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Abstract

This paper studies the possibility of upper bounding the position error of an estimate for range based

positioning algorithms in wireless sensor networks. In this study, we argue that in certain situations when

the measured distances between sensor nodes are positivelybiased, e.g., in non-line-of-sight conditions,

the target node is confined to a closed bounded convex set (a feasible set) which can be derived from the

measurements. Then, we formulate two classes of geometric upper bounds with respect to the feasible

set. If an estimate is available, either feasible or infeasible, the worst-case position error can be defined

as the maximum distance between the estimate and any point inthe feasible set (the first bound).

Alternatively, if an estimate given by a positioning algorithm is always feasible, we propose to get the

maximum length of the feasible set as the worst-case position error (the second bound). These bounds

are formulated as nonconvex optimization problems. To progress, we relax the nonconvex problems and

obtain convex problems, which can be efficiently solved. Simulation results indicate that the proposed

bounds are reasonably tight in many situations.
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I. INTRODUCTION

Recent advances in technology have instigated the use of tiny devices as sensors in large distributed

wireless sensor networks (WSNs). A sensor device is capableto sense its environment for monitoring,

controlling, or tracking purposes for both civil and military applications [1]. Due to drawbacks in

using GPS for WSNs, extracting the position information from the network, also called localization,

has been extensively studied in the literature [1]–[6]. It is commonly assumed that there are a number

of fixed reference sensors, also called anchors, whose positions area priori known, e.g., by using GPS

receivers [7]. To find the position of other sensor nodes at unknown positions, henceforth called target

nodes, it is assumed that there are some types of measurements, e.g., time-of-arrival, angle-of-arrival, or

received signal strength, taken between sensor nodes [1].

During the last decades, various positioning algorithms have been proposed in the literature. Different

positioning approaches can be categorized based on variousfactors [8]. For instance, as long as an accurate

model of measurements and the statistics of the measurementerrors are known, classic estimators, e.g.,

the maximum likelihood (ML) and the least squares (LS) approaches, can be employed successfully

to solve the positioning problem. When the distribution of the measurement errors is unknown or the

computational complexity of classic estimators is too high, a number of simple techniques can be applied

to the problem. For example, based on a geometric interpretation, the authors of [9], [10] formulated

the positioning problem as a convex feasibility problem (CFP) and applied the well-known orthogonal

projection onto convex sets (POCS) approach to solve the problem. This method turns out to be robust

against non-line-of-sight (NLOS) conditions [11]. POCS was previously studied for the CFP and has

found applications in several research fields [12], [13].

Positioning algorithms can be evaluated based on differentperformance metrics such as complexity,

accuracy, and coverage [8]. In the literature one way to assess the positioning algorithms is to evaluate

the position error, defined as the Euclidian norm of the difference between the position estimate and the

true position. There are a number of techniques to evaluate the performance of an algorithm based on

the position error. For instance, a lower bound on the mean square position error is a common metric.

There exist a number of such lower bounds in the literature, e.g., the Cramér-Rao lower bound (CRLB),



3

PSfrag replacements

Estimated position

An upper bound on position error

1

2

34

Fig. 1. An example of the application of an upper bound on the position error for traffic safety. A solid circle defines the area

in which a vehicle definitely lies. In this figure based on an upper bound on the position error, car 2 and 3 might collide.

which can serve as benchmarks. The CRLB, which gives a lower bound on the variance of any unbiased

estimator, can be computed if the probability density function (PDF) of the measurement error is known

and satisfies some regularity conditions [14]. Generally, different benchmarks in the literature are used

to statistically assess a positioning algorithm, which implies that the error in a single position estimate

cannot be characterized in a deterministic fashion.

Besides a lower bound on the position error, in some applications it may be useful to know the

worst-case behavior of the position error. Such knowledge may be useful not only for evaluation of

different services provided by WSNs but also for design and resource management [1], [15]. Similarly in

evaluation of the worst-case position error, we may be interested in assessing a single point estimate. As

an example consider Fig. 1, which shows how a nontrivial (i.e., finite) upper bound on position error can

be used by a traffic safety application. If an estimate of a vehicle and a nontrivial upper bound on the

position error are available, we can define an area in which the vehicle is certainly located, e.g., a disc

centered at the position estimate and with a radius equal to the upper bound on the position error. By this

approach, we may be able to decrease the number of collisionsbetween vehicles. In general, computing

the maximum possible position error might be difficult, but one may be able to derive an upper bound

on the maximum possible position error. To the best of our knowledge, there is no specific work in the

literature on deriving an upper bound on the position error.In this study, we aim at tackling this subject.
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In general, the concept of an upper bound on the position error (or any estimation error) seems to

be shaky. In fact, it is not clear that is meaningful to study upper bounds, since the position error can,

in general, be arbitrarily large. In this study, however, weargue that in some situations it is possible

to reasonably determine the worst-case position error. Forinstance, if a target node position belongs

to a closed bounded set (a feasible set), the worst-case position error can be defined with respect to

the feasible set. For example, for distance-based positioning, if measurement errors are assumed to be

positive, a convex set including the target node can be defined from measurements. The feasible set, in

which the target node is located, is the intersection of a number of balls (in a 3-dimensional network)

or discs (in a 2-dimensional network) centered at the position of reference nodes [16]. The assumption

of positively biased measurement errors is fulfilled in somescenarios. For instance, in NLOS conditions,

the measured distances are often much larger than the actualdistances. Assuming a closed bounded

