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ABSTRACT

Previous work on 3D action recognition has focused on using hand-designed features,
either from depth videos or 2D videos. In this work, we present an effective way to
combine unsupervised feature learning with discriminative feature mining. Unsupervised
feature learning allows us to extract spatio-temporal features from unlabeled video data.
With this, we can avoid the cumbersome process of designing feature extraction by hand.
We propose an ensemble approach using a discriminative learning algorithm, where each
base learner is a discriminative multi-kernel-learning classifier, trained to learn an
optimal combination of joint-based features. Our evaluation includes a comparison to
state-of-the-art methods on the MSRAction 3D dataset, where our method, abbreviated
EnMkl, outperforms earlier methods. Furthermore, we analyze the efficiency of our
approach in a 3D action recognition system.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Human action recognition plays an important role in a
number of real-world applications such as video surveil-
lance, health care, and human-computer interactions. With
recent developments in low-cost sensors such as Microsoft
Kinect, depth cameras have received great attention among
researchers and have led them to revisit problems such
as object detection and action recognition in depth video
data [1-3].

Compared to visible light cameras, depth sensors provide
3D structural information of a scene, which is invariant to
lighting and color variation. Recently, with the emergence of
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3D displays in consumer markets, there is a rise in commer-
cially available 3D content. As an example, Hadfield and
Bowden [4] extract 3D actions from movies and use com-
mercial camera rigs to produce 3D consumer content.
However, reconstructing depth from stereo cameras requires
expensive computations and typically introduces substan-
tial, undesirable artifacts. In contrast, depth sensors use
structured light to generate real-time 3D depth maps rather
reliably. These depth maps allow rather powerful human
motion capturing techniques [5], which can recognize 3D
joint positions of human skeletons in real-time.

In 3D action recognition, which is the topic of this paper,
two significant questions arise when using depth video
sequences. First, how can we represent depth video data
efficiently? State-of-the-art techniques represent depth
video data by extracting manually designed features, either
directly from depth video data or extending hand-designed
features from color-based video data [6-8]. Despite their
good performance for 3D action recognition, these methods
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Fig. 1. The general framework of our proposed approach. Our framework
consists of two main parts: unsupervised feature learning and discrimi-
native feature mining. We develop two types of spatio-temporal features
from depth video data using independent subspace analysis and apply an
ensemble approach with discriminative multi-kernel-learning classifiers.
(For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

suffer from one problem: designing features by hand
requires a heavy, manual workload. In this work, we
provide an unsupervised learning method to learn a 3.5D
representation of depth video data inspired by [9,10] (see
Fig. 1). At the heart of our method is the application of
Independent Subspace Analysis (ISA). A main advantage of
ISA is that it learns features that are robust to local
translation, while being selective to rotation and velocity.
A disadvantage of ISA is that it can be rather inefficient to
train with highly dimensional data, such as video data. We
therefore extend the original ISA algorithm for the use of
depth video data and human skeleton data (see Figs. 2 and
3). Rather than training the model with the entire video in
[11,10], we apply the ISA algorithm to local regions of joints
and substantially improve the training efficiency. Based on
depth video and estimated 3D joint positions, we develop
two types of spatio-temporal features: Global ISA features
(GISA) and Local ISA features (LISA). These spatio-temporal
features can be treated as the resulting descriptors of
spatio-temporal interest points. Interest points are dense
sampled from the surrounding regions of the joints.
Second, how can we deal with noisy human skeleton
data and improve the robustness of 3D action recognition
systems? Skeleton data have natural correspondences over
time, which model temporal dynamics and spatial struc-
tures explicitly. Together with other modalities (e.g. depth
video data), skeleton data may improve the performance
of 3D action recognition. However, when skeleton data
contain irrelevant or redundant information, performance
may be adversely affected. In order to tackle the problem

of tracking errors in skeleton data and to handle intra-class
variations more robustly, we propose an ensemble learning
approach with discriminative multi-kernel learning (EnMKkl)
for 3D action recognition. In our implementation, we
formulate the 3D action recognition task with depth video
as a multiple-kernel learning problem. MKL is able to
discover discriminative features for vision tasks automati-
cally. The underlying idea for employing the MKL approach
is that a certain action class is usually only associated
with a subset of kinematic joints of the articulated human
body. In our case, 3D actions are represented as a linear
combination of joints, where each joint is associated with
a weight. This weighted joint model is more robust to
noisy features and it can better characterize intra-class
variations. In addition, we integrate ensemble learning
with discriminative MKL classifiers. Training and combin-
ing multiple classifiers, ensemble methods [12] are state-
of-the-art techniques with strong generalization abilities.

Our contribution is therefore an original approach by
combining unsupervised feature learning and discrimina-
tive feature mining to recognize 3D human actions. In
summary, the novelty of our approach is four-fold. (1) Our
algorithm is unsupervised and rather generic, and may
therefore be applicable to a wider range of problems with
unlabeled sensor data. To the best of our knowledge, this
approach is the first attempt to learn spatio-temporal
features from depth video data and skeleton data in an
unsupervised way. (2) We propose an ensemble learning
approach with discriminative multi-kernel learning classi-
fiers, which allows for a better characterization of inter-
class variations in the presence of noisy or erroneous
skeleton data. (3) We improve our performance in terms
of the recognition accuracy on MSRAction3D dataset [1]
(see Table 3) and show an accuracy superior to the state-of-
the-art. (4) We further investigate our model and analyze
the efficiency of a 3D action recognition system. We find
that a small subset of joints (1-6 joints) is sufficient to
perform action recognition if action classes are targeted.
This observation is important to allow online decisions and
improvements to the efficiency of action recognition tasks.
A preliminary version of this work appeared in [13].

The remainder of this paper is organized as follows:
Section 2 reviews related work. Section 3 describes our
learning approach of the 3.5D representation of depth
video data. Section 4 presents the ensemble learning
approach with discriminative MKL classifiers. Section 5
discusses the results of our evaluation. Finally, Section 6
concludes the paper.

