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Abstract

This paper presents a preprocessing technique based on exponential window-

ing (EW) for parameter estimation of superimposed exponentially damped

sinusoids. It is shown that the EW technique significantly improves the ro-

bustness to noise over two other commonly used preprocessing techniques:

subspace decomposition and higher order statistics. An ad-hoc but efficient

approach for the EW parameter selection is provided and shown to provide

close to CRB performance.
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1. Introduction

Parameter estimation of superimposed exponentially damped sinusoids

from a set of noisy observation data is a problem one frequently encounters
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in many applications such as nuclear magnetic resonance imaging [1], power

systems [2], audio modeling [3], mechanical systems [4], physics [5], chemistry

[6] and others. This problem has received considerable attention in the signal

processing community in the last decades and is now considered by many to

be “solved”. Indeed, there are plenty of “solutions” available to this problem.

The best known methods include the Prony’s method [7, 8], the iterative

quadratic maximum likelihood (IQML) method [9, 10], the matrix pencil

(MP) method [8], and state space-based method [11]. In addition to the

above methods, there are many tools available to preprocess (i.e., clean up)

the raw data before any of the above methods is applied. The most popular

ones of these tools are subspace decomposition (SD) [7, 8] and higher order

statistics (HOS) [12, 13].

In the last few years, renewed interest in the sinusoidal estimation prob-

lem has been observed either for dedicated applications [3, 1] or for adverse

situations such as irregular sampling [14], impulsive noise [15] or colored noise

[16].

In this work, we consider a colored noise context and we discuss the idea

of preprocessing the data with complex exponential windowing. Although

there are various ways to modify and improve the Prony’s method, the IQML

method, or the MP method with a preprocessing step, using SD or HOS is

known to be the most effective in reducing the noise effect. However, the SD

method, which separates “signal subspace” from “noise subspace”, assumes

that the noise is either white, or colored with known covariance up to a scalar.

The HOS method works well only with Gaussian noise and long data length.

We show that the concept of cyclostationarity (CS) [17, 18] or more gener-

2



ally exponential windowing (EW) can be easily applied to better preprocess

the superimposed exponentially damped sinusoids. The CS or EW methods

preserve the signal structure but mitigate the noise effectively as long as it

is stationary. Compared to the SD and HOS methods, the CS or EW meth-

ods require the least assumption on the noise and hence perform the best.

This advantage will be clearly illustrated by simulation results. We propose

simple approaches to optimize the EW parameters in such a way the signal

power or the post-processing signal to noise ratio (SNR) is maximized. As a

benchmark, we derive the Cramér-Rao bound (CRB) expression and use it

to illustrate the closeness of the proposed method’s performance to the CRB.

The organization of this paper is as follows. In section II, the idea be-

hind using cyclo-stationarity for pre-processing and a generalized exponential

windowing method are introduced. Section III is devoted to performance in-

vestigations. First, we review the CRB expression for the colored noise case.

Then, we evaluate the asymptotic covariance matrix of the pre-processed

noise term. The latter is evaluated for white noise and used to express the

averaged signal-to-noise ratio (after data pre-processing) that is used for effi-

cient EW parameter selection. In section IV, simulation results are presented

demonstrating the superiority of the proposed method. Finally, we state the

conclusion.
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2. Proposed Signal Preprocessing Methodology

2.1. Data Model

The data y(n) under consideration is modeled as follows:

y(n) = x(n) + w(n) =
L
∑

m=1

hme
bmn + w(n), n = 0, 1, · · · , N − 1 (1)

where hm = ame
jθm , bm = αm + jωm with αm < 0, and w(n) denotes the

stationary noise1. am and θm are respectively the amplitude and the initial

phase of the mth sinusoid; its damping and frequency factors are respectively

αm and ωm.

