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Blind Cluster Structured Sparse Signal Recovery: a Nonconvex Approach

Damiana Lazzaro*, Laura B. Montefusco, Serena Papi!

Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 40123 Bologna (Italy)

Abstract

We consider the problem of recovering a sparse signal when its nonzero coefficients tend to cluster into
blocks, whose number, dimension and position are unknown. We refer to this problem as blind cluster
structured sparse recovery. For its solution, differently from the existing methods that consider the problem
in a statistical context, we propose a deterministic neighborhood based approach characterized by the use
both of a nonconvex, nonseparable sparsity inducing function and of a penalized version of the iterative £;
reweighted method. Despite the high nonconvexity of the approach, a suitable integration of these building
elements led to the development of MB-NFCS (Model Based Nonlinear Filtering for Compressed Sensing), an
iterative fast, self-adaptive, and efficient algorithm that, without requiring any information on the sparsity
pattern, adjusts at each iteration the action of the sparsity inducing function in order to strongly encourage
the emerging cluster structure. The effectiveness of the proposed approach is demonstrated by a large set of
numerical experiments that show the superior performance of MB-NFCS to the state-of-the-art algorithms.
Keywords: Compressed Sensing, Nonconvex Minimization, Cluster Structured Sparsity, Neighborhood

Based Method, Penalization Method, Reweighted Methods.

1. Introduction

This paper deals with the problem of recovering a sparse signal when its nonzero coefficients tend to
cluster into blocks, whose number, dimension and position are unknown. We refer to this problem as blind
cluster structured sparse recovery. This kind of sparse pattern is encountered often in practical applications,
including gene expression levels, DNA microarrays, MIMO channel equalization, magnetoencephalography,
and has recently drawn considerable attention in the Compressed Sensing research area [2, 5, 19, 41].

The basic paradigm of conventional Compressed Sensing is the K-sparsity of an N-dimensional signal.
By exploiting this sparsity it is possible to obtain robust signal recovery from M = O(K log(%)) linear

measurements, by selecting from the signals that agree with the measurements the one with minimum
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¢y norm, [6, 7, 8, 9]. While this result provides a significant improvement over Nyquist-rate sampling,
model based and structured Compressed Sensing represent new directions of the traditional theory which
extend the standard sparsity prior to include structural dependencies between the values and locations of
the nonzero signal coefficients [2, 5, 19, 28, 41]. Two typical examples of structure are wavelet trees [25]
and block-sparsity [19, 20]. Structured sparsity models reduce the degrees of freedom of a sparse signal by
permitting only certain configurations of the support of the nonzero coefficients. This allows for a higher
reduction of the number of measurements required for stable signal recovery. Several papers have been
devoted to integrating structured sparsity into Compressed Sensing. In [2, 19, 20] new theoretical results
and algorithms are presented for the above mentioned structure, while [1, 3, 19, 23, 24, 26, 34, 36, 37, 49, 50]
focus in particular on the block-structure. In these papers several combinations of norms are used to induce
both overlapping and non-overlapping group sparsity and different strategies, such as variable splitting
and alternating direction method of multipliers (ADMM), are proposed to solve the corresponding convex
optimization problem. In the attempt to improve the results based in convex optimization, in [12], [52],
nonconvex approaches have been proposed for group sparsity with sparse group. All the mentioned methods
solve the cluster structured sparse signal recovery problem efficiently, but each of them requires some a priori
information about the block partition. The only papers that, to the best of our knowledge, do not require
any information on the sparsity structure are [43] and [48] , which present neighborhood based approaches
developed in statistical Bayesian frameworks. Their methods, implemented in the Cluss-VB and EBSBL-BO
packages, represent the best state-of-the-art algorithms for blind cluster structured sparse signal recovery.
The only drawback of these algorithms is that are computationally demanding.

Motivated by the need to significantly reduce the computing time, this paper focuses on the blind recovery
problem with the objective of creating a fast and efficient reconstruction algorithm. We propose two new
ideas to achieve this goal: the first is to use in the compressed sensing reconstruction problem, in place of the
{1 norm, a new neighborhood based nonconvex and nonseparable sparsity inducing function, that allows us
to capture during the reconstruction process the local interdependency structure of the sparse signal support;
the second is to integrate the iterative reweighted ¢; scheme (IR¢;) within the iterative penalization approach
used for the solution of the corresponding constrained nonconvex minimization problem. Even if the use of
a suitable sparsity inducing function to encode prior information on the structure of the signal sparsity is
not new, [24, 29, 44], the blind approach is very different. The novelty of our proposal relies on the fact
that we do not require any a prior: information on the signal structure, since the iterative integration of
the penalization and reweighted approach allows the algorithm to discover at each iteration the hidden local
structure and suitably adapt the action of the sparsity inducing function by changing the weights accordingly.
The resulting MB-NFCS algorithm is thus iterative, and at each iteration of the penalization method the
proposed nonseparable sparsity inducing function adaptively encodes the locally emerging cluster structure
and encourages the next reconstruction to possess the discovered sparsity pattern. Extensive experiments
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and comparisons with the best state-of-the-art algorithms for blind structured sparse signal recovery show
that the proposed iterative, deterministic approach is very effective, since MB-NFCS is very fast, but still
succeeds in achieving perfect reconstruction from a very low number of measurements.

