arXiv:1401.5925v1 [stat.AP] 23 Jan 2014

R.T.Rajan, G. Leus, A.-J.van der Veen 1

Joint relative position and velocity estimation

for an anchorless network of mobile nodes

Raj Thilak Rajan,Student Member, IEEE
Geert LeusFellow, IEEEand Alle-Jan van der Veetfellow, IEEE

Abstract

Localization is a fundamental challenge for any wirelessvoek of nodes, in particular when the
nodes are mobile. We present an extension of the classicétidvhiensional scaling (MDS) for an
anchorless network of mobile nogasherein the solutions to the time-varying relative nodsifans
are shown to lie in the derivatives of the time-varying imedal pairwise distances. Moreover, we show
that the relative position of a mobile node at each time mas only dependent on the initial relative
position, relative velocity and a common rotation matrixtbé respective node, which are estimated
using MDS-like and least squares estimators. Simulatioesanducted to evaluate the performance of
the proposed solutions and the results are presented.

Index Terms

relative position and velocity, rotation matrix, Multi-Diensional Scaling (MDS), dynamic
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. INTRODUCTION

Localization is a key requirement for the deployment of Wss networks in a wide range of ap-
plications. There are numerous absolute localizationrélgos, such as Time of Arrival (ToA), Time
Difference of Arrival (TDoA) and Received Signal StrengfRSS) which cater to anchored networks,

where only the positions of a few nodes are known [1]. Altéwady, when there are no reference anchors,

R.T.Rajan is with Netherlands Institute for Radio AstroiyofASTRON), Dwingeloo, The Netherlands (email: rajan@asinl)
and TU Delft, Delft, The Netherlands.

Geert Leus and A.-J. van der Veen are with TU Delft, Delft, Thetherlands (email: g.j.t.leus@tudelft.nl;
a.j.vanderveen@tudelft.nl)

This research was funded in part by the STW OLFAR project {faah Number: 10556) within the ASSYS perspectief
program.

Monday 14" June, 2021 DRAFT


http://arxiv.org/abs/1401.5925v1

R.T.Rajan, G. Leus, A.-J.van der Veen 2

then the relative positions of the nodes, up to a rotationteartslation, can still be obtained using Multi-
Dimensional Scaling (MDS) based solutions [2]] [3]. Sucltharless networks arise naturally when
the nodes are deployed in inaccessible locations or whehoarinformation is known intermittently.

In both anchored or anchorless scenarios, pairwise distaace one of the key inputs for almost
all localization techniques. For stationary nodes, thesiewise distances are classically obtained by
measuring the propagation delays of multiple time stamphamges between the nodes and averaging
these measurements over a time period.

A step further, when the nodes are mobile, then conventipreither the nodes are considered
relatively stationary within desired accuracies for thenptete duration of the measurement interval (i.e.,
multiple distance measurements) [4] or Doppler measuresreme utilized [[5]. Unfortunately, Doppler
measurements are not always available and the assumptithre osrode positional stability for large time
periods is not necessarily practical. For a mobile netwtr,application of classical MDS-based relative
positioning at every time instant yields a sequence of osinatrices with arbitrary rotation, thereby
providing no information on the relative velocities of thedes. The termrelative velocitiesindicates
the velocity vectors of the nodes, up to a common rotaticamdiiation and reflection. To the best of
the authors’ knowledge, the estimation of relative velesifor an anchorless network has not yet been

investigated in literature.

A. Applications

Our motivation for this work is triggered hipaccessiblenobile wireless networks, which have partial
or no information of absolute coordinates and/or clocknezfees. Such scenarios are prevalent in under-
water communications [6], indoor positioning systeiis [id§l &nvisioned space based satellite networks
with minimal ground segment capability. A particular pjef interest is Orbiting Low Frequency
Antennas for Radio astronomy (OLFARY) [8], a Dutch fundedgpam which aims to design and develop
a detailed system concept for a scalable interferometrayanf more than ten identical, autonomous
satellites in space (far from earth) to be used as a sciemgicument for ultra low frequency observations
(0.3 kHz - 30 MHz). Due to limitations of earth-based tracking, the OLF&Rster will be an independent

cooperative network of nodes, whose positions and vedscitieed to be estimated jointly.

