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Abstract

This paper studies the possibility of upper bounding thetiposerror of an estimate for range based
positioning algorithms in wireless sensor networks. lis $tudy, we argue that in certain situations when
the measured distances between sensor nodes are podiiesdy, e.g., in non-line-of-sight conditions,
the target node is confined to a closed bounded convex seagile set) which can be derived from the
measurements. Then, we formulate two classes of geomgipieribounds with respect to the feasible
set. If an estimate is available, either feasible or infdasithe worst-case position error can be defined
as the maximum distance between the estimate and any poithiteifeasible set (the first bound).
Alternatively, if an estimate given by a positioning algbm is always feasible, we propose to get the
maximum length of the feasible set as the worst-case pos#iicor (the second bound). These bounds

are formulated as nonconvex optimization problems. To @sg) we relax the nonconvex problems and
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obtain convex problems, which can be efficiently solved. \Bation results indicate that the proposed
bounds are reasonably tight in many situations.
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. INTRODUCTION

Recent advances in technology have instigated the useyotléwices as sensors in large distributed
wireless sensor networks (WSNs). A sensor device is capabdense its environment for monitoring,
controlling, or tracking purposes for both civil and mitigaapplications [[1]. Due to drawbacks in
using GPS for WSNs, extracting the position informationniréhe network, also called localization,
has been extensively studied in the literature [1]-[6].slcommonly assumed that there are a number
of fixed reference sensors, also called anchors, whose@usirea priori known, e.g., by using GPS
receivers([7]. To find the position of other sensor nodes &nhawn positions, henceforth called target
nodes, it is assumed that there are some types of measusragnt time-of-arrival, angle-of-arrival, or
received signal strength, taken between sensor nodes [1].

During the last decades, various positioning algorithmgehzeen proposed in the literature. Different
positioning approaches can be categorized based on véaictoss [8]. For instance, as long as an accurate
model of measurements and the statistics of the measureammens are known, classic estimators, e.g.,
the maximum likelihood (ML) and the least squares (LS) apphes, can be employed successfully
to solve the positioning problem. When the distribution loé tmeasurement errors is unknown or the
computational complexity of classic estimators is too hgmumber of simple techniques can be applied
to the problem. For example, based on a geometric intetfmetahe authors of[9],[[10] formulated
the positioning problem as a convex feasibility problem PERnd applied the well-known orthogonal
projection onto convex sets (POCS) approach to solve thielggro This method turns out to be robust
against non-line-of-sight (NLOS) conditions [11]. POCSswareviously studied for the CFP and has
found applications in several research fields [12]) [13].

Positioning algorithms can be evaluated based on diffgperformance metrics such as complexity,
accuracy, and coveragel [8]. In the literature one way tosasee positioning algorithms is to evaluate
the position error, defined as the Euclidian norm of the hffiee between the position estimate and the
true position. There are a number of techniques to evalli#eeérformance of an algorithm based on
the position error. For instance, a lower bound on the meaarsgposition error is a common metric.

There exist a number of such lower bounds in the literatuge, the Cramér-Rao lower bound (CRLB),
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Fig. 1. An example of the application of an upper bound on thstipn error for traffic safety. A solid circle defines theear

in which a vehicle definitely lies. In this figure based on apeambound on the position error, car 2 and 3 might collide.

which can serve as benchmarks. The CRLB, which gives a loaend on the variance of any unbiased
estimator, can be computed if the probability density fioxc{PDF) of the measurement error is known
and satisfies some regularity conditiohs|[14]. Generalifjer@nt benchmarks in the literature are used
to statistically assess a positioning algorithm, which implies that thererra single position estimate
cannot be characterized in a deterministic fashion.

Besides a lower bound on the position error, in some appicatit may be useful to know the
worst-case behavior of the position error. Such knowled@g e useful not only for evaluation of
different services provided by WSNs but also for design asdurce management [1], [15]. Similarly in
evaluation of the worst-case position error, we may be éstieed in assessing a single point estimate. As
an example consider F(g. 1, which shows how a nontrivial, (fieite) upper bound on position error can
be used by a traffic safety application. If an estimate of ackelrand a nontrivial upper bound on the
position error are available, we can define an area in whiehvéhicle is certainly located, e.g., a disc
centered at the position estimate and with a radius equaktapper bound on the position error. By this
approach, we may be able to decrease the number of colliemgeen vehicles. In general, computing
the maximum possible position error might be difficult, buieanay be able to derive an upper bound
on the maximum possible position error. To the best of oumkedge, there is no specific work in the

literature on deriving an upper bound on the position etrothis study, we aim at tackling this subject.



