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Abstract

The goal of this paper is to propose a generalized signal-dependent noise model that is more appropriate to describe

a natural image acquired by a digital camera than the conventional Additive White Gaussian Noise model widely used

in image processing. This non-linear noise model takes into account effects in the image acquisition pipeline of a

digital camera. In this paper, an algorithm for estimation of noise model parameters from a single image is designed.

Then the proposed noise model is applied with the Local Linear Minimum Mean Square Error filter to design an

efficient image denoising method.

Keywords: Signal-Dependent Noise Model, Noise Measurement, Noise Parameter Estimation, Denoising.

1. Introduction

Noise has been studied for decades in computer vision, image processing and statistical signal processing because

of its impact in various applications such as image denoising, image segmentation or edge detection. To improve per-

formance in those applications, it is important to identify noise characteristics. Noise models proposed in the literature

can be roughly divided into two groups: signal-independent and signal-dependent. A typical model for the group of

signal-independent noise is the Additive White Gaussian Noise (AWGN) that is widely used in image processing.

However, this signal-independent AWGN model is not relevant due to the dominant contribution of the Poisson noise

corrupting a natural image acquired by imaging device [1, 2]. While signal-independent noise models assume the sta-

tionarity of noise in the whole natural image, regardless original pixel intensity, signal-dependent noise models take

into account the proportional dependence of noise variance on the original pixel intensity. Signal-dependent noise

models include Poisson noise or film-grain noise [3], Poisson-Gaussian noise [4, 5], heteroscedastic noise model

[2, 6], and non-linear noise model [7, 8]. The signal-dependent noise model gives the noise variance as a function

of pixel’s expectation. This function can be linear [4, 5, 2, 6] or non-linear [7, 8]. To identify noise characteristics
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Figure 1: Scatter-plot of pixels’ expectation and variance from RAW images acquired by Nikon D70 and Nikon D200 cameras [9].

or attenuate noise impact in many image processing applications, it is desirable to design an algorithm that estimates

noise model parameters accurately.

Estimation of noise model parameters can be performed from a single image or multiple images. From a practical

point of view, this paper mainly focuses on noise parameter estimation from a single image. Several methods have

been proposed in the literature for estimation of signal-dependent noise parameters [2, 6, 7, 8]. They rely on similar

basic steps but differ in details. The common methodology starts from obtaining local estimates of noise variance and

image content, then performing the curve fitting to the scatter-plot based on the prior knowledge of noise model. The

existing methods involve two main difficulties: influence of image content and spatial correlation of noise in a natural

image. In fact, homogeneous regions where local means and variances are estimated are obtained by performing

edge detection and image segmentation. However, the accuracy of those local estimates may be contaminated due to

the presence of outliers (textures, details and edges) in the homogeneous regions. Moreover, because of the spatial

correlation, the local estimates of noise variance can be overestimated. Overall, the two difficulties may result in

inaccurate estimation of noise parameters.

The contribution of this paper is threefold. Firstly, by modeling the main steps of the image acquisition pipeline,

this paper starts from the heteroscedastic noise model [2, 6] that accurately characterizes a natural RAW image and

takes into account the impact of gamma correction to develop a generalized non-linear noise model. This model has

not been proposed yet in the literature. Secondly, an algorithm for estimation of noise model parameters from a single

image is proposed. Finally, the Local Linear Minimum Mean Square Error (LLMMSE) filter that was proposed in [3]

is combined with the proposed noise model to design an efficient image denoising method.

The paper is organized as follows. Section 2 presents the generalized signal-dependent noise model for a natural

image. Next, Section 3 designs the algorithm for estimation of noise model parameters. Section 4 presents numerical

results on synthetic images and real natural images. Finally, Section 5 concludes the paper.

2



estimated expectation µ̂k

es
tim

at
ed

va
ri

an
ce
σ̂

2 k

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Nikon D70: Estimated data

Nikon D70: Fitted data

Nikon D200: Estimated data

Nikon D200: Fitted data

Figure 2: Scatter-plot of pixels’ expectation and variance from JPEG images acquired by Nikon D70 and Nikon D200 cameras [9].

