૚ି࢜܀்ܞ
2

ቇ																						.																						ሺ5ሻ 

Where ࢜܀ ൌ ሺ݊,݉ሻ࢜܀ ୘ሿ is a standard correlation matrixܞܞሾܧ ൌ ௠ሻݒ	௡ݒ	ሺܧ ൌ ቄ1																		݊ ൌ ݉
൏ 1												݊ ് ݉

.  
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The multivariate Gaussian model assumed in (5) for ௩݂ሺܞሻ leads straightforwardly [16] to a particular copula 

model for ݂ሺܟሻ	, the so called Gaussian copula  

݂ሺܟሻ ൌ
1

ଵ/ଶ|࢜܀|
൉ exp ቆെ

݃ሺܟሻ்൫ି࢜܀૚ െ ۷൯݃ሺܟሻ

2
ቇෑ ௡݂ሺݓ௡ሻ

ே

௡ୀଵ

																	,													ሺ6ሻ 

 

where ݃ሺܟሻ ൌ ሾ݃ሺݓଵሻ݃ሺݓଶሻ…݃ሺݓேሻሿ் and ݃ሺݓ௡ሻ ൌ Φିଵሺܨ௡ሺݓ௡ሻሻ. Thus ݃ሺ. ሻ is a nonlinear function that 

transforms the original noise components in standard Gaussian random variables. 

Finally, considering in (2) that ݂ ሺܪ/ܠ଴ሻ ൌ ݂ሺܟሻ, we may define from (6) the new proposed (Gaussian) Copula-

based One-Class Detector (COCD)  

݃ሺܠሻ்൫ି࢜܀૚ െ ۷൯݃ሺܠሻ െ 2෍ ݈݊ ௡݂ሺݔ௡ ⁄଴ܪ ሻ
ே

௡ୀଵ

0ܪ≶

1ܪ ݈݊ ቆ
ଶߣ

|࢜܀|
ቇ														.																		ሺ7ሻ 

Notice that COCD is a new detector which clearly separate the marginals from the joint statistical properties of 

the noise. The second term is the only one present in case of independent components and amounts to compute 

the product of the marginals. The first term captures the possible dependences among the transformed noise 

components and it will be present only if  ࢜܀ ് ۷. 

It is straightforward to show that (7) leads to classical energy detectors if the noise is assumed multivariate 

Gaussian. So let us consider that the components of vector w are zero-mean Gaussian random variables having 

the same variance ߪଶ  and a joint probability density function  ݂ሺܟሻ ൌ
ଵ

ඥ|࢝܀|ሺଶగఙሻಿ
൉ exp ቀെ

ܟష૚࢝܀ܟ

ଶఙమ
ቁ where 

࢝܀ ൌ
૚

ఙమ
௡ሻݓ୘ሿ is a standard correlation matrix. In this case the marginals will be  ݂ሺܟܟሾܧ ൌ

ଵ

√ଶగఙమ
൉

exp ቀെ
௪೙

మ

ଶఙమ
ቁ and	ܞ ൌ ݃ሺܟሻ ൌ

ܟ

ఙ
 and   ࢜܀ ൌ   Substituting in (7), we arrive to			.		௪܀

࢝܀ܶܠ
െ૚ܠ ≷ுబ

ுభ 2݈݊൭ߪ	
2ߣ

2ሻܰߪߨሺ2|࢝܀|
൱																													,																														ሺ8ሻ 

which is an extension of the energy detector for the case of non-independent Gaussian noise [3], requiring  a 

whitening transformation ࢝܀
ି
૚
૛ܠ before computing the energy.  Let us call preprocessed energy detector (PED) 

to (8) as it is done in [3]. In the case of independent Gaussian noise ࢝܀ ൌ ۷, and we obtain the classical energy 

detector (ED) 

ܠ்ܠ 0ܪ≶

1ܪ ଶ݈݊ߪ ቆ
ଶߣ

ሺ2ߪߨଶሻே
ቇ																					.																																																			ሺ9ሻ 
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So we see that ED, in spite of the optimality properties reported [2] under noise Gaussian model, is rather limited 

from the perspective of one-class detection as it constraints the noise PDF to be multivariate Gaussian. 

In the next section we are going to test the behavior of COCD with respect to ED and PED in a set of 

Gaussian/non-Gaussian and independent/non-independent noise scenarios. An interpretation in terms of the 

Edgeworth expansion will be given in Section 4. 