B. Contributions

In this article, our quest is to understand the relative ikiagcs of ananchorless network of mobile

nodes, with or without any information on the Doppler measents. By the term anchorless, we empha-
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size that the absolute positions and the velocities of tlies@re unknown. We begin by approximating
the time-varying pairwise propagation delays (and subsetlythe ranges) between the mobile nodes
as a Taylor series in time, which is aptly termed dynamic r@mpgSectionll). A simple yet efficient
time based monomial basis is employed, to estimate theali@g of the pairwise distances at a given
time instant (Sectiofi1ll). Under the assumption of constaglocity for a short duration of time, we
show that the relative position of each node is dependegtamithe initial relative position, the relative
velocity and a unique rotation matrix (Sectipnl V). Furtimere, the solutions to the unknown initial
relative position, the relative velocity and the rotatioatnix lie in the first three derivatives of the time-
varying pairwise distance. Subsequently, we present a Ni@Sand least squares solutions to estimate
the unknown parameters in Sectioh V and Cramér Rao Bouradsglenived. Simulations are conducted
to evaluate the performance of the dynamic ranging algoriéimd the MDS based estimators for relative
Positions and Velocities (Sectign VII).

Notation: The element wise matrix Hadamard product is denotedby-)®Y denotes element-wise
matrix exponent and indicates the element-wise Hadamard division. The Kroaepkoduct is indicated
by ® and the transpose operator by’( 1y = [1,1...,1]7,05 = [0,0...,0]T € R¥*1 are vectors

of ones and zeros, respectively. The Euclidean norm is ddrioy |-

, Iy is aN x N identity matrix
and 0y, y is a M x N matrix of zeros. A diagonal matrix of the vectaris represented by digag)
and a block diagonal matriA = bdiag A1, Ag, ..., Ay) consists of matrices\, As,..., Ay along
the diagonal and) elsewhere. ve@\) operator reshapes the matr into a vector.a ~ N(u,X) is

shorthand for a randomly distributed Gaussian variablé wieany and variance:.

[I. DYNAMIC RANGING
A. Range model

Consider a cluster oV nodes in aP-dimensional Euclidean space. If the nodes are fixed, then th

pairwise propagation delay at timg between a given node pait, j) is defined as

Tii(to) = Tyilto) £ ¢ dij(to), (1)

whered;;(to) is the fixed distance between the node paityaandc is the speed of the electromagnetic
wave in the medium. However, when the nodes are mobile, tladive distances between the nodes

are a non-linear function of time (faP > 2), even when the nodes are in linear mcm.oﬁor a small

ILater in the article, we will assume the nodes to be in comstafocities. However, here we present a generalized Taylor
approximation of the time-varying pairwise distance, fay anotion.
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time interval At = t — ¢y, we consider these relative distances as a smoothly vapohmomial. The
propagation delay;;(t) = 7;;(t) between a given node pait, j) is then (classically) an infinite Taylor
series around a time instaty within the neighborhood\t. As an extension of the linear range model

[Q], we have
7ij(to + At) £ ¢ dyj(to + At) £ ¢ Hdy;(2), (2)

whered;;(t) is the distance at = ¢y + At, given by

dij(t) = rij+ﬁm+§m2+..., 3)
where®,; = [rij,74j,7,...] € RE*! are the range parameters. The first coefficignt= " d;;(to) is

the initial pairwise distance and the following— 1 coefficients are successive derivativesrgfat .
Without loss of generality, assumirtg = 0, we havet = At and subsequently](2) and] (3) simplify to

the Maclaurian series as

_ ) T
T,-j(t):c 1<nj+rijt+%t2+...>. (4)
The unique pairwise ranges between all tié nodes are collected in a vectore RV*1 where N =

is the number of unique pairwise baselines. Along similaedi we can defing € RV*1,