2. Generalized Signal-Dependent Noise Model

Image processing pipeline involves several steps from light capturing to image storage performed in a digital

camera, see details about image processing pipeline in [10, 11, 12]. After measuring light intensity at each pixel, RAW

image that contains exactly information recorded by the image sensor goes through some typical post-acquisition

processes, e.g. demosaicing, white-balancing and gamma correction, to render a full-color high-quality output image,

referred to as TIFF image.

RAW image can be modeled by considering noise sources that corrupt the image during its acquisition process

[1, 2, 6]. Typically, the RAW image model consists of a Poissonian part that addresses the photon shot noise and

dark current and a Gaussian part for the remaining stationary disturbances, e.g. read-out noise. For the sake of

simplification, the Gaussian approximation of the Poisson distribution can be exploited because of a large number of

incident photons, which leads the heteroscedastic noise model [6, 2]

xi ∼ N
(
µxi , aµxi + b

)
, (1)

where xi denotes a RAW pixel, i ∈ {1, . . . ,N} and N is the number of pixels. By convention, µX and σ2
X denote

expectation and variance of a random variable X respectively. The index of color channel is omitted for simplicity.

This model gives pixel’s variance σ2
xi

as a linear function of pixel’s expectation µxi . As discussed in [6, 2], the

heteroscedastic noise model characterizes a RAW image more accurately than the conventional AWGN model widely

used in image processing. The heteroscedastic noise model in a natural RAW image is illustrated in Figure 1.

In order to study noise statistics in a TIFF image, it is necessary to consider the effects of post-acquisition opera-

tions. In this paper, the demosaicing and white-balancing operations are assumed to be linear [10, 12]. Therefore, a

short calculation shows that the white-balanced pixel still follows the Gaussian distribution and the relation between

its expectation and variance remains linear

yi ∼ N
(
µyi , ãµyi + b̃

)
, (2)
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where yi denotes the white-balanced pixel and the parameters (ã, b̃) differ from the parameters (a, b) due to effects of

demosaicing and white-balancing. The white-balanced pixel yi can be equivalently rewritten as

yi = µyi + ηyi with ηyi ∼ N
(
0, ãµyi + b̃

)
, (3)

where ηyi represents the zero-mean signal-dependent noise after white-balancing. Meanwhile, the gamma correction

is defined as the following element-wise power-law expression

zi = y
1
γ

i = (µyi + ηyi )
1
γ = µ

1
γ

yi

(
1 +

ηyi

µyi

) 1
γ
, (4)

where γ is the correction factor (typically, γ = 2.2) and zi denotes the gamma-corrected pixel. The first order of

Taylor’s series expansion of (1 + x)
1
γ at x = 0 leads to

zi = µ
1
γ

yi +
1
γ
µ

1
γ−1
yi ηyi + o

(ηyi

µyi

)
≈ µzi +

1
γ
µ

1−γ
zi ηyi , (5)

where µzi = µ
1
γ

yi is the expected value of the gamma-corrected pixel zi. Taking expectation and variance on the both

sides of the equation (5), it follows that

σ2
zi

=
1
γ2 µ

2−2γ
zi σ2

yi
=

1
γ2 µ

2−2γ
zi (ãµγzi + b̃). (6)

Finally, the gamma-corrected image undergoes the quantization Q∆ with step ∆ in the image acquisition pipeline.

Under mild assumptions [13], the quantization noise can be modeled as an additive noise that is uniformly distributed

and uncorrelated with the input signal. Taking into account the variance of the quantization noise, the generalized

noise model of a natural image is derived as

σ2
zi
, f (µzi ; ã, b̃, γ) =

1
γ2 µ

2−2γ
zi (ãµγzi + b̃) +

∆2

12
, (7)

where, to simplify the notations, zi is referred to as the final output pixel. For the sake of simplification, it is assumed

that the quantization step is unitary, i.e. ∆ = 1. Since this generalized noise model accounts for heteroscedasticity

of noise, it is more appropriate to characterize than existing non-linear models used in [8, 7]. The generalized noise

model (7) is illustrated in Figure 2.

