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Abstract

This paper is motivated by the problem of integrating multiple sources of measure-

ments. We consider two multiple-input-multiple-output (MIMO) channels, a pri-

mary channel and a secondary channel, with dependent input signals. The primary

channel carries the signal of interest, and the secondary channel carries a signal

that shares a joint distribution with the primary signal. The problem of particular

interest is designing the secondary channel matrix, when the primary channel ma-

trix is fixed. We formulate the problem as an optimization problem, in which the

optimal secondary channel matrix maximizes an information-based criterion. An

analytical solution is provided in a special case. Two fast-to-compute algorithms,

one extrinsic and the other intrinsic, are proposed to approximate the optimal solu-

tions in general cases. In particular, the intrinsic algorithm exploits the geometry

of the unit sphere, a manifold embedded in Euclidean space. The performances of

the proposed algorithms are examined through a simulation study. A discussion

of the choice of dimension for the secondary channel is given.
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mutual information, two-channel system

1. Introduction

Consider the following two-channel system, as illustrated in Fig. 1,

x = Fθ + u

y = Gφ+ v.
(1)

The first channel is the primary channel that carries the signal of interest θ. The

secondary channel carries a signal φ that shares a joint distribution with θ. The

measurements x and y are linear transformations of the input signals with mea-

surement noises u and v, respectively. For example, the elements of the primary

signal θ may be the complex scattering coefficients of several radar-scattering tar-

gets and the elements of the secondary signal φ may be intensities in an optical

map of these same optical-scattering targets. The measurement x is then a range-

doppler map and the measurement y is an optical image. We assume a known

signal model, i.e., the joint distribution of θ and φ. When the signals θ and φ

are correlated, the measurements x and y both contain information about θ and

we can combine them to estimate θ. The fused estimate is expected to perform

better than the estimate from a single source of measurements. In this paper, our

objective is to design the channel matrix G, with the primary channel fixed, such

that the fused estimate achieves the best performance.

For a one-channel system x = Fθ + u, designing the channel matrix F ex-

hibits parallels to the linear precoding design problem for multiple-input-multiple-

output (MIMO) communication systems by considering F as the precoder into an

identity channel matrix. The linear precoding design for MIMO channels has been

studied in the literature [1]-[10]. The optimal precoding is designed under various
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Figure 1: A two-channel system with two linear channels.

criteria, for example, signal-to-noise ratio (SNR) and signal-to-interference-noise

ratio (SINR), [1]-[2]. Another criterion that has drawn more attention recently is

the mutual information between input and output signals, [3]-[4], [6]-[7]. This

information-based criterion is connected with estimation theory in a vector Gaus-

sian channel with arbitrary input distribution by linking the mutual information

with the minimum mean squared error (MMSE) [11]-[12]. In [3], an optimal pre-

coding matrix for the MIMO Gaussian channel with arbitrary input is expressed

as the solution of a fixed point equation. When the input signal is Gaussian dis-

tributed, the one-channel design problem can be solved as a singular value de-

composition (SVD) problem. More specially, the optimal channel matrix has its

singular vectors allocated to create non-interfering subchannels and the singu-

lar values chosen to solve a generalized waterfilling problem [7], [23]. In [6], a

greedy adaptive approach is considered to design a channel matrix row by row to

maximize information gain.

In Fig. 1, if both θ and φ are of interest, the two-channel system can be ex-
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pressed as a one-channel system with a block-diagonal channel matrix. However,

due to the “nuisance” signal φ, our two-channel system design problem is fun-

damentally more difficult than the one-channel system design. In this paper, we

fix the primary channel and design the secondary channel matrix G that maxi-

mizes the information gain brought by adding the secondary channel, subject to

the total power constraint tr(GGT ) ≤ P with P a pre-determined constant. We

call this a one-channel design problem in a two-channel system. Analytical solu-

tions are derived for some special cases. In general, this is not a convex problem.

Moreover, this problem cannot be formulated as an SVD problem, in contrast

to the one-channel system design. Here, we propose two gradient-based algo-

rithms, one extrinsic and the other intrinsic, to approximate the optimal channel

matrix. The extrinsic algorithm is a gradient-ascent algorithm with projection to

the constrained space [14]. The intrinsic algorithm, a gradient-ascent algorithm

of manifold, exploits the geometry that codes for the total power constraint by

vectorizing the channel matrix, [15], [17]-[19].

The rest of the paper is organized as follows. We formulate the channelization

problem in Section 2 and point out the challenges for design in a two-channel

system. In Section 3, we give an analytical solution when the conditional covari-

ance of φ given θ is the identity matrix. In Section 4, we propose two numerical

algorithms, the extrinsic and intrinsic gradient searches, to approximate the opti-

mal channel matrix for general cases. A simulation study is presented to illustrate

the performance of the proposed algorithms in Section 4.3. In Section 5, we dis-

cuss the choice of number of measurements for the secondary channel. Section 6

concludes the paper.

Notation: The set of length m real vectors is denoted by Rm and the set of
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m × n real matrices is denoted Rm×n. Bold upper case letters denote matrices,

bold lower case letters denote column vectors, and italics denote scalars. The

scalar xi denotes the ith element of vector x, and Xi,j denotes the element of X

at row i and column j. The diagonal matrix with diagonal elements x is denoted

as Diag(x). The n × n identity matrix is denoted by In. The transpose, inverse,

trace and determinant of a matrix are denoted by (·)T , (·)−1, tr(·) and det(·),

respectively.

A covariance matrix is denoted by bold upper case Q with specified sub-

scripts: Qzz denotes the covariance matrix of a random vector z; Qz1z2 is the

cross-covariance matrix between z1 and z2;Qz1z1|z2 is the conditional covariance

matrix of z1 given z2.

