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Abstract—From many fewer acquired measurements than suggested by the Nyquist sampling theory, compressive sensing (CS) the-

ory demonstrates that, a signal can be reconstructed with high probability when it exhibits sparsity in some domain. Most of the con-

ventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet and gradient domain) for the entirety of a 

signal, which are irrespective of the non-stationarity of natural signals and cannot achieve high enough degree of sparsity, thus resulting 

in poor CS recovery performance. In this paper, we propose a new framework for image compressive sensing recovery using adaptively 

learned sparsifying basis via L0 minimization. The intrinsic sparsity of natural images is enforced substantially by sparsely representing 

overlapped image patches using the adaptively learned sparsifying basis in the form of L0 norm, greatly reducing blocking artifacts and 

confining the CS solution space. To make our proposed scheme tractable and robust, a split Bregman iteration based technique is de-

veloped to solve the non-convex L0 minimization problem efficiently. Experimental results on a wide range of natural images for CS 

recovery have shown that our proposed algorithm achieves significant performance improvements over many current state-of-the-art 

schemes and exhibits good convergence property. 

 
Index Terms—compressive sensing, image recovery, sparsity, sparsifying basis, optimization 

 

 

 

1. Introduction 

 

As a fundamental problem in the field of image processing, image restoration has been extensively studied in the past two 

decades [1]–[18]. It aims to reconstruct the original high quality image from its degraded observed version. It has been widely 

recognized that image prior knowledge plays a critical role in the performance of image restoration algorithms. Therefore, de-

signing effective regularization terms to reflect the image priors is at the core of image restoration.  

Classical regularization terms utilize local structural patterns and are built on the assumption that images are locally smooth 

except at edges. Several representative works in the literature are half quadrature formulation [2], Mumford-Shah (MS) model [3], 

and total variation (TV) models [1]. In recent years, very impressive image processing and restoration results have been obtained 

with local patch-based sparse representations calculated with dictionaries learned from natural images [11]–[14]. The sparse model 

assumes that each patch of an image can be accurately represented by a few elements from a basis set called a dictionary, which is 

learned from natural images [12]. Compared with traditional analytically-designed dictionaries, such as wavelets, curvelets, and 

bandlets, the learned dictionary enjoys the advantage of being better adapted to the images, thereby enhancing the sparsity and 
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showing impressive performance improvement [13], [14]. Another alternative significant property exhibited in natural images is 

the well-known nonlocal self-similarity, which depicts the repetitiveness of higher level patterns (e.g., textures and structures) 

globally positioned in images. A representative work is the popular nonlocal means (NLM) [5], which takes advantage of this 

image property to conduct a type of weighted filtering for denoising tasks by means of the degree of similarity among surrounding 

pixels. Later, inspired by the success of nonlocal means (NLM) denoising filter, a series of nonlocal regularization terms for in-

verse problems exploiting nonlocal self-similarity property of natural images are emerging [10], [15]. In recent works, the sparsity 

and the self-similarity of natural images are usually combined to achieve better performance [16]–[18]. 

In the field of image restoration, perhaps the hottest topic is the recent development of Compressive Sensing (CS) theory, which 

has drawn quite an amount of attention as an alternative to the current methodology of sampling followed by compression 

[19]–[21]. By exploiting the redundancy existed in a signal, CS conducts sampling and compression at the same time. CS theory 

shows that a signal can be decoded from many fewer measurements than suggested by the Nyquist sampling theory, when the 

signal is sparse in some domain, which has greatly changed the way engineers think of data acquisition. 

In CS theory, a signal is usually sampled by a random projection that is signal-independent and reconstructed by minimizing the 

0  or 1  optimization problem with the prior that the signal is sparse in some transformation domain. Since the 0  minimization is 

discontinuous and an NP-hard problem, the most common one is to use the 1  norm, which is the optimal convex approximation of 

0  norm and has been proved that for many problems it is probable that the 1   norm is equivalent to the 0  norm in a technical 

sense. This equivalence result allows one to solve the 1   problem, which is easier than the 0  problem. Many CS recovery algo-

rithms are recently proposed: linear programming [22], gradient projection sparse reconstruction [23], matching pursuit [24], and 

iterative thresholding [25]. 

An attractive strength of CS is that the sampling process is made signal-independent and computationally inexpensive at the cost 

of high reconstruction complexity. This asymmetric design is severely desirable in some image processing applications when the 

data acquisition devices must be simple (e.g. inexpensive resource-deprived sensors) [26], or when oversampling can harm the 

object being captured (e.g. X-ray imaging) [27].  

CS theory shows that the sparsity degree of a signal plays a significant role in recovery. The higher degree of a signal, the higher 

recovery quality it will have. So, seeking a domain in which the signal has a high degree of sparsity is one of the main challenges 

CS recovery should face. However, natural signals such as images are typically non-stationary, there exists no universal domain in 

which all parts of the signals are sparse. The most current CS recovery methods explore a set of fixed domains (e.g. DCT, wavelet 

and gradient domain) [28, 29, 30, 34], and therefore are signal-independent or not adaptive, resulting in poor CS recovery per-

formance.  