 

3. Experiments 

To verify the relative performance of the different detectors we have generated real acoustic events and 

combined them with different kinds of synthetic background noise. In that way we perform a hybrid 

real/simulated verification, where the noise model is under control, but where the events to detect are real 

sounds. Four types of representative sounds were considered: broken glass, shout, slap and walkie-talkie, having 

different time and/or spectral characteristics. Five consecutive events were generated for every type of sound, 

and the whole twenty digitalized events (frequency sampling 44,1 KHz) were sequentially disposed as indicated 

in figure 1, thus forming a sequence of 6x106 samples. Then synthetic noises were superimposed on that 

sequence. Different noise models were synthesized varying the marginals PDF, the signal to noise ratio (SNR) 

and the autocorrelation matrix as indicated in Table I. 

A moving window of 256 samples (length N of the observation vector x) was shifted trough the noisy sequence, 

and tests were made at every shift with a scanning of thresholds. As we know the location of the events, we may 

determine false alarms or misdetections to obtain the Receiver Operating Characteristics (ROC) representing 

the probability of detection (Pd) in terms of the probability of false alarm (Pf). We show in Table II a pseudocode 

description of the different steps of the procedure, including a training part to estimate the noise model 

information required for the implementation of the detectors.  

We can see in the figure 2 (left) the ROC curves obtained for ED, PED and COCD with independent Gaussian 

noise, for the three different SNR. All the detectors behave the same since ED is a particular case of PED and 

COCD for independent Gaussian noise. In figure 2 (right), the noise is non-independent Gaussian and thus, 

those methods which consider the possible presence of dependence (PED and COCD) are better than ED, for 

the same SNR. On the other hand, being the noise Gaussian, PED and COCD get the same performance.  

In the figure 3, we show the case of two non-Gaussian independent noises: uniform (left) and Gamma (right). 

Uniform noise is distributed between -1 and 1, this distribution is representative of highly non-Gaussian 

behaviors. On the other hand the two parameters of the Gamma distribution were fitted so that the mean was 7 

and the variance 9.8. Thus we obtain a non-Gaussian noise closer to Gaussian than the uniform noise. The levels 

of the acoustic signals of figure 1 were adjusted to fit the same three different SNR of figure 2. As expected, 

COCD gives the best results in both cases due to the non-Gaussianity of the noise, while PED and ED behave 
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the same (noise is independent). Moreover, notice that the improvement of COCD is higher for uniform noise 

than for Gamma distributed noise. 

Finally figure 4 shows the same two cases of non-Gaussian noises: uniform (left) and Gamma (right) but now 

they are non-independent. Again COCD gives the best results, but now PED is better than ED due to the non-

independent noise. In the next section we are making and interpretation of the methods in terms of the 

Edgeworth expansion, in an effort to gain insights into the generalization of the superiority of COCD, as well 

as finding possible limitations and further extensions of the new detector. 

4. Discussion 

We have seen that the expectations of Section 2 have been verified in the experiments of Section 3: the use of 

the Gaussian copula improves the performance of classical detectors when noise is non-Gaussian and non-

independent. However experiments are limited to some particular types of non-Gaussian noises, so one may 

wonder if the Gaussian copula would have general interest in the wide range of applications where a diversity 

of non-Gaussian noises may appear (see for example [17] and references therein) . Specifically one question 

may be posed: would COCD is expected to always improve the performance of ED and PED in presence of 

non-Gaussian and non-independent noise? Let us resort to the multivariate Edgeworth expansion [18], [19], 

[20]. Given a zero-mean random vector y with correlation matrix ܀௬, its multivariate PDF may be expressed in 

the form 

௫݂ሺܡሻ ൌ
ଵ

ଶగಿ మ⁄ ห࢟܀ห
భ/మ ൉ exp ቀെ

ܡష૚࢞܀ܡ

ଶ
ቁ ,ܡ൫ܣ  (10a)															.																																																			௬൯܀

 

,ܡ൫ܣ ௬൯܀ ൌ 1 ൅
ଵ

଺
௜,௝,௞ࣄ ത݄௜௝௞൫ܡ, ௬൯܀ ൅

ଵ

ଶସ
௜,௝,௞,௟ࣄ ത݄௜௝௞௟൫ܡ, ௬൯܀ ൅

ଵ

଻ଶ
௟,௠,௡ࣄ௜,௝,௞ࣄ ത݄

௜௝௞௟௠௡൫ܡ,   (10b)										௬൯…܀

 