The paper is organized as follows: in Section II we briefly recall the basic results of the classical and Model
Based Compressed Sensing Theory. The proposed nonconvex approach to the blind cluster structured
sparsity problem is presented in Section III, and in Section IV we give the solution method and the scheme
of the corresponding algorithm. Section V presents a brief extension of the proposed approach to the
two-dimensional case and in Section VI we give numerical results demonstrating the effectiveness of the

MB-NFCS algorithm. Section VII closes the paper with a short conclusion.

2. The Compressed Sensing Problem: Summary of theory.

The Compressed Sensing formulation for the problem of recovering a K-sparse N-dimensional signal
from M linear measurements y = ®z, with M < N and ® an M x N matrix, is the following: find @ € RV
that satisfies:

4 = arg min F(u) subject to du =y, (1)
ueRN

where the sparsity inducing function F'(u) allows us to select, among the infinitely many solutions of the
underdetermined linear system ®u = y, the desired one. The most natural choice for F'(u) is F(u) = ||ul|o,
but the corresponding combinatorial search is numerically prohibitive. A common approach is therefore to
use F'(u) = ||ul|1 as a convex relaxation of the ¢y norm and to solve the corresponding constrained convex
optimization problem. Theoretical results have shown the equivalence of the two formulations, provided
that the matrix ® possesses the Restricted Isometry Property of order 2K (2K-RIP), and the number of
measurements M satisfies a ®-dependent bound of the kind M = O(Klog(%)), (see [16] and references
therein).

The need to further reduce the number of measurements has recently encouraged the emergence of new
research directions for the choice of the sparsity inducing function. Among them, nonconver Compressed
Sensing is based on a nonconvex approach to problem (1). Allowing the function F'(u) to be nonconvex
makes it possible to better approximate the fy-norm, thereby obtaining fast and stable reconstructions
with a lower number of measurements ([11, 30, 31, 33, 35, 40, 42, 45, 46]). Another direction known as
model-based Compressed Sensing accounts for the fact that the nonzero coefficients of some sparse signals
tend to cluster into groups or other structured patterns. In order to exploit the interdependency of the
nonzero coefficients, model-based Compressed Sensing makes use of suitable sparsity inducing functions
F(u) that encode the known sparsity structure, favoring the arrangement of coefficients into the desired

pattern. Several papers have been proposed to add the structured sparsity constraint into problem (1), both



by using linear combinations of norms on subsets of variables or specifically constructed sparsity inducing
functions, and by adding suitable constraints on the set of nonzero coefficients (see e.g. [2, 18, 20, 27, 29, 38]).
The main practical interest of inserting structured sparsity constraints into the Compressed Sensing recovery
problem is that structured sparsity models reduce the degrees of freedom of sparse signals, thus decreasing
the minimal number of measurements M necessary for their stable recovery.

In the classical Compressed Sensing approach, an N-dimensional K-sparse signal z lives in Y C RY,
which is a union of (g) subspaces of dimension K. The only constraint is its sparsity K. By adding
further constraints permitting only certain patterns in the support of the signal, we create a structured
sparsity model M, where certain K-dimensional subspaces are allowed and other disallowed [5], [28].
The structured sparse signal lives in Mg, the union of myg K-dimensional subspaces, with myx < (%)
[2]. Accordingly, also the 2K-RIP becomes a model based- RIP (M g-RIP) and the corresponding minimal
number of measurements M decreases. In [5], Blumensath and Davis show that with probability 1 —e™¢, a
subgaussian random measurement matrix ® satisfies M g-RIP with constant daq, , provided that

(log(2- mk) + K log 12 +1t). (2)

M >
COM g 5/\4}(

By supposing that the coefficients of the K-sparse signal are clustered into G groups, the corresponding
cluster structured model Mg ¢ turns out to be the union of mg ¢ subspaces, where mg ¢ , as evaluated in

[10] using a run-length coding approach, is given by

N+1-K K-1
mKG = . (3)
G G—-1
By inserting this estimate in the general model-based formulation (2), we obtain the following theoretical

bound on the minimum number of measurements M for stable cluster structured sparse signal recovery:

o (i aw (X)) ®

It is interesting to note that this sampling bound for Mg ¢ still depends on N, but the dependency is

much weaker than in the classical Compressed Sensing bounds. When G ~ K, we again obtain the classical

bound
M:O(Klog (ﬁ)) (5)