3. Estimation of Noise Model Parameters from a Single Image

The generalized noise model (7) is non-linear, which causes a difficulty of estimating the noise model parameters.

When the gamma factor γ is known in advance, an obvious approach is to invert the gamma correction for obtaining

again the heteroscedastic relation (3), and then to perform the Weighted Least Squares (WLS) estimation as proposed

in [6]. Unfortunately, this approach leads to many problems in practice [14]. Firstly, the value of γ can not be known

in practice. One method is proposed in [15] to estimate γ blindly without calibration information or knowledge of

imaging device. However the stability of this method on a large real image database is still questioned. Secondly, even
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TIFF images JPEG images (Q = 90) JPEG images (Q = 80) JPEG images (Q = 70)

Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev

ã = −0.0012 −0.0012 2.2e−4 −0.0012 2.5e−4 −0.0013 2.8e−4 −0.00095 4.1e−4

b̃ = 0.11 0.114 0.0097 0.117 0.0102 0.126 0.015 0.132 0.025

γ = 0.8 0.807 0.053 0.811 0.057 0.79 0.058 0.814 0.11

ã = −0.0025 −0.0024 3.5e−4 −0.0024 4.2e−4 −0.0026 5.4e−4 −0.0023 5.8e−4

b̃ = 0.20 0.196 0.0084 0.191 0.0098 0.215 0.0117 0.191 0.021

γ = 0.85 0.845 0.049 0.853 0.058 0.845 0.061 0.842 0.086

Table 1: Parameter estimation on synthetic images

when the value of γ is exactly known, the effect of the quantizationQ∆ makes the inversion of the gamma correction ill-

conditioned. Finally, this non-linear inversion would introduce artefacts into the signal, which prevents from obtaining

a subsequent good estimation of parameters. Therefore, the goal of this section is to develop an algorithm that works

directly on the non-linear generalized noise model (7) for estimating the noise model parameters.

This section presents an algorithm for estimation of noise model parameters from a single image. The proposed

algorithm consists of three fundamental steps: homogeneous block detection, level-set segmentation, and Maximum

Likelihood (ML) estimation of parameters. The first two steps aim at detecting homogeneous blocks and partition the

image into non-overlapping level sets (or segments) in which the pixels are assumed to be independent and identically

distributed. Thus local expectations and local variances in each segment can be calculated, allowing to estimate the

noise model parameters simultaneously.

3.1. Homogeneous Block Detection and Level-Set Segmentation

Let Z be a two-dimensional matrix representing a natural image. Firstly, an estimation of image structure is

performed using a denoising filterD: Zapp = D(Z) where Zapp denotes the approximate image structure. The residual

image Zres, which is the difference between the noisy image Z and the denoised image Zapp, is further used to estimate

local noise variances. Since it is desirable that the proposed algorithm can be further applied on JPEG images, and

JPEG compression works separately on each 8 × 8 block, it is proposed to decompose the image Z (accordingly Zapp

and Zres) into 64 vectors of pixels zL = (zL,1, . . . , zL,Nb ), where L ∈ {1, . . . , 64} denotes the location index in the 8 × 8

grid and Nb is the number of blocks. Therefore, the vector zL contains all the pixels at the same location of the 8 × 8

grid and the pixels (z1,B, . . . , z64,B) are in the same block B.

In order to identify if a 8×8 block is homogeneous or contains an edge or discontinuity, it is proposed to calculate

the standard deviation of each block and compare it with a threshold τ. The median of absolute deviations (MAD),

which is considered as a robust estimator of standard deviation [16], is employed to calculate the standard deviation
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of the block. Therefore, the standard deviation of block B is calculated in the DCT domain as follows

ŝB = 1.4826 ·MAD
(
DCT

(
zapp

1,B , . . . , z
app
64,B

))
. (8)

