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Abstract

In this letter, we investigate the shrinkage problem for the non-local means (NLM) image denoising.

In particular, we derive the closed-form of the optimal blockwise shrinkage for NLM that minimizes the

Stein’s unbiased risk estimator (SURE). We also propose a constant complexity algorithm allowing fast

blockwise shrinkage. Simulation results show that the proposed blockwise shrinkage method improves

NLM performance in attaining higher peak signal noise ratio (PSNR) and structural similarity index

(SSIM), and makes NLM more robust against parameter changes. Similar ideas can be applicable to

other patchwise image denoising techniques such as [1] and [2].
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Blockwise SURE Shrinkage for Non-Local

Means

I. INTRODUCTION

In recent years, the most popular image denoising algorithms include the NLM method [3], [4] and the

BM3D method [2], [5]. Both utilize adaptive patch weighting and aggregations during denoising, while

NLM denoising is pixelwise whereas BM3D is patchwise. Although satisfactory denoising results using

both methods are widely reported, determining an appropriate set of parameters is truly a nontrivial task:

1) improper parameter choices might make these methods perform badly, and 2) the entire parameter

space is huge to be fully explored. The importance of making NLM and BM3D more robust and less

sensitive to parameter changes are thus self-exploratory.

Many efforts of selecting parameters automatically or improving method robustness have been discussed

recently, especially for the NLM. [6] derived the closed-form of NLM-SURE and used the SURE to pick

the proper bandwidth parameter. Although [6] gave an empirical choice of the bandwidth parameter, the

optimal choice (also dependent on image content) still requires looping over NLM for many times. [1]

introduced the multi-patch NLM to overcome the denoising artifacts by combining results of using various

patch shapes and sizes. However, this work also requires denoising an image many times, once for each

patch shape. [7] introduced the James-Stein type NLM shrinkage and made the NLM less sensitive to

the bandwidth parameter changes. Although this earlier work of ours requires one-time processing only,

it is a sub-optimal solution, because its shrinkage is made with respect to one of the SURE terms but

not all of them.

In this paper, we propose a new SURE-based NLM shrinkage technique. It only requires one-time NLM

denoising and SURE computations, but shrinks an image optimally with respect to the denoising risk. It

enhances NLM performance and improves the NLM robustness against parameter changes. The rest of

the letter is organized as follows: Sec. II briefly reviews the classic NLM and the NLM-SURE; Sec. III

derives the closed-form of optimal blockwise shrinkage, proposes the SURE-based pixel aggregations,

and discusses the fast implementation; Sec. IV shows our simulation results; and we conclude the letter

in Sec. V.
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II. PRELIMINARY

Assume a clean image x={xl}l∈I is contaminated by i.i.d. zero-mean Gaussian noises with an unknown

variance, namely

yl = xl + nl, and nl ∼ N (0, σ2) (1)

where y= {yl}l∈I is noisy observation of x and nl is the noise on lth pixel. The classic NLM [3], [4]

estimates x̂l as the weighted sum of yl’s noisy neighbors within a prescribed search region S (typically

a square or a rectangle), i.e.

x̂l =
∑

k∈Swl,kyk/(
∑

k∈Swl,k) (2)

where each weight is computed by quantifying the similarity between two local patches around noisy

pixels yl and yk as shown in (3) with the local patch parameter P, and the bandwidth parameter h.

wl,k = exp
(
−
∑

j∈P(yl+j − yk+j)2/2h
)

(3)

The NLM-SURE estimator [6] is a powerful tool predicting the denoising risk without knowing the

clean image. Since it can be obtained along with the computation of x̂, it has been extensively used in

parameter selections. The NLM-SURE is of the closed-form (4)

SURE(x̂) = ‖y − x̂‖22/|I|+ 2σ2divy{x̂}/|I| − σ2 (4)

where | · | denotes the cardinality of a set, and

divy{x̂}=
∑

l∈I ∂x̂l/∂yl (5)

is the divergence term with each ∂x̂l/∂yl defined in (6)

∂x̂l
∂yl

=
x̂2l − x̂l

2

h
+
wl,l
Wl

+
∑
i∈P

wl,l−i
Wlh

(yl − yl+i)(x̂l − yl−i) (6)

with Wl as the summed weights and x̂2l as the 2nd moment.