2. Overview

2.1. Problem Statement

The two channels of the system described in (1) have input signals θ ∈ Rp and

φ ∈ Rq, respectively. The signal θ is of key interest and φ is a secondary signal

that is jointly distributed with θ. The first channel x ∈ Rs is a direct measurement

of θ, while the secondary channel y ∈ Rt is an indirect measurement of θ through

φ. Both x and y contain information about θ, and one can expect that fusing mea-

surements from both channels would provide a better estimate than using a single

measurement. The data fusion problem has been widely studied in various areas

including sensor networks, image processing, etc. While much of the literature

focuses on the methodology of fusion or data integration, we are interested in de-

signing the measurement system. More specifically, our interest is to design the

channel matrixG, with the first channel fixed, such that the rate at which x and y
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bring information about θ is maximized.

We make the following assumptions:

a1) The signals θ ∈ Rp and φ ∈ Rq are jointly Gaussian distributed as θ

φ

 ∼ N

 µθ

µφ

 ,

 Qθθ Qθφ

Qφθ Qφφ


with knownQθθ,Qθφ,Qφθ andQφφ.

a2) The noises u ∈ Rs and v ∈ Rt are Gaussian distributed with mean zero and

known covariance matricesQuu andQvv, respectively.

a3) The noises u and v are mutually independent, and independent of (θ,φ).

Based on all the assumptions, the mutual information between θ and x is

I(θ;x) =
1

2
log det(Qθθ)−

1

2
log det(Qθθ|x),

whereQθθ|x = (Q−1θθ + F
TQ−1uuF )−1 is the conditional covariance of θ given x.

The mutual information between θ and x,y is

I(θ;x,y) =
1

2
log det(Qθθ)−

1

2
log det(Qθθ|x,y),

where Qθθ|x,y = [Q−1θθ|x +MTGT (GQφφ|θG
T + Qvv)

−1GM ]−1 with M =

QφθQ
−1
θθ andQφφ|θ = Qφφ−QφθQ

−1
θθQθφ. Note thatMθ would be the MMSE

estimator of φ from θ, and Qφφ|θ would be its error covariance, if θ could be

measured.

The information gain is the extra information about θ brought by y, defined

as

D(G) := I(θ;x,y)− I(θ;x) = 1

2
log detQθθ|x −

1

2
log detQθθ|x,y.
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By plugging inQθθ|x andQθθ|x,y, D(G) can be written as

D(G) =
1

2
log det[Ip +M

TGT (GQφφ|θG
T +Qvv)

−1GMQθθ|x] (2)

The function D(G) is bounded and nonnegative. In fact, one can show that

D(G) ≤ I(θ;x,φ) − I(θ;x), which means the maximum information gain the

measurement y can bring is no greater than that could be brought byφ. We further

notice that, for any G, D(λG) is monotone increasing for λ ≥ 0. Therefore,

without any constraint, maximization of the information gain in (2) will lead to

a trivial solution by letting the norm of G go to infinity. Here we maximize

the information gain subject to the total power constraint tr(GGT ) ≤ P . This

constraint bounds the total power of Gφ since trE[GφφTGT ] ≤ P trE[φφT ].

In short, the problem of interest is

G∗ = argmax
G∈Rt×q

D(G) subject to tr(GGT ) ≤ P. (3)

Problem (3) is a one-channel design problem in a two-channel system. In

general, the optimization problem cannot be reformulated as an SVD problem in

contrast to a one-channel system. The difficulty arises due to the non-degenerate

joint distribution of θ and φ. However, when the conditional covariance matrix

Qφφ|θ is zero, i.e., the value of φ is fixed given θ, the optimal channel matrix G

can be solved from an SVD problem, as in a one-channel system.

2.2. An Insightful Discussion of the Information Gain

To motivate our discussion, we decompose the secondary channel as follows:

y = (GME[θ|x]) + (GM (θ − E[θ|x])) + (G(φ− E[φ|θ]) + v) , (4)
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where M = QφθQ
−1
θθ and Mθ = E[φ|θ]. It can be seen that the secondary

channel y is decomposed into three independent components, which are illus-

trated in Fig. 2. The first component GME[θ|x] is completely determined by

the first channel x and does not contribute to the information gain brought by y.

The second component GM(θ − E[θ|x]), denoted by ω, is (by orthogonality)

independent of x and it carries the extra information in channel y about θ. The

third componentG(φ−E[φ|θ]) + v, denoted by ζ, is independent of both x and

θ, and it can be viewed as noise.

y

GME[θ|x]

ζ=G(ϕ-E[ϕ|θ])+v

ω=GM(θ-E[θ|x])

Figure 2: Decomposition of the secondary channel.

Notice that the covariance matrices ofω and ζ areQωω = GMQθθ|xM
TGT

and Qζζ = GQφφ|θG
T +Qvv, respectively. By the cyclic property of determi-

nants, det(Im +AB) = det(In +BA) for any A ∈ Rm×n and B ∈ Rn×m, the

information gain of (2) can be re-written as

D(G) =
1

2
log det[I +Q

−1/2
ζζ QωωQ

−1/2
ζζ ]. (5)

By viewing ω as a signal and ζ as a noise, Q−1/2ζζ QωωQ
−1/2
ζζ is a generalized

signal-to-noise ratio matrix. Maximizing (5) essentially balances the tradeoff be-

tween the noise covariance and the signal covariance. As illustrated in Fig. 2, a
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good channel design will favor a long parallelepiped with short height. The diffi-

culty of designing the channel matrix G arises because G shapes both Qωω and

Qζζ . When the secondary channel has a single output, the channel matrix G is

a row vector and Qζζ,Qωω are scalars. In this case, the optimal G equivalently

maximizes a generalized Rayleigh quotient and the analytical solution can be de-

rived by an eigendecomposition. For a general channel with multiple outputs, de-

signing the matrix G is fundamentally more difficult than the single output case.

In Section 3, we obtain a closed-form expression for the optimal G in a special

case.