2. Related work

Methods for 3D human action recognition generally
consist of two main stages: 3D video representation
(extraction of suitable spatio-temporal features) and
machine modeling of human actions (modeling and learn-
ing of dynamic patterns).

2.1. 3D video representation

A straightforward way to calculate spatio-temporal
features from 3D video data is to extend methods based
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paper.)

design for 2D video data. Hernandez-Vela et al. [14] apply
3D Harris detectors [6] separately on RGB and depth video
data. They treat the depth video as gray-scale video data,
without using the spatial information along the depth
direction. Recent work by Hadfield and Bowden [4] incor-
porate depth information while detecting spatio-temporal
interest points. They extend 3D Harris detectors and 3D
Hessian detectors [6] to 4D cases by exploiting the rela-
tionship between the spatio-temporal gradients of the
depth stream and those of the appearance stream. Zhao
et al. [15] and Ni et al. [16] use the HOF [7] and HOG |[8]
features to describe interest points in depth video data.
Instead of appearance, motion and saliency be used in
above descriptors and depth information can be utilized.
Hadfield and Bowden [4] extend the HOG and HOF
features to 4D descriptors (HODG), which encapsulate
local structural information, in addition to local appear-
ance and motion. Hadfield and Bowden [4] extend RMD
(Relative Motion Descriptor) [17] to 4D (RMD-4D). RMD-
4D makes use of saliency information within a 4D integral
hyper-volume during interest point detection.

Recent research focuses on designing features to char-
acterize unique properties of the depth video data more
directly, rather than extending existing algorithms designed
for 2D video data. Cheng et al. [18] design the comparative

coding descriptor (CCD) to capture spatial geometric rela-
tions and related variations over time. The CCD feature
essentially applies a comparative description idea used in
Local Binary Patterns [19]. Inspired by the CCD and LBP
features, Zhao et al. [15] develop the local depth pattern
feature (LDP). In their work, local regions are partitioned
into spatial cells, with the average depth value being
computed for each cell. The differences of average depth
values between every pair of cells form the LDP feature. In a
different approach, Wang et al. [20] treat depth videos as a
4D volume. They employ four dimensional random occu-
pancy patterns to construct their features (ROP). The ROP
features therefore capture the occupancy pattern of a 4D
subvolume.

The third type of 3D video representation is skeleton-
based representations, which describe actions in depth
video data by modeling the spatial-temporal structure of
the human skeleton. Skeleton-based representations are
widely used in computer vision tasks. Yu et al. [21,22] use
skeletons for describing the gestures of characters. Yang
and Tian [23] develop the EigenJoints features based on
the differences of skeleton joints. Eigenjoint is able to
characterize action information, including static posture
features, consecutive motion features, and offset features
in each frame. Bloom et al. [24] use features based on
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Fig. 3. The processing steps of learning (a) Joint_GISA features and (b) Joint_LISA features. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

human poses, such as position difference, position velocity, based on 3D skeleton joint locations. They compute HOJ3D
position velocity magnitude, angular velocity, and joint from 12 of 20 joints in order to exclude possibly redundant
angles. Xia et al. [25] develop the histogram of 3D joints information. Wang et al. [26] also apply pose-based features

(HOJ3D), a viewpoint invariant representation of postures to action recognition. They use data mining techniques [27]
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to obtain sets of distinctive co-occurring spatial and tem-
poral configurations of body parts.

2.2. Machine modeling of actions

Machine learning is widely used in the computer vision
tasks [28-31]. When a 3D video representation is provided
for an observed sequence, human action recognition
becomes a classification task. Data mining, used as a com-
mon step before actual classification, is becoming popular
among recently developed approaches for 3D action recog-
nition. It is used to cope with the new challenges—noisy
data, and a rich collection of features—introduced by the new
3D modalities. Wang et al. [32] propose a data mining
solution to discover discriminative conjunction rules. Their
idea is inspired by successful applications of AND/OR graph
learning in [33,34]. An actionlet is defined as an AND
structure within the base representation. A mining algorithm
is developed in [32] to mine a discriminative set of such
actionlets. Chen et al. [35] use decision forests to discover the
discriminative spatio-temporal cuboids in the dense sam-
pling spatio-temporal space of the video data. Xia and
Aggarwal [36] address this issue and mine discriminative
feature sets from the feature pool based on F-scores. They
rank feature prototypes by their F-scores and select features
with high F-score. Oreifej and Liu [2] pay attention to
quantization methods in order to build histogram-based
descriptors. The bins of the histogram are voted by using
only videos that correspond to the weighted set of support
vectors from Support Vector Machine (SVM) classifiers.

Direct modeling approaches classify 3D video repre-
sentations into action classes without modeling temporal
variations explicitly. Wang et al. [32] employ MKL to learn
a representation ensemble structure that combines dis-
criminative representations in the data mining step, where
each kernel corresponds to a discriminative representa-
tion. Ofli et al. [37] learn an MKL classifier by combining
various modalities. Rehmani et al. [38] employ Random
Forests (RF) for feature selection in conjunction with 3D
action classification. RF is first trained using the set of all
proposed features in [38], then discarding all features
whose scores are below a specified threshold. The result-
ing compact feature vectors are then selected to train a
new RF to be used for classification.