2
i € RV*! and corresponding higher-order terms. The polynomial eapasis is simplified further by
introducing
T _ . T

|:£Z‘]7 il]’ ilj’ .. .:| == dlaQKf) |:T.Zj7 7:'7/]7 7;:7/], .. .:| (5)

wheref = ¢[1, 1!, 2!, ...]T € REX!, such that[(¥) is
| o . . ,2
Tz‘j(t) =c dz‘j(t) = 1y F it drgtt + (6)

Following the definition of§ = [I",i“, P } we definer € RV*1 i € RVx! # ¢ RV*! and similarly
higher-order terms.

Remark 1: (Doppler measurements): Observe that in essends,the ToA atty, the range rater is
the radial velocity (as obtained from a Doppler shift) ana thecond order range parametéris the
rate of radial velocity (as observed from a Doppler spreadjween the nodes at= ty. These range

coefficients can be readily incorporated if these measuntsnare available.
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Fig. 1: A generalized Two-Way Ranging (TWR) between a pamobilenodes, where the nodes transmit
and receive, during whiclk time stamps are recorded at the respective nodes. Simi[8t,tfi0], [11],
we levy no constraints on the sequence, direction or numbeommunications.

B. Data Model

We now consider a relaxed Two-Way Ranging (TWR) setup fotectihg distance information as
follows. Let a node pair(i, j) within the network be capable of communicating with eacheoths
shown in Fid.l. The nodes communicdtemessages back and forth, and the time of transmission and
reception is registered independently at the respectiviesioThekth time stamp recorded at node
when communicating with nodg is denoted byT;;;, and similarly at node the time stamp isl}; ;..

The direction of the communication is indicated BY; ;,, whereE;; ;, = +1 for transmission from node
i to nodej and E;; ,, = —1 for transmission from nodg to nodei. Under ideal noiseless conditions, the
propagation delay between the node pair atitetime instant isE;; . (75;,x — Tji,x), and in conjunction

with the polynomial approximatiol6), we have
Tijk = L5 + ﬁisz'j,k + L]Tik +...= Eij,k(Tji,k - Tij,k)7 (7)

wherer;; . = 7;;(T35,1) and without loss of generality we have replacedith 7 ;..

Remark 2: (Synchronized nodes): By replacitrgetimet by T;; ., we assume without loss of generality
that 73; . is in the neighborhood ofy = 0 and the propagation delay;; is measured as a function of
the local time at nodé. Furthermore, we also assume that the clocks of these nagesyachronized.
This is a valid assumption since for an asynchronous netwbrkobile nodes, the clock parameters (up
to first order) can be decoupled from the range parameters @stinmated efficiently as shown in/ [9],

[20], [LT].
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In practice, the time measurements are also corrupted witerand hencé (7) is
v + 15Tk + k) + 745 (Tij e + quk)z +..
= Eijk(Tjik + ajk) = (Tijik + qik)) (8)

whereg; , ~ N(0,%;), gjr ~ N(0,%X;) are modelled as Gaussian i.i.d. noise variables, plaguiag t

timing measurements at nodeand nodey, respective@. Rearranging the terms, we have
rij + 7Tk + 2T e + - - = BTk — Tigik) + igikes 9)

where

Gijk = Eij(@ik — i) — 85T nti e + Fijaig + - ) (10)

For wireless communication with = 3 x 10®m/s, note that the modified range parameters are scaled
by ¢! (B). Furthermore, since the dynamic range model is propdsec small time interval, the
term (2@]-1}]-716%71C + iijqfk + ...) is relatively small and subsequently the noise vector pragthe

measurements can be approximated,as ~ Ei; 1(q;r — ¢i,x) Which begets
Qije ~ N(0,%4), (11)

whereX;; = ¥; + X;. Aggregating allKX" packets, we have

Qw‘
—

A, Lij

A@2 Lij
Le by b5 - ] | =Tt s (12)