2.2. Preprocessing Using Cyclo-Stationarity

Considering the fact that exponentially damped signals have relatively

short (effective) length, we apply the CS concept only in the context of

second order statistics (SOS) as opposed to HOS. Define the kth lag (k ≥ 0)

cyclo-correlation Rβ(k) at the cyclo-frequency β as:

Rβ(k) :=
N−k−1
∑

n=0

y(n+ k)y∗(n)ejβn (2)

where ∗ denotes the complex conjugate transpose operator. Assuming large

sample size2, and using (1) in (2) yields

rβ(k) =

L
∑

m,l=1

hmh
∗

l e
kbm

N−1−k
∑

n=0

e(bm+b∗
l
+jβ)n + Ev(k) ≈

L
∑

m=1

Aβ(m)ekbm + Ev(k)

(3)

1Note that, in contrary to most existing methods, the noise can be colored and non-

Gaussian. The only assumption is its wide sense stationarity.
2More precisely, we assume that eαmN << 1, ∀m = 1, ..., L.
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where rβ(k) = ERβ(k), and

v(k) =
N−1−k
∑

n=0

w(n+ k)w∗(n)ejβn, Aβ(m) =
L
∑

l=1

hmh
∗

l

1− ebm+b∗
l
+jβ

. (4)

It is seen from (4) that the cyclo-correlation as function of k also consists of

superimposed exponentially damped sinusoids and a noise term. The main

advantage, in dealing with cyclo-correlation instead of correlation function as

considered in standard sinusoidal estimation techniques [8, 9], is that noise

contribution is considerably reduced in the former case. In fact, due to the

stationarity assumption of the noise process, we have:

lim
N→∞

1

N

N−1−k
∑

n=0

w(n+ k)w∗(n)ejβn = 0

when

lim
N→∞

1

N

N−1−k
∑

n=0

w(n+ k)w∗(n) = ρ(k)

ρ(k) being the kth correlation factor of the noise process. Generally, for addi-

tive colored noise, the signal to noise ratio (SNR) gain, can be considerable

since, for ρ(k) 6= 0, we have

lim
N→∞

∣

∣

∣

∣

∣

∑N−1−k

n=0 w(n+ k)w∗(n)
∑N−1−k

n=0 w(n+ k)w∗(n)ejβn

∣

∣

∣

∣

∣

= ∞.

Remark 1. In the case where the data length is relatively small, one can

enhance the signal component by applying the integral of the cyclo-correlation

over an interval of the cyclo-frequency:

∫ β1

β0

Rβ(k)dβ =
L
∑

m=1

Bβ(m)ebmk (5)
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where

Bβ(m) =

L
∑

l=1

hmh
∗

l [j(log(1−ebm+b∗
l
+jβ1)− log(1−ebm+b∗

l
+jβ0))+β1−β0]. (6)

Note that this integration is equivalent to replacing the unit-norm exponential

weight w(n) = ejβn by the weight coefficient

w′(n) =

∫ β1

β0

ejβndβ = ej
β1+β0

2
nsinc

(

β1 − β0

2
n

)

representing the modulation of a unit-norm exponential with a sinc function

(where sinc(x) = sin(x)/x). Such integration has also the advantage to pro-

vide certain robustness against a ’bad’ choice of the cyclo-frequency parameter

β since we consider all cyclo-frequencies in the range [β0, β1]. Indeed, one

can observe in Fig. 2 (section IV) that a ’bad’ selection of parameter β might

lead to poor estimation performance at low or moderate SNRs.

Remark 2. In the case where the noise is complex circular which implies

E(w(n)w(n+ k)) = 0, we also can use the following cyclo-correlation:

R′

β(k)
def
=

N−1−k
∑

n=0

y(n+ k)y(n)ejβn (7)

in which the noise term is mitigated due to both the stationarity and the

circularity.

2.3. Generalized Preprocessing Using Exponential Windows

A generalization of the previous preprocessing method is the use of a

complex cyclo-frequency or a complex exponential window (EW). Therefore,

we define the kth lag exponentially windowed signal RW (k) as:

RW (k) :=
N−1−k
∑

n=0

y(n+ k)y∗(n)W n (8)
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where W is a complex windowing parameter satisfying |W | ≤ 1. We retrieve

the previous case when |W | = 1.