In general, the concept of an upper bound on the positiorr éomany estimation error) seems to
be shaky. In fact, it is not clear that is meaningful to stughper bounds, since the position error can,
in general, be arbitrarily large. In this study, however, argue that in some situations it is possible
to reasonably determine the worst-case position error.ifgiance, if a target node position belongs
to a closed bounded set (a feasible set), the worst-caséoposiror can be defined with respect to
the feasible set. For example, for distance-based positoif measurement errors are assumed to be
positive, a convex set including the target node can be dfimen measurements. The feasible set, in
which the target node is located, is the intersection of abmmof balls (in a 3-dimensional network)
or discs (in a 2-dimensional network) centered at the positif reference nodes [116]. The assumption
of positively biased measurement errors is fulfilled in s@oenarios. For instance, in NLOS conditions,
the measured distances are often much larger than the atittahces. Assuming a closed bounded
(compact) convex set derived from positively biased distameasurements, a position estimate given by
an algorithm can be either feasible or infeasible with resfethe feasible set. If an estimate is available
(feasible or infeasible), it is reasonable to define the maxn distance from the estimate to any point in
the feasible region as the worst-case position error. Taa yields an upper bound on the position error
as the solution of a nhonconvex optimization problem. Alatively, a number of positioning algorithms,
e.g., POCS, give one feasible point as an estimate. In this ¢f estimators, we can upper bound the
position error as the maximum Iengtbf the feasible set. To find the maximum length of the feasible
region, we consider an outer-approximation of the feasibteand find the minimum Euclidean ball or the
minimum £, ball (minimum bounding box) covering the set. We furthearaihe nonconvex optimization
problem and derive a convex optimization problem. Obvigui§la feasible point is available, the first
upper bound, i.e., the maximum distance from the estimatnopoint in the feasible region, gives a
tighter upper bound compared to the second bound, i.e., thenmum length of the feasible region.

Note that the technique introduced in this paper can be egphpdi every estimation problem when the

unknown parameter vector belongs to a compact, finite-ve|uronvex set.

1By the maximum length of a set, we mean the maxim@smorm of the difference between two points (not necessarily a

unique pair of points) in the set.



In summary, the main contributions of this study are:

« introducing the concept of an instantaneous upper bound &ingle point position estimate when
the distance measurements are positively biased, e.g.l.@S\conditions;

« proposing an upper bound on the position error based on aegamlaxation technique when an
estimate of the target position is available (feasible éedsible);

« proposing three upper bounds for an estimator always gifegasible point as an estimate (e.g., the
POCS estimate) based on the idea of the maximum length ofetisbie set or a relaxed feasible
set including the target node.

The remainder of the paper is organized as follows. Someéngrelry requirements are studied in

Section[). Sectior_1ll explains the signal model consideie this paper. In Section IV, a geometric
positioning algorithm (POCS) is briefly studied. Two typdsupper bounds are derived in Sectioh V.

Simulation results are discussed in Secfioh VI. Finallyct®a VIl makes come concluding remarks.

Il. PRELIMINARIES
A. Notation

The following notations are used in this study. Lowercase baold lowercase letters denote scalar
values and vectors, respectively. Matrices are writtemgubiold uppercase letters. By, ., we denote
then by n zero matrix, and we use, as then-vector ofn zeros.1,, andI,, denote the vector of ones
and then by n identity matrix, respectively. The operatar(-) is used to denote the trace of a square
matrix. The/, norm is denoted by - ||,. Given two matricesA andB, A - (>)B means thaiA — B
is positive (semi)definiteS”, R", andR”l denote the set of alk x n symmetric matrices, the set of all

n x 1 vectors with real values, and the set ofalk 1 vectors with nonnegative real values, respectively.

B. Quadratically constrained quadratic programming

Let us consider a quadratically constrained quadratic namng QCQP) as

maximize x! Agx + 2b(7;x + ¢
xeR™

subject to xT A;x + 2biTx +¢ <0, i=1,...,N, Q)



for A, € S", b; € R", and¢; € R.

The QCQP problem[{1), in general, is nonconvex and difficaltsblve except in some specific
cases[[1]7]. For the nonconvex case, there are a number ofigees to approximately solve the problem.
One powerful approach is the semidefinite relaxation tephan[18]-[23]. Considering a property of the

trace operator, i.ex” A;x = tr(A;xx"), the QCQP problem if11) can be written as

maximize tr <B0 [XT 1]T [XT 1])

x€ER"
. T 1T T .
subject to tr <B,~ [x 1] [x 1]) <0, i=1,...,N, (2)
where
A; b;
B; = . 3)
bZT C;