Towards this problem, Wu et al. [27] proposed a model-guided adaptive recovery of compressive sensing (MARX) utilizing a 

piecewise autoregressive model to adapt to the changing second order statistics of natural images. Many recent works incorporated 

additional prior knowledge about transform coefficients (statistical dependencies, structure, etc.) into the CS recovery framework, 

such as Gaussian scale mixtures (GSM) models [31], tree-structured wavelet (TSW) [32], tree-structured DCT (TSDCT) [33].  



  

Considering the fact that the natural image signal is non-stationary and inspired by the recent great success of sparse represen-

tation in image processing, in this paper, we propose to enforce the intrinsic sparsity of a natural image by sparsely representing its 

overlapped image patches using adaptively learned sparsifying basis. All the sparse codes of image patches constitute the adaptive 

redundant sparse representation of the whole image, which is incorporated into the optimization problem for the whole image CS 

recovery in the form of 0  norm, greatly reducing blocking artifacts and confining the CS solution space. In addition, to make our 

proposed scheme tractable and robust, a split Bregman iteration based technique is developed to solve the non-convex 0  mini-

mization problem efficiently. Experimental results on a wide range of natural images for CS recovery have shown that our pro-

posed algorithm is quite competitive to the state-of-the-art methods. 

The remainder of the paper is organized as follows. Section 2 briefly reviews CS theory and introduce split Bregman iteration 

algorithm. Section 3 provides our proposed framework for image CS recovery using adaptive learned sparsifying basis via 0  

minimization. The implementation details of optimization are elaborated in Section 4. Experimental results are reported in Section 

5. In Section 6, we conclude this paper. 

 

 

2. Background 

 

2.1  Compressive Sensing 

 

When the signal is sparse in some domain, CS allows exact recovery of the signal from its measurements acquired by linear 

projection, whose number is much smaller than that of the original signal. Suppose a signal x N
 is of size N, and its transform 

coefficient vector over domain is denoted by , i.e. x . x  is said to be sparse in , if the elements in , are mostly 

zeros, or nearly sparse if the dominant portion of are either zeros or very close to zeros. The sparsity of x  in  is quantified by 

the number of significant elements within the coefficient vector .  

More specifically, denote the linear measurements of x  by y M , namely, y x . Here,  represents the random 

projections and is an M×N measurement matrix such that M is much smaller than N. The purpose of CS recovery is to recover x  

from y  with subrate, being S = M/N, which is usually formulated as the following p  optimization problem: 

|| ||  || ||2

2
1
2min py λ+

  
,                                                                         (1) 

where λ  is non-negative parameter, and p
 
is usually set to 1 or 0, characterizing the sparsity of the vector . 

1|| ||
 
is 1  norm, 

adding all the absolute values of the entries in a vector, while 
0|| ||  is 0  norm, counting the nonzero entries of a vector. Ac-

cording to [19], CS is capable of recovering K-sparse signal x  (with an overwhelming probability) from y  of size M, provided 

that the number of random samples meets M ≥ cK(N/K). The required sampling rate (M/K), to incur lossless recovery, is roughly 

proportional to (K/N). A compressive imaging camera prototype using random projection has been presented in [21]. 

 

2.2  Split Bregman Iteration (SBI) 

 



  

In order to facilitate the discussions in the following optimization section, this section briefly introduces the well-known convex 

optimization algorithm split Bregman iteration (SBI). Split Bregman Iteration (SBI) is recently introduced by [36] for solving a 

class of 1  related minimization problems. The basic idea of SBI is to convert the unconstrained minimization problem into a 

constrained one by introducing the variable splitting technique and then invoke the Bregman iteration [35] to solve the constrained 

minimization problem. Numerical simulations in  show that it converges fast and only uses a small memory footprint, which makes 

it very attractive for large-scale problems [37].  

Consider a constrained optimization problem 

,
s. t.   ,,  min ( ) ( )N Mf g

u v
v u Gvu

 
                                                                   (2)

 

where N MG   and : ,  :N Mf g   are convex functions. The SBI to address problem (2) works as follows: 

Algorithm 1 Split Bregman Iteration (SBI) 

1.    Set 0t  , choose 0, 
0 0 0

, ,0 0 0b u v   . 

2.    Repeat 

3.     ;
2

2

( +1) ( ) ( )

2argmin ( )t t tfuu Gvu u b
    

4.        ;
2

2

( +1) ( +1) ( )

2argmin ( )t t tgv Gv v u v b
    

5.    ;( +1) ( ) ( +1) ( +1)( )t t t tGb b u v    

6.    ;+1t t  

7.      Until stopping criterion is satisfied 

In SBI, the parameter   is fixed to avoid the problem of numerical instabilities instead of choosing a predefined sequence { }k  

that tends to infinity. The convergence of Split Bregman Iteration can be attested by the equivalence between SBI and the Doug-

las-Rachford splitting method (DRSM) applied to its dual problem [38].  

 

 

3. Image CS recovery using adaptively learned sparsifying basis via L0 minimization 

 

In this section, we first introduce the patch-based redundant sparse representation of natural images, and then establish a new 

framework for image compressive sensing recovery using adaptively learned sparsifying basis via 0  minimization.  