Wl =
∑

k∈Sl
wl,k and x̂2l =

∑
k∈Sl

wl,ky
2
k/Wl (7)

III. BLOCKWISE SURE SHRINKAGE

Assume we have performed NLM denoising with NLM-SURE, obtaining an initial denoised image

x̂={x̂l}l∈I with its denoising risk SURE(x̂) including all intermediate terms in (2) and (4). Notice that
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SURE(x̂) is actually estimated as the average of all pixelwise SURE (PSURE) map in (9):

SURE(x̂) =
∑

l∈I PSURE(x̂l)/|I|. (8)

PSURE(x̂l) = (yl − x̂l)2 + 2σ2∂x̂l/∂yl − σ2. (9)

We are interested in forming a better estimation of the clean image by shrinking the initial denoised

image towards the noisy observation. Mathematically, this shrinkage process on the pixel-level can be

written as

x̂′l = (1− ql)x̂l + qlyl (10)

where ql is the shrinkage parameter. Since we know the risks of x̂l and yl (they are PSURE(x̂l) and σ2,

respectively) on the right side of shrinkage estimator (10), it is natural to ask what is PSURE(x̂′l), the

risk after shrinkage with parameter ql. Once we know the answer to this important question, we may

find an optimal ql that minimizes PSURE(x̂′l). In the rest of this section, we shall propose our answer to

this question and show how to achieve optimal blockwise shrinkage.

A. Optimal SURE Shrinkage

To find PSURE(x̂′l), first notice the PSURE after shrinkage is of the form

PSURE(x̂′l) = (yl − x̂′l)2 + 2σ2∂x̂′l/∂yl − σ2 (11)

whose terms (yl − x̂′l)2 and ∂x̂′l/∂yl can be found as

(yl − x̂′l)2 = (1− ql)2(yl − x̂l)2 (12)

∂x̂′l/∂yl = (1− ql)∂x̂l/∂yl + ql (13)

by simply substituting (10). After simplifications, we obtain PSURE(x̂′l) as a function of the shrinkage

parameter, i.e.

PSURE(x̂′l|ql) = al,2q
2
l + 2al,1ql + al,0 (14)

with known coefficients

al,2 = (yl − x̂l)2 (15)

al,1 = σ2∂x̂l/∂yl − PSURE(x̂l) (16)

al,0 = PSURE(x̂l). (17)
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Since PSURE(x̂′l|ql) is quadratic and concave up (al,2 ≥ 0), there exists a unique global minimum at q∗l

where

q∗l = argminql PSURE(x̂′l|ql) = −al,1/al,2. (18)

Although in theory q∗l provides the optimal shrinkage parameter, it requires an accurate PSURE(x̂l)

estimation, which might deviate far away from its true value in practice. Fortunately, according to the

unbiased estimator nature of SURE, the more pixels we have in an image region, the more accurate

risk estimation we achieve. We thus define the blockwise SURE (BSURE) over an image block bxl =

{x̂l+j |j ∈ Bl} as

BSURE(bxl )=
∑

j∈Bl
PSURE(x̂l+j)/|Bl|. (19)

Assume we uniformly shrink the pixels in bl with respect to a parameter pl, i.e. ∀j ∈ Bl, ∃ql+j = pl.

Then the risk of using new denoised block after shrinkage using pl is

BSURE(bx
′

l |pl) =
∑

j∈Bl
PSURE(x̂′l+j |pl)/|Bl|

= (Al,2p
2
l +2Al,1pl+Al,0)/|Bl| (20)

with coefficient terms

Al,2 =
∑

j∈Bl
al+j,2 (21)

Al,1 =
∑

j∈Bl
al+j,1 (22)

Al,0 =
∑

j∈Bl
al+j,0. (23)

Again, the BSURE is a function of the shrinkage parameter pl, and BSURE is minimized when

p∗l = argminpl BSURE(bx
′

l |pl) = −Al,1/Al,2 (24)

which is the optimal shrinkage parameter for image block bl. We denote the new block after optimal

shrinkage as

bx
∗

l = (1− p∗l )bxl + p∗l b
y
l . (25)