Now, by replacingZ = [x” 1]T [x” 1] and noting thatZ is a rank-1 symmetric positive semidefinite

matrix, we get an equivalent problem 6&f (2) as

maximize tr (ByZ)
Zesn+i

subject to tr (B,;Z) <0, i=1,...,N,
Z~0, Zn+1,n+1)=1, rank(Z)=1. 4)
Due to the nonconvex constrairink(Z) = 1, the optimization problem in_{4) is still nonconvex. To

change it to a convex problem, we drop the rank-1 constraidt @btain a semidefinite programming

problem (SDP) as follows:

maximize tr (BoZ)
ZeSn+

subject to tr(B;Z) <0, i=1,...,N,
Z>0, Zn+1ln+1)=1. (5)
To refer to the QPCP formulated ifl (1) throughout this paperuseQP{A;, b;, c;}¥ ;. Similarly, to

refer to the SDP relaxation derived [ (5) originated from@in (1), we usSDP{A;,b;,c;} . For

the optimal values of the objective function of the QCQP amal corresponding SDP relaxation [0 (1)



and in [®), we use/qp{A,-,bi,c,-}f\io and vsdp{Ai,bi,ci}ﬁiO, respectively. By adopting the relaxation,
i.e., dropping the rank-1 constraint, we expand the feagsbt, therefore, the objective function i (5) is

maximized over a larger set than [ (1), thus
Vap{Ai, bi, ci}ilg < vaap{Ai, by, i}y, (6)

If the rank of matrixZ for the optimal solution in[{5) is one, then, the solution[B) (s equal to the
optimal solution in[(IL). In general, the optimal solution(@) has rank higher than one, and then a rank-
1 approximation can be applied to the optimal solution[ih €&}., using a method based on singular
value decomposition or an approach based on randomiz&{@n For details of rank-1 approximation
techniques from a higher rank matrix, see, elg.] [20]| [¢Z4].

Note that using the Lagrange dual approach, a similar protde the SDP relaxation inl(5) can be
obtained [[18]. We complete this section by a simple and ugehperty of the quadratic inequality.

Lemma 2.1: For a quadratic functioox” Ax + 2b”x + ¢, whereA € S*, b € R?, andc € R, the
following statement always holds true:

xTAx+2bTx+¢>0, ¥x € R" <= A; b = 0. @)
b ¢

Proof: See [18]. [ |

C. Bounds on estimation errors given a realization of the measurement vector

Consider an unknown parameter vectore R™. Regardless if we modet as random or unknown

deterministic, we can define the set of the possible values ad
X £ {possible values of x} C R"

Supposan is the observed realization of the (random) measuremendvBE Given the evendl = m,

the set of possible values af changes to
X(m) = {possible values of x: M =m} C X.

The estimate ok, denoted by (m, f) € R, is a function of the observed data and some algorithm

tuning parameters, e.g., initialization, step size, teation criterion, etc., which are collected in the



Fig. 2. Different upper bounds.

vectorf. The f-vector is chosen, possibly randomly, from the #&tin other wordsf € F completely
determines how the estimator maps the observedwiata the estimatek, and the sef defines a class
of estimators. We can now define the set of possible valuegwf, f) whenf can take on any value in
F as

X(m) 2 {%x(m,f): f € F} c R™.

We can define three upper bounds on thenorm of estimation erroe = ||x(m, f) — x| as

e <up(k(m,f)) = sup [x(m,f) x|, (8)
x€X (m)
e<up(x) = sup % — x|, (9)
%€X (m)
e<ug= sup Ix — x]|2. (10)

x€X (m), x€X (m)

We note that all bounds dependswn which, for simplicity, is neglected in the notation. Moveg, it is
easy to see that; (x(m, f)) < uz andus(x) < ug. Fig[2 graphically shows the different upper bounds.
Remark 1. the boundu, (x(m, f)) is an upper bound of the norm of the estimation error for aagert
estimate { andm are fixed). Hence, ifs; (x(m, f)) can be computed together with the estimate, this
would greatly increase the value of the estimate, since wernmwv guarantee that the norm of the

estimation error inx(m, f) does not exceed; (x(m,f)). This is a much stronger statement than to



provide a statistical quality measure, such as the meaarsdierror of the estimator,
5 2
EM{”x(m7 f) - XH2}7

whereEy; denotes expectation over the distributionNgf

Remark 2: the boundus could potentially be computed together with the estimate iantherefore
of value in a practical situation. Howeverg will only be interesting if it is easier to compute than
u1(x(m,f)), sinceu; (x(m,f)) < us.

Remark 3: the bounduy(x) can be interpreted as the error of the worst estimate thadnspated
from the observed date by the class of estimators defined @y This is useful to judge the worst
case performance of a class of estimators. However, sireddhnd is a function ok (the unknown
parameter), it cannot be computed together with an estjraatd its practical value is therefore limited.