3. Analytical Solution

Suppose that the conditional covariance of φ given θ is identity, i.e.,Qφφ|θ =

σ2
φ|θIq. For example, φ = Mθ + τ where τ ∼ N(0, σ2

φ|θIq). In this case, the

noise ζ in (5) has a relatively simple covariance Qζζ = GGT + Qvv and the

signal ω has covariance Qωω = GMQθθ|xM
TGT . While G still affects both

covariance matrices, we are able to find the balanced matrix G that maximizes

the information gain. Note that we focus on the case t ≤ q, i.e., the dimension

of measurement y is at most the dimension of φ. When t > q, the optimization

problem can be reformulated and solved as a special case of t = q, which will be

discussed in Section 5.

Given the eigendecompositionsQvv = UvΣvUv andMQθθ|xM
T = UξΣξU

T
ξ

where Uv ∈ Rt×t, Uξ ∈ Rq×q are orthogonal matrices, and Σv ∈ Rt×t and

Σξ ∈ Rq×q are diagonal matrices with diagonal elements 0 < σ2
v,1 ≤ . . . ≤ σ2

v,m

and σ2
ξ,1 ≥ . . . ≥ σ2

ξ,q ≥ 0, respectively. Because the matrices Uξ and Uv are
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invertible, for eachG ∈ Rt×q, there is a unique matrix Φ ∈ Rt×q such that

G = UvΦU
T
ξ (6)

Then, the information gain D(G) in (2) can be written as

D(Φ) =
1

2
log det[I + ΦT (σ2

φ|θΦΦT + Σv)
−1ΦΣξ]

Moreover, the total power constraint is tr(ΦΦT ) ≤ P since tr(GGT ) = tr(ΦΦT ).

For the given eigendecompositions, the matrices Uv and Uξ are fixed. Therefore,

the information gain can be maximized with respect to Φ and the optimal channel

matrix G is returned by (6). WOLG we assume σ2
φ|θ = 1. The solution for gen-

eral σ2
φ|θ is just different by a scaling factor. We give in Lemma 1 an important

feature of any possible maximizer Φ.

Lemma 1. Suppose that Qvv has distinct eigenvalues, i.e., 0 < σ2
v,1 < . . . <

σ2
v,m, andMQθθ|xM

T has distinct nonzero eigenvalues, i.e., σ2
ξ,1 > . . . > σ2

ξ,ρ >

0 where ρ ≤ t is the rank of Σξ. Then Φ contains at most one nonzero entry in

each row and column and all the nonzero entries are located at the first ρ columns.

Proof: See Appendix Appendix A.

Lemma 1 restricts the optimal matrix Φ within a class of matrices with a spe-

cial structure. That is, Φ has at most one nonzero entry in each row and column.

Searching within this class, we are able to obtain the closed form expression for

the optimal matrix Φ. The corresponding optimal channel matrix G is given in

Theorem 1.

Theorem 1. Suppose thatQvv andMQθθ|xM
T have distinct nonzero eigenval-

ues. Then the optimal secondary channel matrixG∗ solving problem (3) is

G∗ = UvΛ
∗UT

ξ . (7)
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Here Λ∗ ∈ Rt×q is a diagonal matrix with diagonal elements λ∗11, . . . , λ
∗
tt such

that

λ∗2ii =


σ2
v,i

2(1+σ2
ξ,i)

(
−(2 + σ2

ξ,i) +

√
σ4
ξ,i +

4(1+σ2
ξ,i)σ

2
ξ,i

2µσ2
v,i

)
i = 1, . . . , κ

0 i = κ+ 1, . . . , t

(8)

where κ is the maximum integer between 1 and rank(Σξ) such that λ∗2ii > 0 for

i = 1, . . . , κ. The value of µ is non-negative and uniquely solves
∑κ

i=1 λ
∗2
ii = P .

Proof: See Appendix Appendix B.

Notice that although Theorem 1 requires thatQvv andMQθθ|xM
T have dis-

tinct eigenvalues, the result can be extended to general cases because the solution

in (8) is a continuous function of the eigenvalues ofQvv andMQθθ|xM
T .

Theorem 1 factors the optimal channel matrix G∗ into the product of three

matrices. The first matrix UT
ξ rotates the signal φ. Given Qφφ|θ = σ2

φ|θIq, the

conditional covariance of φ given x is MQθθ|xM
T + σ2

φ|θIq, which is diago-

nalized by UT
ξ . Therefore, the components of the rotated signal UT

ξ φ are condi-

tionally independent given x. The second matrix Λ∗ ∈ Rt×q is a diagonal matrix

that extracts the first t components ofUT
ξ φ and distributes power across the t sub-

channels optimally. The third matrix Uv rotates the scaled components into the

sub-dominant invariant subspace of the noise covarianceQvv.

The power allocation policy, given by the diagonal elements of Λ∗, can be

interpreted as a mercury/waterfilling algorithm, which is a three-step procedure

that has been introduced in [25]:

1. For the ith vessel, fill in the solid base with height 2σ2
v,i/σ

2
ξ,i, where σ2

v,i

is a noise variance component in the y channel, and σ2
ξ,i yields a variance
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component of φ given x.

2. Compute µ. For the vessels with base height less than 1/µ, fill in mercury

in the vessel until the height reaches

max

{
1

µ
− λ∗2ii ,

2σ2
v,i

σ2
ξ,i

}
.

3. Pour water into all the vessels until the height of each vessel reaches 1/µ.

The height of the solid base, 2σ2
v,i/σ

2
ξ,i, is half of the variance of the ith noise

weighted by the variance components ofMQθθ|xM
T . A higher solid base means

a less informative channel with high channel noise and weak correlation with θ.

For any vessel with base height exceeding 1/µ, neither mercury nor water will be

added, or equivalently, no power will be assigned to the corresponding subchan-

nel. Note that the value of µ is computed by the constraint that the total volume

of water equals P . The mercury stage balances the noise contained in φ and the

measurement noise contained in y. Without adding mercury, the optimal power

allocation will have variable water-plus-solid levels among different vessels. The

mercury is added to regulate the water level for each vessel. Given the value of

µ, the information gain is maximized when the value of λ∗2ii equals the height of

water in the corresponding vessel.