B. SURE-Based Pixel Aggregations

When the entire image x̂ is considered as one block, then Eq. (24) directly gives the optimal solution for

global shrinkage. However image information is contained within local pixel blocks, so it is more plausible
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to shrink image blocks locally. Yet the derived optimal blockwise shrinkage (BSS) is applicable to an

arbitrary local block, we follow the BM3D fashion and use overlapping local blocks. Consequently, these

overlapping blocks lead to an overcomplete problem in determining the final estimated pixels, because

each initially denoised pixel x̂k might be in multiple blocks while each block gives one candidate x̂′k via

(25). This overcomplete problem can be approached by reestimating the final denoised pixels x̂′′ks from

all BSS x̂′ks [2]. To simplify discussion, we pretend bx
∗

l is an image of the same size as the noisy image,

but with all zeros for those pixels outside of Bl, i.e.

x̂′k|Bl
= bx

∗

l [k] =

 0, if k − l /∈ Bl
(1− p∗l )x̂k + p∗l yk, otherwise

(26)

Let Rk={l|k − l ∈Bl} be the index set of all blocks containing the pixel x̂k. We then reestimate x̂′′ as

the weighted average of all BSS x̂′ks

x̂′′k =
(∑

l∈Rk
vl · x̂′k|Bl

)
/(
∑

l∈Rk
vl) (27)

where the aggregation weight for each block is computed from

vl = exp(−BSURE(bx
∗

l )/σ2). (28)

In this way, we make the SURE-based pixel aggregations and obtain the final denoised image x̂′′.

C. Implementation

With regards to implementation, it is desired to have 1) fast BSS computations, and 2) straightforward

parameter selection Bls. To achieve both goals, we use all square size blocks Bl, and repeat BSS process

with growing blocks until the shrinkage converges. A pseudo code of the described implementation is

given in Algorithm 1. Specifically speaking, the integral image (II) [8], [9] (line 3) is a fast algorithm for

computing arbitrary rectangular sums. In particular, it requires 2 operations/pixel to construct an II and

3 operations/pixel to extract the sum of pixels within a rectangular region. The SURE-based aggregation

(27) can be done sequentially (line 12) because its equivalent form is

x̂′′k = x̂k +

∑
l∈Rk

vlp
∗
l∑

l∈Rk
vl

(yk−x̂k). (29)
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Algorithm 1 Fast Blockwise SURE Shrinkage
Require: PSURE(x̂l) map, divergence ∂x̂l/∂yl, initial result x̂, noisy image y, tolerance δ and image size M .

Ensure: blockwise shrinkage image x̂′′

1: initialize blkSize = 7; x̂′′ = 0; V = 0; S = 0; t = x̂.

2: for all l ∈ I, compute al,2 al,1 and al,0 using (17) (18), and (19), respectively.

3: construct integral images II(al,2), II(al,1), and II(al,0)

4: while do

5: for n ∈ {0, 1, 2}, compute coefficients Al,n from II(al,n).

6: compute optimal shrinkage p∗l using (24) for square block of size blksize.

7: compute BSURE(bx
′
l |p
∗
l ) using (20).

8: for all l ∈ I, compute its weights of aggregation vl using (28).

9: compute the weight sum vvk ←
∑
l∈Rk

vl.

10: update the accumulated weight Vk ← Vk + vvk .

11: compute the shrinkage sum ssk ←
∑
l∈Rk

vlp
∗
l

12: update the accumulated shrinkage sum Sk ← Sk + ssk .

13: update x̂′′k ← x̂k + (yk − x̂k)Sk/Vk using (27)

14: if
∑
l∈I(x̂

′′
l − tl)

2/|I| ≤ δ && blkSize ≤M then

15: return x̂′′

16: else

17: blkSize← blkSize+ 1, tl ← x̂′′l .

18: end if

19: end while

The convergence condition is set to 10−4 in experiments. This algorithm usually takes about 4-20 rounds to

converge. The complexity of each round is approximately 50 operations/pixel (to be precise, the arithmetic

complexity of line 5 to line 18 are 15, 2, 8, 4, 5, 1, 6, 1, 3, 2, and 2, respectively). Because integral

images are used, the complexity of each shrinkage round is independent of the used block size. For a

256×256 grayscale image, the time complexity of executing the fast NLM [9], the SURE computation,

and the additional BSS/round (from 300 realizations with 2.4GHz cpu) are .4309±.0077, .0181±.0008,

and .0177±.0016 seconds, respectively.