(compact) convex set derived from positively biased distance measurements, a position estimate given by

an algorithm can be either feasible or infeasible with respect to the feasible set. If an estimate is available

(feasible or infeasible), it is reasonable to define the maximum distance from the estimate to any point in

the feasible region as the worst-case position error. This idea yields an upper bound on the position error

as the solution of a nonconvex optimization problem. Alternatively, a number of positioning algorithms,

e.g., POCS, give one feasible point as an estimate. In this type of estimators, we can upper bound the

position error as the maximum length1 of the feasible set. To find the maximum length of the feasible

region, we consider an outer-approximation of the feasibleset and find the minimum Euclidean ball or the

minimumℓ∞ ball (minimum bounding box) covering the set. We further relax the nonconvex optimization

problem and derive a convex optimization problem. Obviously, if a feasible point is available, the first

upper bound, i.e., the maximum distance from the estimate toany point in the feasible region, gives a

tighter upper bound compared to the second bound, i.e., the maximum length of the feasible region.

Note that the technique introduced in this paper can be applied to every estimation problem when the

unknown parameter vector belongs to a compact, finite-volume, convex set.

1By the maximum length of a set, we mean the maximumℓ2 norm of the difference between two points (not necessarily a

unique pair of points) in the set.
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In summary, the main contributions of this study are:

• introducing the concept of an instantaneous upper bound fora single point position estimate when

the distance measurements are positively biased, e.g., in NLOS conditions;

• proposing an upper bound on the position error based on a convex relaxation technique when an

estimate of the target position is available (feasible or infeasible);

• proposing three upper bounds for an estimator always givinga feasible point as an estimate (e.g., the

POCS estimate) based on the idea of the maximum length of the feasible set or a relaxed feasible

set including the target node.

The remainder of the paper is organized as follows. Some preliminary requirements are studied in

Section II. Section III explains the signal model considered in this paper. In Section IV, a geometric

positioning algorithm (POCS) is briefly studied. Two types of upper bounds are derived in Section V.

Simulation results are discussed in Section VI. Finally, Section VII makes come concluding remarks.

II. PRELIMINARIES

A. Notation

The following notations are used in this study. Lowercase and bold lowercase letters denote scalar

values and vectors, respectively. Matrices are written using bold uppercase letters. By0n×n we denote

then by n zero matrix, and we use0n as then-vector ofn zeros.1n andIn denote the vector ofn ones

and then by n identity matrix, respectively. The operatortr(·) is used to denote the trace of a square

matrix. Theℓp norm is denoted by‖ · ‖p. Given two matricesA andB, A ≻ (�)B means thatA−B

is positive (semi)definite.Sn, Rn, andRn
+ denote the set of alln× n symmetric matrices, the set of all

n× 1 vectors with real values, and the set of alln× 1 vectors with nonnegative real values, respectively.

B. Quadratically constrained quadratic programming

Let us consider a quadratically constrained quadratic program (QCQP) as

maximize
x∈Rn

xTA0x+ 2bT
0 x+ c0

subject to xTAix+ 2bT
i x+ ci ≤ 0, i = 1, . . . , N, (1)
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for Ai ∈ S
n, bi ∈ R

n, andci ∈ R.

The QCQP problem (1), in general, is nonconvex and difficult to solve except in some specific

cases [17]. For the nonconvex case, there are a number of techniques to approximately solve the problem.

One powerful approach is the semidefinite relaxation technique [18]–[23]. Considering a property of the

trace operator, i.e.,xTAix = tr(Aixx
T ), the QCQP problem in (1) can be written as

maximize
x∈Rn

tr
(

B0

[

xT 1
]T [

xT 1
]

)

subject to tr
(

Bi

[

xT 1
]T [

xT 1
]

)

≤ 0, i = 1, . . . , N, (2)

where

Bi =







Ai bi

bT
i ci






. (3)

Now, by replacingZ =
[

xT 1
]T [

xT 1
]

and noting thatZ is a rank-1 symmetric positive semidefinite

matrix, we get an equivalent problem of (2) as

maximize
Z∈Sn+1

tr (B0Z)

subject to tr (BiZ) ≤ 0, i = 1, . . . , N,

Z � 0, Z(n+ 1, n + 1) = 1, rank(Z) = 1. (4)

Due to the nonconvex constraintrank(Z) = 1, the optimization problem in (4) is still nonconvex. To

change it to a convex problem, we drop the rank-1 constraint and obtain a semidefinite programming

problem (SDP) as follows:

maximize
Z∈Sn+1

tr (B0Z)

subject to tr (BiZ) ≤ 0, i = 1, . . . , N,

Z � 0, Z(n+ 1, n+ 1) = 1. (5)