From the mercury/waterfilling procedure, it can be seen that the resulting opti-

mal channel matrixG∗ may not be full-rank. We will see in Section 5 that a rank-

reduced channel matrix can in some cases give a dimension-reduced secondary

channel that carries the same information gain as a full-dimensional channel, un-

der the power constraint. To better illustrate the possible rank-reduced optimal
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Figure 3: Mercury/waterfilling. For each vessel, the water height above mercury gives the optimal

power allocation to the corresponding subchannel. The total volume of water equals P .

channel, we consider the following simple example.

Example 1. Consider a two-channel system in (1) with p = q = s = t = 5. The

primary channel matrix F ∈ R5×5 is set as 1√
5
I5. The covariance matrices Quu,

Qvv, and Qθθ are I5. We consider three scenarios. In each scenario, we choose

Qφφ and Qφθ such that Qφφ|θ = I5 and the eigenvalues of MQθθ|xM
T have

various levels of spread. The correspondingG∗ is given in Table I.

In the first scenario, MQθθ|xM
T has constant eigenvalues and G∗ has full-

rank and equal singular values. In the second scenario, the eigenvalues ofMQθθ|xM
T

have moderate spread and the correspondingG∗ has rank 4. In the third scenario,

when the spread of eigenvalues ofMQθθ|xM
T further increases, the rank ofG∗

is further reduced to 3.

In [26], Wang et al. generalized the problem of reduced-rank filtering and

precoding/equalizing be designing the matrix G in the bottom channel of Fig. 4

so that y maximizes the differential rate at which y brings information about θ.

The difference between that design and the fusion design of this paper is that there

was no existing channel x to be fused with y. Thus, the optimal channel matrix

13



MQθθ|xM
T G∗

(1) 5
6
I5

1√
5
I5

(2) 5
6
Diag(25, 16, 9, 4, 1) Diag(0.316, 0.294, 0.249, 0.141, 0)

(3) 5
6
Diag(81, 64, 49, 4, 1) Diag(0.338, 0.334, 0.328, 0, 0)

Table 1: The optimal channel matricesG∗ for three scenarios.

G needs to maximize the extra information y contains about θ, taking account of

the primary channel x.

F

G

x

y

u

v

p

q

s

t
θ

ϕ

τ

M

Figure 4: An alternative representation for the two-channel system.

4. Numerical Algorithms

In general, the constrained optimization problem (3) is not a convex problem

[24] since the information gain D(G) is not concave [13]. Notice that for any

G with tr(GGT ) < P , there exists G̃ =
√
P
‖G‖G such that tr(G̃G̃T ) = P and

D(G̃) ≥ D(G). Therefore, it is sufficient to maximize the information gain on

the boundary tr(GGT ) = P . This fact motivates two gradient-based search algo-

rithms, one extrinsic and the other intrinsic, to approximate the optimal channel

matrix. Both algorithms are very general and applicable for arbitrary covariance
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between θ and φ. In the extrinsic gradient search, the gradient is computed by

treating the matrix G as a point in the Euclidean space Rt×q. In the intrinsic

gradient search, we consider G as a point on the unit sphere Stq−1, which is a

submanifold of Rtq. The intrinsic gradient is computed by taking the geometry of

the manifold Stq−1 into consideration. WLOG we assume P = 1.

4.1. Extrinsic Gradient Search Algorithm

Let∇GD be the gradient of the information gain w.r.tG, and it can be written

as

∇GD = Q−1vvG[(Q−1φφ|θ +G
TQ−1vvG)−B]−1B(Q−1φφ|θ +G

TQ−1vvG)−1, (9)

where B = Q−1φφ|θMQθθ|xM
T (Iq + Q−1φφ|θMQθθ|xM

T )−1Q−1φφ|θ. See Ap-

pendix Appendix C for details. The gradient ∇GD points in the direction of

greatest increase of the function D in the neighborhood of G. However, when

moving along this direction, the constraint tr(GGT ) = 1 may be violated. To

circumvent this problem, we normalize the updated G at each iteration to meet

the unit norm constraint. The table below outlines the proposed extrinsic gradient

search algorithm.

Algorithm: Extrinsic Gradient Search

Input: InitialG0 ∈ Rt×q, tr(G0G
T
0 ) = 1.

Output: Sequence of iterates {Gk}.

for k = 0, 1, 2, . . . do

SelectGk+1 = ak(Gk + δk∇Gk
D) where ak = 1

‖Gk+δk∇Gk
D‖ is a

normalization constant such that tr(Gk+1G
T
k+1) = 1, δk is a small step size.

end for

15



In this extrinsic algorithm, the gradient of the information gain is computed

on the unconstrained Euclidean space Rt×q. Note that Gk + δk∇Gk
D is the

unconstrained update when maximizing D. The normalized update Gk+1 =

ak(Gk + δk∇Gk
D) is a projection ofGk + δk∇Gk

D onto the set of allG ∈ Rt×q

with unit Frobenius norm.

We call it an extrinsic gradient search in contrast to the intrinsic gradient

search algorithm, in which the information gain is considered as a function on

the manifold Stq−1.

4.2. Intrinsic Gradient Search Algorithm

Let g be the vectorization of matrixG, denoted g = vec(G). That is,

g = [G1,1, . . . ,G1,q,G2,1, . . . ,G2,q, . . . ,Gt,1, . . . ,Gt,q]
T .

This vectorization operation is a one-to-one and onto mapping from Rt×q to Rtq.

Thus, for any g ∈ Rtq, there exists a unique matrixG ∈ Rt×q such that vec(G) =

g. Under the power constraint tr(GGT ) = 1, the corresponding vectorization

g lies on the unit sphere Stq−1 = {g ∈ Rtq :
∑tq

i=1 g
2
i = 1}. Therefore, the

constrained optimization problem (3) is an optimization on the manifold Stq−1.