Where ࣄ௜,௝,…		are cumulant matrices and ݄ത௜௝…		are generalized Hermite tensors (see [19] for a detailed description 

of the definitions). ED and PED assume first-order approximations (ܣ൫ܡ, ௬൯܀ ൎ 1 ) of the Edgeworth expansion 

to model the multivariate PDF of the noise. Thus, referring to (10), in ED  ܡ ൌ ௬܀ , ܟ ൌ ۷, and in PED ܡ ൌ   ,ܟ

௬܀ ൌ  ௪. Apart from the truncation error, these first-order approximations are not able to capture the possible܀

non-Gaussianity of the marginals, as the marginals of a multivariate Gaussian are necessarily Gaussian.  

 

On the other hand, as explained in Section 2, the Gaussian copula has an equivalent interpretation given by 

equation (5). A Gaussian copula model is equivalent to consider that, once the original non-Gaussian noise 

random variables ݓ௡ are transformed into standard Gaussian noise random variables ݒ௡  by the nonlinear 

function ݒ௡ ൌ ݃ሺݓ௡ሻ ൌ Φିଵሺܨሺݓ௡ሻሻ, the multidimensional PDF (dependence model) of the elements of the 

noise vector v is multivariate Gaussian. Hence, COCD also assumes (implicitly) a first-order approximation 

(see (5)) but on the transformed domain ܞ ൌ ݃ሺܟሻ, i.e., in (10) ܡ ൌ ௬܀  ,ܞ ൌ  ௩. Now the marginals of v are܀
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correctly captured by the first-order approximation, even though the marginals of the original noise w can be 

arbitrary. Therefore COCD should work better than ED and PED for any type of non-Gaussian noise. 

 

Approaching COCD from this new perspective, some improvement should be expected by adding more terms 

in the Edgeworth expansion of v while keeping the Gaussianity of the marginals ௡݂ሺݒ௡ሻ. In relation with this, it 

is noticeable that some works have proposed finite multivariate expansions inspired in the Edgeworth´s in an 

effort to deal with practical implementation problems. Thus in [21] it is proposed the expansion (we apply it 

directly to v) 

௩݂ሺܞሻ ൌ
1

ேߨ2 ଶ⁄ ଵ/ଶ|࢜܀|
൉ exp ቆെ

ܞ૚ି࢜܀்ܞ
2

ቇ ൅ෑ ௡݂
௚ሺݒ௡ሻ

ே

௡ୀଵ

෍෍݀௤ܪ௤ሺݒ௡ሻ

ொ

௤ୀଵ

ே

௡ୀଵ

																	.																		ሺ11ሻ 

 

Where, ݂ ௡
௚ሺݒ௡ሻ is a standard univariate Gaussian PDF, ݀ ௤ are constants depending on the higher-order moments 

of the random variable	ݒ, and ܪ௤ሺ. ሻ is the Hermite polynomial of order q. It is shown in [21] that the 

corresponding marginals are given by  

௡݂ሺݒ௡ሻ ൌ ௡݂
௚ሺݒ௡ሻ ቎1 ൅෍݀௤ܪ௤ሺݒ௡ሻ

ொ

௤ୀଵ

቏																																										.																		ሺ12ሻ 

So, imposing that the marginals are standard Gaussians ( ௡݂ሺݒ௡ሻ ൌ ݂௚ሺݒ௡ሻ ) implies that ݀௤ ൌ  and that ݍ∀	0

௩݂ሺܞሻ ൌ
ଵ

ଶగಿ మ⁄ భ/మ|࢜܀|
൉ exp ቀെ

ܞష૚࢜܀೅ܞ

ଶ
ቁ, thus adding more terms in the expansion will be incompatible with 

keeping the Gaussianity of the marginals, or stayed in a more favorable way for the Gaussian copula: no better 

approximation than the first-order approximation exists if the marginals  are constrained to be Gaussian in the 

finite expansion (11) . In any case, working on (10), it should be possible to find 8extensions of the Gaussian 

copula. 

 

5. Conclusions 

We have presented a one-class detector appropriate for the practical scenario in which there is total ignorance 

about the signal model. The general case of non-Gaussian non-independent noise has been considered. 