Again by assuming large sample size, the expression of the exponentially

windowed signal is:

rW (k) =
L
∑

m=1

AW (m)ekbm + Ev(k) (9)

where

v(k) =

N−1−k
∑

n=0

w(n+ k)w∗(n)W n, AW (m) =

L
∑

l=1

hmh
∗

l

1−Webm+b∗
l

(10)

The rational behind using a complex windowing parameter is that the

exponentially damped signal has a short effective length determined by the

damping factor, and the rest of the data samples are almost noise. Therefore,

using an exponential window will reduce accumulated noise in the resulting

signal and provide higher weight to data samples with higher signal ampli-

tude. This can lead, as will be observed later in section 4, to non-negligible

performance gain. Another reason is that if the signal frequencies were pure

sinusoids, then the formula (3) will no longer be valid without a damped win-

dow W . The damped window |W | < 1 will guarantee the geometric series to

converge always.

3. Performance Investigation

3.1. CRB for the damped sinusoid estimation problem with colored noise

Consider the data model (1). We assume that w(n) is zero-mean station-

ary Gaussian circular noise with unknown covariance. Define:

Θd = [α1 α2 ... αL ω1 ω2... ωL]
T , Θn = [a1 a2 ... aL θ1 θ2... θL]

T (11)
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where Θd are the desired parameters and Θn are the nuisance parameters3.

Define Θ = [ΘT
d ΘT

n ]
T to refer to the desired and nuisance parameters. As-

sume that the noise follows some parametric model and Θw represents the

parameters of the noise model. Let Ω = [ΘT ΘT
w]

T denotes all model param-

eters.

The CRB, which is given by the diagonal terms of the Fisher Information

Matrix (FIM) inverse [19], is a lower bound4 on the variance of the model

parameters, i.e., MSE(Ω) ≥ CRB(Ω) = F−1
Ω , where FΩ denotes the FIM for

parameter Ω and MSE stands for mean-squared error.

We will utilize the following lemma to reduce CRB computation to FΘ only:

Lemma 3.1 ([20]). The elements of the FIM corresponding to the cross

terms of Θ and Θw are zeros.

For a circular Gaussian process, the FIM can be written as [19]:

[FΘ]ij = 2Re

{

∂X∗

∂Θi

Γ−1 ∂X

∂Θj

}

+tr

(

Γ−1 ∂Γ

∂Θi

Γ−1 ∂Γ

∂Θj

)

= 2Re

{

∂X∗

∂Θi

Γ−1 ∂X

∂Θj

}

(12)

where X = [x(0) x(1) ... x(N −1)]T and Γ is the noise covariance. Note that

the second term in (12) is zero since the noise covariance is assumed to be

independent from the damped sinusoids parameters.

3.2. Parameter Selection

The EW method has an important parameter W = ed+jβ to be selected.

We use the expressions (10) for that purpose. An intuitive idea consists in

3This paper focuses only on the frequency and damping parameters estimation.
4This lower bound applies for all unbiased estimators.
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enhancing the signal-to-noise ratio after pre-processing. In the appendix,

we derive the asymptotic covariance of the noise, which turns to have a

complicated expression depending on the noise auto-covariance function. We

compute instead an explicit expression in the white noise case:

Lemma 3.2. If w(k) was zero-mean circular white Gaussian noise. Then,

the EW noise v(k) is asymptotically circular white Gaussian noise with auto-

covariance function:

ρ(k) =
σ4

1− |W |2δ(k)

Thus, we can select the EW parameter by maximizing the averaged post-

processing SNR given by:

max
d,β

(1− |W 2|)‖AW‖2 (13)

where AW = [AW (1)...AW (L)]T . Note that the noise covariance is inde-

pendent of β. Therefore, for a fixed d, the maximization problem is inter-

preted as:

max
β

‖AW‖2. (14)

However, if we have unknown noise, we cannot compute the SNR. Nev-

ertheless, it turns out that selecting β according to (14) and choosing d

as the slowest damping can serve as a good choice for a wide range of noise

statistics. Indeed, the latter choice for d is motivated by the fact that the ’ef-

fective life duration’ of the exponentially damped signal eαn is approximately

N = 1/(1− eα). Hence, it is natural to choose a window size corresponding

to the desired signal life duration (i.e. choosing d as the slowest damping

factor).