3. A nonconvex approach to the blind cluster structured sparsity problem

In this subsection we focus on the blind cluster structured sparse recovery problem, namely on the prob-
lem of recovering a cluster structured sparse N-dimensional signal from a low number of linear measurements

without any information on the structure details, such as size, position, sparsity and number of clusters.
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For this problem, to best of our knowledge, few algorithms have been proposed in the recent literature
(see [51] and references therein). All algorithms are neighborhood based and use statistical approaches
that during the reconstruction process, allow them to learn the necessary structure details according to
the chosen statistical model. These algorithms obtain good results but at the expense of computing time.
Motivated by the desire to create a fast algorithm for blind cluster structured sparsity recovery and aware
of the efficiency of the nonconvex framework proposed in [33], we propose a neighborhood based method
realized by means of a deterministic, iterative self-adaptive procedure that discovers the unknown structure
during the reconstruction process. The novelty of our proposal relies on the integration of the structured
sparsity concept into a nonconvex local approach. This integration is achieved by using a neighborhood
based nonconvex and nonseparable sparsity inducing function that encourages certain configurations of the
support of nonzero signal coefficients and discourages others. Specifically, we fix an integer d > 1 and, for
each sample value u;, we consider the neighborhood set I; = {¢ € N|l =i —d, ..., 7 + d}, that contains the
indices of u; and its 2d neighbors. We then extend to the nonseparable case the nonconvex F(u) proposed
in [33] as follows:

Fp,(u) = Zwm (

i=1

wel, L € L), (6)
where we denote with ¢, (Jue|,£ € I;) = ¢, (|ue|,¢ € I;), and the function
Y. RTT S Ry

is defined as:
1 2
Pu(t) = log . ; >0 7
ll( ) 10g(2) 1 _'_e*m 14 ( )

n

where t € ]Ri'dﬂ.

The behaviour of the nonseparable 1, defined in (7) is shown in Fig. 1(a), in the simple case of increasing
data, for d = 1 and different values of the parameter p, and in Fig. 1(b) compared with both the nonconvex
separable and the ¢, sparsity inducing functions.

It is easy to show that the function 1), (t) enjoys the following properties, which are highly desirable for a

sparsity-promoting function [21]:
e 1, (t) is concave and non decreasing for t > 0;
e 1,,(t) has continuous bounded partial derivatives for t # 0 and v, (t) is singular for t = 0;
e its partial derivatives are given by:

Wult) 1 L o1 2.d+1

Oltn]  nlog(2) | 4 B0




and satisfy

aéﬁ;ﬁ) =0 for ||t||1 > p
0Yu(t) 1
) L for|[t]|; < p

The aforementioned properties of 1, (t) induce similar properties in the sparsity inducing function F),(u),
which turns out to be both nonconvex and nonseparable. The latter property represents the mathematical
tool that allows the algorithms to discover and encourage the unknown group structure. In fact, while
the separable nonconvex F'(u) proposed in [33] treats each coefficient independently from the others, the
nonseparable nonconvex F),(u) defined in (6) acts very differently. Its effect on a coefficient depends on the
behavior of its neighbors, and this represents a means to strongly encourage the desired cluster structured
sparsity patterns. Specifically, if the ¢; norm of the vector of coefficients whose indices belong to the
neighborhood I; is greater than p, then the coefficient wu; is strongly encouraged to be nonzero, because it

likely belongs to a cluster; otherwise it is encouraged to be zero, because it could be an isolated artifact.

Remark 3.1. It is important to note that, despite its nonseparability, the action of the proposed penalty
function remains local, because it concerns only a small neighborhood of radius d of the considered coefficient.
Moreover, differently from the penalties used in the group sparsity literature[17, 36, 87, 38, 41, 50, 52], where
the composition of convex or nonconvex functions with the €5 norm of groups is always used, we consider the
£1 norm of the vector of coefficients whose indices belong to the neighborhood I;. This allows the algorithm
to better distinguish between signal and noise, to more closely approximate the £y norm and even to promote

sparsity inside the groups.

In Fig. 2 we consider the reconstruction of a K-sparse N-dimensional signal whose non-zero coefficients
are randomly clustered into two groups, (N=256, K=30, G=2, details are given in the Numerical Results
Section) and we compare the results yielded by the two nonconvex sparsity inducing functions: the separable
F(u), as given in [33], and the nonseparable F),(u) given in (6). As expected, the use of the nonseparable
F,(u) allows the algorithm to reach 90% Probability of Perfect Reconstruction with only M =60 =2 K
measurements and 100% for M = 70. In contrast, the separable F'(u) needs at least M = 90 acquisitions to
reach 90% Probability of Perfect Reconstruction.

The nonseparability of the sparsity inducing function is also advocated in [46, 47], where the authors prove,
in the context of classical sparse estimation problems, the uniform superiority of the nonseparable approach
over the /1 solution and show that the use of nonseparable sparsity inducing functions drastically reduces
the number of local minima of the original £y minimization problem. Moreover, the use of the nonseparable
sparsity inducing function allows the algorithm to exploit the eventual intra-block correlation thus improving
the recovery performance.