Note that Stq−1 is an embedded submanifold of Rtq, and its geometry has been

studied in [15]-[16].

The following algorithm encodes the intrinsic gradient search, which approx-

imates a maximizer of the information gain on the manifold Stq−1. A graphical

illustration is depicted in Fig. 5.
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Algorithm: Intrinsic Gradient Search

Input: Initial g0 ∈ Stq−1

Output: Sequence of iterates {gk}.

for k = 0, 1, 2, . . . do

Select gk+1 = Rgk(δkηgk) where ηgk = (Itq − gkgTk )∇gkD is the intrinsic

gradient and δk is the step size.

end for

For any g ∈ Stq−1, the tangent plane TgStq−1 is the subspace orthogonal to g. The

intrinsic gradient, denoted by ηg, is the Euclidean gradient ∇gD projected onto

the tangent plane TgStq−1. The function Rg is a mapping from the tangent plane

TgS
tq−1 to the manifold Stq−1 with

Rg(ηg) = g cos(‖ηg‖) +
ηg
‖ηg‖

sin(‖ηg‖) (10)

for any tangent vector ηg ∈ TgS
tq−1. For δ ≥ 0, Rg(δηg) is a curve on the

manifold Stq−1 starting from g. This curve generalizes the idea of straight line in

Euclidean space on the manifold Stq−1 along the direction ηg. Given gk,Rg(δηgk)

is a periodic function of τ with period 2π/‖ηgk‖, thus the step size δk can be

chosen within the interval δ ∈ [0, 2π/‖ηgk‖) to maximize the information gain

D(Rg(δηgk)). By the choice of δk, the information gain is non-decreasing, i.e.,

D(gk+1) ≥ D(gk) for each k.

4.3. A Numerical Study

Consider a two-channel system in (1) with p = q = 4 and s = t = 3. The

input signals θ and φ are characterized recursively as

φi =
i∑

j=1

ρi−j+1θj + τi,

17



∇gD

ηg

TgS

g

Rg(ηg)

Figure 5: Projection of the Euclidean gradient to the tangent plane of unit sphere.

where τ1, . . . , τ4 are i.i.d. Gaussian random variables with mean 0 and variance

1, and the value of ρ is to be specified. The covariance matrices for the signal θ

and the noises u,v are proportional to the identity matrix with variance 2, 1, 0.1,

respectively. The first channel matrix F ∈ R3×4 is a diagonal matrix with 1 on

the diagonal. The initial channel matrix G0 ∈ R3×4 is randomly generated with

unit norm. For the intrinsic algorithm, the initial value is g0 = vec(G0).

The results are shown in Fig. 6. Here we set the step size δk = 0.1. The

x-axis is the index for iterations and the y-axis gives the information gain for the

secondary channel returned at step k. First, it can be seen that, as ρ increases, the

information gain is increasing as well because the correlation between θ and φ is

increasing. Next, it can also be seen that the performance of the two algorithms

are quite comparable and both algorithms converge for each value of ρ. From our

empirical evidence, when the step size is constant, both algorithms would perform

similarly, and in fact, the extrinsic algorithm converges slightly faster. For more

complex problems, we could choose the optimal step size over a finite interval as

18



suggested by the intrinsic algorithm in Section 4.2. While, for extrinsic algorithm,

such strategy for the optimal step size is not available.
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Figure 6: A numerical study. The x-axis is the index for iteration and the y-axis is the information

gain obtained at each iteration. The solid curve is for the intrinsic algorithm and the dashed curve

is for the extrinsic algorithm.

5. Discussion on Low-dimensional Channel Design

In the two-channel design problem considered in this paper, the number of

measurements of the secondary channel, i.e., the number of rows of the channel

matrix G is an important factor. Ideally we want t to be as small as possible

while keeping the information gain as large as possible. More measurements will

generally bring more information. However, under the total power constraint, the

information a channel carries is bounded and the upper bound may be attained

by a small number of measurements. In fact, for a secondary channel with a

q-dimensional input φ, a q-dimensional output y is sufficient to achieve the maxi-

mum information gain, which is a consequence of the following lemma. Here we

assume that the measurement noise v in the secondary channel is white noise.
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Lemma 2. Suppose that the noise covariance Qvv is proportional to the identity

matrix. Then, for any channel matrix G ∈ Rt×q with rank r, there exists an r-

dimensional secondary channel with the same noise variance that achieves the

same information gain.

The proof is given in Appendix Appendix D.

Since the maximum rank of G is q, Lemma 2 suggests that a q-dimensional

y is sufficient to achieve the maximum information gain. Thus, we restrict our

attention to the channel matrix with dimension t × q with t ≤ q. In some cases,

the power constraint will further reduce the dimension of y to t < q. For instance,

as shown in Example 1, the 5×5 optimal channel matrices can have rank 5, 4, or 3,

and the dimension of y may be reduced correspondingly. Denote G∗k the optimal

channel matrix of dimension k × q for k = 1, . . . , q. The optimal dimension of

y, denoted by t∗, is defined as the smallest k such that D(G∗q) = D(G∗k); that is,

t∗ = min{k : D(G∗q)−D(G∗k) = 0}. Note that D(G∗k) = D(G∗q) for any k ≥ t∗,

and D(G∗k) < D(G∗q) for any k < t∗. In general, the values of t∗ is unknown

since no analytical solution for G∗k is available. From a practical viewpoint, it is

natural to approximate t∗ using the approximate optimal channel matrices. Here

we consider the following approach to obtain an approximant of t∗.

For k = 1, . . . , q, obtain an approximate optimal channel matrix of dimension

k × q, denoted by Ĝ∗k, using either the extrinsic or intrinsic algorithms. Denote

t̂∗ = min{k : D(Ĝ∗q)−D(Ĝ∗k) ≤ c}, where c is a predetermined threshold value,

and t̂∗ is the proposed dimension of y. The following example demonstrates this

suggested strategy with more details.