A Gaussian copula model has been proposed to capture the possible dependence, meanwhile conventional 

methods may be used to estimate the marginals. We have seen that classical energy detectors are particular cases 

of the Gaussian copula-based detector, when the original noise PDF is assumed multivariate Gaussian. Thus 

energy detectors degrade in presence of non-Gaussian noise, being the one-class detector based on the Gaussian 

copula a more appropriate alternative. Experiments combining simulated noise and real acoustic events have 

confirmed the later statement.  
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Some discussion has been done in the framework of PDF expansions to justify the general applicability of the 

new proposed detector, and to open some possible extensions of the Gaussian copula. 

Acknowledgments 

This work has been supported by Generalitat Valenciana under grant PROMETEO 2010-040, and by the 

European Comission under grant FP7-270318 (ArtSense). 

References 

[1] L. L. Scharf, Statistical Signal Processing, Addison-Wesley, Reading, Mass, USA, 1991. 

[2] S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice-Hall, Englewood 

Cliffs, NJ, 1998. 

[3] J. Moragues, L. Vergara, J. Gosálbez, and I. Bosch, “An extended energy detector for non- Gaussian and 

non-independent noise,” Signal Process., vol. 89, no. 4, pp. 656-661, 2009. 

[4] Y.Chen, “Improved Energy Detector for Random Signals in Gaussian Noise,” IEEE Trans. On Wireless 

Comm., vol. 9, no. 2, pp. 558-563, 2010. 

[5] J. Moragues, L. Vergara, J. Gosálbez, “Generalized Matched Subspace Filter for Nonindependent Noise 

Based on ICA,”, IEEE Trans. on Signal Processing, vol.59, no. 7, pp. 3430-3434, 2011. 

[6] O. Mazhelis, “One-Class Classifiers: A Review and Analysis of Suitability in the Context of Mobile-

Masquerader Detection,” ARIMA/SACJ, no. 36, pp. 29-48, 2006. 

[7] M. Markou, S.Sameer, “Novelty Detection: A review-Part 1, Statistical Signal Processing,” Signal 

Processing, vol.83 , pp. 2481-2497, 2003. 

[8] D.W. Scott, S.R. Sain, Multidimensional density estimation, in: C.R. Rao, E.J. Wegman (Eds.), Handbook 

of Statistics, vol. 23: Data Mining and Computational Statistics, Elsevier, Amsterdam, 2004. 

[9] R. B. Nelsen, An Introduction to Copulas, Springer, 2006. 

[10] R. T. Clemen y T. Reilly, “Correlations and Copulas for Decision and Risk Analysis,” Management 

Science, vol. 45, no. 2, pp. 208–224, 1999. 

[11] U. Cherubini, E. Luciano, y W. Vecchiato, Copula Methods in Finance, 1.a ed. Wiley, 2004. 

[12] S. G. Iyengar, P. K. Varshney, T. Damarla, “A Parametric Copula-Based Framework for Hypothesis 

Testing Using Heterogeneous Data,” IEEE Trans. on Signal Processing, vol.59, no.5, pp. 2308–2319, 2011. 

[13] A. Sundaresan, P. K. Varshney, y N. S. Rao, “Copula-Based Fusion of Correlated Decisions,” IEEE 

Transactions on Aerospace and Electronic Systems, vol.47, no.1, pp. 454–471, 2011. 

[14] S. G. Iyengar, R.Niu, P. K. Varshney, “Fusing dependent decisions for hypothesis testing with 

heterogeneous sensors,” IEEE Trans. on Signal Processing, vol.60, no.9, pp.  4888-4896, 2012. 

[15] A. Sklar, “Fonctions de répartition à n dimensions et leurs marges,” Publ. Inst. Statist. Univ. Paris, vol. 8, 

pp. 229–231, 1959. 

[16] P. Song, “Multivariate dispersion models generated from Gaussian copula,” Scand. Journal of Stat., vol. 

27, no.2, pp. 305-320, 2000. 



11 
 

[17] L.M. Garth, H.M. Poor: “Detection of Non-Gaussian Signals: A Paradigm for Modern Statistical Signal 

Processing”, Proceedings of the IEEE, vol.82, no.7, pp. 1061-1095,  1994  

[18] A. Stuart, J.K. Ord: Kendall’s Advance Theory of Statistics, vol 1. Edward Arnold, New York, 1994. 

[19] P. McCullagh: “Tensor notation and cumulants of Polynomials,” Biometrika, vol.71, no.3, pp.461-476, 

1984. 