Recent works also utilize temporal state-based approaches
in order to model the dynamics as a part of the classification
process. Reyes et al. [39] present a 3D gesture recognition
approach based on a dynamic time warping (DTW) frame-
work. Depth features from human joints are compared
through video sequences using DTW and weights are
assigned to features based on inter-intra class gesture
variability. Wang and Wu [40] develop a discriminative
learning-based temporal alignment method, named maxi-
mum margin temporal warping (MMTW), to align two action
videos and measure their matching scores. Gaschler et al.
[41,42] train hidden Markov models (HMM) using human
body posture and head pose estimation from depth cameras
to recognize human social behaviors. Instead of performing
off-line recognition, the action graph classifier which is
proposed by Li et al. [43] has the advantage that it can
perform classification without waiting until an action is

finished. Vieira et al. [44] and Kurakin et al. [45] extend the
action graph classifier from 2D video recognition to 3D. They
employ action graphs to 3D action recognition and 3D
dynamic hand gesture recognition, respectively. In addition,
ensemble learning methods have also been widely applied in
classification processes. Geng et al. [46] propose an efficient
ensemble learning method and showed its effectiveness in
real applications such as digit recognition and image classi-
fication. Yu et al. [47,48] apply ensemble learning to image
classification and prediction of user behavior on websites. Xu
et al. [49] develop an ensemble multi-instance multi-label
learning approach for a video annotation problem.

The above approaches focus on hand-tuned features.
In contrast, we generate spatio-temporal features in an
unsupervised learning approach. In order to deal with
tracking errors and redundancies in the skeleton data, we
formulate the action recognition problem with multiple
joints as an MKL approach. We further integrate an
ensemble method into the MKL framework. In general,
our unsupervised learning approach is not limited to 3.5D
data, but can rather easily be adapted to other modalities.

3. Unsupervised learning of spatio-temporal features

This section describes the two types of spatio-temporal
features that we use to represent the 3D actions: the local
and global spatio-temporal features based on independent
subspace analysis, abbreviated as LISA and GISA features,
respectively. These features are learned directly from
unlabeled depth video data using an extension of the
independent subspace analysis algorithm (ISA). They are
invariant to the translation of the human body and robust
to noise. We first briefly describe the background of the
ISA algorithm in Section 3.1. In Section 3.2, we elaborate
our approach to generate LISA and GISA features from
depth video data and skeleton data. Sections 3.3 and 3.4
then describe the implementation details of the 3.5D
depth video representation.

3.1. Independent subspace analysis for depth video data

ISA is an unsupervised learning algorithm that learns
features from unlabeled data and is widely used in the
static image domain. Applying this model to the depth
video domain is rather straightforward. First, random
subvolumes are extracted from the depth video data. The
set of subvolumes is then normalized and whitened. We
treat a subvolume as a sequence of depth image patches
and flatten them into a vector. This vector is then fed to ISA
networks as an input unit. An ISA network [9] is described
as a two-layer neural network (e.g. the bottom ISA in
Fig. 2), with square and square-root nonlinearities in the
first and second layers, respectively.

We start with any input unit x' € R" for each randomly
sampled subvolume. We split each subvolume into a
sequence of image patches and flatten them into a vector
x" with dimension n. The activation of each second layer
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Fig. 4. Visualization of features learned by the model. (a) ISA features learning from Cross Subset3 of MSRAction3D dataset. The inputs of the ISA model are
global depth subvolumes. (b) ISA features learning from Cross Subset3 of MSRAction3D dataset. The inputs of the ISA model are local depth subvolumes.

unit is

2
P W. ) = J £ v (? ijx;> M
= j=

where i is the indicator of the activation of the second
layer unit; j=1,...,n; k=1,...,m; n and m are the dimen-
sion of input unit x* and the number of units in the second
layer, respectively.

ISA learns the parameters W by finding sparse feature
representations in the second layer, by solving

min Z Ep,(x W.V)
t=1i=1
st. WWT =1 ()

Here, W e R**" denotes the weights connecting the
input units to the first layer units (u denotes the number
of units in the first layer); V e R™" denotes the weights
connecting the first layer units to the second layer units
(V is typically fixed to represent the subspace structure
of the neurons in the first layer); T is the number of the
input units x'. The orthonormal constraint is to ensure the
features that are sufficiently diverse.

3.2. Learning LISA and GISA features

The standard ISA training algorithm degrades in effi-
ciency when the input pattern x* becomes large. The
reason for this is the orthogonalization step that has to
be called at each iteration of the projected gradient
descent scheme, a problem that is addressed by [10]. In
order to scale up the ISA algorithm to high-dimensional
depth data, we use a stacked convolutional neural network
architecture similar to [10]. The network progressively
makes use of PCA and ISA as sub-units for unsupervised
learning. The key ideas of this approach are as follows: we
first train the bottom ISA network on small depth sub-
volumes. Then, we take the learned bottom ISA network

and convolve with a larger region of the input depth
subvolume. The combined responses of the convolution
step of the bottom ISA are then given as an input to the top
ISA network. The stacked model is trained greedily, and
layer-by-layer, in the same manner as other algorithms
described in [50,10]. Finally, we combine features from
both the bottom and top ISA networks and use them as
spatio-temporal features together with vector quantiza-
tions for classification.

In our implementation, we develop two types of spatio-
temporal features (LISA and GISA features) according to
the input patterns of the stacked ISA model (see Fig. 2). We
define GISA features as the global spatio-temporal features
learned by the stacked ISA model with the randomly
sampled global depth subvolumes as input data. A global
depth subvolume is a sequence of depth patches, where the
depth patches of different timestamps have the same
spatial size and image coordinates. Similarly, LISA features
are learned by the stacked ISA model with randomly
sampled local depth subvolumes as an input. A local depth
subvolume is a sequence of depth patches, where the depth
patches of different timestamps have the same spatial size
but different image coordinates (see Fig. 2a). Fig. 4 shows
the features learned by the bottom ISA layers. The bottom
ISA model learns spatio-temporal features that detect
moving edges in time. The learned feature (each row in
Fig. 4(a) and (b)) is able to group similar features in a
group, thereby achieving spatial invariance. These features
have rather sharp edges, similar to Gabor filters [51]. This
could be explained by the strong discontinuities that are
prevalent at object boundaries in depth video data.

3.3. The 3.5D depth video representations

Based on the LISA and GISA features in the above section,
we develop a new representation of human action, 3.5D
Depth Video Representation. It corresponds to the outcome
of reconstructing 3.5D information from spatio-temporal
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features (LISA and GISA features) and the skeleton data (3D
joint positions).