Example 2. Consider a two-channel system (1) with p = q = 20 and s = 10.

The channel matrix F ∈ R10×20 is randomly generated with Frobenius norm 1.
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The noise covariances Quu = Qvv = I20. The covariances Qθθ and Qφφ are

randomly generated positive definite matrices. We consider two different correla-

tion structures between θ and φ: 1) Qφφ|θ = I20 (analytical solution available);

2) Qφφ|θ is a banded matrix with 2 on the main diagonal line and 0.2 on the su-

perdiagonal and subdiagonal lines (analytical solution not available). The results

are shown in Fig. 7 and Fig. 8, where the x-axis is k (k = 1, . . . , q), number of

rows of the secondary channel matrix G, the y-axis on the left is the information

gain for an k-dimensional secondary channel, and the y-axis on the right is the

rank of the channel matrix with dimension k × q.

In the first scenario (Fig. 7), we obtain G∗k for k = 1, . . . , q analytically

(shown in the left panel). It can be seen that the information gain remains con-

stant for all k ≥ 4. Therefore the optimal dimension is t∗ = 4. Moreover, one

can see that the rank of all the optimal channel matrices G∗k with k ≥ 4 equal 4,

which may suggest that the optimal dimension t∗ equals the maximum rank of the

optimal channel matrices. Therefore the curve for the rank of the optimal matri-

ces can be used as an important guidance. The extrinsic (the middle panel) and

intrinsic (the right panel) algorithms are implemented, with the initial channel

matrices randomly generated. Here we set the constant step size δk = 0.1. For

both algorithms we get t̂∗ = t∗ = 4 for c = 10−3, and so is the maximum rank.

In the second scenario (Fig. 8), we implement the extrinsic and intrinsic al-

gorithms to approximate the optimal channel matrix. Note that the solutions for

k = 4 and k = 5 have similar information gain but different ranks. If the thresh-

old value c = 10−3, we have t̂∗ = 4 in both algorithms, while the maximum rank

equals 5. Such difference may be caused by approximation error of the numerical

algorithms.
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Analytical Solution
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Figure 7: Choice of number of rows of the secondary channel matrix G. The three panels are

associated with the channel matrices returned by the analytical solution (left), the extrinsic algo-

rithm (middle) and the intrinsic algorithm (right), respectively. In each panel, the x-axis indicates

the number of rows of G, the y-axis on the left is the information gain (solid line), and the y-axis

on the right is the rank of the channel matrices (star dotted line).

Extrinsic Approximant

In
fo

rm
at

io
n 

G
ai

n

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
9

1.
0

1.
1

1.
2

5 10 15 20

0
5

10
15

20

R
an

k 
of

 G

● Information Gain
Rank of G

Intrinsic Approximant

In
fo

rm
at

io
n 

G
ai

n

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.
9

1.
0

1.
1

1.
2

5 10 15 20

0
5

10
15

20

R
an

k 
of

 G

● Information Gain
Rank of G
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associated with the channel matrices returned by the extrinsic algorithm (left) and the intrinsic
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y-axis on the left is the information gain (solid line), and the y-axis on the right is the rank of the
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6. Conclusions

In this paper, we have studied the problem of fusing multiple sources of in-

formation. We have modeled the problem as a two-channel system where the

signal in the primary channel is of interest, and the signal in the secondary chan-

nel is jointly distributed with the signal of interest. The objective is to design

the secondary channel to maximize the information gain brought by fusing mea-

surements from the primary and secondary channels. Based on the Gaussian dis-

tribution and linear channel assumptions, we obtain a closed-form expression of

the information gain. When the input signals have a special covariance structure,

we obtain an explicit solution for the optimal channel matrix, where the singular

vectors are allocated to create non-interfering subchannels and the singular val-

ues solve a generalized water-filling problem. For general cases, we propose two

gradient search algorithms, an extrinsic algorithm and an intrinsic algorithm to

approximate the optimal channel matrix. Both algorithms can be extended to op-

timize other design criteria under a power constraint. With the designed secondary

channel matrix, combining the measurements of both channels achieves the best

information gain.
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Appendix A. Proof of Lemma 1

By the matrix inversion lemma ΦT (ΦΦT +Σv)
−1Φ = I−(I+ΦΣ−1v ΦT )−1,

D(Φ) may be rewritten as

D(Φ) =
1

2
log det[I + Σξ − (I + ΦΣ−1v ΦT )−1Σξ]

=
1

2
log det[I + Σξ] +

1

2
log det[I − (I + ΦΣ−1v ΦT )−1Σξ(I + Σξ)

−1]

Define Λ := Σ−1v a t × t diagonal matrix with diagonal elements λi = σ−2v,i ,

and Γ := Σξ(I + Σξ)
−1 a q × q diagonal matrix with diagonal elements γi =

σ2
ξ,i/(1 + σ2

ξ,i). Let ρ be the rank of Σξ. Then 1 > γ1 ≥ . . . ≥ γρ > 0 and

γρ+1 = . . . = γq = 0. The Lagrangian is

L(Φ;µ) =
1

2
log det(In − (In + ΦTΛΦ)−1Γ) + µ(tr(ΦΦT )− P )

+
1

2
log det[I + Σξ] (A.1)

where µ is the Lagrangian multiplier. The partial derivative of L(Φ;µ) with re-

spect to the elements of Φ is

∇ΦL(Φ;µ) = ΛΦ(In − Γ + ΦTΛΦ)−1 −ΛΦ(In + ΦTΛΦ)−1 + 2µΦ.