Here, the denoised image Zapp is employed instead of the noisy image Z because the noise may severely contaminate

the calculation of standard deviation. Moreover, only 63 AC coefficients are used in (8). The DC coefficient is

excluded. The block B is selected if the standard deviation ŝB is smaller than the threshold τ. Hence the set of

homogeneous blocks is defined by

S =
{
1 ≤ B ≤ Nb : ŝB ≤ τ

}
. (9)

After detecting homogeneous blocks, it is proposed to use only a sub-image zL for partitioning into K non-

overlapping segments by dividing the dynamic range. Each segment S k, k ∈ {1, . . . ,K} is defined by

S k =
{
zL,B : zapp

L,B ∈
[
uk −

∆k

2
, uk +

∆k

2

[
, B ∈ S

}
. (10)

The number of segments K is set to the number of quantization levels, e.g. K = 28 and ∆k = 1. If the value of K

is larger than the number of quantization levels, the result is finer, i.e. the pixels in each level can be more probably

identically distributed, but the number of pixels is smaller, which could lead to a case that there is not enough data

for the subsequent parameter estimation. The situation is opposite when the value of K is smaller than the number of

quantization levels. For the sake of clarity, the pixel in each segment S k is now denoted zk,i, i ∈ {1, . . . , nk} where nk

is the number of pixels in segment S k. Analogously, zapp
k,i and zres

k,i denote respectively its denoised value and residual

value.

3.2. Maximum Likelihood Estimation

Consequently, local expectation and local variance in each segment are given by

µ̂k =
1
nk

nk∑
i=1

zapp
k,i (11)

σ̂2
k =

1
nk − 1

nk∑
i=1

(zres
k,i − zres

k )2 with zres
k =

1
nk

nk∑
i=1

zres
k,i . (12)

Because the local expectation µ̂k is calculated as the average of all denoised value in each segment, it is assumed that

its variance is negligible when the number of pixels is large, i.e. the local expectation µ̂k is close to the true value

µk: µ̂k � µk. Meanwhile, the variance of σ̂2
k is more crucial and needs to be treated carefully. In virtue of Lindeberg

Central Limit Theorem (CLT) [17, theorem 11.2.5], for a very large number of pixels nk, the local variance σ̂2
k follows

the Gaussian distribution

σ̂2
k ∼ N(σ2

k , dkσ
4
k) with dk =

2
nk
, (13)

where σ2
k = f (µk; ã, b̃, γ) is the true variance with respect to µk. The Figure 2 illustrates the scatter-plot of couples

{µ̂k, σ̂
2
k}

K
k=1 and the generalized noise model (7) in natural images in JPEG format acquired by Nikon D70 and Nikon

D200 cameras [9].
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The ML approach is used to fit the global parametric model σ2
k = f (µk; ã, b̃, γ) to the scatter-plot of couples

{µ̂k, σ̂
2
k}

K
k=1. The log-likelihood function of K segments is given by

L = −
1
2

K∑
k=1

[
log

(
2πdk f 2(µ̂k; ã, b̃, γ)

)
+
σ̂2

k − f (µ̂k; ã, b̃, γ)

dk f 2(µ̂k; ã, b̃, γ)

]
. (14)

Here, because the true value µk is unknown in practice, µk is replaced by µ̂k in the log-likelihood function L. The ML

estimates of (ã, b̃, γ) are obtained by maximizing the log-likelihood function L

( ˆ̃a, ˆ̃b, γ̂) = arg max
(ã,b̃,γ)

L(ã, b̃, γ). (15)

Because there is no closed form for ML estimates, the problem (15) is proposed to be solved numerically by using the

Nelder-Mead method [18].

4. Numerical Results

It can be noted that the accuracy of the homogeneous block detection and segmentation depends on the perfor-

mance of the denoising filter D. We have conducted some denoising methods such as Gaussian filter, Wiener filter,

wavelet-based filter [19] and Block-Matching and 3D (BM3D) filter [20]. The usual denoising methods as Gaussian

filter and Wiener filter provide very poor results. The results provided by the wavelet-based filter and BM3D filter are

equivalent but the BM3D filter takes much processing time. The wavelet-based denoising filter is employed in this

paper because of its relative accuracy and computational efficiency.