We can also formulate lower bounds by replacimg with inf in Egs. [8)-[(1D),

e> (&(m, D) 2 inf [%(m, ) - x|, (11)
x€X (m)
e>l(x) £ inf [x—x|s, (12)
%x€X (m)
e> (3= inf |x — x||2. (13)

x€X(m), X€X(m)
In general, there are no guarantees that any of the boundgsinf8)-(1B8) are nontrivial, i.e., that the
upper bounds are finite and the lower bounds are greater #¥an Eor example, if the set'(m) or
i’(m) is unbounded, it is clear that the upper bound (8)Lat (10)ivsatr However, as we will see in

the remainder of this paper, there are indeed practicatfitos when the bounds are nontrivial.

1. SYSTEM MODEL

Let us consider am-dimensional networkp = 2 or 3, with NV reference nodes at known positions
a; = [a;1 - a;n)’ €R" i=1,.. N.Suppose that a target node is placed at an unknown position
x = [z --- x,]T € R". The range measurement between the target and referenee isdiven by

di:di(x,ai)—l—ei, izl,...,N, (14)
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where d;(x, a;) is the actual Euclidian distance between the target noderefedence node, i.e.,

d;(x,a;) = ||la; — x||2, ande; is the measurement error.

In the literature the measurement error is commonly modeleda zero mean Gaussian random
variable [1], [4], [25]. In some scenarios, however, oth@tributions seem to be more reasonable.
For instance, in NLOS conditions the measured distancedaager than the actual distances with
high probability. A number of distributions have been cdesed to model NLOS conditions, e.g., an
exponential distribution or a uniform distribution_[26].h& Gaussian distribution with large positive
mean has also been considered to model the NLOS conditidn [ZA. In this paper for the purpose
of deriving the upper bound, we assume that the distanceurerasnts are positively biased, meaning
the measurement errors are nonnegative. The positive megasnt assumption can be fulfilled, e.g., in
NLOS conditions (with high probability).

The positioning problem, then, is to find the position of theget node based on the positionsNof

reference nodes and measurements maden (14).

IV. POSITIONING ALGORITHMS

A classic method to solve the problem of positioning basetheasurements taken in{14) is to employ
an ML estimator if the distribution of the measurement egzois known. Otherwise, when the statistics

of measurement errors are unknown, one can apply the LS naimion as([[14],[[28]

N . 2
X = arg }1{(161%{1% 2 (di —d;(x, ai)) ) (15)

The solution to [(IB) coincides with the ML estimate if the s@&ment errors are zero mean,
independent and identically distributed Gaussian randamables [[14]. In general, the LS and ML
problems are nonconvex and difficult to solve. To avoid diffic in solving the ML (or LS), authors
in [10] took a geometric interpretation into account andchfolated the positioning problem as a CFP
and applied the well-known POCS approach to solve the pogit problem.

To formulate POCS, note that in the absence of measuremenser.e.,d; = di(x,a;), it is clear

that the target, at unknown positier) can be found in the intersection of a number of spheres \aitli r

d;(x,a;) and centers;. For nonnegative measurement errors, we relax spheredlsoana deduce that
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the target definitely lies inside the intersection of a numidfeballs. Let us define the (closed bounded)

ball B; centered ah; as
B2 {xeR" : |x—aj2<d}, i=1,...,N. (16)

It is then reasonable to define an estimatex@fs a point in the intersectiofi (a closed bounded set) of

the ballsB; (a feasible point) as

N
xeB2 (B (17)

i=1
Therefore, the positioning problem can be rendered to thewimg convex feasibility problem (CFP):

minimize 0
xXER™

subject to |[x —a;|| <d;j, i=1,...,N. (18)
To solve [(IB), we note that CFP can be reformulated by miningithe following convex function
f(x) & max{dist(x, By),...,dist(x, Bx)}, (19)

with dist(x, B;) denoting the minimum distance betweerand any point in ses;.

Using negative subgradient updating methiod [12]] [29], &® obtain a solution td_(19) by
xMt=xF gk, k=0,1,..., (20)

wherex” is the kth iterate,a, is the kth step size, ang* is a subgradiegt A subgradieng® of f at

x* can be computed as

0, if f(x*) =0,
g = (21)

IS F(xF) £ 0, dist(xb, By) > dist(x, By), Vi # j,
where Pg, (x*) is the orthogonal projection at* onto the setB;. By choosing the step size ag, =
f&x%)/g¥12 in @0), according to Polyak approach [12], we derive thdofeing approach, called

alternating projections [30] or POCS, for updating

XM =Pg (xF), k=0,1,..., (22)

Let D be a nonempty set ilR™. A vectorg € R" is a subgradient of a functioff : D — R atx € D if f(y) >

f(x)+g%(y —x) for all y € D [12].
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%
'
Initial point x"

e Reference node
m Target node

Fig. 3. A 2-dimensional network consisting of three refeenodes and one target node. For nonnegative measurenanst er
the target node at positior is found in the intersection of three discs. The POCS estimahverges to a point inside the

intersection area (in this case on the boundary).

where index; is the one used i (21).