To refer to the QPCP formulated in (1) throughout this paper,we useQP{Ai,bi, ci}
N
i=0. Similarly, to

refer to the SDP relaxation derived in (5) originated from QCQP in (1), we useSDP{Ai,bi, ci}
N
i=0. For

the optimal values of the objective function of the QCQP and the corresponding SDP relaxation in (1)
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and in (5), we usevqp{Ai,bi, ci}
N
i=0 andvsdp{Ai,bi, ci}

N
i=0, respectively. By adopting the relaxation,

i.e., dropping the rank-1 constraint, we expand the feasible set, therefore, the objective function in (5) is

maximized over a larger set than in (1), thus

vqp{Ai,bi, ci}
N
i=0 ≤ vsdp{Ai,bi, ci}

N
i=0. (6)

If the rank of matrixZ for the optimal solution in (5) is one, then, the solution in (5) is equal to the

optimal solution in (1). In general, the optimal solution in(5) has rank higher than one, and then a rank-

1 approximation can be applied to the optimal solution in (5), e.g., using a method based on singular

value decomposition or an approach based on randomization [20]. For details of rank-1 approximation

techniques from a higher rank matrix, see, e.g., [20], [23],[24].

Note that using the Lagrange dual approach, a similar problem as the SDP relaxation in (5) can be

obtained [18]. We complete this section by a simple and useful property of the quadratic inequality.

Lemma 2.1: For a quadratic functionxTAx + 2bTx + c, whereA ∈ S
n, b ∈ R

n, andc ∈ R , the

following statement always holds true:

xTAx+ 2bTx+ c ≥ 0, ∀x ∈ R
n ⇐⇒







A b

bT c






� 0. (7)

Proof: See [18].

C. Bounds on estimation errors given a realization of the measurement vector

Consider an unknown parameter vectorx ∈ R
n. Regardless if we modelx as random or unknown

deterministic, we can define the set of the possible values ofx as

X , {possible values of x} ⊆ R
n

Supposem is the observed realization of the (random) measurement vector M. Given the eventM = m,

the set of possible values ofx changes to

X (m) , {possible values of x : M = m} ⊆ X .

The estimate ofx, denoted bŷx(m, f) ∈ R
n, is a function of the observed datam and some algorithm

tuning parameters, e.g., initialization, step size, termination criterion, etc., which are collected in the
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Fig. 2. Different upper bounds.

vector f . The f -vector is chosen, possibly randomly, from the setF . In other words,f ∈ F completely

determines how the estimator maps the observed datam to the estimatêx, and the setF defines a class

of estimators. We can now define the set of possible values ofx̂(m, f) whenf can take on any value in

F as

X̂ (m) , {x̂(m, f) : f ∈ F} ⊂ R
n.

We can define three upper bounds on theℓ2 norm of estimation errore , ‖x̂(m, f)− x‖2 as

e ≤ u1(x̂(m, f)) , sup
x∈X (m)

‖x̂(m, f) − x‖2, (8)

e ≤ u2(x) , sup
x̂∈X̂ (m)

‖x̂− x‖2, (9)

e ≤ u3 , sup
x∈X (m), x̂∈X̂ (m)

‖x̂− x‖2. (10)

We note that all bounds depends onm, which, for simplicity, is neglected in the notation. Moreover, it is

easy to see thatu1(x̂(m, f)) ≤ u3 andu2(x) ≤ u3. Fig. 2 graphically shows the different upper bounds.

Remark 1: the boundu1(x̂(m, f)) is an upper bound of the norm of the estimation error for a certain

estimate (f andm are fixed). Hence, ifu1(x̂(m, f)) can be computed together with the estimate, this

would greatly increase the value of the estimate, since we can now guarantee that the norm of the

estimation error inx̂(m, f) does not exceedu1(x̂(m, f)). This is a much stronger statement than to
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provide a statistical quality measure, such as the mean-squared error of the estimator,

EM{‖x̂(m, f)− x‖22},

whereEM denotes expectation over the distribution ofM.

Remark 2: the boundu3 could potentially be computed together with the estimate and is therefore

of value in a practical situation. However,u3 will only be interesting if it is easier to compute than

u1(x̂(m, f)), sinceu1(x̂(m, f)) ≤ u3.

Remark 3: the boundu2(x) can be interpreted as the error of the worst estimate that is computed

from the observed datam by the class of estimators defined byF . This is useful to judge the worst

case performance of a class of estimators. However, since the bound is a function ofx (the unknown

parameter), it cannot be computed together with an estimate, and its practical value is therefore limited.

We can also formulate lower bounds by replacingsup with inf in Eqs. (8)– (10),

e ≥ ℓ1(x̂(m, f)) , inf
x∈X (m)

‖x̂(m, f)− x‖2, (11)

e ≥ ℓ2(x) , inf
x̂∈X̂ (m)

‖x̂− x‖2, (12)

e ≥ ℓ3 , inf
x∈X (m), x̂∈X̂ (m)

‖x̂− x‖2. (13)

In general, there are no guarantees that any of the bounds in Eqs. (8)–(13) are nontrivial, i.e., that the

upper bounds are finite and the lower bounds are greater than zero. For example, if the setX (m) or

X̂ (m) is unbounded, it is clear that the upper bound (8) or (10) is trivial. However, as we will see in

the remainder of this paper, there are indeed practical situations when the bounds are nontrivial.