Compared to interest point-based methods, which
describe parts of interest in the scene, LISA and GISA features
are used to describe general parts of the scene as they do not
need apply interest point detection. This approach may save
the time of interest point detection process, however it can be
potentially time-consuming when the dimension of the input
data is large. It is generally agreed that knowing the 3D joint
position of human subject is helpful for action recognition.
We therefore develop a 3.5D depth video representation to
combine the 3D configuration of human skeletons and
spatio-temporal features of each joint. In our implementation,
we utilize LISA and GISA features as spatio-temporal features.

We borrow the term, 3.5D representation, from stereo-
scopic vision [52], in which they use a 2.5 representation
to describe actions in static imagery. A 3.5D representation
g% describing a depth video X consists of V nodes
connected by E edges. The nodes correspond to a set of
key points (joints) of the human body. A node v is
represented by the 3D position of this node p, and the
histogram feature ff extracted in an image region sur-
rounding this node in time. Adjacent nodes v and v’ are
connected by edge e. Finally, the 3.5D representation of a
depth video is written as GY*={f,.f, ...fy.}, where k
denotes the number of the joints.

3.4. Implementation

For a human subject in a depth video &, the skeleton
tracker tracks 20 joint positions [5] (see Fig. 5), which
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Fig. 5. Naming of the human joints tracked by the skeleton tracker [5].

Table 1

correspond to 20 nodes of a 3.5D representation G*. For
each joint i at frame ¢, its surrounding region S is of size
(vx, vy) pixels. Let 7" denote the temporal dimension of the
depth video X. The depth video X is represented as the set
of joint volumes {JV;,JV,...JV,4}. Each joint volume can be
considered as a sequence of depth image patches
JV; =S ,Sé...Si}. The size of JV; is vx x vy x T (see Fig. 3).
Finally, G* is rewritten as G¥ = {F(V,),F(V,)...F(V)},
where k=1,...,20; f\f{k =F(JVy); E() is a function where
the input joint volume JVj is converted into a histogram
feature fy .

As the surrounding region of each joint is small
compared to the whole image, we reduce the dimension-
ality and greatly improve efficiency. Additionally, it is
possible to dense sample the local region of a joint to
capture more discriminative information. Moreover, the
features are discriminative enough to characterize varia-
tions in different joints. Based on the above stacked ISA
model, we compute the spatio-temporal features directly
from JV; for each joint. We treat the spatio-temporal
features as the resulting descriptors of the spatio-
temporal interest points. Each interest point is represented
by a subvolume, which consists of s; depth image patches
of size sx x s, (see Fig. 2a and Fig. 3). The spatio-temporal
interest points of GISA features and LISA features are global
depth subvolumes and local depth subvolumes, respectively.
We dense sample the interest points from JV;. Then, we
perform a vector quantization by clustering the spatio-
temporal feature from the 20 joints, which result in a bag-
of-word histogram feature of each joint. With two types of
spatio-temporal features (LISA and GISA features), we
obtain two histogram features at each joint, named
Joint_GISA;, Joint_LISA; (see Fig. 3 and Table 1). For each
joint, we apply histogram operations (e.g. concatenation)
to the histograms Joint_GISA;, Joint_LISA;, which results in a
new histogram feature Joint_GL_ISA; = [Joint_GISA;,
Joint_LISA;]. The concatenation operation fuses two types
of histogram features to provide robustness to classifica-
tion problems, a technique which has proven useful in the
image classification domain [53]. As different features
present human actions from different perspectives, con-
catenation can further be enhanced by introducing
broader characteristics. For this, each 3D joint is associated
with two histogram features Joint_GISA;, Joint_LISA; and
their concatenation Joint_GL_ISA;. Each of these corre-
sponds to the featureff of a node v in G*. In the following,
we will refer to these three as joint-based features.

Inspired by the Spatial Pyramid approach [53], we
group adjacent joints together as a joint pair, seeking to
capture the hierarchical structure of the skeleton. In our

Implementation details of six types of histogram features used in 3.5D depth video representations.

Video data Spatio-temporal feature Joint/joint pair Histogram operation Feature
Depth + skeleton GISA feature Joint Joint_GISA
Joint pair Joint_GISAp
LISA feature Joint N/A Joint_LISA
Joint pair Joint_LISAp
GISA+LISA feature Joint Joint_GL_ISA
Joint pair Concatenation Joint_GL_ISAp
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human skeleton model, there are 19 joint pairs. Each joint
pair is represented by three histogram features jJoint_
GISAp;i=[Joint_GISA;,  Joint_GISA;], Joint_LISAp;; = [Joint_
LISA;, Joint_LISA;], and their concatenation Joint_GL_
ISApj; = [Joint_GL_ISAp;, Joint_GL_ISAp;]. We call them
joint-pair-based features. In total, we have defined six types
of 3.5D representations G* for depth video X (see Table 1).
For each type of representation, the features fVX are given
by Joint_GISA;, Joint_LISA;, Joint_GL_ISA;, Joint_GISApy,
Joint_LISApy, and Joint_GL_ISAp;;, respectively. To clarify
further explanations, we will omit the subscript from the
above six features in the rest of the paper.

4. Ensemble learning with discriminative MKL classifiers

In order to model intra-class variations better and
provide more robustness against errors of the skeleton
tracker [5], we propose an ensemble learning approach for
action recognition using depth videos. The aim of our
method is to learn a discriminative subset of joints for each
action class. To achieve this, we combine two concepts: (1)
Discriminative training to explore the 3.5D representation
effectively; (2) Ensemble learning to learn a stronger
classifier at a high efficiency. Specifically, we develop an
ensemble multi-kernel learning framework (EnMkl) where
each component classifier is a discriminative MKL classi-
fier that is trained on a subset of training samples. In our
setting, the discriminative training and the ensemble
learning can benefit from each other. The MKL framework
allows us to consider a subset of joints at a time, which
allows us to explore the 3.5 representation efficiently, and
in a systematic way. Ensemble learning selects a subset of
training samples to explore the diversity of the sample
data and therefore it can balance the distribution of the
dataset (especially for a small size dataset) and reduce
redundancy in the feature set.