 

3.1  Patch-based Redundant Sparse Representation 

 

In literature, the basic unit of sparse representation for natural images is patch [12]. Mathematically, denote by 
Nx and 

kx
Bs

 
the vector representations of the original image and an image patch of size B Bs s  at location , 1, 2,...,k  k = n . 

Then we have 

,k kRx x                                                                                     (3) 

where N
kR

Bs  is a matrix operator that extracts patch kx  from x . Note that patches are usually overlapped, and such 

patch-based representation is highly redundant. In the experimental section, we will illustrate that the overlapped technique and the 



  

patch-based redundant representation are significant to achieve high recovery quality. Therefore, the recovery of x  from { }kx  

becomes an over-determined system, which is straightforward to obtain the following Least-Square solution [11]: 

,
-1

1 1
( ) ( )k k k kk k

n n
R R R xx T T

                                                                     
 (4) 

which is nothing but an abstraction strategy of averaging all the overlapped patches. 

Given dictionary D Bs M
, the sparse coding process of each patch kx  over D  is to find a sparse vector k  (i.e., most of 

the coefficients in k  are zero or close to zero) such that k kDx . Then the entire image can be sparsely represented by the 

set of sparse codes k . 

Similar to Eq. (4), reconstructing x  from its sparse codes k  
is formulated: 

,
-1

1 1
( ) ( )k k k kk k

n n
D DR R Rx T T

                                                       (5) 

where  denotes the concatenation of all k , that is,  , ,...,1 2[ ]n
TT T T , which is patch-based redundant sparse repre-

sentation for x . 

 

3.2  Image CS Recovery via 0  Minimization 

 

Now, incorporating Eq. (5) into Eq. (1), our proposed scheme for image compressive sensing recovery using adaptive learned 

sparsifying basis via 0   minimization is formulated as: 

|| ||  || ||2

2 0
1
2min Dy λ+

  
.                                                                (6) 

Here, D  replaces  in Eq. (1), standing for adaptively learned sparsifying basis, which will be given in the next section, and  

denotes the patch-based redundant sparse representation for the whole image over D . 

As we know, since 0  minimization is non-convex and NP-hard, the usual routine is to solve its optimal convex approximation, 

i.e., 1  minimization, which has been proved that, under some conditions, 1  minimization is equivalent to 0  minimization in a 

technical sense. The 1  minimization can be solved efficiently by some recent convex optimization algorithms, such as iterative 

shrinkage/thresholding [39], [40], [45], and split Bregman [36], [37] algorithms. Therefore, the straightforward method to solve 

Eq. (6) is translated into solving its 1  convex form, that is  

|| ||  || ||2

2 1
1
2min Dy λ+  .                                                                 (7) 

However, a fact that is often neglected is, for some practical problems including image inverse problems, the conditions guar-

anteeing the equivalence of 0  minimization and 1  minimization are not necessarily satisfied. Consequently, this paper proposes 

to exploit the framework of convex optimization algorithms to solve the non-convex 0  minimization, i.e., Eq. (6) directly. Ex-

perimental results demonstrate the effectiveness and the convergence of our proposed approach.  

 

 
4. Optimization for Proposed L0 minimization 

 

In this paper, we adopt the framework of split Bregman iteration (SBI) [37] to solve Eq. (6), which is verified to be more ef-



  

fective than iterative shrinkage/thresholding (IST) [39] in our experiments (See Section 5 for more details). The developed opti-

mization details to solve the proposed 0  minimization problem effectively and efficiently are given in this section. 

According to SBI in Section 2, the original minimization problem (2) is split into two sub-problems. The rationale behind is that 

each sub-problem minimization may be much easier than the original problem (2). 

Now, let us go back to Eq. (6) and point out how to apply the framework of SBI to solve it. By introducing a variable u , we first 

transform Eq. (6) into an equivalent constrained form, i.e., 

0,
,  s.t. 

2

2
1
2min

u
Dy u uλ .                                                                (8) 

Define ,
2

2
1
2( )f y uu .

0
( )= g λ

 

Then, invoking SBI, Line 3 in Algorithm 1 becomes: 

.( )( +1) ( ) 22

2 2
1
2 2argmin tt t

u
Dy uu u b

                                                               (9) 

Next, Line 4 in Algorithm 1 becomes: 

.
2( +1) ( +1) ( )

0 22argmint t tDu b
   λ

                                                 
(10) 

According to Line 5 in Algorithm 1, the update of ( )tb  is 

.( +1)( +1) ( ) ( +1)( )tt t t   Db b u                                                           (11) 

Thus, by SBI, the minimization for Eq. (6) is transformed into solving two sub-problems, namely, , u  sub-problems. In the 

following, we will provide the implementation details to obtain the efficient solutions to each separated sub-problem. For sim-

plicity, the subscript t  is omitted without confusion. 

 

4.1 u  Sub-problem 

 

Given x , the u  sub-problem denoted by Eq. (9) is essentially a minimization problem of strictly convex quadratic function, 

that is 

1 + .
2 2

2 2
1
2 2min ( )=min - -u u Dy u u buQ

                                      
(12) 

Setting the gradient of 1( )uQ
 
to be zero gives a closed solution for Eq. (12), which can be expressed as 

                                   ˆ ,1( )T I qu                                                                                       (13) 

where + ,( )T Dq y b   I is identity matrix.  