III. SYSTEM MODEL

Let us consider ann-dimensional network,n = 2 or 3, with N reference nodes at known positions

ai = [ai,1 · · · ai,n]
T ∈ R

n, i = 1, ..., N . Suppose that a target node is placed at an unknown position

x = [x1 · · · xn]
T ∈ R

n. The range measurement between the target and reference node i is given by

d̂i = di(x,ai) + ǫi, i = 1, . . . , N, (14)
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where di(x,ai) is the actual Euclidian distance between the target node andreference nodei, i.e.,

di(x,ai) = ‖ai − x‖2, andǫi is the measurement error.

In the literature the measurement error is commonly modeledas a zero mean Gaussian random

variable [1], [4], [25]. In some scenarios, however, other distributions seem to be more reasonable.

For instance, in NLOS conditions the measured distances arelarger than the actual distances with

high probability. A number of distributions have been considered to model NLOS conditions, e.g., an

exponential distribution or a uniform distribution [26]. The Gaussian distribution with large positive

mean has also been considered to model the NLOS condition [26], [27]. In this paper for the purpose

of deriving the upper bound, we assume that the distance measurements are positively biased, meaning

the measurement errors are nonnegative. The positive measurement assumption can be fulfilled, e.g., in

NLOS conditions (with high probability).

The positioning problem, then, is to find the position of the target node based on the positions ofN

reference nodes and measurements made in (14).

IV. POSITIONING ALGORITHMS

A classic method to solve the problem of positioning based onmeasurements taken in (14) is to employ

an ML estimator if the distribution of the measurement errorǫi is known. Otherwise, when the statistics

of measurement errors are unknown, one can apply the LS minimization as [14], [28]

x̂ = arg min
x∈Rn

N
∑

i=1

(

d̂i − di(x,ai)
)2

. (15)

The solution to (15) coincides with the ML estimate if the measurement errors are zero mean,

independent and identically distributed Gaussian random variables [14]. In general, the LS and ML

problems are nonconvex and difficult to solve. To avoid difficulty in solving the ML (or LS), authors

in [10] took a geometric interpretation into account and formulated the positioning problem as a CFP

and applied the well-known POCS approach to solve the positioning problem.

To formulate POCS, note that in the absence of measurement errors, i.e.,d̂i = di(x,ai), it is clear

that the target, at unknown positionx, can be found in the intersection of a number of spheres with radii

di(x,ai) and centersai. For nonnegative measurement errors, we relax spheres to balls and deduce that
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the target definitely lies inside the intersection of a number of balls. Let us define the (closed bounded)

ball Bi centered ataj as

Bi ,
{

x ∈ R
n : ‖x− ai‖2 ≤ d̂i

}

, i = 1, . . . , N. (16)

It is then reasonable to define an estimate ofx as a point in the intersectionB (a closed bounded set) of

the ballsBi (a feasible point) as

x̂ ∈ B ,

N
⋂

i=1

Bi. (17)

Therefore, the positioning problem can be rendered to the following convex feasibility problem (CFP):

minimize
x∈Rn

0

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N. (18)

To solve (18), we note that CFP can be reformulated by minimizing the following convex function

f(x) , max{dist(x,B1), . . . ,dist(x,BN )}, (19)

with dist(x,Bi) denoting the minimum distance betweenx and any point in setBi.

Using negative subgradient updating method [12], [29], we can obtain a solution to (19) by

xk+1 = xk − αkg
k, k = 0, 1, . . . , (20)

wherexk is thekth iterate,αk is thekth step size, andgk is a subgradient2. A subgradientgk of f at

xk can be computed as

gk =



















0, if f(xk) = 0,

xk−PBj
(xk)

‖xk−PBj
(xk)‖2

, if f(xk) 6= 0, dist(xk,Bj) ≥ dist(xk,Bi), ∀i 6= j,

(21)

wherePBj
(xk) is the orthogonal projection ofxk onto the setBj . By choosing the step size asαk =

f(xk)/‖gk‖22 in (20), according to Polyak approach [12], we derive the following approach, called

alternating projections [30] or POCS, for updating

xk+1 = PBj
(xk), k = 0, 1, . . . , (22)

2Let D be a nonempty set inRn. A vector g ∈ R
n is a subgradient of a functionf : D → R at x ∈ D if f(y) ≥

f(x) + gT (y − x) for all y ∈ D [12].
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Fig. 3. A 2-dimensional network consisting of three reference nodes and one target node. For nonnegative measurement errors,

the target node at positionx is found in the intersection of three discs. The POCS estimate converges to a point̂x inside the

intersection area (in this case on the boundary).

where indexj is the one used in (21).

As mentioned before, POCS gives an estimate that is feasible(if the intersectionB is nonempty). In

each step, POCS projects the current pointxk onto the farthest convex set. For example, Fig. 3 shows

a 2-dimensional network in which the measured distances in reference nodes are positively biased. The

POCS’ estimate in this figure converges to a point in the intersection of three discs after two iterations.