Tij

where

Tij £ €;; © (tji — tij) € RKXl, (13)
eij = |Fij1,FEijo,...,Fijx] € REXL (14)
tij = [Tj1,Tijo,-- -, Tijx) € REXL (15)

2Alternatively, the noise on the time markers can also be teddas a uniformly random variable, typically rising from
quantization errors. In addition, the proposed fixed vagamodel can be replaced a the distance-dependent variaoael m
[12], which penalizes large inter-nodal distances.
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The known Vandermonde matri;; € RX*L contains the measured time stamps and is invertible if
T;j is unique. The direction vectay;; is encapsulated in the propagation detay and9,; € REx1
is a vector containing the unknown range parameters. Theengctor on this linear system df; =

(9.1, Gij,2, - - - q,-j,K]T e REx1, whereg;; , is given by [(I1) and the corresponding covariance matrix is
Zij £ E [quqz;] = EijIK S RKXK. (16)

For a network of N nodes, the normal equation {12) can be extended to

[2)
~

r

A r

r
Iyely T T .|| |=7+q (17)

r

where

T = bdiagtlg,tlg,...th, t23,...),€RNKXN (18)
T = [7{277{37'--T{N7 7537"']T€RNKX1 (19)

contain the time stamp exchanges of flieiniquepairwise links in the network ané ¢ RVLX1 contains
the unknown range parameters for the entire network. Theenaictor isy = [q7,, ql5, ..., a1y, als, .. ]T €

RVEX1 and the covariance matrix is
¥ £ E[qq"] e RVEXNK, (20)

Remark 3: (Mobility of the nodes): In[{[7), we implicity assumed thhe tnodes are relatively fixed
during a time period obt, = |T;;, — T} x| i.e., the propagation time of the message. This is a much
weaker assumption compared to traditional TWR, where formm pf fixed nodes (i.e.,L = 1), the
pairwise distance is assumed to be invariant for the totabsmeement period\T" = |T;; x — Tjj1|-

In reality, when the nodes are mobile, the distance at elthtime instant is dissimilar and this is

inherently represented in the presented Dynamic rangingeho

[1l. DYNAMIC RANGING ALGORITHM

Suppose that we have collected all the TWR timing data\irand =, then in this section we find

an estimate for the unknowé using the model[(17). Given an estimate &f the range coefficients
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0 = [r,r,7,...] can be directly obtained frondl(5).

A. Weighted Least Squares

Under the assumption that the covariance matis known, a Weighted Least Squares (WLS) solution

@ is obtained by minimizing thé, norm of the linear systeni (IL7), leading to
9 = ATz 'A)'ATs 7 (21)

which is a valid solution ifl’ > L for each of theV pairwise links. More generally, wheh is unknown,
an order recursive least squares [13] can be employed tinahtarange coefficients for increasing values
of L, until we reach an optimal polynomial fit for (1L7).

Furthermore, the Cramér Rao lower Bound (CRB) [13] for thast squares modélq) is

¥ = (AT2 1A (22)
and in combination with the range scalirg (5), the CRBébis given by
¥y 2 FATSTA)IF (23)

where

3 = (24)

is the lowest variance attained by any unbiased estimatheofange parametes= [r”, 7 i, .. ]
andF = diagf)®1Iy € RVLXNL |t js worth noting that[(21) achieves this lower bound. Inli&idn, the
lower bound is unaffected by the choice of direction veeigr V i, j < N, since all direction vectors
are encapsulated in the measurement vectprwhich is not a part of the lower bound (23).

Remark 4. (Direction independence): In general, observe that thepmsed solution(21) is feasible
for any direction marker;; ,,, which is incorporated in- (I3). Hence communication between the nodes
could be arbitrary or one way, and need not be necessariljifgictional. Note that, this is not true for
an asynchronous network, where two-way communicationvistali in jointly estimating the clock and
range parameters [11]. In addition, there is no pre-reqtéson the number, sequence or direction of

the communication links [4],19],[10], [[11]. Thus, the praged solution is amenable to prevalent Two
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Way Ranging (TWR) protocols, such as classical pairwisenconication [14], passive listening and

broadcasting [[15].