As for image compressive sensing (CS) recovery, however,  is a random projection matrix without special structure. Thus, it 

is too costly to solve Eq. (12) directly by Eq. (13). Here, to avoid computing the matrix inverse, the gradient descent method is 

utilized to solve Eq. (12) by applying 

û u d ,                                                                                        (14) 



  

where d  is the gradient direction of the objective function 
1
( )uQ and  represents the step. Therefore, solving u  sub-problem 

for image CS recovery only requires computing the following equation iteratively 

ˆ .( ( ))Dyu u u u bT T

 
                                                          (15) 

where 
T

 and yT  can be calculated before, making above computation more efficient. As a matter of fact, in our implemen-

tation, one iteration is accurate enough. 

 

4.2  Sub-problem 

 

Given u , according to Eq. (10), the  sub-problem can be formulated as 

2
1 2

2 02min ( ) min D rQ    λ ,                                                              (16) 

where r u b . 

Note that it is difficult to solve Eq. (16) directly due to the complicated definition of . Instead, we make some transformation. 

Let Dx  , then Eq. (16) equally becomes 

1 2

2 02min x r   λ .                                                                             (17) 

To enable a tractable solution to Eq. (17), in this paper, a general assumption is made. Concretely, we regard r
 
as some type of 

the noisy observation of x , denote the error vector by e x r , and then make an assumption that each element of e  follows 

an independent zero-mean distribution with the same variance .2  It is worth emphasizing that the above assumption does not 

need to be Gaussian process, which is more general and reasonable. By this assumption, we can prove the following conclusion. 

THEOREM 1. Let , , , sN B
k kx r x r  , and denote the error vector by x re and each element of e  by ,( )je  ,...,1 N.j   

Assume that ( )je
 
is independent and comes from a distribution with zero mean and variance .2  Then, for any 0> , we have the 

following property to describe the relationship between 
2

2
x r  and 

2

21 k kk

n
x r , that is, 

1 1 ,
2 2

2 21

lim - - - 1| |{ }N
K

k kk

n

N KP x r x r                                                    (18) 

where ( )P  represents the probability and BK ns . 

Proof : 

Due to the assumption that each ( )je  is independent, we obtain that each 
2( )je  is also independent. Since ( )[ ] 0jEe 

 
and 

2V ( )ar[ ]je σ , we have the mean of each 
2( )je , which is expressed as 

,...,,  .2 2 2( ) ( ) ( ) 1[ ] Var[ ] [ [ ]] Nj j jE E je e e σ                                                                 (19) 

By invoking Law of Large Numbers in probability theory, for any 0> , it yields 1lim ,
1

2 2
2( ) 1-{| | }N

N jNP je σ i.e., 

2 2
2

1
2lim 1{| | }

N NP x r σ 


     ,                                                                           (20) 



  

Further, let ,P Px r denote the concatenation of all the patches kx  and kr , 1, 2, ...,k = n , respectively, and denote each element 

of P Px r by , ...,, =( ) 1 Ki iPe . Due to the assumption, we conclude that ( )iPe  is independent with zero mean and variance 

.2σ   

Therefore, the same manipulations with Eq. (20) applied to 
2( )iPe  lead to 1lim

1

2 2

2( ) 1{| | }K

iK
K iP Pe σ , namely, 

1lim
2

2
1 2 2 1| |{ }

K
k kk

n

KP x r σ  .                                                       (21) 

Considering Eqs. (20) and (21) together, we prove Eq. (18). 

According to Theorem 1, there exists the following equation with very large probability (limited to 1) at each iteration t: 

22 ( ) ( )( ) ( )

12 2

1 1 t tt t

k

n

N Kx r x rk k .                                                            (22) 

Next, by incorporating Eq. (22) into Eq. (17), it yields 

  

,

2

021

2

2 01 1

2

2 01

2

2

2

1

1

1

min

min

min

k

k k

k

n

n n

n

K
N

K
N

x r

x r

x r

k k

k k k

k k k

λ

λ

                                                     

(23) 

where ( ) ( )K Nλ .  

It is obvious to see that Eq. (23) can be efficiently minimized by solving n  sub-problems for all the overlapped patches xk . 

Each patch based sub-problem is formulated as: 

2

2 0

2

2 0

2

2

1

1

argmin

argmin D

x r

r

k

k

k k k

k k k

.                                                                   (24) 

Obviously, Eq. (24) can also be considered as the sparse coding problem. To achieve high sparsity, we directly solve the con-

strained form of Eq. (24), i.e. ,  

      
2

0 2
min s.t. D r

k
k k k ,                                                                  (25) 

where  is a control factor and .  

Note that Eq. (25) can be achieved efficiently by orthogonal matching pursuit (OMP) algorithm [24]. This process is applied for 

all n  overlapped patches to achieve ˆ , which is the final solution for  sub-problem in Eq. (16). 