For more details on variations of the POCS algorithm and the application of POCS for the positioning

problem, we refer the reader to [12] and [9], [11], [31], respectively.

V. GEOMETRIC UPPER BOUNDS

In this study, taking the assumption of positively biased measurement errors into account and consid-

ering discussions in Section II-C, we derive two different upper bounds. The first bound is derived based

on the availability of an estimate. If such an estimate is available (feasible or infeasible), we can bound

it by finding the maximum distance between the estimate and any point in the feasible set. The second

bound is derived without the need for an estimate, as the maximum length of the intersection set.
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Let us define the norm of position estimate, which we call the position error, as

e , ‖x̂− x‖2, (23)

wherex̂ is an estimate of the target node position given by a positioning algorithm. In a practical scenario

it is not possible to compute the exact position error in (23)since the position of a target node is unknown.

Therefore, we may compute a lower or an upper bound on the position error for evaluation of an estimate.

According to discussions in Section II-C, it seems that the plausible definition for the maximum position

error, when a single estimate is available, can be considered as

e ≤ vmax,1 , max
x∈B

‖x̂− x‖2, (24)

whereB defines a set (closed bounded) in which the target nodex belongs. In fact, definition (24) is a

special case of the upper bound defined in (8) in Section II-C whenX (m) = B. In other words, (24)

defines the largest distance from a point to a set.

Alternatively, if an algorithm always produces one point inthe feasible setB as an estimate, we are

still able to define an upper bound on the position error, evenwithout having access to an estimate, by

settingX (m) = X̂ (m) = B in (10),

e ≤ vmax,3 , max
x,y∈B

‖x− y‖2. (25)

A. A bound for the case an estimate exists

As mentioned in previous section, we can upper bound the position error due to an estimatêx (either

feasible or infeasible), by solving the optimization problem (24). The solution is found on the boundary

of setB. For example, let us consider Fig. 4 where an estimatex̂ of the target node position inside the

intersection of three discs is available. The position error and the maximum position error are shown in this

figure. Instead of directly solving the problem in (24), we consider a QCQP problemQP{Ai,bi, ci}
N
i=0,

where

Ai = In, bi =



















−x̂, if i = 0,

−ai, otherwise,

ci =



















‖x̂‖2, if i = 0,

‖ai‖
2 − d̂2i , otherwise.

(26)



14

PSfrag replacements

a1

a2

a3

x

d̂1 d̂3

d̂2

d̂1

x̂

Position error

Maximum position error

Reference node
Target node

Fig. 4. The position error and the maximum position error foran estimatêx of the target for the network considered in Fig. 3.

Obviously,vqp{Ai,bi, ci}
N
i=0 = v2max,1. The optimization problem in (24) is nonconvex which makes the

problem complicated. To solve the problem, we employ a relaxation technique. Following the procedures

explained in Section II-B, we can get a relaxed SDP problem asSDP{Ai,bi, ci}
N
i=0 and the maximum

position error can be upper bounded as

e = ‖x̂− x‖2 ≤ vmax,1 ≤
√

vsdp{Ai,bi, ci}Ni=0. (27)

In order to investigate the tightness of the upper-bound derived in (27), we can derive a lower-bound on

vqp{Ai,bi, ci}
N
i=0. Let us write the QCQP problemQP{Ai,bi, ci}

N
i=0 parameterized in (26) as

maximize
x∈Rn, τ∈R

tr
(

B
[

xT τ
]T [

xT τ
]

)

subject to tr
(

Bi

[

xT τ
]T [

xT τ
]

)

≤ ti, i = 1, . . . , N + 1, (28)

where

BN+1 =







0n×n 0n

0Tn 1






, B =







In −x̂

−x̂T ‖x̂‖2






, Bi =







In −ai

−ai
T ‖ai‖

2
2 + ǫ2






,

ti = d̂2i + ǫ2, i ≤ N, tN+1 = 1, (29)
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whereǫ 6= 0 is any nonzero real value. It is seen thatBi ≻ 0 for 1 ≤ i ≤ N . Then,
∑N+1

i=1 Bi ≻ 0,

meaning the interior of the feasible set is nonempty.

Proposition 5.1: A lower bound on the optimal value ofQP{Ai,bi, ci}
N
i=0 parameterized in (26) based

on the optimal valuevsdp{Ai,bi, ci}
N
i=0, can be obtained as

√

α vsdp{Ai,bi, ci}Ni=0 ≤ vqp{Ai,bi, ci}
N
i=0, (30)

where

α =
1

2 ln(2(N + 1)µ)
, µ = min{N + 1, n+ 1}. (31)

Proof: Recalling the results of [32], which determines a lower bound on the optimal value of a

QCQP based on its relaxed SDP, we get a lower bound on the optimal value of (28), which is exactly

vqp{Ai,bi, ci}
N
i=0, as

α vsdp{Ai,bi, ci}
N
i=0 ≤ vqp{Ai,bi, ci}

N
i=0, (32)

where

α =
1

2 ln(2(N + 1)µ)
, µ = min{N + 1,max

i
rank(Bi)}.

It is clear thatrank(Bi) = n+1. Therefore, a lower bound onvqp{Ai,bi, ci}
N
i=0 can be derived as (30).