An overview of the EnMKkI approach we use is shown in
Algorithm 1. We first describe the framework of our
algorithm. Next, we give more details of the kernel design
of the component classifiers.

4.1. Multi-kernel learning

Joint-based features provide useful, characteristic data to
allow action recognition. However, redundant or irrelevant
information may complicate classification; typically, joint
data may be very noisy when occlusions occur, hindering
the classifier from isolating relevant information.

When dealing specifically with skeletal data obtained
by a skeleton tracker [5] from an RGBD camera, it can be
seen that some joints are more important than others with
respect to action recognition. Therefore, taking this obser-
vation into account, we investigate discriminative joint
subsets for human actions by the MKL algorithm. MKL is
used to learn an optimal combination of joint-based (or
joint pair-based) features {f; .f, ...fy }. With each kernel
corresponding to each feature, different weights are
learned for each joint. Weights can therefore highlight
more discriminative joints for an action and ignore irrele-
vant or unnecessary joints by setting their weight to zero.

4.2. Ensemble learning with MKL classifiers

The properties of training datasets such as size, dis-
tribution and number of attributes significantly contribute
to the generalization error of a learning machine. In action
recognition tasks, class imbalances or unevenly distributed
sample data is rather common. Because of the large effort
of acquiring video data and manually annotating these
data, the size of the training data for action recognition is
typically smaller than in other computer vision tasks. In
addition, different subjects perform actions with consider-
able variation. These complications may—without precau-
tions being taken—lead to models that suffer from over-
fitting.

To deal with these problems, randomization with
under-sampling is an effective method. This technique
uses a subset of majority class samples to train a classifier.
Although the training set becomes balanced and the
training process becomes faster, standard under-sampling
often suffers from the loss of helpful information con-
cealed in the ignored majority class samples. Inspired by
[54], our method considers the distributions of different
samples in the training dataset. Rather than randomly
sampling subsets of the majority class, we try to balance
randomization and discrimination during the training
phase of the stronger classifier. For this, we define a
threshold ¢ to evaluate component classifiers in the
ensemble learning framework. This way, our algorithm
can use random or discriminative sampling subsets of
training samples to train a component classifier according
to the performance of the component classifier in the
previous iteration. (In a control experiment, we limit this
ability by using only randomly sampling subsets, obser-
ving the recognition rate to drop by 0.7%.) Similar to other
ensemble learning approaches, the AdaBoost algorithm
[55] is used in our method to train a number of weighted
component classifiers. An ensemble of all component
classifiers together creates the final classifier. Here, for
each class, a multiple kernel learning (MKL) classifier is
used as the base learner of an ensemble. MKL is able to
mine the dominating sets of joints and learn a linear
combination of these discriminative joint-based features,
details of which we present in the following section.

4.3. Kernel design of component classifiers

Our objective is to learn a component classifier that,
rather than using pre-specified kernels, use kernels that
are linear combinations of given base kernels. Suppose
that the bags of the depth video & are represented as

fX:{fl’fZ""’ft—bft} (3)

where t is the number of the features for each depth video.
The classifier defines a function F(f") that is used to rank
the depth video X by the likelihood of containing an action
of interest.

The function F is learned, along with the optimal
combination of histogram features f*, by using the Multi-
ple Kernel Learning techniques proposed in [56]. The
function F(f") is the discriminant function of a Support
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Vector Machine and is expressed as
M .
FEH= 3 yiakf.f)+b )
i=1

Here, f, i=1,...,M denote the feature histograms of M
training depth video datasets, which are selected as a
representative by the SVM. y' e {+1, —1} are their class
labels, and K is a positive definite kernel, obtained as a
linear combination of base kernels

K(*.fH = ZwiK(.f) 6)
J

MKL learns both the coefficient «; and the kernel
combination weights w;. For a multi-class problem, a
different set of weights {w;} is learned for each class. We
choose a one-vs.-rest strategy to decompose the multi-
class problems.

Because of linearity, Eq. (4) can be rewritten as

F(Y)=ZwF () 6)
J

where
M .

FO)= X vk (}.S)+b )

With each kernel corresponding to each feature, there are
20 weights w; to be learned for the linear combination of
the joint-based features, and 19 weights w; to be learned
for the joint pair-based features. These weights represent
how discriminative a joint is for an action; we can even
ignore less discriminative joints by setting w; to zero.

As MKL cannot give a posterior class probability P(y =
11X), we propose an approximation of the posteriors by a
sigmoid function

1
14+exp(AmFY +Bm)

We follow Platt's method to learn A,, and B, [57]. For each
MKL model m, we then learn a sigmoid function pro(F,).

Pn(y=11X)~pro(F¥) = (8)

Algorithm 1. EnMKkI.

Input: For the training set of each action class, select all positive
samples P, and all negative samples N, |P| < [N, y' e {+1, -1}
are their class labels. Define T as the number of iterations to
train an AdaBoost ensemble C.