As mentioned before, POCS gives an estimate that is fea@flilee intersection3 is nonempty). In
each step, POCS projects the current paifitonto the farthest convex set. For example, Hig. 3 shows
a 2-dimensional network in which the measured distancesfa#rence nodes are positively biased. The
POCS'’ estimate in this figure converges to a point in the sstetion of three discs after two iterations.
For more details on variations of the POCS algorithm and fh@i@ation of POCS for the positioning

problem, we refer the reader to [12] and [9], [11],1[31], restively.

V. GEOMETRIC UPPER BOUNDS

In this study, taking the assumption of positively biasechsugement errors into account and consid-
ering discussions in Section 1IFC, we derive two differeppar bounds. The first bound is derived based
on the availability of an estimate. If such an estimate islabke (feasible or infeasible), we can bound
it by finding the maximum distance between the estimate adpaimt in the feasible set. The second

bound is derived without the need for an estimate, as the mari length of the intersection set.
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Let us define the norm of position estimate, which we call tbsitpn error, as
e =[x — x|z, (23)

wherex is an estimate of the target node position given by a positgpalgorithm. In a practical scenario
it is not possible to compute the exact position errof il @8e the position of a target node is unknown.
Therefore, we may compute a lower or an upper bound on théigosiror for evaluation of an estimate.
According to discussions in Sectipn II-C, it seems that tlaeigible definition for the maximum position

error, when a single estimate is available, can be congldese
A A
e < Umax,1 = max ||x — x|z, (24)
xeB

whereB defines a set (closed bounded) in which the target noBlelongs. In fact, definitior_(24) is a
special case of the upper bound definedlin (8) in Sedfiod IIK@m¥’ (m) = B. In other words,[(24)
defines the largest distance from a point to a set.

Alternatively, if an algorithm always produces one pointlie feasible se8 as an estimate, we are
still able to define an upper bound on the position error, evighout having access to an estimate, by

setting X (m) = X(m) = B in (A0),

e < Umax3 = max_ [|x —yla. (25)

5

A. A bound for the case an estimate exists

As mentioned in previous section, we can upper bound thdiposrror due to an estimate (either
feasible or infeasible), by solving the optimization perol [24). The solution is found on the boundary
of setB. For example, let us consider Fi§l. 4 where an estintaté the target node position inside the
intersection of three discs is available. The positionreair@ the maximum position error are shown in this
figure. Instead of directly solving the problem [n124), wensier a QCQP problef@P{A;, b;, ¢;}¥,,

where

-%, ifi=0, %1%, if i =0,
A =1y, b; = ¢ = (26)

—a;, otherwise, |a;||2 — d2, otherwise.
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e Reference node
m Target node

Fig. 4. The position error and the maximum position errordorestimatex of the target for the network considered in [Eg. 3.

Obviously,vp{Ai, b, c; }Y o = vﬁm,l. The optimization problem if_(24) is nonconvex which makes t
problem complicated. To solve the problem, we employ a e¢lar technique. Following the procedures
explained in SectionI[-B, we can get a relaxed SDP problefilaB{A;, b;,c;}¥ , and the maximum

position error can be upper bounded as

€= ||>A( - XH2 < Umax,1 < USdp{Aia bia Ci}ij\;o- (27)

In order to investigate the tightness of the upper-bound/eérn (27), we can derive a lower-bound on

VA, by, i }Y,. Let us write the QCQP proble@P{A;, b;, ¢;}¥, parameterized if(26) as

maximize tr <B [XT T]T [XT T])

xeR", 7eR
subject to tr (Bi [XT T]T [XT T]) <t, i=1,....,N+1, (28)
where
Onxn On In —X In —a;
BN+1 = , B= , Bi= )
o) 1 —xT|x|]? —a;" lagll; + ¢

ti=d>+¢€, i<N, tyy1=1, (29)
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wheree # 0 is any nonzero real value. It is seen tit = 0 for 1 < < N. Then,ZiN:J{1 B; - 0,
meaning the interior of the feasible set is nonempty.
Proposition 5.1: A lower bound on the optimal value 6fP{A;, b;, ¢;}Y , parameterized if.(26) based

on the optimal value;sdp{Ai,bi,ci}fio, can be obtained as

\/Oé Vsap{ A, biy i}V < vgp{Ai, by, i}y, (30)

where

1
T OmEeN ¥ )’

p=min{N +1,n+ 1}. (31)

Proof: Recalling the results of [32], which determines a lower kibam the optimal value of a
QCQP based on its relaxed SDP, we get a lower bound on the alptaiue of [28), which is exactly

vgp{Ai, bi, i}, as
« Usdp{Aiv bi> Ci }ZZ\LO < UQP{AZ'> bia Ci}ij\;m (32)

where

1
CTOmeN 1+ )

,  p=min{N + 1, maxrank(B;)}.