B. Distributed Weighted Least Squares

If we consider independent pairwise communication betwadktine nodes, with no broadcasting, then
the noise in each pairwise link is independent of each othdrsabsequently the covariance matfix](20)

simplifies to
Y = bdiag(Elg,Elg,...ZlN, 223,...). (25)

In which case, the centralized systdml(17) is a cascade nfipailinear systems$ (12) and subsequently

(21) is a generalized version of solving the distributedwigie system for estimating the pairwise range

parameterg), ;
0, = argumin ;" (A0, —7y)|
= (Al zZ Ay ALE (26)

which, similar to [21), has a valid solution fdt > L for each pairwise link.

IV. DISTANCES, POSITIONS, VELOCITIES

AND RELATIVE KINEMATICS

In the previous section, we estimat@dvhich contains the solution to the unknown range derivative
0 = {r, T } Our next motive is to use these range derivatives to estithat positions of the mobile
nodes. When the nodes are in motion, similar to the pairasge rates, the position vector of each
node is also a Taylor series in time. However, exploitingcewise linearity, we assume that the nodes
are in linear motion with no acceleration, which is valid forsufficiently small measurement period.

(Note that despite this assumption, the pairwise distasitill non-linear.)

A. Linear motion

Let the position ofN (N > P) nodes in aP-dimensional Euclidean space at thil time instant be
given by Xy = [x1., X2k, .- Xy k] € RN, wherex; ,, € RP*! is the position vector of théth node

at thekth message exchange. Furthermore, at time inggatitiesith node has velocity; € R”*! and all
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such velocities are collected ¥ = [y1,y2,... yn] € RPN, Then, under a linear motion assumption,
we have

dy;
dt

=0p Vi<N. (27)

Now, let At, =t — tg where for the sake of notational convenience and withowg Gdsgenerality, we

assume, = T, V k, then the position matrix at theth time instant is
X, = X+ ALY (28)

whereX £ X = [x;,xo,... XN] is the initial position matrix at time instarig and X, only depends

on the initial Position and Velocity (PV) of the nodes.

B. Range derivatives

To estimate the position matriX;, we begin by stating explicit expressions for the rangevdévies
[r,f,n » } in terms of X, Y under linear velocity assumption.
Theorem 1:(Distance non-linearity) The pairwise distané¢g(t) between a node paig, j) in P > 2

dimensional Euclidean space is a non-linear function oétieven if the nodes are only in linear motion

The range paramete(s;;, 7;;, 7i;,... | att =ty satisfy
Tij = \/ [ x; +x]x; — 2x] x;, (29a)
g o= Ty (% — %) (i — ¥))s (29D)
Tij = Ti_jl (Iys = y)I? = 73) - (29¢)
Proof: See AppendixA. [

Although these range parameters can be estimated up td.the)th order efficiently (as demonstrated
in Sectionl), in the rest of this article we utilize the armation only up toL = 3. Rearranging the

equations forr;;, 7, 7;;, from (29) we obtain

r2 = (x; — %) (x; — x;), (30a)

1) J J
rigriy = (i —x5)" (yi —y5), (30b)
i+ = (yi—y) (Vi —y5)- (30c)

Monday 14" June, 2021 DRAFT



R.T.Rajan, G. Leus, A.-J.van der Veen 11

Extending the above equations for Allnodes, defining,, = diag XTX) € RV*! g, = diag X'Y) €

RN*! andg,, = diag'Y'Y) € RV*!, we have

R®? = g0 1% + Lygl, — 2XTX, (31a)
ROR = g1} +1ygl, — XY - Y7X, (31b)
RoOR+RY? = gy 1% + Lygl, —2YTY, (31c)

NxN contain

where the square matric® = [r;;] € R, VN R = [r;;] € RV*N andR = [#;] € R,
the initial pairwise ranges, range rates and rates of raags rrespectively. It is worth noting thRt and
R are Euclidean Distance Matrices (EDM)s, howeleralthough symmetric, may contain both positive
and negative values and is thus not an EDM.