Weights initialization for each sample: ri = 1/(|P|+|N]),
i=1,..,|PI+ N, t=1,

mode=top

while < T do

Weights normalization:F = Vi ®

if mode = = top then

Select top weighted samples: a subset A", from A

end if

Train an MKLSVM component classifier, 7, on P and N,

Compute the performance of 7, over P and
N:p, = Zrigl(1 —abs(sgn(F7) ~y") (10)
whereg!'= ((1—sgn(#1))/2+pro(Fi)sgn(F1)

o
niry

pro() denotes the .
probability output of 7.
Choose a, = —%log(%) a, > 0 then
mode=top; t=1+1
Update the weights:rit1 = Fle(~2igl+ a1 - abstsgn) -y,

Vi
11
else an

mode=random; Select a random subset N, from N
continue
end if
end while 12)

Output:C = w

r=1%

5. Evaluation

In this section, we first compare our algorithm quanti-
tatively against current state-of-the-art 3D action recogni-
tion algorithms, measuring recognition accuracies on the
MSRAction3D dataset. After that, we further analyze the
efficiency of our approach in a 3D action recognition
system. In addition, we study the general advantages of
discriminative MKL classifiers in the field of action recog-
nition. In a more specific evaluation, we discuss the
discriminative joint subset for each action class, and we
study how many joints in a depth video are sufficient to
perform certain action detection and recognition tasks in
our framework.

5.1. Experimental setup

The MSRAction3D dataset [1] is a public dataset that
provides sequences of depth maps and skeletons captured
by a Kinect RGBD camera. It includes 20 actions performed
by 10 subjects facing the camera during performance. Each
subject performs each action two or three times. As shown
in Fig. 6, actions in this dataset reasonably capture a
variety of motions related to arms, legs, torso, and their
combinations. In order to facilitate a fair comparison, we
follow the same experimental settings as [1,2,36] to split
20 actions into three subsets as listed in Table 2, each
having 8 action classes. In each subset, half of the subjects
are selected as training data and the other half for testing;
we perform a two-fold cross validation.

5.2. Sensitively analysis

We analysis the effect of several parameters of our
model: the size of the input unit of ISA model, dense
sampling stride, codebook size, kernel type. We show the
results across different parameter setting for LISA and GISA
features by using a three-fold cross-validation on training
data: Cross Subset 1 (see Table 4).

We first evaluate the effect of the size of the input units.
The input units to the bottom layer of ISA model are of size
Sx x Sy x St. We report results of our model with a different
spatial size sy (sx=sy) and a different temporal size s; of
the input units. Fig. 7 shows the average classification
accuracies using cross-validation. Increasing the spatial
and temporal size of the input units improves the perfor-
mance up to Sy = 12. This is probably due to the fact that
input units need to have a minimum size to dense sample
enough interest points. We observe the best result with
the size of the input unit of 12 pixels x 12 pixels x 10
frames.

With respect to the dense sampling stride, Fig. 8 pre-
sents the results for 1-4 pixels. The performance increases
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Fig. 6. The sequences of depth maps and skeleton for different action classes. Each depth image includes 20 joints (marked as red points).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Partitioning of the MSRAction3D dataset into three subsets as used in our evaluation.

Subset Classes Cross subset 1 (CS1) Cross subset 2 (CS2) Cross subset 3 (CS3)
Action classes Tennis Serve (TSr) High Wave (HiW) High Throw (HT)
Horizontal Wave (HoW) Hand Catch (HC) Forward Kick (FK)
Forward Punch (FP) Draw X (DX) Side Kick (SK)
High Throw (HT) Draw Tick (DT) Jogging (JG)
Hand Cap (HCp) Draw Circle (DC) Tennis Swing (TSw)
Bend (BD) Hands Wave (HW) Tennis Serve (TSr)
Hammer (HM) Forward Kick (FK) Golf Swing (GS)
Pickup Throw (PT) Side Boxing (SB) Pickup Throw (PT)
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Fig. 7. Effect of spatial and temporal size of the input units with GISA feature (a) and LISA feature (b) on classification accuracy using cross-validation.



G. Chen et al. / Signal Processing 110 (2015) 67-81 77

with a higher sampling density. This is also consistent with
dense sampling at regular position where more features in
general improve the results [58]. A sampling stride of 1
pixel samples every pixel which increase the computa-
tional complexity. We set the dense sampling stride as 2
pixels, which offers a good trade-off between speed and
accuracy.

Fig. 9 shows the classification performance for different
combinations of kernels and codebook sizes. The 4 kernel
outperforms the intersection kernel. Larger codebook sizes
have been reported to improve the classification perfor-
mance. For both kernels, the performance saturates at
codebook size=700 or codebook size=900.

5.3. Model details

We use the found optimal parameters for sensitive
analysis to train our models and test our method. We train
the ISA model on the MSRAction3D training sets. The input

1
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Fig. 8. Effect of the dense sampling stride with GISA feature and LISA
feature on classification accuracy using cross-validation.

units to the bottom layer of ISA model are of size
12 x 12 x 10, which are the dimensions of the spatial and
temporal sizes of the subvolumes. The size is the same for
global depth subvolumes (for learning GISA features) and
local depth subvolumes (for learning LISA features). The
subvolumes of the top layer of the ISA model are of the
same size as those of the bottom layer.

We perform vector quantization by k-means on the
learned spatio-temporal features for each joint. For the
distance parameter in the dense sampling step for the
local regions of each joint, we choose a region of 2 pixels.
The codebook size k is 700 for both Joint_GISA feature and
Joint_LISA feature. Therefore, each depth video is repre-
sented by 20 histogram features for Joint_GISA, Joint_LISA,
Joint_GL_ISA or 19 histogram features for Joint_GISAp,
Joint_LISAp, and Joint_GL_ISAp. We choose #? as the histo-
gram kernel for the multi-class SVM classifier. For EnMKkI,
we set the number of subsets |\, | = 3|P| and the rounds of
the AdaBoost T=20. The threshold for a good component
classifier is set to 1.45. Across the three subsets, all
parameters are set to the same values. Note that when
we set the number of the samples in subsets |A,| = |,
and the rounds of the AdaBoost T=1, EnMkl becomes
equivalent to a multi-kernel learning problem; we call this
special case EnMKlI-s.