IV. EXPERIMENTS

All following simulations are done under the MATLAB r2010b environment. The MATLAB BSS

implementation can be provided upon request. Because the dual problem of the center pixel weight and

the shrinkage estimation in NLM [7], we compare the classic and recent NLM CPW solutions including

the standard (std) CPW [3], [4], the zero CPW [10], the max CPW [10], the heuristic (heru) CPW [7],

the stein CPW [10] and the local James-Stein (ljs) shrinkage [7]. Technically speaking, all these test

methods differ from each other only in the weights of using noisy pixels (i.e. different qls in (10)). We

test denoising performance of each method by using simulated noisy images with the noise level, i.e.
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standard deviation σ, ranging from 10 to 60 under various NLM parameter combinations. Specifically,

the NLM patches P used in simulations vary from 3×3 to 7×7, the search region is fixed at 15×15, and

the bandwidth parameter h is chosen from 5% to 200% of |P|σ2. The quality of each denoised image is

evaluated by using the PSNR [6] and the SSIM [11]. The best scores over all hs for each method under

different parameter combinations are given in Table I (methods with best scores are underlined).

This table shows two general trends: the proposed BSS method 1) attains the best overall performance

in PSNR/SSIM scores; and 2) are more robust against the patch size change than other methods. The

proposed BSS method put additional .3 to 1.1 dB on the best PSNR scores and 2% to 8% on the best

SSIM score of using the standard NLM CPW. It is worthwhile to point out these gains on the best standard

NLM scores are not trivial, and to some extend these BSS scores with simple shrinkage estimations are

comparable to or better than more complicated NLM variants, for examples the linear expansion with

six NLMs (see Table II in [12]), and the multi-patch NLMs (see Table 5 in [1]), both of which requires

multi-rounds of NLM denoising.

Fig. 1 shows the method sensitivity to the patch size parameter, where each method data point is

averaged from the sensitivity scores for all six images, with each method image sensitivity score is the

standard deviation of scores in Table I for all three patch sizes of the corresponding method. It is obvious

that the average standard deviation of PSNR and SSIM scores of proposed BSS method is much smaller

than others, and also less linearly dependent on the noise level.

Sample denoised images and the corresponding difference images from the clean images are given in

Fig. 2. It is noticeable that the BSS result is sharper on edges (see lenna’s hair and Hello World), while

smoother on homogeneous regions (see sphere). Similar results are also observed of using other images

and NLM parameters. This shows the BSS method makes NLM more robust against different image

contents.

V. CONCLUSION

In this letter, we derived the analytic form of the optimal blockwsie SURE shrinkage for the NLM

method. In this way, the optimal shrinkage parameters can be easily and efficiently computed from the

SURE map of an initially denoised image, and allows a better estimation of the clean image without

rerunning NLM denoising. Although in experiment we report the best scores by exhaustively searching

the h space, one may simply use the empirical optimal h≈ |P|σ2/2 in [6] instead. Performance scores

1Test images are available at http://www.cs.tut.fi/∼foi/GCF-BM3D/BM3D images.zip as the date of March/22/2013.

http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_images.zip
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of using these empirical h are close to reported ones. Consequently, one can take advantages brought

by NLM-SURE and BSS, and eliminate both parameters h and P in NLM without trading off overall

performance.

Because SURE estimation improves with increasing block size, BSS performance can be further

improved if disjoint but similar regions are identified and used for blockwise shrinkage. Our initial

attempts at using disjoint homogeneous regions show promise, especially for pixels near edges. Further

progress in this area requires a fast segmentation tool that gives robust disjoint partitions. The major

difference between the BSS pixel aggregation (27) and that of BM3D [2], [5] is that our aggregations are

made with respect to the SURE optimality instead of heuristics. This raises up an interesting question

how to improve BM3D using the proposed BSS idea, and we shall explore this direction in future.
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Fig. 1: The average of the standard PSNR and SSIM score deviation of tested NLM CPW/shrinkage solutions

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Sample denoised images with corresponding absolute difference images from the clean image (σ=60, patch
size is 3×3). (a) original montage, (b) observed noisy image and added noise, (c) to (f) best denoising results and
corresponding method noise images by using method std, heur, ljs and bss, respectively. Corresponding PSNR/SSIM
scores can be found in Table I.
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