The proposed algorithm for estimation of noise model parameters requires an appropriate threshold τ such that

we have sufficient statistics for estimation process. In this paper, the threshold τ is defined as the median of absolute

deviations of all residual pixels zres
i

τ = 1.4826 ·MAD
(
zres

1 , . . . , zres
N

)
. (16)

This threshold is simple and efficient for rejecting blocks with strong edges. Besides, the sub-image used segmentation

and parameter estimation corresponds to the location (4, 4) of the 8×8 grid since compression error is higher for pixels

near block boundaries, and especially high at block corners [21].

4.1. Parameter Estimation on Synthetic Images

The reference images from TID2008 database [22] are chosen to evaluate the accuracy of the proposed approach.

The parameters (ã, b̃, γ) are used to generate synthetics images according to the generalized noise model (7). Those

parameters are estimated from natural JPEG images that are acquired by Nikon D70 and Nikon D200 cameras (see

Figure 2). The synthetic images are then compressed with different quality factors {70, 80, 90}. The Table 1 shows the

statistics of estimated parameters on non-compressed TIFF images and JPEG images with different quality factors. It

can be noted that the estimated parameters are close to the ground truth. Moreover, the distortion caused by JPEG

compression with moderate-to-high quality factors (Q ≥ 70) seems to weekly interfere in the estimation process.
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Figure 3: Estimated parameters (ã, b̃) on JPEG images issued from different camera models in Dresden image database [9].
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camera model.

Since the generalized noise model (7) has not been proposed yet in the literature, there is no existing algorithm for

noise parameter estimation to compare with the proposed one.

4.2. Parameter Estimation on Natural Images

To highlight the relevance of the proposed approach, experiments are then conducted on a large image database.

The Dresden database [9] that covers different camera devices, different imaged scenes, different camera settings

and different environmental conditions is chosen for this experiment. All images of the database are acquired with

the highest available JPEG quality setting and maximum available resolution. Figure 3 shows estimated parameters

(ã, b̃) over 1000 JPEG images of different camera models. As expected, the estimated parameters of the same camera

model are close to each other. Furthermore, it is desirable to compare estimated gamma provided by the proposed

algorithm with the algorithm proposed by Farid [15]. Figure 4 shows estimated gamma of the two algorithms on the

JPEG images taken from Nikon D200 camera model. It can be noted that the variability of gamma estimated by the

proposed algorithm is considerably smaller than Farid’s, thus the amount of gamma can be estimated more efficiently.
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4.3. Application to Image Denoising

To highlight the usefulness of the generalized noise model (7), it is proposed to combine it with the LLMMSE

filter [3] to design an efficient image denoising method. The LLMMSE filter is based on the non-stationary mean,

non-stationary variance image model. From (5), the pixel z can be decomposed as

z = u +
1
γ

u1−γηu, (17)

where u denotes the original pixel and ηu is the zero-mean signal-dependent noise, σ2
ηu

= ãµγu + b̃. The index of

pixel is omitted for the sake of clarity. The original pixel u involves non-stationary mean and non-stationary variance.

The non-stationary mean describes the gross structure of an image and the non-stationary variance characterizes edge

information of the image [3]. In the decomposition (17), the quantization noise is assumed to be negligible. As

explained in [3], the LLMMSE filter for any signal-dependent noise model is formulated as

û =
(
1 −

σ2
u

σ2
z

)
µz +

σ2
u

σ2
z

z, (18)

where µz and σ2
z are respectively local mean and local variance of the pixel z, µu and σ2

u are respectively local mean

and local variance of the original pixel u. Since the noise ηu is zero-mean, it follows from (17) that µz = µu. The

LLMMSE filter (18) is the weighted sum of original signal mean µu and the noisy observation z where the weight is

determined as the ratio of the original signal variance and noise variance. A simple technique to obtain local statistics

µz and σ2
z is to calculate over a sliding window of size (2r + 1) × (2c + 1)

µz(m, n) =
1

(2r + 1)(2c + 1)

m+r∑
i=m−r

n+c∑
j=n−c

z(i, j), (19)