 

4.3 Adaptive Sparsifying Basis Learning 

 

The key of the sparse representation modeling lies in the choice of dictionary or sparsifying basis D . In other words, how to 

seek the best domain to sparsify a given image? Much effort has been devoted to learning a redundant sparsifying basis from a set 

of training example image patches. To be concrete, given a set of training image patches 
1 2
, ,...,[ ]S s s s

J
, the goal of sparsifying 

basis learning is to jointly optimize the sparsifying basis D  and the representation coefficients matrix 
1 2

[ ], ,...,
J  such 

that k kDs  and k p L , where p  is 0 or 1. This can be formulated by the following minimization problem: 



  

,

ˆˆ , , s.t. 
2

21
( ) argmin k

J

k k pk
k.

D
D Ds L

                                               

(26) 

Apparently, the above minimization problem in Eq. (26) is large-scale and highly non-convex even when p  is 1. To make it 

tractable and solvable, some approximation approaches, including MOD [41] and K-SVD [12], have been proposed to optimize 

D  and alternatively, leading to many state-of-the-art results in image processing. 

In order to achieve adaptive sparsifying basis, the training image patches usually come from the original image. Nonetheless, in 

practice, the original image x  is not available, while we only have access to the CS measurements in Eq. (1). Such a problem with 

chicken-and-egg flavor is usually solved by an iterative way in which we obtain the estimate of x  and  D  alternately [17]. Be-

cause r  in Eq. (17) is regarded as a good approximation of x  at each iteration, in this paper, we conduct adaptive sparsifying 

basis learning using all the patches extracted from r . Due to its effectiveness and efficiency, K-SVD is adopted as the adaptive 

sparsifying basis learning method. More details about K-SVD can be found in [12]. 

 

4.4 Summary of Proposed Algorithm 

 

So far, all issues in the process of handing the above two sub-problems have been solved. In fact, we acquire the efficient so-

lution for each sbeparated sub-problem, which enables the whole algorithm more efficient and effective. In light of all derivations 

above, a detailed description of the proposed framework for image CS recovery using adaptive sparsifying basis via 0  minimi-

zation is provided in Table 1. 

 

 

5. Experimental results 

 

In this section, experimental results are presented to evaluate the performance of our proposed framework for image CS recovery 

using adaptive sparsifying basis via 0  minimization. Six test images are shown in Fig. 1. In our experiments, the CS measure-

ments are obtained by applying a Gaussian random projection matrix to the original image signal at block level, i.e., block-based 

CS with block size of 32×32. The default parameter setting of proposed scheme is as follows: the size of each patch, i.e., 

B Bs s  is 8×8, and the size of sparsifying basis is 256. μ
 
is set to be  2.5e-3,   is set to be 1, and  is set to be 2. The value 

of  λ  is related to the overlapped step size, which will be given in the following. All the experiments are performed in Matlab 

7.12.0 on a Dell OPTIPLEX computer with Intel(R) Core(TM) 2 Duo CPU E8400 processor (3.00GHz), 3.25G memory, and 

Windows XP operating system. 

 

5.1 Effect of Overlapped Step Size 

 

The overlapped step size is defined as the distance between two adjacent patches to be processed. If the overlapped step size is 

the same as the patch size, all the patches are non-overlapped. If the overlapped step size is equal to one, it means the difference 

between two adjacent patches in the horizontal (or vertical) direction is only one column (or row). We first discuss the effect of 

overlapped step size to the CS recovery quality.  



  

In Fig. 2, the performance of various overlapped step sizes for two test images in the cases of image CS recovery with 

subrate=30% are provided. Obviously, the results illustrate that smaller overlapped step size provides higher quality of processed 

images. This is mainly because more estimates are generated for the image with smaller overlapped step sizes, which further 

demonstrates the effectiveness of the patch-based redundancy representation for natural images. In addition, the overlapped 

strategy takes advantage of the correlations between blocks to depress the blocking artifacts. Therefore, in the following experi-

ments, the overlapped step size is set be to 1. Furthermore, we have the relationship 64K N . Accordingly, in our test the pa-

rameter  λ  is empirically set to be 1.4e-3. 

 

5.2 Effect of Sparsifying Basis Selection 

 

In this sub-section, we will show the effect of sparsifying basis selection to the image CS recovery. Three types of sparsifying 

basis selections are given. The first one is to choose the fixed over-complete DCT basis, as shown in Fig. 3(a). The second one is to 

choose the global sparsifying basis, which is learned from a large set of natural images, as shown in Fig. 3(b). The last one is to 

choose the suggested sparsifying basis in our paper, which is adaptively learned from the processed image at each iteration. Fig. 

3(c) shows the adaptively learned sparsifying basis for image House at last iteration. Fig. 4 provides the CS recovery results for 

image House in the case of subrate =20% using three different sparsifying basis. From Fig. 4, it is clear to see that the recovered 

result by globally learned sparsifying basis is better than the one by fixed over-complete DCT basis. However, the adaptively 

learned sparsifying basis produces the best result, preserving sharper edges and finer details, which verifies the superiority of the 

proposed adaptively learned sparsifying basis for image CS recovery. 