For details of deriving lower bounds on a nonconvex QCQP, we refer the reader to [18], [24], [32] and

references therein.

B. Bound regarding the feasible set

In this section, we investigate another upper bound defined in (25) and repeated here for convenience

vmax,3 = max {‖x− v‖2 : x,v ∈ B} . (33)

If a feasible pointx̂ ∈ B is available, it is expected that the first upper boundvmax,1 yields a tighter

bound compared to the bound defined in (33) (the maximum length of the intersection). In fact for a

fixed x̂ ∈ B,

max
x,w∈B

‖x−w‖2 ≥ max
x∈B

‖x− x̂‖2. (34)



16

PSfrag replacements

a1

a2

a3

x

d̂1 d̂3

d̂2

d̂1

x̂s

Position error

Maximum error

Reference node
Target node

Fig. 5. Maximum Euclidian distance of the intersection as the maximum position error for an estimate inside the intersection

area of Fig. 3.

The optimization problem in (33) is nonconvex. Geometrically, it can be imagined as the diameter of

the minimum ball enclosing the intersection. Instead of solving the problem formulated in (33), we find

a minimum ball covering the intersectionB. Let us consider the centerxc and the radiusR of such a

ball and formulate the minimum ball enclosing the intersection B in decision variablesxc andγ = R2

as

minimize
xc∈Rn, γ∈R+

γ

subject to ‖x− xc‖
2 ≤ γ, x ∈ B. (35)

Let the optimal solution of (35) bev′max,3. Then,vmax,3 = 2
√

v′max,3. Fixingxc in (35), using Lemma 2.1,

and following a similar approach as used in [33], we can get the following optimization problem to find
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the minimum ball enclosing the intersectionB:

minimize
γ∈R+, λ∈RN

+

γ

subject to







(
∑N

i=1 λi − 1)In xc −
∑N

i=1 λiai

(xc −
∑N

i=1 λiai)
T γ − ‖y‖22 +

∑N
i=1 λi(‖ai‖

2
2 − d̂2i )






� 0,

xc ∈ R
n. (36)

Taking similar steps as done in [33], which implies for the optimal solution
∑N

i=1 λi = 1 and xc =

∑N
i=1 λiai, we can obtain an optimization problem to find an upper bound on the squared radius of the

minimum ball enclosing the setB in the Euclidian norm sense as

minimize
λ∈RN

+

‖

N
∑

i=1

λiai‖
2
2 −

N
∑

i=1

λi(‖ai‖
2
2 − d̂2i )

subject to

N
∑

i=1

λi = 1. (37)

Finally, an upper bound on the maximum length ofB is given by

vmax,3 ≤ 2R, (38)

whereR =
√

‖
∑N

i=1 λiai‖22 −
∑N

i=1 λi(‖ai‖22 − d̂2i ).

It has been proved in [33] that when the number of constraintsN (here the number of reference nodes)

is equal or less thann (the size of dimension), (37) gives the optimal solution to (35). Otherwise when

N > n, the optimal solution in (37) is an upper-bound to the optimal solution in (35). The upper bound

obtained by solving (37) then gives the maximum Euclidian length of the intersection.

Another approach to compute an upper bound onvmax,3 is to replaceB with an enclosing set in (25).

We will in the following consider two such sets. The first enclosing set is the bounding box3 for B, and,

given the bounding box, it is very easy to compute an upper bound onvmax,3, see Fig. 6.

The second enclosing set is found be replacingBi with their bounding boxes, i.e., theℓ2 balls in (16)

are replaced by the correspondingℓ∞ balls,

Bi
′ = {x ∈ R

n : ‖x− ai‖∞ ≤ d̂i},

3By the bounding box of the setA, we mean the smallest cuboid [34] that is enclosingA.
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Fig. 6. The maximum length of the bounding box of the intersection as an upper bound for the network considered in Fig. 3.

and noting that

B ⊆ B′ ,

N
⋂

i=1

Bi
′.

Hence, an upper bound tovmax,3 is found by considering the length ofB′, see Fig. 7.

To compute the bounding box forB, we study the following optimization problem:

maximize ‖x− y‖∞

subject to x,y ∈ B. (39)

The optimization problem in (39) again is nonconvex. Using the definition of theℓ∞ norm, we can write

maximize
x,y

max(|x1 − y1|, . . . , |xn − yn|)

subject to x,y ∈ B. (40)

Themax function in (40) can be computed as

max{α1, . . . , αn} = αi ⇐⇒ αi ≥ αj , ∀j. (41)

Using a dummy variableβ, we have

max{α1, . . . , αn} ≥ β ⇐⇒ α1 ≥ β or α2 ≥ β . . . or αn ≥ β. (42)
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Thus, using a simple technique, we need to solve two optimization problems for every dimensionℓ as

follows:

maximize
β∈R

β

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N,

xℓ ≥ β, (43a)

minimize
β∈R

β

subject to ‖x− ai‖ ≤ d̂i, i = 1, . . . , N

xℓ ≤ β. (43b)