It is clear thatrank(B;) = n+ 1. Therefore, a lower bound an,{A;, b;, ¢;}¥, can be derived a§ (BO).
[ |
For details of deriving lower bounds on a nonconvex QCQP, eferrthe reader td [18]| [24], [32] and

references therein.

B. Bound regarding the feasible set
In this section, we investigate another upper bound defing@3) and repeated here for convenience
Umax,3 = max {||x —v|2: x,v € B}. (33)

If a feasible pointx € B is available, it is expected that the first upper bound, ; yields a tighter
bound compared to the bound defined[in] (33) (the maximum henfjthe intersection). In fact for a

fixed x € B,

—wlly > — %[|a. 34
max |x — w2 > max|lx — x|l (34)
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e Reference node
m Target node

Fig. 5. Maximum Euclidian distance of the intersection as itaximum position error for an estimate inside the inteisec

area of Fig.B.

The optimization problem if(33) is nonconvex. Geomethcal can be imagined as the diameter of
the minimum ball enclosing the intersection. Instead o¥isgl the problem formulated i (83), we find
a minimum ball covering the intersectidf Let us consider the center. and the radiusk® of such a
ball and formulate the minimum ball enclosing the interggct3 in decision variables. andy = R?

as

minimize -y
x.€ER™, vER

subject to ||x — x.||? < v, x € B. (35)

Let the optimal solution of(35) bel,,., 5. Then,vmax 3 = 2, /v, 3- FiXingx. in (35), using Lemma 2]1,

and following a similar approach as used|in|[33], we can getftflowing optimization problem to find



17

the minimum ball enclosing the intersectidh

minimize Y

YER, AERY
(L A - DI o= N Nay
subject to ! 1 0,
(e = X )Ty = Iyl + % Aillaill3 - d2)
x. € R". (36)

Taking similar steps as done in_[33], which implies for theim@l solution Zf\il A =1 andx. =
Zf\il A;a;, we can obtain an optimization problem to find an upper boumdhe squared radius of the

minimum ball enclosing the séi in the Euclidian norm sense as

N N
minimize | Y Nag[[5 — > Ni([lall — dF)
AER; i—1 =1

N
subject to Z A= 1. (37)
i=1

Finally, an upper bound on the maximum length/®fs given by

Umax,3 < 2R, (38)

where R = /|| SN, Aail3 — S Mi(flai3 - 2).

It has been proved in [33] that when the number of constraihfsere the number of reference nodes)
is equal or less than (the size of dimension)[_(87) gives the optimal solution38)( Otherwise when
N > n, the optimal solution in[(37) is an upper-bound to the optis@ution in [3%). The upper bound
obtained by solving[(37) then gives the maximum Euclidiamgta of the intersection.

Another approach to compute an upper bound:Qg, 3 is to replaceB with an enclosing set i (25).
We will in the following consider two such sets. The first exsihg set is the bounding tHﬁror B, and,
given the bounding box, it is very easy to compute an uppentd@n vy, 3, see Fig.b.

The second enclosing set is found be repladigvith their bounding boxes, i.e., thg balls in [16)

are replaced by the correspondifg balls,
B = {x €R": ||x — al|o <di},

3By the bounding box of the sef, we mean the smallest cuboid [34] that is enclosifig
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o Reference node
m Target node

Fig. 6. The maximum length of the bounding box of the intelisecas an upper bound for the network considered in[Fig. 3.

and noting that

/AN !
BCB £ (B

1=1

Hence, an upper bound t,. 3 is found by considering the length &, see Fig.T.

To compute the bounding box fd&, we study the following optimization problem:
maximize [|[X — ¥||oo
subject to x,y € B. (39)

The optimization problem irf_(39) again is nonconvex. Using definition of the/,, norm, we can write

maimize max((z) — il 70~ yal)
subject to x,y € B. (40)

The max function in [40) can be computed as
max{ai,...,an} = 0; <= o; > o, Vj. (41)
Using a dummy variables, we have

max{ai,...,a,} > <= a1 >Poray > ... or a, > f. (42)
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Thus, using a simple technique, we need to solve two optiizgroblems for every dimensiofias

follows:

maximize [
BER

subject to ||x —ay|| <d;, i=1,...,N,

x> B, (43a)
mlrﬁnerﬁlze 154

subject to |[x —al| <d;, i=1,...,N
xp < B. (43b)