 

5.3 Comparison between SBI and IST 

 

In previous works [30], [42], the 0  minimization non-convex optimizations for image CS recovery are usually solved by iter-

ative hard-thresholding algorithm [40], [45], which can be regarded as a special type of iterative shrinkage/thresholding (IST) 

algorithm [39]. Specifically, consider the following general optimization problem 

,min ( ) ( )N f g
u

uu


                                                                                    (27)
 

where ( )f u  is a smooth convex function with gradient which is Lipschitz continuous, and ( )g u
 
is a continuous convex function 

which is possibly non-smooth. The IST algorithm to solve problem (27) with constant step  is formulated as: 

( +1) ( ) ( )( )t t tfr u u ,                                                                                   (28) 

1 2

2

( +1) ( +1)
2argmin ( )t t gλuu u r u .                                                                  (29) 

Then, applying IST to solve our proposed non-convex 0  minimization Eq. (6) with constraint Du  can be expressed as 

the following iterations: 

( ) ( ) ( )t t tDu ,                                                                                     (30) 

( +1) ( ) ( )( )t t tT yr u u ,                                                                      (31) 



  

1 2( +1) ( +1)
022argmint t λD r .                                                            (32) 

It is obvious to observe that Eq. (32) is equivalent to the above  sub-problem, which can be solved efficiently. Hence, it is 

tractable to address Eq. (6) with IST algorithm.  

Note that applying the convex optimization algorithm SBI to solve our proposed non-convex 0  minimization is one of the 

main contributions of this paper. Here, we make a comparison between SBI and IST in our proposed image CS recovery 

framework using adaptively learned sparsifying basis. Take the cases of image CS recovery with subrate=30% for two gray 

images Leaves and Vessels as examples. Fig. 5 plots their progression curves of the PSNR (dB) results achieved by solving 

proposed 0  minimization with SBI and IST. The result achieved by proposed 0  minimization with SBI is denoted by SBI 

(red solid line), while the result achieved by proposed 0  minimization with IST is denoted by IST (black dotted line). Ob-

viously, SBI is more efficient and effective to solve our proposed 0  minimization problem than IST, with more than 2 dB and 

3 dB gains for images Leaves and Vessels. The visual comparison of image CS recovery between SBI and IST for image Leaves 

is shown in Fig. 6. It is apparent that the magnitude of the image CS recovery error (with respect to the original image) by SBI 

is much lower than that by IST, which fully demonstrates the superiority of SBI over IST for solving the proposed non-convex  

0  minimization.  

 

5.4 Comparison with State-of-the-Art Algorithms 

 

Our proposed algorithm is compared with four representative CS recovery methods in literature, i.e., wavelet method (DWT) 

[30], total variation (TV) method [29], multi-hypothesis (MH) method [42], collaborative sparsity (CoS) method [43], which deal 

with image signals in the wavelet domain, the gradient domain, the random projection residual domain, and the hybrid 

space-transform domain, respectively. It is worth emphasizing that MH and CoS are known as the current state-of-the-art algo-

rithms for image CS recovery. Due to the limit of space, only parts of the experimental results are shown in this paper. Please 

enlarge and view the figures on the screen for better comparison. Our Matlab code and all the experimental results can be 

downloaded at the website: http://idm.pku.edu.cn/staff/zhangjian/ALSB/. 

To evaluate the quality of the reconstructed image, in addition to PSNR (Peak Signal to Noise Ratio, unit: dB), which is used to 

evaluate the objective image quality, a recently proposed powerful perceptual quality metric FSIM (Feature SIMilarity) [44] is 

calculated to evaluate the visual quality. The higher FSIM value means the better visual quality. The PSNR and FSIM comparisons 

for six gray test images in the cases of 20% to 40% measurements are provided in Table 2 and Table 3, respectively. Our proposed 

algorithm achieves the highest PSNR and FSIM among the five comparative algorithms in most cases, which can improve roughly 

6.2 dB, 5.5 dB, 2.6 dB, and 2.0 dB on average, in comparison with DWT, TV, MH, CoS, respectively, greatly improving existing 

image CS recovery results. 

Some visual results of the recovered images by various algorithms are presented in Figs. 7~11. Obviously, DWT and TV gen-

erate the worst perceptual results. The CS recovered images by MH and CoS possess much better visual quality than those of DWT 

and TV, but still suffer from some undesirable artifacts, such as ringing effects and lost details. The proposed algorithm not only 



  

eliminates most of the ringing effects, but also preserves much sharper edges and finer details, showing much clearer and better 

visual results than the other competing methods. The high performance is attributed to the proposed 0  minimization, offering a 

powerful mechanism of characterizing the intrinsic sparsity of natural images by the redundant patch-based sparse representation 

using adaptively learned sparsifying basis, which is further solved efficiently by the proposed SBI based iterative techniques. Our 

work also offers a fresh and successful instance to corroborate the CS theory applied for natural images.  

 

5.5 Algorithm Complexity and Computational Time 

 

The complexity of the proposed algorithm is provided as follows. The solution to Problem (26) involves learning the adaptive 

sparsifying basis from a fraction of all N patches and exploiting it to obtain sparse approximations of the N patches. The sparsifying 

basis step utilizes the K-SVD algorithm and OMP for sparse coding. The computation is dominated by sparse coding which scales 

as ( )snJLTB , where T is the number of iterations in learning and J is the size of sparsifying basis. The costs of sparse coding all 

N patches by adaptively learned sparsifying basis is ( )snJLB . For a 256×256 image, the proposed algorithm requires about 8~9 

minutes for CS recovery, on an Intel Core2 Duo 2.96G PC under Matlab R2011a environment. Finally, we provide the computa-

tional time comparisons with various algorithms for Image House at different CS subrates in Table 4. 