As a result, we provide the following iterative algorithm:
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1. Initialize d = 0 and β randomly 5.

2. Compute the cyclo-correlation as in (7) or (8).

3. Apply a standard method (e.g MP or IQML) to rW to compute the

complex frequencies. Compute the complex amplitude via solving a

least square problem.

4. Set d as the slowest nonpositive damping and choose β by solving (14).

5. If an end criterion6 is reached, then stop. Otherwise, go to step 2.

4. Simulation

4.1. Parameter Selection

The data we consider here is as in [12, 18]:

y(n) = eb1n + eb2n + w(n)

where b1 = −0.1+0.52(2π)i, b2 = −0.2+0.42(2π)i. We assume, at first, zero-

mean circular white Gaussian noise. We apply the cyclo-correlation (7). For

each experiment, the sample size is set to N = 100. Nr = 100 independent

Monte-Carlo runs are performed to evaluate the statistics.

Figure 1, shows the plot of the cost function. The optimal value is (d, β) =

(−0.55, 0.37). Note that β = 0.37 is optimal for every fixed d.

Figure 2 shows the sensitivity of the method with respect to β. It is

observed that the maximum of the cost function corresponds to the best

5If any prior knowledge is available it can be used for initialization, e.g. if it’s known

that all sinusoids are damped, then d can be initialized to be less than zero.
6We observed that 4-6 iterations yield acceptable performance.
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performance obtained. Note also that optimization is highly needed since

bad a choice of β causes bad performance.

Figure 3, shows the result when varying d between the best value sug-

gested by (13) versus slowest damping factor suggested by the proposed al-

gorithm in the case of white Gaussian noise. It can be seen that although

d = −0.55 results in slightly improved results for mid and high SNRs, our

proposed algorithm gives very reasonable performance. The comparison with

the case d = 0 is given next.

4.2. Performance Comparisons

To illustrate the performance of the EW preprocessing method, we con-

sider the MP algorithm (which uses implicitly the SD technique) [8]. By

combining the MP method with HOS [12], we have a method to be called

HOS-MP method. By applying the MP method to the exponentially window

signal, and using the iterative algorithm for β, we have the EW-MP method.

We use CS-MP to refer to the EW-MP with d = 0. In the sequel, we compare

the MP, HOS-MP, EW-MP and CS-MP methods.

The data we consider is same as previous subsection. The performance is

measured by the mean-square error (MSE) defined as MSE=
√

1
Nr

∑Nr

r=1 ‖b̂r − b‖2,
where b denotes the parameter vector, i.e., b = [b1, b2]

T and b̂r is the estimate

of b at the r-th run. For the EW-MP and CS-MP methods, the iterative

algorithm was initialized with (d, β) = (0, 0), and only four iterations were

performed. We set the processing window size for all MP methods to 15 (see

[8] for more details).

The following cases are considered:

Case 1: White Gaussian circular noise: Figure 4 shows the MSE versus
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SNR. The EW-MP method performs the best for low SNRs even in this

case where the noise assumptions required by all methods are satisfied. For

medium and high SNR, all methods perform closely.

Case 2: Colored Gaussian noise: The colored noise is generated by the

AR(a) filter

w(n) = aw(n− 1) + white Gaussian noise (15)

where the white Gaussian noise has the power σ2 (SNR is defined as−10 log10 σ
2).

Figure 5 shows the MSE versus SNR for a = 0.9. In this case, the EW-

MP method performs significantly better for low and medium SNRs. The

HOS-MP seems to be highly affected by the small sample size. Note that

EW-MP has better performance than CS-MP which illustrates the utility of

the damped exponential windowing.

Figure 6 shows the MSE performance between the three methods versus

the value of a with SNR=20 dB. Clearly, the EW preprocessing increases the

robustness of MP against AR noise.

Case 3: White non-Gaussian noise: The noise is complex with real and

imaginary parts uniformly distributed over [−σ/
√
2, σ/

√
2]. Figure 7, shows

also the superiority of EW-MP method.