The optimization problems i _(#3) are called the secondrocd@e program which is a special case
of the quadratic programming. It can be easily transforneedrt SDP [[17]. Suppose that the optimal
solution to problemd {43a) and (43b) along a dimengiarez; andz; , respectively. Let the maximum

length for thelth dimension bes,cpr = \le — 9”?2‘- Then, the maximum length of the intersection can

be upper bounded as

n

Z(’Usocpl)2- (44)

i=1

Usocp =
Thus
Umax,3 < Usocp - (45)
To compute the upper bound en,.x 3 based on5’, we consider the following optimization problem:
maximize ||x — y||oo
X?y
subject to x,y € B/, (46)

For example Fid.]7 shows the concept of relaxing the comstfar a 2-dimensional network. Following

the same procedure to obtain43), we obtain two optiminatimblems, called linear programs (LPs),
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ds
&ag
dy ~—— Upper bound
af X
ag

o Reference node
m Target node

Fig. 7. Every constraint is replaced with a bounding box amehta bounding box enclosing the intersection of relaxed
constraints is computed. The maximum length of the boundiog enclosing the intersection gives an upper bound for the

network considered in Fig] 3.

for every dimension. For instance, two LPs for ttte dimension can be written as

maximize ty
tER

subject to ty —a;¢ —d; <0,

tr—aig+d; <0, i=1,...,N, (47a)

minimize t,
treER
subject to ty —a;p — c?, <0,
aig—ti+d; <0, i=1,...,N. (47b)
The optimal solution to the optimization problem47), ,i%, andt; , are simply computed as

tZ = min{a; o + ch, coang + CZN}, t’gz = max{aj ¢ — ch, N JN} (48)

Let v, = [t;, —t;.], £ =1,...,n, be the maximum length along th¢h dimension. The maximum
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TABLE |

SUMMARY OF BOUNDS.

Definition: Eqgn.

e2||%x —x|2 23

Umax,1 = max H)A( - XH2 m)
xeB

Umax,3 é :?;aEAXB ||X - YH2 m)

Upper Bounds: Egn
Bound1:
& < VUmax,1 S \/Usdp{Aiy bi7 Ci}iI\LO M)

Bound2:

VUmax,3 S 2R @)
Bound3 (Type 1):

VUmax,3 S Usocp @)

Bound3 (Type 2):

Umax,3 < Ulp lﬂ._

length of the intersectioi8 is then upper bounded by

(49)

Therefore, an upper bound on position error based on a bogrmix approach is given by
Umax,3 < Vlp- (50)

It is clear thatvs,p, < vyp.

Tabld] summarizes the various types of bounds derived g ghidy.

VI. SIMULATION RESULTS

In this section we evaluate the validity of different uppeuhds. We consider 800 m? cubic space
for simulation. N reference nodes are randomly distributed in the space. @gettnode is randomly

placed inside the volume. To add measurement noise to adistahces between reference and target
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nodes, we use an exponential distribution defined as

0, € < 0.

The meanl /v is set to 1 m. The validity of exponential distribution, esipdly for NLOS conditions, has
been justified in the literature, e.d., [11], [26], [35]. Weidy the POCS algorithm that always gives an
estimate inside the intersectighin (I7) . To solve the optimization problems formulated iisthtudy,
we use theCVX toolbox [36].

To evaluate the tightness of the bounds in Tdble |, we considenormalized difference between a
boundv and the true erroe, i.e., (v — ¢e)/e. To illustrate how the tightness varies with, e.g., network
deployment, measurement noise, estimator parameterstudg the cumulative distribution function

(CDF)

Pv(x):Pr{U_e §x},

(&
where the randomness comes from selecting, e.g., the depltyin a random fashion. In the following,
we will generatee from POCS estimates. Since an estimate of the target posgiavailable, we also
consider the first upper bound for further comparisons. Insiahulations, we generate 1000 random
networks.

Fig.[8 shows the CDF of the normalized position error of anangmund versus POCS position error
for different number of reference nodes. As expected, tis fipper bound shows better performance
compared to the other bounds. For instance[Fig] 8(a) shwatsnt 80% of the cases, the first upper bound
computed by the network consisting of five reference noddesis than2.3 times the actual position
error (considering the normalized errar — e)/e). This figure also shows that the upper bound 3 (Type
2) is the loosest bound. When the number of reference nodesaises, the upper bound 3 (Type 1) gets
closer to the upper bound 2. Roughly speaking except for ppeiubound 3 (Type 1), we can say that the
behavior of other upper bounds (based on the normalized @rre e¢)/¢) does not change considerably
with increasing the number of reference nodes.[Fig. 8 alswstthat the proposed bounds always are

upper bounds (although not always tight).
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Fig. 8. Comparison between the CDF of normalized positisoresf upper bounds versus the POCS position erroffof, (a) 5

reference node§, (b) 10 reference nofle$, (c) 15 refererdespand (d) 20 reference nodes.