σ2
z (m, n) =

1
(2r + 1)(2c + 1)

m+r∑
i=m−r

n+c∑
j=n−c(

z(i, j) − µz(m, n)
)2
. (20)

Therefore, it remains to calculate the variance σ2
u. From (17), the variance σ2

z can be given by

σ2
z = σ2

u +
1
γ2 E

[
u2−2γ]σ2

ηu
. (21)

By using the Taylor series expansion of u2−2γ around µu, the expression of E
[
u2−2γ] can be simplified as

E
[
u2−2γ] = µ

2−2γ
u + (1 − γ)(1 − 2γ)µ−2γ

u σ2
u. (22)

Combining (21) and (22), the expression of the variance σ2
u is derived as

σ2
u =

σ2
z −

1
γ2 µ

2−2γ
u σ2

ηu

1 + 1
γ2 (1 − γ)(1 − 2γ)µ−2γ

u σ2
ηu

. (23)

The LLMSSE filter (18) follows immediately.
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(a) Noisy image (b) Wiener filter (c) Wavelet-based filter

(d) BM3D filter (e) SA-DCT (f) Extended LLMMSE filter

Figure 5: Illustration of different denoising filters for ã = 1, b̃ = 10, γ = 0.85.

To evaluate the denoising performance of the extended LLMMSE filter, experiments are conducted on the synthetic

non-compressed images generated from TID2008 database. The parameters (ã, b̃, γ) are estimated on each synthetic

image. Estimated parameters are then used in the extended LLMMSE filter. Table 2 shows the averaged Peak Signal-

to-Noise Ratio (PSNR) of the extended LLMMSE filter compared with other denoising methods, e.g. some classical

methods such as Wiener filter and wavelet-based filter [19], and some state-of-the-art methods such as BM3D filter

[20] and Shape-Adaptive DCT (SA-DCT) filter [23]. It can be noted that the extended LLMMSE filter outperforms

the Wiener, wavelet-based, BM3D, and is rather equivalent to the SA-DCT filter. This can be justified due to the

fact that the SA-DCT is designed for signal-dependent noise whilst the others do not consider the non-stationarity of

noise. Different denoising filters are illustrated in Figure 5.

Remark 1. One of the main contributions of the paper is to propose the generalized noise model that has not been

provided yet in the literature. This work is accomplished by studying the main steps of the image processing pipeline

inside a digital camera. The relevance of the proposed model is highlighted by applying on a real image database.

However, this approach involves a limitation, namely that the demosaicing and white balancing are not completely

modeled. The proposed approach assumes that those operations are linear, which simplifies the statistical study and

results in a more exploitable model, say the generalized noise model. It must be noted that the demosaicing always

involves a convolution operation, which requires us to consider multivariate distribution. The resulting model could

be more relevant but inexploitable in practice. Overall, the generalized noise model can be seen as a trade-off between
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Simple Wiener filter Wavelet-based filter [19] BM3D filter [20] SA-DCT filter [23] Extended LLMMSE filter

ã = −0.0012

b̃ = 0.11 30.06 41.33 42.85 49.75 50.97

γ = 0.8

ã = −0.0025

b̃ = 0.20 30.05 40.37 42.56 47.73 48.61

γ = 0.85

ã = 1

b̃ = 10 24.88 26.13 26.32 27.08 29.14

γ = 0.85

Table 2: PSNR of different denoising filters

the reality in image acquisition and the exploitability in practice.

5. Conclusion

This paper proposes a novel generalized signal-dependent noise model that is more relevant to characterize a

natural image acquired by a digital camera. An algorithm for estimating noise model parameters accurately from

a single image is also designed. The proposed algorithm can work on JPEG images with moderate-to-high quality

factors. Another strength of the proposed algorithm is the ability to estimate the gamma factor more efficiently.

Moreover, the LLMMSE filter is extended by combining with the proposed generalized noise model. The proposed

noise model could be useful in many applications. A first step is to exploit the parameters of the generalized noise

model as camera fingerprint for camera model identification, as proposed in [24].
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