Case 4: Colored non-Gaussian noise: In this case, the colored noise is

generated filtering the white uniformly distributed by a AR(a) filter, where

a = 0.9. As shown in Figure 8, both the MP and HOS-MP methods fail to

compete with the EW-MP method because the noise assumptions required

by the former two are not satisfied.
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5. Conclusion

In this paper, we discussed a sinusoids estimation method that works

acceptably with wide range of stationary noise. The idea is based on com-

puting the cyclo-correlation (or a generalized exponential window) of the

signal. We provided a simple algorithm for EW parameter selection and

performance optimization. We showed through simulations that it has a su-

perior performance to other methods especially in the case of non-Gaussian

and/or colored noise. Comparisons with the CRB showed that it can give

close to CRB performance at moderate and high SNRs.

Appendix A. Derivation of The Asymptotic Covariance of Expo-

nentially Windowed Noise

Theorem Appendix A.1. In (1), assume that w(k) is a stationary zero-

mean circular Gaussian noise with autocorrelation function ρ(k). Then the

covariance of v(k) is given by:

Cv(k, ℓ) = Cv(s) =
∞
∑

m=0

∞
∑

n=0

W nW ∗mρ(n−m+ s)ρ∗(n−m), s = k − ℓ

(A.1)

Proof. From (8), we have

v(k) =
∞
∑

n=0

w(n+ k)w∗(n)W n (A.2)

First, we compute the mean of v(k). Using (A.2) we have:

µk = E[v(k)] =
∞
∑

n=0

E[w(n+ k)w∗(n)]W n =
ρ(k)

1−W
= ρ(k)L, L =

1

1−W
.
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Therefore,

Cv(k, ℓ) = E[v(k)v∗(ℓ)]− µkµ
∗

ℓ = E[v(k)v∗(ℓ)]− |L|2ρ(k)ρ∗(ℓ)

Using noise gaussianity and circularity, we compute the first term as:

E[v(k)v∗(ℓ)] = E

[

∑

m,n

W nW ∗mw(n+ k)w∗(n)w∗(m+ ℓ)w(m)

]

=
∑

m,n

W nW ∗mE [w(n+ k)w∗(n)w∗(m+ ℓ)w(m)]

=
∑

m,n

W nW ∗m(E [w(n+ k)w∗(n)]E [w∗(m+ ℓ)w(m)] + E [w(n+ k)w∗(m+ ℓ)]

E [w∗(n)w(m)] + E [w(n+ k)w(m)]E [w∗(n)w∗(m+ ℓ)])

=
∑

m,n

W nW ∗m (ρ(k)ρ∗(ℓ) + ρ(n−m+ k − ℓ)ρ∗(n−m))

=
∑

m,n

W nW ∗mρ(k)ρ∗(ℓ) +
∑

m,n

W nW ∗mρ(n−m+ k − ℓ)ρ∗(n−m)

= |L|2ρ(k)ρ∗(ℓ) +
∑

m,n

W nW ∗mρ(n−m+ k − ℓ)ρ∗(n−m)

and the result follows.

We can proof Lemma 3.2 now:

Proof of Lemma 3.2. Set ρ(k) = δ(k). If s 6= 0, we have Cv(s) = 0. If s = 0

then:

Cv(s) = σ4
∞
∑

m=0

∞
∑

n=0

W nW ∗mδ(n−m+ s)δ∗(n−m)

= σ4
∞
∑

n=0

|W |2n =
σ4

1− |W |2 .
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Figure 1: Plot of the cost function in (13).
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white Gaussian noise.
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Figure 3: MSE curves comparing the performance between the optimization (13) and the

proposed algorithm in the case of white Gaussian noise.
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Figure 4: White Gaussian circular noise case.
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Figure 5: AR(0.9) Gaussian circular noise case.
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Figure 6: The MSE with AR colored Gaussian noise versus a for SNR=20 dB.
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Figure 7: The case of white uniformly distributed noise.
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Figure 8: The case of AR(0.9) uniformly distributed noise.
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