 

5.6 Algorithm Convergence 

 

Since the objective function (6) is non-convex, it is difficult to give its theoretical proof for global convergence. Here, we only 

provide empirical evidence to illustrate the good convergence of the proposed algorithm. Fig. 12 plots the evolutions of PSNR 

versus iteration numbers for four test images with various subrates (subrate=30% and subrate=40%). It is observed that with the 

growth of iteration number, all the PSNR curves increase monotonically and ultimately become flat and stable, exhibiting good 

convergence property. Note that due to non-convexity of Eq. (6), it is natural that there are some perturbations in the curves. 

 

 

6. Conclusion 
 

In this paper, we propose to characterize the intrinsic sparsity of natural images by patch-based redundant sparse representation 

using adaptively learned sparsifying basis. This particular type of spare representation is formulated by non-convex 0  minimi-

zation for image compressive sensing recovery, which can be efficiently solved by the developed split Bregman iteration based 

technique. Experimental results on a wide range of natural images for CS recovery have shown that our proposed algorithm 

achieves significant performance improvements over many current state-of-the-art schemes and exhibits good convergence 

property.  
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Table 1: A Complete Description of Proposed Framework for Image CS Recovery 

Input: the CS measurements y  
and the random projection operator  

Initialization: 0, = = =, , , , , , ,(0) (0) (0)

st 0 0 0u b  B λ μ ;  

Repeat  

       Update ( +1)tu  by 
( 1) ( ) ( ) ( ) ( ) ( ) ( )( ( ))t t t t t t tT T+

Dyu u u u b ; 

;( +1) ( +1) ( )t t tr u b  ;( ) ( )K Nλ
 

 Update 
( +1)tD  by , s.t. 

2( +1) ( 1)

1 2
argmint t

k

J

k k pk
k+

L
D

D Dr ;  

; 

for Each patch 
kGx  

Reconstruct ˆ ( 1)t
k

+

 by computing  ˆ ( 1) 2

0 2
argmin s.t. t

k
k

+

k k kD r ; 

end for 

Update ˆ ( +1)t

  by concatenating all ˆ ( 1)t
k

+
; 

Update ( +1)tb  by computing ( +1)( +1) ( ) ( +1) ( +1)( )tt t t tDb b u   ; 

;+1t t
 

Until maximum iteration number is reached 

Output: Final restored image ˆˆ Dx . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2: PSNR Comparisons with Various CS Recovery Methods (Unit: dB) 

Subrate Algorithms House Barbara Leaves Monarch Parrot Vessels Avg. 

20% 

DWT 30.70 23.96 22.05 24.69 25.64 21.14 24.70 

TV 31.44 23.79 22.66 26.96 26.6  22.04 25.59  

MH 33.60 31.09 24.54 27.03 28.06 24.95 28.21 

CoS 34.34 26.60 27.38 28.65 28.44 26.71 28.69 

Proposed 35.86 31.61 27.15 28.23 29.56 30.14 30.43 

30% 

DWT 33.60 26.26 24.47 27.23 28.03 24.82 27.40 

TV 33.75 25.03 25.85 30.01 28.71 25.13 28.08 

MH 35.54 33.47 27.65 29.18 31.20 29.36 31.07 

CoS 36.69 29.49 31.02 31.38 30.39 31.35 31.72 

Proposed 38.15 34.73 31.10 31.48 32.24 34.60 33.72 

40% 

DWT 35.69 28.53 26.82 29.58 30.06 29.53 30.03 

TV 35.56 26.56 28.79 32.92 30.54 28.14 30.42 

MH 37.04 35.20 29.93 31.07 33.21 33.49 33.32 

CoS 38.46 32.76 33.87 33.98 32.55 33.95 34.26 

Proposed 40.13 37.16 34.66 34.33 34.38 38.27 36.49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: FSIM Comparisons with Various CS Recovery Methods 

Subrate Algorithms House Barbara Leaves Monarch Parrot Vessels Avg. 

20% 

DWT 0.9029 0.8547 0.7840 0.8155 0.9161 0.8230 0.8494 

TV 0.9051 0.8199 0.8553 0.8870 0.9018  0.8356 0.8675  

MH 0.9370 0.9419 0.8474 0.8707 0.9332 0.8756 0.9010 

CoS 0.9326 0.8742 0.9304 0.9171  0.9282 0.9214 0.9259 

Proposed 0.9542 0.9487 0.9106 0.8879 0.9433 0.9499 0.9324 

30% 

DWT 0.9391 0.8980 0.8314 0.8628 0.9445 0.8924 0.8947 

TV 0.9384 0.8689 0.9092 0.9279 0.9329 0.9011 0.9131 

MH 0.9546 0.9614 0.8993 0.9003 0.9529 0.9360 0.9341 

CoS 0.9592 0.9267 0.9606 0.9449 0.9490 0.9664 0.9511 

Proposed 0.9722 0.9716 0.9509 0.9328 0.9622 0.9775 0.9612 

40% 

DWT 0.9576 0.9327 0.8741 0.9011 0.9588 0.9467 0.9285 

TV 0.9574 0.9088 0.9442 0.9538 0.9530 0.9441 0.9436 

MH 0.9676 0.9727 0.9276 0.9217 0.9651 0.9677 0.9537 

CoS 0.9724 0.9618 0.9744 0.9637 0.9627 0.9784 0.9689 

Proposed 0.9817 0.9829 0.9736 0.9567 0.9735 0.9886 0.9762 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Computational Time Comparisons with Various Algorithms (Unit: s) 