5.4. Experimental results

We compare our algorithm with several recent meth-
ods including: (1) Li et al. [1], where bags of 3D points are
sampled from depth maps and an action graph is
employed to model the dynamics of the actions; (2) Yang
and Tian [23], who design a new type of feature set based
on position differences of joints; (3) Wang et al. [20],
where the depth sequence is randomly sampled and the
most discriminative samples are selected and described
using LOP descriptors; (4) Wang et al. [32], where local
occupancy pattern features are used over the skeleton
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Fig. 9. Effect of the codebook size and kernel type with GISA feature and LISA feature on classification accuracy using cross-validation.
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joints; (5) Oreifej and Liu [2], who describe the depth
sequence using a histogram that captures the distribution
of surface normal orientations in 4D space; (6) Xia and
Aggarwal [36], who employ a filtering method to extract
STIPs from depth videos; (7) Wang et al. [26], where
observations are represented by histograms of activating
spatial and temporal part-sets; (8) Gowayyed et al. [59],
who design a 2D trajectory descriptor, the histogram of
oriented displacements (HOD).

A comparison of our method against the best published
results for the MSRAction3D dataset is reported in Table 3.
Because we test six types of 3.5D representations G¥ for
two models EnMkl and EnMkl-s, Table 3 shows 12 results
in total. As can be seen from the table, our approach
outperforms a wide range of methods. There is a clear

Table 3
Comparison of recognition accuracy between previous methods and our
proposed approach on the MSRAction3D dataset.

Method Accuracy
Action graph on bag of 3D points [1] 0.747
EigenJoints [23] 0.823
Random occupancy pattern [20] 0.865
Mining actionlet ensemble [32] 0.882
Histogram of oriented 4D normals [2] 0.889
ST depth cuboid similarity feature [36] 0.893
Pose-based action recognition [26] 0.902
Histogram of oriented displacements [59] 0.913
EnMkl-s + Joint_GISA 0.879
EnMkl-s + Joint_GISAp 0.896
EnMkl-s + Joint_LISA 0.895
EnMkl-s + Joint_LISAp 0.912
EnMkl-s + Joint_GL_ISA 0.894
EnMkl-s + Joint_GL_ISAp 0.914
EnMKkI + Joint_GISA 0.887
EnMKI + Joint_GISAp 0.901
EnMkl + Joint_LISA 0.903
EnMkI + Joint_LISAp 0.920
EnMKkl + Joint_GL_ISA 0.903
EnMKkl + Joint_GL_ISAp 0.923
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increase in performance of our method EnMkl (with
Joint_GL_ISAp feature) (92.3%) compared to the closest
competitive method (91.3%). Note that the absolute per-
formance is very good, considering that failures in the
skeleton tracker are quite frequent and tracked joint
positions are rather noisy. The obtained accuracy of
EnMkl-s (with Joint_GL_ISAp features), a special case of
EnMkl without using ensembles, is 91.2%. These encoura-
ging results illustrate the effectiveness of our unsupervised
learning features.

Compared to EnMkl-s, the improvement of EnMKI is
about 1%. This indicates that the ensemble learning
approach can better capture intra-class variations and is
more robust against noise and errors in depth maps and
joint positions. This observation is consistent with [32],
who report that accuracy decreases when the ensemble
approach is disabled in their experiments. It is also
important to note that in our methods, accuracies obtained
using LISA features (91.2% for EnMkl-s with Joint_LISAp)
are better than using GISA features (89.6% for EnMkl-s
with Joint_GISAp). This is probably because the skeletons
have a natural correspondence over time and LISA features
can model spatial structures more explicitly than GISA
features. To further investigate the relationship between
LISA features and GISA features, we study the most
important joints discovered by Joint_LISA and Joint_GISA
features with the EnMkl-s method. For each action class,
the top-weighted joint is selected as the most important
joint. Here, we define the top-weighted joint as the joint
with the highest maximum. With Joint_LISA features, right
hand, right wrist, and left wrist joints (the top three) receive
the most votes in 20 action classes in the MSRAction3D
dataset. With Joint_GISA features, right hand, right shoulder,
and left elbow joints receive the most votes (the top three).
The results indicate that LISA and GISA features have some
qualities in common, as both of them select right hand as
the highest weighted joint. Our results are consistent with
[59], who conducted an experiment using features from
only one joint to perform action recognition. Their results
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Fig. 10. The joint subsets used to recognize the 20 action classes in the MSRAction3D dataset. Our method can learn discriminative joint subsets for each
action class. The weight associated with each joint describes how discriminative a joint is for that action. Joints with weights > 0 are highlighted as thick,
red lines. All abbreviations of action classes are defined in Table 2. (For interpretation of the references to color in this figure caption, the reader is referred

to the web version of this paper.)
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show that using the right hand joint outperforms all other
joints on the MSRAction3D dataset. Additionally, it is
interesting to note that in our methods, accuracy obtained
using Joint_GISAp/joint_LISAp features is 90.1%/92%
(EnMKI), which is better than using joint_GISA/Joint_LISA
features 88.7%/90.3% (EnMKkl). These results show a clear
advantage of the spatial pyramid approach, even though
we simply group adjacent joints together as joint pairs and
capture the hierarchical structure of human skeleton.

In Table 4, we report average accuracies of all three test
sets (Cross Subset 1 (CS1), Cross Subset 2 (CS2), Cross Subset
3 (CS3)) and show the best performance results of the two
methods, EnMkl-s and EnMKI. In Fig. 11, we illustrate the
average accuracies of all action class. While the perfor-
mance in CS2 and CS3 is promising, the accuracy in CS1 is
relatively low. This is probably because actions in CS1 are
performed with rather similar movements. For example, in
CS1 Hammer tends to be confused with Forward Punch and
Horizontal Wave, and Pickup Throw consists of Bend and
High Throw. Although our method reaches an accuracy of
100% in 12 out of 20 actions, the accuracy of the Hammer
in CS1 is only 37.7%. This is probably due to the significant
variations of the action Hammer performed by different
subjects; recognition performance could be improved by
adding more subjects to the training set.