Another key element for the success of the recovery is the dependence of the sparsity inducing function
(6) on the parameter p. It allows us to adapt the action of F),(u) according to the available number
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of measurements. When M is very low compared with the signal sparsity, a low value for p allows the
function to better reproduce the action of the £y-norm, while a slightly higher value is enough when more
measurements are available.

It is important to mention that in other papers suitable nonseparable, parametric penalty functions have
been used to induce group sparsity for the denoising of group sparse signals. In [13] an overlapping trans-
lation invariant group shrinkage method (OGS) has been developed by minimizing a convex group sparsity
promoting penalty function and in [14], to improve the overlapping group shrinkage and to more strongly pro-
moting sparsity, the authors use a nonconvex parametrized penalty, the parameters of which are constrained
to ensure the convexity of the total cost function. The extension of these approaches to the reconstruction

problem, however, is actually known only for the sparse signal case [39] .

4. A Self Adaptive Iterative Algorithm

The insertion of the nonconvex, nonseparable sparsity inducing function (6) in problem (1) leads to the

challenging constrained minimization problem

N

Iél]g}vzwﬂ (|uel, € € I;) subject to Pu = y. (8)

For its solution we propose to integrate an IR¢; scheme into a penalization framework and to exploit the
iterative nature of both these approaches in order to take advantage of the nonseparability of the penalty
function for adaptively discovering the unknown cluster structure. Specifically, we consider the sequence of
unconstrained nonconvex minimization problems

u* = arg min P(F,, \y,u) = arg min {Fu(u) + L||<I>u - y|§} , (9)

uwERN uwERN 2\

where A1 > Ao > ... > A\n is a decreasing sequence of penalization parameter values that ensures the
convergence of the penalized solution to that of the original problem, [22]. Thus, iteratively, for each new

+1

value Agq1 of the penalization parameter we evaluate the weights wk , in terms of the partial derivatives

of the nonconvex, nonseparable sparsity inducing function F), evaluated at the previous iterate uk.

g1 _ OFu(w)
‘ Olug]

w.

1 1
- Z 8| z|¢w |Uh|h€IE) B Z Ehe] A (10)

-  plog(2) “h
u=uk Lel; Lel; 14+ 6+
and we replace the nonconvex, nonseparable sparsity inducing function F),(u) by its convex local linear

majorizer

N
) = Fyu) + 3 A

i=1

(i = |uf]); (11)

u=uk

that satisfies

fu(uk):Fu(uk) and  f,(u) > Fj(u)
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for u in a suitable neighborhood of u*. We thus obtain the following Penalized Reweighted ¢; iterative
scheme (PRY{;)

Starting from u® = ¢Ty, Ay > A\pin > 0

for k=0,1,2,...
k41 _ OF.(u) S
H —W ,’L—l,"',N
u=uk N
1
R = i A = i B | 4 ———|Pu — y]|3 12
Wl = arg min P(fu, Mesr, ) argurgll{r}v{i_zlwz il + g5 —11%u yllz}7 (12)

choose Ag12 such that Ao < Agy1

until convergence

The convergence of the PR¢; procedure to a local minimum of the original problem is proven in [33] by
showing that the descent property of the penalization method is maintained when, at each iteration, the
nonconvex sparsity inducing function F),(u) is replaced by its convex local majorizer f,(u).

The iterative procedure PR{; is the main iterative structure of the algorithm Model-Based - NFCS (MB-
NFCS) displayed in Table 1. In that context the updating of the penalization parameter A has been done
with the adaptive rule developed in [32], where it is shown that a good strategy to decrease the penalization
parameter value is to follow the behavior of the objective functional P(f,, A, u), namely

P(fu, Mes1,ubth) A2

Akt2 = Mgt - = CP(f. .\ 1y _ o P(f A k+1
k+2 k+1 P(fu,/\k-,uk) P(f,“/\l,ul) (f/w k+1,U ) & (fpn k4+1,U )

_ A2
where ¢ = Pty
The second iterative structure of the algorithm, to be performed at each step of the outer loop, is the iterative
solution of the unconstrained convex minimization problem (12). In fact, since the objective function of this
minimization problem is the sum of two convex functionals, one of which is non-smooth, the minimization

is obtained using the Forward-Backward splitting approach [15] combined with FISTA acceleration strategy
[4].

Remark 4.1. The integration of the reweighted scheme into the penalization approach and the use of a non-
separable sparsity inducing function are crucial for the effectiveness of the proposed MB-NFCS algorithm
for blind structured signal recovery. They allow the algorithm to iteratively discover the unknown structure
driven by the weight values. For this purpose, the latter are adaptively modified at each outer iteration
according to the value of the derivative of the nonseparable sparsity inducing function evaluated at the pre-
vious approximate reconstruction, and then used to strongly encourage in the current iteration the emerging
sparsity pattern. These subsequent updates of the weights values lead the proposed algorithm to become self
adaptive, since its action on the coefficients changes at each outer iteration driven by the emerging cluster
structure. This adaptive behavior of the weights is clearly shown in Fig. 3, where we consider the blind
recovery from M = 60 acquisitions of a 30-sparse 256-length signal, whose nonzero coefficients are clustered
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into two groups, and we display, for each iteration of the penalization approach, the evolution of the weight

values and the corresponding signal reconstruction.