Image Subrate DWT [30] TV [29] MH [42] CoS [43] Proposed 

House 

(256×256) 

20% 12.6 9.9 21.6 315.9 354.5 

30% 8.1 8.1 46.7 245.6 339.1 

40% 5.9 7.5 27.2 216.8 330.4 

Average 8.9 8.5 31.9 259.5 341.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Six experimental test images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Comparison of image CS recovery with different overlapped step size for three test images in the case of subrate=30%. 
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(a)                                                               (b)                                                               (c) 

Figure 3: Display of three types of sparsifying basis. From left to right: the fixed over-complete DCT basis; the globally learned sparsifying basis 

from a large set of natural images; the adaptively learned sparsifying basis from the processed image at last iteration with respect to image House 

in the case of subrate=20%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Figure 4: Visual comparison of image CS recovery using different types of sparsifying basis for image House in the case of subrate=20%. From 

left to right: the recovered image by over-complete DCT basis (PSNR=33.97dB); the recovered image by globally learned sparsifying basis 
(PSNR=34.62dB); the recovered image by the adaptively learned sparsifying basis at each iteration (PSNR=35.86dB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

(a)                                                                                                                   (b) 

Figure 5: Comparison between SBI and IST for solving our proposed  0  minimization Eq. (6). From left to right: progression of the PSNR (dB) 

results achieved by proposed 0  minimization with respect to the iteration number for gray images Leaves and Vessels in the cases of image CS 

recovery with subrate=30%. 
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Figure 6:  Visual comparison between SBI and IST for image CS recovery with respect to image Leaves in the case of subrate=30%. Left: 
magnitude of recovery error for SBI; Right: magnitude of recovery error for IST. 
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Figure 7: Visual quality comparison of image CS recovery on gray image Barbara in the case of subrate=20%. From left to right and top to 

bottom: original image, the CS recovered images by DWT (PSNR=23.96dB; FSIM=0.8547), TV (PSNR=23.79dB; FSIM =0.8199), MH 

(PSNR=31.09dB; FSIM=0.9419), CoS (PSNR=26.60dB; FSIM=0.8742) and the proposed algorithm (PSNR=31.61dB; FSIM =0.9487). 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

          

          

Figure 8: Visual quality comparison of image CS recovery on gray image House in the case of subrate=20%. From left to right and top to bottom: 

original image, the CS recovered images by DWT (PSNR=30.70dB; FSIM=0.9029), TV (PSNR=31.44dB; FSIM =0.9051), MH 

(PSNR=33.60dB; FSIM=0.9370), CoS (PSNR=34.34dB; FSIM=0.9326) and the proposed algorithm (PSNR=35.86dB; FSIM =0.9542). 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

       

       

Figure 9: Visual quality comparison of image CS recovery on gray image Vessels in the case of subrate=20%. From left to right and top to 

bottom: original image, the CS recovered images by DWT (PSNR=21.14dB; FSIM=0.8230), TV (PSNR=22.04dB; FSIM =0.8356), MH 

(PSNR=24.95dB; FSIM=0.8756), CoS (PSNR=26.71dB; FSIM=0.9214) and the proposed algorithm (PSNR=30.14dB; FSIM =0.9499). 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

         

          

Figure 10: Visual quality comparison of image CS recovery on gray image Leaves in the case of subrate=30%. From left to right and top to 

bottom: original image, the CS recovered images by DWT (PSNR=24.47dB; FSIM=0.8314), TV (PSNR=25.85dB; FSIM =0.9092), MH 

(PSNR=27.65dB; FSIM=0.8993), CoS (PSNR=31.02dB; FSIM=0.9606) and the proposed algorithm (PSNR=31.10dB; FSIM =0.9509). 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

         

          

Figure 11: Visual quality comparison of image CS recovery on gray image Monarch in the case of subrate=30%. From left to right and top to 

bottom: original image, the CS recovered images by DWT (PSNR=27.23dB; FSIM=0.8628), TV (PSNR=30.01dB; FSIM =0.9279), MH 

(PSNR=29.18dB; FSIM=0.9003), CoS (PSNR=31.38dB; FSIM=0.9449) and the proposed algorithm (PSNR=31.48dB; FSIM =0.9328). 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

             

Figure 12: Convergence of the proposed algorithm. From left to right: Progression of the PSNR (dB) results achieved by proposed algorithm for 

four test images with respect to the iteration number in the cases of subrate=30% and subrate=40%. 
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