In the next simulation, we compare the upper bounds with thgimum position error. To compare
four upper bounds, we again employ the POCS method. For eeafization of the network, we run
POCS for 200 random initializations and take the maximumtjposerror. For every realization, the
upper bound 1 corresponds to the maximum distance to thes@uion for the estimate that gives the
maximum POCS position error. Three other bounds are indkpenof the POCS estimate and they
approximate the maximum length of the intersection are@¥ery realization. Fi§]9 plots the four upper
bounds against the maximum POCS position error. In[Fig, 9e)plot the upper bound 1 and a lower

bound on the maximum position error when an estimate is ablail As seen, the maximum position
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Fig. 9. Comparison between three upper bounds and the maxipasition error of POCS for 15 reference nodes and 200

random initializations for every realizatiopn, (a) Boundilcdomputed using the estimate that gives the maximum positicor

for POCS[(H) Boundd, () Bound3 (Typel), dnd] (d) Bound3 €R)p

error is bounded between the green and black curves, whioiedean upper and a lower bounds on the
maximum position error, respectively. These figures gregdlyi show that the upper bound 1 is tighter
than other bounds. They also show that the upper bound 3 @y[ethe loosest one.

In Fig.[10, we plot the CDF of the normalized position errorugfper bounds versus the maximum
POCS position error for different number of reference nodResughly speaking, in more thai®% of
cases the upper bound 1 is equal or less than 1.5 times thenmaxPOCS position error for different

number of reference nodes. Again, we see that the upper bbusmthe tightest and the upper bound 3
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Fig. 10. Comparison between the CDF of normalized error fiémint upper bounds versus the maximum position error of

POCS for[(d) 5 reference nodgs,] (b) 10 reference npdés5(mférence nodes, afd(d) 20 reference nodes.

(Type 2) is the loosest one. It is seen that when the numbeafefence nodes increases to 15, the upper

bound 2 in80% of cases is tighter that the upper bound 3 (Type 1).

VIlI. CONCLUSIONS

In this paper we have formulated a number of upper boundseneidilization of the positioning error,
i.e., the error which is produced by an estimator, or a cldssstimators, given a certain realization of
the measuremenin. The bound defined in{8) can be computed by finding the lamjs&ince between
a point in the setY(m), i.e., the set of all possible positions of the unknown nadmditioned on the

observationm, and the estimatg(m, ). (Recall thaf contains the estimation algorithm parameters, e.g.,
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initialization, that determines howm is mapped to the position estimate.) Similarly, the boun@@) can
be computed as the largest distance between a poiitin) and a point in¥'(m) = {x(m, f) : f € F},
i.e., the set of all possible estimates in the class of estimadefined byF. Hence, the bounds are
nontrivial (i.e., finite) only if the measurement impliesathhe above-mentioned sets are of finite lengths.
Moreover, it is, in general, not clear if the bounds can be pated with reasonable complexity.

However, we have showed that we can indeed compute nohtbgiands in an efficient manner for
the special, but interesting, case whan consists of positively biased distances estimates between
number of reference (anchors nodes) at a-priori known ipasitand a target node (at an unknown
position). We note that non-negative distance errors &edylito occur in non-line-of-sight environments.
For this special case, the target node is constrained to beeimtersectior3 of a number of ballsj;,
1=1,2,..., N, which are centered around the reference nodes and whdsareadiven by the observed
distance estimates. That is, in this special casan) = B. An efficient algorithm, [(2I7), can then be
found by relaxing the original boun@(24) into a convex ojitiation problem using SDP techniques.

Moreover, if we use a POCS algorithm to estimate the targde mmsition, we know thaf(m) =B,
i.e., the estimate will be i8. Hence, the bound8) simplifies 0 {25). To arrive at bourdd tan be
efficiently computed, we formulate three upper bounds$_dj {2438), (45), and[(50). The bound(38) is
based on SDP relaxation, the bouhd) (45) by replaingth its bounding box in[(25), and the bourid50)
by replacingB; with their bounding boxes if_(17). Simulation results basadhe POCS estimate for
different situations show that the proposed upper boundsige reasonably tight bounds. As expected
from the theoretical part and confirmed by the simulationultesfor the POCS estimate the first bound
in (27) is the tightest bound among different upper boundsifdated in this paper. The numerical results
also show that the behavior of different bounds, except tie in [45), based on the normalized error
does not considerably change with node density. It is alswloded from both theoretical aspects and
simulation results that the bounds]38) ahd] (45) are tigth@n the one in[{30).

Finally, it is clear that it is very valuable if we, in a prami situation, can append an estimated
position with an upper bound of the position error. This iscinistronger than saying something about

the statistics of the position error (e.g., the mean squareat). The methods developed in this paper
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provides tools for bounding the position error, albeit inTmsevhat limited situations, i.e., wheki(m)
has finite length. There are practical situations whereithi valid assumption, but also cases when it

iS not.
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