4.1. Choice of parameter values

The algorithm MB-NFCS is characterized by some problem dependent parameters: the initial values ug
and \g, the parameters p and 5, the number of neighbors to be considered, the constant - of the inner loop
exit test. Guided by a large number of numerical experiments, we have used the following strategies: we have
first evaluated ug = ®Ty and then chosen the starting value of the penalization parameter as A\g = 0.1||ud]||
in noiseless experiments, and \g = 0.25||u||oo in noisy cases. The constant u, which models the shape,
and consequently the action of the sparsity inducing function F,(u), has been set to p = 0.8 - [[ud]|oo-
The parameter 3 depends on the spectral radius of the matrix ®7® [15] and must satisfy the condition
0<p< m for the convergence of the Forward-Backward splitting method. In the experiments
presented in the Section 4 we have always used random Gaussian matrices (with normalized columns), so
the choice 8 = 1 satisfies the convergence requirements. The neighborhood radius d, which characterizes the
nonseparability of the sparsity inducing function, is crucial for discovering the group structure. It must be
different from zero and not too large, to prevent the loss of the local nature of the method. Motivated by an
extensive experimentation, that we partially present in Section 6.1, we have decided to use in the following
always d = 1, but the choice d = 2 is equivalently effective.

The most important parameter for the speed of the proposed algorithm is 7. It represents a means of

tuning the precision of the iterative proximal splitting approach and heavily influences the efficiency of the
algorithm. Since we are working in the context of a penalization method, the precision requested in the
inner loop is 7y - A\g, namely, dependent on the value of the penalization parameter. Nevertheless, the value
of v is important to suitably adjust the precision according to the difficulty of the reconstruction problem.
When the number of acquisitions is very low, a high precision is necessary in the inner loop, while higher
values are allowed when more measurements are available. In our experiments we have used values of ~ of
the order of 1072 for M = 2K, and values of v of the order of 1073 for M ~ 3K.
The last free parameter, which is not explicitly mentioned in the proposed algorithm, represents the exit
test of the outer loop. In noiseless simulations we used the exit test NMSE <= 1078, which corresponds
to "perfect reconstruction”, namely, to a relative reconstruction precision of about 1075 (for the definition
of NSME see the next section), while the algorithm is stopped after mazit= 3000 iterations if the exit test
was not satisfied.

In noisy experiments we used the exit test
|®-u® —yll2 <e (13)

where € = 0 - VM, and o is the standard deviation of the Gaussian white noise, while only 400 iterations
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was considered if the computed solution did not reach the precision requested by the exit test (13).

5. Extension to the two-dimensional case

In this section, following the suggestions of the reviewers, we briefly outline how the proposed approach

to the blind cluster structured sparsity problem can be easily extended to the two-dimensional case. In this

RNXN

case, we consider an unknown signal u € that is a piecewise smooth image, whose gradient is sparse

and with the nonzero values clustered along the image edges. We denote with Awu the image gradient, and

we fix an integer d > 1 . For each sample value u; j, we consider the neighborhood set
L;={(¢(m)e NxN|l=i—d,..,i+dm=j—d,..j+d},

that contains the indices of u; ; and its (2d+1)? — 1 neighbors. The two-dimesional nonconvex nonseparable

sparsity inducing function is then defined as:

N N
Fu(w) =YY ue, (Augml,bm € 1), (14)
i=1 j=1
where we denote with ¢, . (|Augml|, £, m € I; ;) = ¥, (|Augm|,£,m € I; ), and the function
W, Rf.d+1)x(2.d+1) SR,

is given by

where t € Rf'dJrl)X(z'dH).

In order to extend the Penalized Reweighted Iterative ¢ scheme to the two-dimensional case, the weigths

k41

w; )

are calculated, as in one-dimensional setting, in terms of the partial derivatives of the sparsity inducing

function F), evaluated at the previous iterate u” as

1 1
k+1 __
wit = > | (15)
h.nely

Lmel; ; M].Og(2) —“hn
1+4+e Iz

In this way, the changes to be made in the MB-NFCS algorithm regard only the calculation of the weights in
the outer iteration loop and the Backward minimization step in the inner iteration. In the latter, a weighted
Total Variation minimization has to be performed. The effectiveness of the extension of the proposed

algorithm to the two-dimensional case is proved in Experiment 7, presented in Section 6.8.
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6. Numerical Results

This section is devoted to demonstrate the effectiveness of the proposed MB-NFCS algorithm by showing
the results of several numerical experiments that clearly highlight its reconstruction capabilities, stability
and speed. The experiments that we present are designed to emphasize the benefits of using the proposed
nonconvex, nonseparable sparsity inducing function for the reconstruction of blind cluster structured sparse
signals, both as regards the required number of measurements for exact signal reconstruction and as re-
gards the computing time. We have compared our results with those of CLUSS-VB [48], EBSBL-BO [43],
the better state-of-the-art algorithms for the nonconvex recovery of blind cluster structured sparse signal.
The MATLAB package for CLUSS-VB is available at https://sites.google.com/site/link2yulei/cs, while the
MATLAB software for EBSBL-BO has been kindly provided by the author.