The optimization problems in (43) are called the second order cone program which is a special case

of the quadratic programming. It can be easily transformed to an SDP [17]. Suppose that the optimal

solution to problems (43a) and (43b) along a dimensionℓ arex∗ℓ1 andx∗ℓ2 , respectively. Let the maximum

length for theℓth dimension bevsocp,ℓ = |x∗ℓ1 − x∗ℓ2 |. Then, the maximum length of the intersection can

be upper bounded as

vsocp =

√

√

√

√

n
∑

i=1

(vsocp,ℓ)2. (44)

Thus

vmax,3 ≤ vsocp. (45)

To compute the upper bound onvmax,3 based onB′, we consider the following optimization problem:

maximize
x,y

‖x− y‖∞

subject to x,y ∈ B′, (46)

For example Fig. 7 shows the concept of relaxing the constraint for a 2-dimensional network. Following

the same procedure to obtain (43), we obtain two optimization problems, called linear programs (LPs),
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Fig. 7. Every constraint is replaced with a bounding box and then a bounding box enclosing the intersection of relaxed

constraints is computed. The maximum length of the boundingbox enclosing the intersection gives an upper bound for the

network considered in Fig. 3.

for every dimension. For instance, two LPs for theℓth dimension can be written as

maximize
tℓ∈R

tℓ

subject to tℓ − ai,ℓ − d̂i ≤ 0,

tℓ − ai,ℓ + d̂i ≤ 0, i = 1, . . . , N, (47a)

minimize
tℓ∈R

tℓ

subject to tℓ − ai,ℓ − d̂i ≤ 0,

ai,ℓ − tℓ + d̂i ≤ 0, i = 1, . . . , N. (47b)

The optimal solution to the optimization problem (47), i.e., t∗ℓ1 and t∗ℓ2 , are simply computed as

t∗ℓ1 = min{a1,ℓ + d̂1, . . . , aN,ℓ + d̂N}, t∗ℓ2 = max{a1,ℓ − d̂1, . . . , aN,ℓ − d̂N}. (48)

Let vlp,ℓ = |t∗ℓ1 − t∗ℓ2 |, ℓ = 1, . . . , n, be the maximum length along theℓth dimension. The maximum



21

TABLE I

SUMMARY OF BOUNDS.

Definition: Eqn.

e , ‖x̂− x‖2 (23)

vmax,1 , max
x∈B

‖x̂− x‖2 (24)

vmax,3 , max
x,y∈B

‖x− y‖2 (25)

Upper Bounds: Eqn.

Bound1:

e 6 vmax,1 ≤
√

vsdp{Ai,bi, ci}Ni=0 (27)

Bound2:

vmax,3 ≤ 2R (38)

Bound3 (Type 1):

vmax,3 ≤ vsocp (45)

Bound3 (Type 2):

vmax,3 ≤ vlp (50)

length of the intersectionB is then upper bounded by

vlp =

√

√

√

√

n
∑

i=1

(vlp,ℓ)2. (49)

Therefore, an upper bound on position error based on a bounding box approach is given by

vmax,3 ≤ vlp. (50)

It is clear thatvsocp ≤ vlp.

Table I summarizes the various types of bounds derived in this study.

VI. SIMULATION RESULTS

In this section we evaluate the validity of different upper bounds. We consider a1000 m3 cubic space

for simulation.N reference nodes are randomly distributed in the space. One target node is randomly

placed inside the volume. To add measurement noise to actualdistances between reference and target
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nodes, we use an exponential distribution defined as

f(ǫi) =



















γe−γǫi , ǫi ≥ 0

0, ǫi < 0.

The mean1/γ is set to 1 m. The validity of exponential distribution, especially for NLOS conditions, has

been justified in the literature, e.g., [11], [26], [35]. We study the POCS algorithm that always gives an

estimate inside the intersectionB in (17) . To solve the optimization problems formulated in this study,

we use theCVX toolbox [36].

To evaluate the tightness of the bounds in Table I, we consider the normalized difference between a

boundv and the true errore, i.e., (v − e)/e. To illustrate how the tightness varies with, e.g., network

deployment, measurement noise, estimator parameters, we study the cumulative distribution function

(CDF)

Pv(x) = Pr

{

v − e

e
≤ x

}

,

where the randomness comes from selecting, e.g., the deployment in a random fashion. In the following,

we will generatee from POCS estimates. Since an estimate of the target position is available, we also

consider the first upper bound for further comparisons. In all simulations, we generate 1000 random

networks.

Fig. 8 shows the CDF of the normalized position error of an upper bound versus POCS position error

for different number of reference nodes. As expected, the first upper bound shows better performance

compared to the other bounds. For instance, Fig. 8(a) shows that in 80% of the cases, the first upper bound

computed by the network consisting of five reference nodes isless than2.3 times the actual position

error (considering the normalized error(v − e)/e). This figure also shows that the upper bound 3 (Type

2) is the loosest bound. When the number of reference nodes increases, the upper bound 3 (Type 1) gets

closer to the upper bound 2. Roughly speaking except for the upper bound 3 (Type 1), we can say that the

behavior of other upper bounds (based on the normalized error (v− e)/e) does not change considerably

with increasing the number of reference nodes. Fig. 8 also shows that the proposed bounds always are

upper bounds (although not always tight).
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Fig. 8. Comparison between the CDF of normalized position error of upper bounds versus the POCS position error for, (a) 5

reference nodes, (b) 10 reference nodes, (c) 15 reference nodes, and (d) 20 reference nodes.