[20] J. Chambers: “On Methods of Asymptotic Approximation to Multivariate Distributions” Biometrika, vol. 

54, pp.367-383, 1969. 

[21] J. Perote, “The Multivariate Edgeworth-Sargan Density”. Spanish Economic Review , vol.6, pp. 77-96, 

2004. 

  



12 
 

Noise marginal PDF: ݂ሺݓሻ Gaussian, Uniform, Gamma 

SNR: 10݈݃݋
ௌ௜௚௡௔௟	௘௡௘௥௚௬

ே௢௜௦௘	௠௘௔௡	௣௢௪௘௥
 0 dB, -1 dB, -2 dB 

 

Noise correlation matrix 

Independent noise:  ܀௩ ൌ ۷ 

Non-independent noise: ܀௩ obtained from real 

air conditioning noise records 

 

Table I. Description of the different synthetic noise models considered 
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Given ݓ௜			݅ ൌ 1…   noise samples for estimating the noise model    ܫ
Given ܠ௞			݇ ൌ ܭ…1 labelled observation vectors (Nx1) for testing 

ED PED COCD 

-Estimate the variance of the noise  
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-For  ߣ ൌ ௠௔௫ߣ…0  

For  ݇ ൌ 		ܭ…1

௞ܠ
௞ܠࢀ ≷ுబ

ுభ ොଶ݈݊ߪ ቆ
ଶߣ

ሺ2ߪߨොଶሻே
ቇ 

end 
Count the percentage of true 
positives and false positives to 
estimate the couple    ,d fP P   

end 
 

-Plot the ROC curve 
  

-Estimate the variance of the noise
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

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-Form noise vectors ܟ௟		݈ ൌ  of				ܮ…1
size Nx1 
 
-Estimate the standard correlation matrix 
of the noise (NxN) 

  1
2
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ˆ ,
ˆ

L
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w

L
n m


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w w

R  

 
-For  ߣ ൌ ௠௔௫ߣ…0  

For  ݇ ൌ  ܭ…1

௞ܠ
௞ܠ෡௪ି૚܀ࢀ ≷ுబ

ுభ ොଶ݈݊ߪ	 ቆ
ଶߣ

ห܀෡௪หሺ2ߪߨොଶሻே
ቇ 

end 
Count the percentage of true positives 
and false positives to estimate the 
couple    ,d fP P   

end 
 

-Plot the ROC curve 
 

-Estimate the noise marginal density መ݂ሺݓሻ ൌ
መ݂ሺܪ/ݔ଴ሻ and distribution function ܨ෠ሺݓሻ ൌ
଴ሻܪ/ݔ෠ሺܨ ൌ ׬ መ݂ሺܪ/ݕ଴ሻ݀ݕ

ஶ
ିஶ  

(many parametric or nonparametric methods are 
available) 

 
-Transform the training samples in standard 
Gaussian random variables  
 
௜ݒ ൌ ො݃ሺݓ௜ሻ ൌ Φିଵሺܨ෠ሺݓ௜ሻሻ					݅ ൌ 1…  				ܫ

 
-Form transformed noise vectors ܞ௟		݈ ൌ
 of size Nx1				ܮ…1
 
-Estimate the standard correlation matrix of 
the transformed noise (NxN) 
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-For  ߣ ൌ ௠௔௫ߣ…0  

    For  ݇ ൌ  ܭ…1
݃ሺܠ௞ሻ்൫܀෡௩ି૚ െ ۷൯݃ሺܠ௞ሻ

െ 2෍ ݈݊ መ݂ሺݔ௞௡ ⁄଴ܪ ሻ
ே

௡ୀଵ

≷ுబ
ுభ ݈݊ ቆ

ଶߣ

ห܀෡࢜ห
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    end 
 

Count the percentage of true positives and 
false positives to estimate the couple

   ,d fP P   

end 
 

-Plot the ROC curve 
 

 

Table II. Description of the different steps for the implementation of the detectors 

  



14 
 

 

 

 

Figure 1. Sequence of real acoustic events generated to verify the different detectors. 
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Figure 2. ROC curves: Independent Gaussian noise (left) and non-independent Gaussian noise (right) 
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Figure 3. ROC curves: Independent uniform noise (left) and independent Gamma noise (right) 
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Figure 4. ROC curves. Non-independent uniform noise (left) and non-independent gamma noise (right) 

 

 