The results presented in the next subsections were obtained by repeating each experiment 100 times. In

each trial, unless stated otherwise:

e a synthetic cluster structured K- sparse N-length signal x was considered, whose G nonzero blocks,
randomly generated according to a multivariate Gaussian distribution with zero mean and covariance
matrix X, as in [43], are of different random dimension, with only the constraint that the sum of
their dimensions equals the sparsity K. Different intra-block correlations were obtained by suitably
manipulating the covariance matrix. Correlation values have been randomly uniformly chosen from 0

to 1;

e a zero mean random Gaussian measuring matrix ® was generated, with columns normalized to unit

{5 norm;
e the measurements y were obtained as y = ® - ¢ and the reconstruction was denoted by .

In noiseless experiments we used the Probability of Perfect Reconstruction (PPR) as performance index,
defined as the ratio of total number of successful trials over the total number of trials. A trial was considered

successful when the Normalized Mean Square Error (NMSE), given by
NMSE = [|& — z[[3/]|z]]3,

satisfies NMSE < 10~8.

As this high precision seemed to penalize the performance of the other considered algorithms, according to
the reviewer suggestion, in Experiment 3 we used, as further performance index, the Probability of Good
Reconstruction (PGR) defined using NMSE< 1073,

In noisy experiments the accuracy of each reconstruction was evaluated through the SNR between the

original sparse signal x and its reconstruction #, defined as

1
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The performance index of an experiment was then evaluated by the mean SNR, defined as the mean of the
SNR values of all the reconstructions obtained by running the considered experiment, including even those
where the algorithm does not reach ||® - u* — y||2 < € in 400 iterations.

We remark that, even if not justified by theoretical results, in our experimentation we have used an adaptive
rule for the parameter p. Specifically we have slightly decreased its value at each change of the penalization
parameter g, in order to adapt the weights to the trend of the newly computed solution. In [33] the
authors have experimentally demonstrated the superior performance of this strategy with respect to the
results obtained with fixed p. In this case, in order to ensure the descent property of the algorithm, an
acceptance test must be satisfied before taking the new value of pu.

All the experimental results were obtained by running a Matlab implementation of the proposed algorithm

on a Intel Core 2 Duo, CPU P8700 (2.53 GHz) notebook computer with 4 GB of RAM under Windows 7.

6.1. Ezxperiment 0: Influence of the radius d of the considered neighborhood on the algorithm efficiency.

The aim of this experiment is to show how the choice of the dimension of the set I; influences the
efficiency of the proposed algorithm. We have fixed N = 512, K = 60, M = 120 and, in order to work
with groups of different size, we have considered G ranging from 2 to 8 with step 2. Each experiment has
been performed with d = 0,1,2. In this setting, as expected, by using d = 0 the algorithm does not reach
the Perfect Reconstruction. The results obtained with d = 1 and d = 2, presented in Table 2, show that
the radius of the neighborhood minimally affects the performance of the algorithm. In fact, even if the
value of d = 2 sometimes reduces the number of iterations, each of them requires an higher computational
cost. Larger values of d were not considered because they are not suited to the local nature of the proposed

method.

6.2. Ezxperiment 1: Comparisons with the better state-of-the-art algorithms.

This set of experiments is devoted to comparing the efficiency and the robustness to noise of the proposed
algorithm with those of CLUSS-VB, EBSBL-BO (h = 4, h = 8). In Experiment 1-1, we have fixed N = 256,
K =40, and G = 8, and we have considered values of M ranging from 80 to 150 with step 10.

Fig. 4(a) shows the reconstruction results obtained by MB-NFCS and by the other considered algorithms.
The comparison between them shows that the proposed algorithm has the greatest efficiency. In fact, with
only M = 90 acquisitions, it exactly recovers the blind cluster structured signals, while none of the others
methods reaches the value of PPR=1.

The setting of Experiment 1-2 is the same as in Experiment 1-1, but the acquisitions are corrupted by
white noise with standard deviation ¢ = 0.01. The results, displayed in Fig.5(a), show that for a very low
number of acquisitions MB-NFCS exhibits better accuracy than the others, while for higher values of M all

methods achieve similar results in terms of reconstruction quality. Concerning the average reconstruction
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time of both experiments, Fig. 4(b) and Fig. 5(b) highlight the high speed of MB-NFCS, whose computing
time is about two order of magnitude lower than that needed by the other algorithms. In fact, MB-NFCS
requires, for each inner iteration, only two matrix-vector multiplications in the Forward Minimization step,
and a soft-thresholding operation to update the solution in the Backward step. Since the outer iterations
are usually of order of about ten, the computational cost of the whole algorithm is mainly due to that of
the inner loop. Cluss-VB [48] requires, instead, the solution of an ill-posed inverse problem of dimension
M x M at each iteration step, while the computational complexity of EBSBL-BO is due to the Expectation
Maximization (EM) method on which is based the updating of the v; learning rule in the sparse Bayesian

Learning.