In the next simulation, we compare the upper bounds with the maximum position error. To compare

four upper bounds, we again employ the POCS method. For everyrealization of the network, we run

POCS for 200 random initializations and take the maximum position error. For every realization, the

upper bound 1 corresponds to the maximum distance to the intersection for the estimate that gives the

maximum POCS position error. Three other bounds are independent of the POCS estimate and they

approximate the maximum length of the intersection area forevery realization. Fig. 9 plots the four upper

bounds against the maximum POCS position error. In Fig. 9(a), we plot the upper bound 1 and a lower

bound on the maximum position error when an estimate is available. As seen, the maximum position
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Fig. 9. Comparison between three upper bounds and the maximum position error of POCS for 15 reference nodes and 200

random initializations for every realization, (a) Bound1 is computed using the estimate that gives the maximum position error

for POCS, (b) Bound2, (c) Bound3 (Type1), and (d) Bound3 (Type2).

error is bounded between the green and black curves, which defines an upper and a lower bounds on the

maximum position error, respectively. These figures graphically show that the upper bound 1 is tighter

than other bounds. They also show that the upper bound 3 (Type2) is the loosest one.

In Fig. 10, we plot the CDF of the normalized position error ofupper bounds versus the maximum

POCS position error for different number of reference nodes. Roughly speaking, in more than90% of

cases the upper bound 1 is equal or less than 1.5 times the maximum POCS position error for different

number of reference nodes. Again, we see that the upper bound1 is the tightest and the upper bound 3
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Fig. 10. Comparison between the CDF of normalized error of different upper bounds versus the maximum position error of

POCS for, (a) 5 reference nodes, (b) 10 reference nodes, (c) 15 reference nodes, and (d) 20 reference nodes.

(Type 2) is the loosest one. It is seen that when the number of reference nodes increases to 15, the upper

bound 2 in80% of cases is tighter that the upper bound 3 (Type 1).

VII. C ONCLUSIONS

In this paper we have formulated a number of upper bounds on the realization of the positioning error,

i.e., the error which is produced by an estimator, or a class of estimators, given a certain realization of

the measurement,m. The bound defined in (8) can be computed by finding the largestdistance between

a point in the setX (m), i.e., the set of all possible positions of the unknown node,conditioned on the

observationm, and the estimatêx(m, f). (Recall thatf contains the estimation algorithm parameters, e.g.,
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initialization, that determines howm is mapped to the position estimate.) Similarly, the bound in(10) can

be computed as the largest distance between a point inX (m) and a point inX̂ (m) = {x̂(m, f) : f ∈ F},

i.e., the set of all possible estimates in the class of estimators defined byF . Hence, the bounds are

nontrivial (i.e., finite) only if the measurement implies that the above-mentioned sets are of finite lengths.

Moreover, it is, in general, not clear if the bounds can be computed with reasonable complexity.

However, we have showed that we can indeed compute nontrivial bounds in an efficient manner for

the special, but interesting, case whenm consists of positively biased distances estimates betweena

number of reference (anchors nodes) at a-priori known positions and a target node (at an unknown

position). We note that non-negative distance errors are likely to occur in non-line-of-sight environments.

For this special case, the target node is constrained to be inthe intersectionB of a number of balls,Bi,

i = 1, 2, . . . , N , which are centered around the reference nodes and whose radii are given by the observed

distance estimates. That is, in this special case,X (m) = B. An efficient algorithm, (27), can then be

found by relaxing the original bound (24) into a convex optimization problem using SDP techniques.

Moreover, if we use a POCS algorithm to estimate the target node position, we know that̂X (m) = B,

i.e., the estimate will be inB. Hence, the bound (8) simplifies to (25). To arrive at bounds that can be

efficiently computed, we formulate three upper bounds of (25) in (38), (45), and (50). The bound (38) is

based on SDP relaxation, the bound (45) by replacingB with its bounding box in (25), and the bound (50)

by replacingBi with their bounding boxes in (17). Simulation results basedon the POCS estimate for

different situations show that the proposed upper bounds provide reasonably tight bounds. As expected

from the theoretical part and confirmed by the simulation results, for the POCS estimate the first bound

in (27) is the tightest bound among different upper bounds formulated in this paper. The numerical results

also show that the behavior of different bounds, except the one in (45), based on the normalized error

does not considerably change with node density. It is also concluded from both theoretical aspects and

simulation results that the bounds (38) and (45) are tighterthan the one in (50).

Finally, it is clear that it is very valuable if we, in a practical situation, can append an estimated

position with an upper bound of the position error. This is much stronger than saying something about

the statistics of the position error (e.g., the mean squarederror). The methods developed in this paper
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provides tools for bounding the position error, albeit in somewhat limited situations, i.e., whenX (m)

has finite length. There are practical situations where thisis a valid assumption, but also cases when it

is not.
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