It is evident from [(3]L) that without apriori knowledge of aM&nown PV, estimating the PVs of the
network is an ill-posed problem and hence, we look to find tsmhg for the relative PV. Applying the

centering matrixP = Iy — N~'1,15, € RV*N on (31) and exploiting the properfyl, = 0y, we

have
B.. = PX'XP, (32a)
B,, = PX'Y+Y'X)P, (32b)
B, = PY'YP, (32¢)

where we for the sake of convenience, we have introduced

B.. £ —0.5PR®?P, (33a)

B,, £ -P(ROR)P, (33b)
N AT,

B,, = —-05P(ROR+R™)P. (33c)

The equations[(32a) anf (32c) can now be used to estimatenitied relative positions and relative
velocities of the nodes, via MDS. However, prior to applyM@®S we first present definitions for the

relative PVs.
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C. Relative framework

We define the relative PV vectors as an affine transformatidineocorresponding absolute PX(, Y)

i.e.,

Xy = H, X, +h, 1%, (34)

Y = H,Y +h1%, (35)

whereX, is the relative position matrix of the nodestatup to a rotationH,, ;, € RP*P and translation
h,, € RP*1 Along similar lines, we define relative velocity %,Y, and relative velocity up to a
rotation asY, whereH, € R”*¥ is an unknown rotation matrix. The relative velocity of thedesH, Y

is relative to the group velocity of the network, whichlis € RP*!. Under a linear velocity assumption

(27), the group velocity is the rate at which the relativaengtation vector varies with time i.e.,
h, = At; '(h, ;. — hy o). (36)
Furthermore, the rotation matric&$, ,, H, are orthogonal i.e.,
H H,,= HH, =1, V1<k<K. (37)

Now, substituting[(34) and_(85) in_(P8), and using the prop8) we have
H, X, = H;oX+A{;HY, (38)

where for the sake of notational simplicity, we uXe= X, to denote the relative position matrix &t
Now observe that the translation vectdis o, h, are unidentifiable from observatiorls {32). Subse-
guently, we shall also see in the following section, thatgbkition to the relative PVs are independent
of these translation vector and hence without loss of gdihecan be considered to b@p for notational
simplicity. Secondly, in order to have a meaningful intetption of the relative position at thigh time
instant [[38), we must choose a reference coordinate sysgnik; o = I. To this end, without loss of

generality and for notational simplicity, we have the fellng assumptions

HSL‘,O = IP7 (39a)
heo = Op, (39b)
h, = 0p. (39c)

Monday 14" June, 2021 DRAFT



R.T.Rajan, G. Leus, A.-J.van der Veen 13

which simplifies [[(38) to
X = X+ AtH,Y, (40)

where X, is the position of the nodes at tti¢h time instant up to a translation, under the assumption
(39). More significantly, observe that the relative positat eachkth time instant is only dependent on
the relative PV and1,. Hence in the following sections, our aim is to estimXteY andH,, using the

range parameter®( R, R) defined in [3B) and estimated in Sectlaq Il

D. Relative kinematic matrices

Substituting the expression for absolute PV frdml (34) arfs) (@spectively in[(32), we have

B.. PX"XP = PX"H] jH, (XP = X"X, (41a)

B,, = PX'Y+Y'X)P
= PX"H] H,Y + Y H/H, (X)P
= X"HY+Y"H]X, (41b)

B,, = PY'YP=PY'H'H,YP=Y"Y, (41c)

where we use the propertly (37) in_(41a) ahd {41c), and thengstson [394) in [(41b)B,, andB,,
are Gramian matrices of the relative PVs and the expressioBf, is the Lyapunov-like linear matrix

equation[[16]. It is worth noting that the relative kinensadiquationsB..,, B,,, B,, are dependent only
on the relative PVs and the unique rotation matrix at tigne=or an alternative derivation of the relative
kinematic matrices, refer to AppendixX B.