6.3. Experiment 2: Adaptivity of MB-NFCS

In this experiment we demonstrate the flexibility of the proposed method to adapt itself to various kinds
of signal structure. For this purpose we consider unstructured K-sparse spike signals with N = 256, K =
30, (a sample signal is displayed in Fig. 6(a)) and values of M ranging from 60 to 140 with step 10. We then
display in Fig. 6(b) the reconstruction results yielded by MB-NFCS, WNFCS [33], CLUSS-VB, EBSBL-BO
(h = 4, h=8). The best reconstruction results are clearly obtained by WNFCS, which uses a nonconvex
separable sparsity inducing function, but also MB-NFCS, in spite of the nonseparability of F),, works quite
well, as can be seen from its performance very similar to that of WNFCS. This self-adaptive behavior of
MB-NFCS is a crucial property of the proposed method, since it justifies its effectiveness in blind cluster

structured sparse signal recovery.

6.4. Experiment 3: Effect of the number of clusters on the performance.

The aim of this experiment is to investigate the effect of increasing the number of clusters on the
performance of the proposed MB-NFCS algorithm. In this simulation, we fix N = 512, K = 60 and we
consider two values of the number of acquisitions, M = 120 and M = 150. For each M we let the number
of nonzero groups G range from 2 to 16, with step 2. The results obtained by MB-NFCS, CLUSS-VB,
EBSBL-BO (h =4, h = 8) for M = 150 and M = 120, are displayed in Fig.7(a) and Fig.7(b), respectively,
when we use the PPR as performance index and in Fig. 7(c) and Fig. 7(d) when we use the PGR . They
show that, differently from the other experimented algorithms, the performance of MB-NFCS depends very
weakly on the required precision and on the increasing of the number of groups, even for low number of
acquisitions, while the precision play an important role for the other methods that, in the experiments with

lower precision, exhibit better performance than that shown in higher precision experiments.

6.5. Experiment 4: Robustness to different noise levels.
This experiment demonstrates the robustness of the proposed algorithm to different noise levels. We
generate a cluster structured sparse signal with N = 512, K = 60, G = 10. We consider M = 100
13



measurements corrupted by white noise with standard deviation ¢ ranging from ¢ = 0.01, to ¢ = 0.09,
(which corresponds to a SNR approximately ranging from 32 to 12 dB). For each noise level, we repeat the
experiment 100 times with same sparse signal and acquisition matrix ®. The results, depicted in Fig.8(a),
show that the SNR of recovery by MB-NFCS is proportional to the noise bound with proportionality constant
> 1 and in some cases it exhibits improved accuracy compared to other algorithms. Fig. 8(b) highlights
again the higher speed of the proposed algorithm over the others. Interestingly, in this experiment, in which
we do not requires Perfect Reconstruction, all methods give comparable results, while in Experiment 3,

when Perfect Reconstruction is requested, the performance of the other methods decay greatly.

6.6. Experiment 5: Robustness to intra-block correlation.

The purpose of this experiment is to show that the performance of the proposed algorithm is independent
from the intra-block correlation of the signal. To this aim we have considered three possible cases for intra-
block correlation: (Experiment 5.1) correlation values equal to zero; (Experiment 5.2) correlation values
randomly uniformly chosen from 0 to 1; (Experiment 5.3) correlation values randomly uniformly chosen
from 0.95 to 1. For all the three experiments we fix N = 512, K = 80 and G = 10 and M ranging from 140
to 200 with step 10. The results are depicted in Fig. 9 and confirm that the proposed algorithm exhibits
the same performance in all the three cases and that its performance is the best of the experiment. This

demonstrates the self-adaptivity property and effectiveness of MB-NFCS.

6.7. Experiment 6: Minimum number of acquisitions for Perfect Reconstruction

This experiment verifies that, when using a nonconvex non separable sparsity inducing function, the

minimum number of acquisitions M, ;, for stably blind clustered sparse signal recovery meets the theoretical

bound given in eq. (4). More precisely, if we write

M

min = @ (K + Glog <g)> (16)

with a > 1, a small constant, we find that with the value a = 1.8 relation (16) represents an upper bound
for our empirical estimation of M ;.

In this simulation, we fix K = 100, G = 10 and for each value of N = 2", n ranging from 9 to 13 with
step=1, we found the lowest number of measurements M, ;,, for which we have 100% Probability of Perfect
Reconstruction. The resulting values of the minimum number of acquisitions M, ;,, are displayed in Fig. 10

as a function of n. As can be seen from this figure, the values obtained for M, ;;, by our algorithm remain

in
below the theoretical estimate given in (16), with a = 1.8.