Left multiply the gradient by Λ−1 and right multiply by ΦT :

−Φ(In − Γ + ΦTΛΦ)−1ΦT + Φ(In + ΦTΛΦ)−1ΦT = 2µΛ−1ΦΦT

Since the LHS is symmetric, ΦΦTΛ−1 = Λ−1ΦΦT . Therefore, when Λ has

distinct diagonal elements, the symmetric matrix ΦΦT must be diagonal. Next

we show that Φ(In − Γ)−1ΦT is diagonal. Notice that

Φ(In − Γ + ΦTΛΦ)−1ΦT = Λ−1 −Λ−1(Λ−1 + Φ(In − Γ)−1ΦT )Λ−1

Φ(In + ΦTΛΦ)−1ΦT = Λ−1 −Λ−1(Λ−1 + ΦΦT )Λ−1
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Then, right multiply the gradient by ΦT :

Λ−1Φ(In − Γ)−1ΦT = Λ−1ΦΦT − µΦΦT

The RHS is symmetric since ΦΦT is diagonal. Therefore we have Λ−1Φ(In −

Γ)−1ΦT = Φ(In−Γ)−1ΦTΛ−1, which implies that Φ(In−Γ)−1ΦT is diagonal.

Denote Φ := [φij]. Given the fact that Φ(In−Γ)−1ΦT and ΦΦT are diagonal,

(A.1) can be rewritten as

L(Φ;µ) =
1

2
log det(Im + ΛΦ(In − Γ)−1ΦT )− 1

2
log det(Im + ΛΦΦT )

+
1

2
log det(In − Γ) +

1

2
log det[I + Σξ] + µ(tr(ΦΦT )− P )

=
m∑
i=1

1

2
log(1 + λi

n∑
j=1

φ2
ij

1− γj
)−

m∑
i=1

1

2
log(1 + λi

n∑
j=1

φ2
ij)

+
1

2
log det(In − Γ) +

1

2
log det[I + Σξ] + µ(

m∑
i=1

n∑
j=1

φ2
ij − P )

Notice that L(Φ;µ) is quadratic in each φij . Therefore, we can assume WLOG

φij ≥ 0. The partial derivative of L(Φ;µ) w.r.t φij is

∂L(Φ;µ)

∂φij
= φij

[
λi(1− γj)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

− λi
1 +

∑n
j=1 φ

2
ij

+ 2µ

]
For j > ρ, we have γj = 0, and L(Φ;µ) is monotone decreasing in φij since

µ ≤ 0. Hence for any minimizer Φ, φij = 0 for any j > ρ.

For the ith row, suppose that there exist two non-zero elements φij1 and φij2 .

Then the partial derivative ∂L(Φ;µ)
∂φij1

= ∂L(Φ;µ)
∂φij2

= 0 yields

λi(1− γj1)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

=
λi(1− γj2)−1

1 +
∑n

j=1 φ
2
ij(1− γj)−1

which contradicts the assumption γj1 6= γj2 . For the jth column, if there are two

non-zero elements φi1j and φi2j , then φi1k = φi2k = 0 for any k 6= j since each
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row of Φ has at most one non-zero entry. Hence, [ΦΦT ]i1i2 =
∑n

k=1 φi1kφi2k =

φi1jφi2j 6= 0, which contradicts diagonal ΦΦT .

Appendix B. Proof of Theorem 1

Restricting the matrix Φ within the class of matrices satisfying Lemma 1, Φ

can be written as Φ = Π2ΛΠT
1 where Π1 ∈ Rq×q and Π2 ∈ Rt×t are permutation

matrices and Λ is a t×q diagonal matrix with diagonal elements λ11, . . . , λtt. The

maximum information gain is taken over the permutations Π1 Π2 and λ11, . . . , λtt

subject to
∑t

i=1 λ
2
ii ≤ P .

First of all, we show the optimal permutation matrices are Π1 = Iq and Π2 =

It. Denote

f(Π1,Π2) = maxD(Φ) subject to Φ = Π2ΛΠT
1 and

t∑
i=1

λ2ii ≤ P.

The objective is to show

f(Iq, It) ≥ f(Π1,Π2)

for all the possible permutations Π1 and Π2.

Let π1(i) be the index of the entry equal to unity in the ith column of Π1, and

π2(i) the index of the unity entry in the ith column of Π2. Then the information

gain D(Φ) can be written as

D(Φ|Π1,Π2) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)

λ2ii

λ2ii + σ2
v,π2(i)

)

It is easy to see that for any i = 1, . . . , t, one must have

σ2
ξ,π1(i)

≥ max{σ2
ξ,π1(t+1), . . . , σ

2
ξ,π1(q)

}.
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Moreover, since the orders of {π1(j)}qj=t+1 do not affect the value of D(Φ), we

can set WLOG π1(j) = j for j = t + 1, . . . , q. For i = 1, . . . , t, it can be seen

that π1(i) and π2(i) are pairwise. Therefore, we can set WLOG that π2(i) = i for

i = 1, . . . , t and then search for the optimal permutation π1(i) to maximize

D(Φ|Π1, It) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)

λ2ii

λ2ii + σ2
v,i

)
(B.1)

The proof that Π1 = Iq is the optimal permutation matrix is similar to the proof

for Theorem 2 in [26]. First prove the case t = 2 and generalize the results to

t ≥ 2. The details are omitted.

Next, the objective is to solve a simpler optimization problem:

{λ∗ii}ti=1 = argmax
1

2

t∑
i=1

log

(
1 +

σ2
ξ,iλ

2
ii

λ2ii + σ2
v,i

)
subject to

t∑
i=1

λ2ii ≤ P.