Given an estimate of the range matrices, iﬁ,,f{, f{ either using [(21) or alternative methods,
an estimate of the relative kinematic matrices, iﬁm,ﬁw,ﬁyy can be readily obtained using_{33).
Following which, we aim to estimate the relative positionngs(41a), the relative velocity using (41c)

and the unknown velocity rotation matrkl, using [41b).
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V. ALGORITHMS
A. Relative positionsX) and Relative velocitiesY)

An estimate of the relative PV can be directly obtained bydpectral decomposition of the matrices
B,.,B,,. Let

vs))

vy o = UyAyUZ> (43)

where U,,, U, € R¥*¥ contain the eigenvectors and the diagonal matritgsA, € RV*Y contain
the increasingly ordered eigenvalues of the matrﬁ%, ﬁyy respectively. Then, for @&-dimensional
setup, an estimate of the relative positidiisand relative velocitieY of the nodes up to a rotation is

then

= AY?UT, (44)

<)
I

1/2y1T
AUl (45)

where A,, A, € RP*P contain the firstP nonzero eigenvalues ard,,U, € RV*” contain the
corresponding eigenvectors.

Relative positioning{44) from pairwise distance measumets using MDS is a well known technique
[2]. However, our contribution is the definition and estiioatof relative velocities , i.e.[(35) and (45)

respectively.

B. Rotation matrixH,

The estimate of the relative velociyy up to an arbitrary rotation gives no information on the dit
of the nodes in an anchorless scenario. Hence, it is impotitagstimate the relative velocities w.r.t. the
orientation of the initial positions i.eH,,. Substituting the estimates &,,,X,Y from (33B), [44) and
(45) respectively in[(41b), we have

~T ~ ~T ~
B,, = X HY+Y H/X, (46)
whereH, is the unknown unitary matrix which can be estimated by mining the cost function

H, = argmin (B, -~ (X H,Y + Y H[X)|?), (47)
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Whereﬁy is an estimate oH,. Now, vectorizing [(46) and rearranging the terms, we have

~T ~T ~T ~T
b,y = (¥ ®X )veqH,)+(X ®Y )veqH])
~T T
= In>+J)(XY ®X )vedH,)

= GveqH,), (48)

whereb,, = veqB,,) is a vector of the known measurement maifiy, from (32B) andJ € RN**N?
is an orthogonal permutation matrix such tdaeqH,) = vec(HZ). The unknown unitary matrifl,,

can then be obtained by reformulating](47) and solving
ﬁy:a@%@HGwde—bMP:(GWM*G@W (49)

which has a feasible solution fav > P. The proposed solution does not exploit the orthogonailty
property of the unknown rotation matrid,,. Hence, more optimal solutions are feasible [17] by solving

the constrained cost function
&:m%mmwm%mﬁstﬂm:h (50)

VI. RELATIVE POSITION AT TIME INSTANT k

We now briefly summarize the steps to find the relative pasitib discrete time instances using the

time stamp measurements discussed in Setfion II.

A. Dynamic MDS

Given the noisy time stampg; ; = Ty, x + i,V (i,j) node pairs in the network and1 < k < K

time instances, the relative position of the nodes atktietime instance can be estimated as follows.

~ o~

« Solve for an estimate of the Range derivati\fésR,R using Dynamic rangind (21).

« Using these estimated range derivatives, construct tragivelkinematic matrice:ﬁm,ﬁxy,ﬁyy

defined in [(33kA).
« Obtain an estimate of the relative PV and unitary matrix fri@@), (3%) and[(49) respectively. Then,

using [40) and defining\t;, = ﬁ]k — ﬁj,o, the relative position at théth time instant is

Xpar = X+ Al H,Y. (51)
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B. Classical MDS

Alternatively, the relative positions of the nodes can discestimated using Classical MDS (CMDS).
Let D, £ c[r;x] € RY*N be the EDM at each discrete time instanwhere r;; = Ty — Tjik
and D, £ c[ijk + gk be the corresponding noisy estimate wheyg, is the noise plaguing the
measurements as shown inj(11). Lﬂl.5P(f)?2)P = U, A, UL be an eigenvalue decomposition, then

the solution to the relative position is
-~ x1/2~T
Xk,cmds = Ak/ Hk (52)

where A, € RP*P contain the firstP nonzero eigenvalues add, ¢ RV*? the corresponding eigen-
vectors.
Note that the relative position estimate using CMDS i}:ék,,cmds is up to an arbitrary rotation and

translation, where afik,d,n yields the relative position of the nodes up to a translatitome.