6.8. Ezxperiment 7: Reconstruction of 2D-data

In this experiment we show the efficiency of the MB-NFCS algorithm in the case of 2D-data. To test the
proposed algorithm, we have used the synthetic Phantom image, shown in Fig. 11 together with its gradient.
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This image, of size 256 x 256, is a piecewise smooth image that satisfies the assumption that its gradient
is sparse and with the nonzero values clustered along the edges. The experiments are performed using
subsampled frequency acquisitions. As acquisition mask, we have used a radial mask with 6 rays (2.5
% undersampling). Fig. 12 demonstrates the efficiency of the proposed algorithm when we use very highly
undersampled data. In fact, while with the ¢; penalty the reconstruction is poor (SNR=20.85) (Fig. 12(b)),
the quality improves using the nonconvex separable penalty function (SNR=69.3) (Fig. 12(c)), but only by
making use of the proposed nonseparable F,(u) (d = 1) we reach the Perfect Reconstruction (SNR=91.4)
(Fig. 12(d)) in only 148 seconds.

7. Conclusions

We have proposed a new algorithm for the blind cluster structured recovery problem. It is based on a
deterministic iterative neighborhood based approach, which uses a nonconvex, nonseparable sparsity induc-
ing function that incorporates the structured sparsity constraints by encouraging solutions which possess
the desired structured sparsity properties. For the solution of the nonconvex, constrained minimization
problem we integrate the iterative reweighted ¢; method into the penalization approach, still maintaining
the descent property of the latter. This guarantees the convergence of the method to a local minimum of
the original problem. The resulting MB-NFCS algorithm is iterative and adaptively adjusts the action of
the sparsity inducing function according to the emerging cluster structure. A large set of numerical experi-
ments demonstrate that MB-NFCS is very fast, robust to model mismatch and to noise, insensitive to the
increase of the number of groups and to different intra-block correlations and significantly outperforms the

best state-of-the-art algorithms.
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Table 1: Proposed MB-NFCS algorithm

Inputs: CS matrix ®, measurements y, the non separable sparsity inducing function FM()\)

and its partial derivatives agl‘;(_T) ,t =1,..., N, Fista acceleration algorithm [4] A, const > 0,

>0, 10>0,2%>0 >0

ud =a) = dTy, {Initialize}
w) = agl‘;(ﬁ) Ui =1,..,N, {First weights estimation}
u:uU

QOuter penalization Loop
I. for k=0,1,... do
n=20
Inner FBS minimization loop
II.  {Forward updating step}
U1 = up + BT (y — Pur)
{Backward minimization step}
1 = argmin e g { e Y0 whlwi| + o5 |lu— v 3}
{Acceleration Strategy}
Upi1 = An, (11, )
{Inner-Loop ezit test}

" 1P (Fudnul ) =P (fureul )
P (fureit )|

>v-Ag, n=n+1

goto I
else
Ak4+1 = const - P (fu, Ak, uﬁﬂ) { Updating A\ }
wht = %ﬁ“f‘) {Updating the weights}
“:“fwrl
up ™ = tpga

until convergence

Output: @ = vt as an approximation of z.
p 0 PP
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Table 2: Influence of the value of d on the performance of MB-NFCS algorithm

G d=1 d=2
Iterations Time in sec. Iterations Time in sec.

2 283 0.17 138 0.15

4 454 0.21 329 0.21

6 273 0.17 275 0.21

8 211 0.16 181 0.17
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Figure 8: Experiment 4: N = 512, K = 60, G = 10, M = 100 measurements corrupted by white noise with standard deviation
o ranging from o = 0.01, to ¢ = 0.09. (a) Mean SNR as a function of the number of measurements. (b) The average time in

seconds.
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Figure 9: Experiment 5: N = 512, K = 80 and G = 10, M € [140,200]. Performance comparisons: MB-NFCS , CLUSS-VB,
EBSBL-BO (h = 4,h = 8). Probability of Perfect Reconstruction as a function of the number of measurements. (a) Experiment
5-1: Intra-block correlation equal to zero. (b) Experiment 5-2: Intra-block correlation uniformly varying between 0 and 1. (c)

Intra-block correlation uniformly varying between 0.95 and 1.
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Figure 10: Experiment 6: Minimum number of acquisitions M,,;, required to achieve perfect signal reconstruction by MB-
NFCS algorithm and theoretical bound (eq. (16) with a = 1.8), as a function of N = 2™. (The displayed results correspond to
N = 512, 1024, 2048, 4096, 8192).
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Figure 11: 256 x256 Original Phantom Image and its Gradient.
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(d) (e)

Figure 12: Experiment 7: Two-Dimensional Case:(a) Radial Mask 6 rays (2.5 %), (b) {1 Reconstruction SNR=20.85 Time 70
sec. (c) Nonconvex Separable Reconstruction SNR=69.3, Time=316 sec. (d) Nonconvex Nonseparable Reconstruction (d=1)

SNR=91.48 Time 148 sec. (e) Gradient of Nonconvex Nonseparable Reconstruction (d=1).
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