5.5. Advantages of multi-kernel learning

It is generally agreed that, although the human body
has a large number of kinematic joints, a certain action is
usually only associated with a subset of them. Additionally,
feature extraction in action recognition is usually compu-
tationally expensive. A reduced feature subset leads to
lower computational costs. This encourages us to investi-
gate the following two questions: do more joints allow for

Table 4

Recognition accuracy of our method on each of the three subsets. CS1,
CS2 CS3 are the abbreviations of Cross subset 1, Cross subset 2, Cross
subset3 (see Table 2).

Method CS1 CS2 CS3
EnMKI-s +Joint_GL_ISAp 0.882 0.898 0.951
EnMKkl + Joint_GL_ISAp 0.881 0.927 0.959

better for action recognition? Do joints contribute equally
to recognizing an action?

We address the first question by setting the following
control experiment: we conduct two tests, where the first
test uses 20 joint features with equal weights for action
recognition and the second test uses a subset (the subset is
obtained by the EnMkl method) of joint features with
equal weights (manually setting w; to 1). We perform both
tests on the MSRAction 3D dataset. It is not surprising that
the first test performs worse than the second, with a
decline of 4.5% in accuracy on the MSRAction 3D dataset.
This indicates that a subset of characteristic data may lead
to a more successful recognition and a full set of data with
irrelevant information may complicate the classification.

To answer the second question whether joints contri-
bute equally to an action, we re-run the experiment with
the same settings as in Section 5.3 and manually set w; to
1. The results of this test show substantially worse accura-
cies than those of the previous experiments. More pre-
cisely, setting the weight to 1, accuracy drops by a
significant amount of 5% for the MSRAction3D dataset.
This confirms that the weights learned from MKL are
indeed very relevant for successful action recognition.

5.6. Mining discriminative joint subsets

In our EnMkl-s method, each action is represented as a
linear combination of joint-based features. We learn their
weights in a multiple kernel learning method to obtain
discriminative joint subsets.

Fig. 10 illustrates the skeleton with joints weights
obtained by our EnMkl-s method. Here, we only show
the results of the Joint_LISA features as an example; the
other five feature sets would show to very similar results.
The Joint_LISA features with weights >0 are marked as
thick, red lines. The average number of joint_LISA features
for 20 actions in the MSRAction3D dataset is four. Three of
20 action classes have only one discriminative Joint_LISA
feature. This result is rather interesting: imagining we
want to recognize or detect a specific action class; we only
need to extract features from one joint rather than the
entire video data. This can be implemented and executed
at a high efficiency.

EnwMi-s is also able to deal with tracking errors in the
skeleton data and can better capture intra-class variation.

EEE EnMkl + Joint_GL_ISAp

Fig. 11. Recognition accuracies for the 20 action classes of the MSRAction3D dataset. We compare EnMkl to EnMkl-s using Joint_GL_ISAp features. All
abbreviations of action classes are defined in Table 2. (For interpretation of the references to color in this figure caption, the reader is referred to the web

version of this paper.)
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Fig. 10(t) shows that Golf Swing is represented by the
combination of the joints head, neck, right hand, right wrist,
left hand, left wrist and left elbow (see Fig. 5 for the
definition of the joint labels). Fig. 10(a) shows that Tennis
Serve is represented by the combination of the joints left
elbow, left wrist, right hand, right wrist, torso, and waist. It is
obvious that different action classes have different dis-
criminative joint subsets. Fig. 10(r) shows that Jogging is
represented by the combination of the joints left elbow, left
shoulder, left hip, waist, torso, neck and right shoulder.
Normally, one would expect Jogging to be related to the
left and right feet or ankles. However, in the MSRAction3D
dataset, the tracked positions of the joints right/left foot,
and right/left ankle are very noisy (see Fig. 6). Therefore,
these joints are not discriminative for the action class
Jogging, which is consistent with Fig. 6(f). This shows that
our method is rather robust against tracking errors in the
skeleton data.

5.7. Computational complexity

The training phase of neural networks (e.g. unsupervised
feature learning) is usually computationally expensive and
requires much tuning. The ISA algorithm, however, does not
need the tweaking with the learning rate or the conver-
gence criterion. For the training stage, the ISA algorithm
takes 3-4 h to learn the stacked ISA model using the setting
in Section 5.3.

To analyze the computational complexity of the feature
extraction, we extract features with dense sampling on 20
video clips from the MSRAction3D dataset. The run-time is
obtained on a notebook with a 2.3 GHz double-core CPU
and 8 GB RAM. The implementation is in unoptimized and
un-parallelized MATLAB. Feature extraction using our
method runs 1 frame per second with the entire video
and 6 frames per second with specific portions of the
video (the surrounding regions of the joints of the subject
which performs the action in the video). As the extraction
time relies heavily on matrix vector products, it can be
implemented and executed much more efficiently on a
GPU.

6. Conclusion

We present a novel ensemble learning approach, named
EnMKkl, which combines unsupervised feature learning and
discriminative feature mining. For this, we develop two
types of spatio-temporal features, applying independent
subspace analysis to depth video data. Our approach is
rather generic and unsupervised, and may therefore be
applied to a wider range of problems with unlabeled sensor
data. To the best of our knowledge, EnMKkl is the first
attempt to learn the spatio-temporal features from depth
video data in an unsupervised way. Furthermore, we pro-
pose an ensemble learning approach with discriminative
multi-kernel-learning classifiers, which allows for a better
characterization of inter-class variations in the presence of
noisy or erroneous skeleton data. In our evaluation, we
analyze the efficiency of our 3D action recognition approach.
In more detailed discussions, we investigate which joint
subsets are discriminative for different types of actions, and

we study which of these joints is sufficient to recognize
these actions. Our experimental results of the EnMkl
approach show a performance superior to existing techni-
ques. Results also suggest that learning spatio-temporal
features directly from depth video data may be a promising
direction for future research, as combining these features
with ensemble learning may further increase performance.
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