(B.2)

The Lagrangian is

L(λ11, . . . , λtt, ;µ) =
1

2

t∑
i=1

log

(
1 +

σ2
ξ,π1(i)

λ2ii

λ2ii + σ2
v,π2(i)

)
− µ(

t∑
i=1

λ2ii − P ) (B.3)

where µ ≥ 0 is the Lagrange multiplier. Setting the first derivative of L w.r.t. λii

equal to zero, we have either λii = 0 or

λii =

√√√√bi

(
−(2 + ai) +

√
(2 + ai)2 − 4(1 + ai)(1− ai/(2µbi))

)
2(1 + ai)

(B.4)

where ai = σ2
ξ,i and bi = σ2

v,i. Equation (B.4) provides a feasible solution for λii

when µ ≤ ai/(2bi). To see whether the solution is the maximizer for (B.2) , we

check the Hessian matrix. The second derivative of L w.r.t. λii is

∂2L(Φ;µ)

∂λ2ii
=− 2µ+

aibi
(λ2ii + bi)(λ2ii + bi + aiλ2ii)

− 2aibiλ
2
ii((λ

2
ii + bi)(2 + ai) + aiλ

2
ii)

(λ2ii + bi)2(λ2ii + bi + aiλ2ii)
2

(B.5)
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For i = 1 . . . , κ, upon substituting (B.4),

∂2L(Φ;µ)

∂λ2ii
= −8µ2λ2ii

ai

√
(2 + ai)2 − 4(1 + ai)(1−

ai
2µbi

).

which is negative when µ < ai/(2bi). For λii = 0,

∂2L(Φ;µ)

∂λ2ii

∣∣∣∣
λii=0

= −2µ+
ai
bi
,

is negative when µ > ai/(2bi). Let κ be the maximum integer such that µ <

ai/(2bi) for i = 1, . . . , κ with µ uniquely solves that
∑κ

i=1 λ
2
ii = P . Then, the

maximizer of (B.2) is λ∗11, . . . , λ
∗
tt where

λ∗2ii =


bi

(√
(2+ai)2−4(1+ai)(1−ai/(2µbi))−(2+ai)

)
2(1+ai)

, for i = 1, . . . , κ

0 for i = κ+ 1, . . . , t.
(B.6)

Appendix C. Gradient of the Information Gain

Applying the matrix inversion lemma yields

GT (GQφφ|θG
T +Qvv)

−1G = Q−1φφ|θ −Q
−1
φφ|θ(G

TQ−1vvG+Q−1φφ|θ)
−1Q−1φφ|θ.

Therefore, the information gain D(G) satisfies

2D(G)

= log det[Iq + (Q−1φφ|θ −Q
−1
φφ|θ(G

TQ−1vvG+Q−1φφ|θ)
−1Q−1φφ|θ)MQθθ|xM

T ]

= log det[Iq +Q
−1
φφ|θMQθθ|xM

T ] + log det[I −B(GTQ−1vvG+Q−1φφ|θ)
−1]

whereB = Q−1φφ|θMQθθ|xM
T (Iq +Q

−1
φφ|θMQθθ|xM

T )−1Q−1φφ|θ.

Let Ji,j be a t × q matrix with value 1 at element (i, j) and 0 elsewhere.

From [22], for a matrixX , we have the partial derivatives

∂X−1 = −X−1(∂X)X−1, ∂ log detX = tr(X−1∂X).
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Let C = (Iq − (Q−1φφ|θ +G
TQ−1vvG)−1B). Then D(G) = 1

2
log detC and we

have

∂D

∂Gi,j

=
1

2
tr{C−1 ∂C

∂Gij

} = −1

2
tr{C−1

∂(Q−1φφ|θ +G
TQ−1vvG)−1

∂Gij

B}

=
1

2
tr{C−1(Q−1φφ|θ +G

TQ−1vvG)−1
∂(Q−1φφ|θ +G

TQ−1vvG)

∂Gi,j

×

(Q−1φφ|θ +G
TQ−1vvG)−1B} = 1

2
tr{C−1(Q−1φφ|θ +G

TQ−1vvG)−1×

(JTi,jQ
−1
vvG+GTQ−1vvJi,j)(Q

−1
φφ|θ +G

TQ−1vvG)−1B}

=
{
(Q−1φφ|θ +G

TQ−1vvG)−1BC−1(Q−1φφ|θ +G
TQ−1vvG)−1GTQ−1vv

}
j,i

where the last equality follows from tr(AJij) = Aj,i = tr(JTijA
T ). Hence, the

gradient of function D with respect toG is

∇GD = Q−1vvG[(Q−1φφ|θ +G
TQ−1vvG)−B]−1B(Q−1φφ|θ +G

TQ−1vvG)−1.

Appendix D. Proof of Lemma 2

Suppose that the noise v has covariance Qvv = σ2
vIt. Then for any t × t

orthogonal matrix U ,

D(UG)

=
1

2
log det[Ip +M

TGTUT (UGQφφ|θG
TUT + σ2

vIt)
−1UGMQθθ|x]

=
1

2
log det[Ip +M

TGT (GQφφ|θG
T + σ2

vIt)
−1GMQθθ|x]

= D(G)

Therefore, the information gain D(G) is invariant to left unitary multiplication

of G. For any G ∈ Rt×q with rank r, G has the singular value decomposition

G = U∆V T where U and V are orthogonal matrices, and ∆ ∈ Rt×q is a
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diagonal matrix with diagonal elements ∆1,1 ≥ . . . ≥ ∆r,r > 0 and ∆i,i = 0

for any i ≥ r. By the invariance property, we can assume WOLG that U =

It. Let G̃ = Diag(∆1,1, . . . ,∆r,r)V
T
r ∈ Rr×q where Vr ∈ Rq×r contains the

first r columns of V . It can be seen that G = [G̃T ,0q×(t−r)]
T and tr(GGT ) =

tr(G̃G̃T ). Moreover, one can easily check that

D(G) =
1

2
log det[Ip +M

T G̃T (G̃Qφφ|θG̃
T + σ2

vIr)
−1G̃MQθθ|x]. (D.1)

The RHS of (D.1) is the information gain brought by a r-dimensional channel ỹ

as

ỹ = G̃φ+ ṽ

where ṽ is r-dimensional white noise with variance σ2
v. The new channel ỹ brings

the same information gain, that is I(θ;x,y)− I(θ;x) = I(θ;x, ỹ)− I(θ;x).
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