VIl. SIMULATIONS

Simulations are conducted to evaluate the performanceegbibposed solutions. We consider a cluster

of N =10 nodes inP = 2 dimensions, whose coordinat& and velocitiesY are arbitrarily chosen as

X - =382 735 959 630 800
9 7 727 366 —858
-6 8 -1 —-10 3
Y =
8 -9 -7 -2 =8

Without loss of generality, we assume that all nodes emplog-way communication, i.e;; =
1.,V i,j < N. Furthermore, all nodes communicate with each other withasn same time interval
AT = [T;;1,T;5,k] = [-3,3] seconds and the transmit time markers are chosen to belyirsgsaced
within this interval. We consider a classical pairwise commication scenario, where all the pairwise
communications are independent of each other and ¥heso?1 g .

The metric used to evaluate the performance of the rangemnedeas is the Root Mean Square Error
(RMSE), given by RMSEz) = \/N;C}D zf:;uzm) — z||2, where z(n) is the nth estimate of the

unknown vectorz € RVx1 during Ne,, = 1000 Monte Carlo runs. To qualify these estimates, the

square Root of the Cramér Rao Bound (RCRB) is plotted aloitig the respective RMSE. We also use

the same metric for evaluating the rotatibp, = veqdH,,).
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However, since the relative PVX(Y) and X, are known only up to an arbitrary rotation, we define

the RMSE for these matrices as RM@E = \/Ne}}, Zf:f”veo(HZ(n) — ZP)|]?2, whereP is the

centering matrix andd is the optimal Procrustes rotation, given the matlixand the corresponding
estimatei(n) of the nth Monte Carlo run. See AppendiX C. For the relative PV then@&aRao bounds
are derived (Appendix D) and the corresponding RCRBs argeplalong with the RMSEs.

A. Varying Number of communication& )

The dynamic ranging algorithri_(R1) is implemented foe 4, where the number of communications
K is varied from10 to 100. The noise on the propagation delaysris= 0.1 meters, which is typical in
classical TWRI[1B] or in conventional anchored MDS-basddaity estimation using Doppler measure-
ments [5]. Fig[Za shows the RMSE of the figstange coefficients (which are relevant for estimating the
relative velocities) achieving the RCRB asymptoticallheTPV estimates are obtained using these range
coefficients via[(44),[(45) and the corresponding RMSEs é#ottenl in Fig.[Zb, along with respective
RCRBs. Furthermore, the RMSEs of the relative rotation mdf,, estimate[(40) is shown in Fig.12c,

where the relative position and velocity estimates are .used

B. Varying noise on time measurement} (

A second experiment is carried out by varyiagn the range/—10, 0] dB meters for a fixed number
of communicationsk’ = 100. The RMSEs of the range coefficients obtained via the dynaamging
algorithm [21) are plotted in Fi§. Ba, which achieve the RGRBmptotically. The RMSEs on the relative
PV are shown in Fid. 3b, and the RMSE of the relative rotatiatrix is presented in Fig. Bc, in addition
to the corresponding RCRBs. To the best of the our knowlegigen the novelty of the data model and

the corresponding solutions, there are no other relatil@citg estimators available for comparison.

C. Relative position error over time

Figure[4 shows the RMS plots &, ;4 and X, o for a time durationAT' = [-3, 3] with Gaussian
noise ofo = 0.1 meters on the distance measurements. Xhe 4 estimate steadily achieves a constant
RMSE, which is expected since CMDS is independently appdieéachkth time instant, to estimate
the relative positions of the nodes. On the contrary, thatived position estimation via dynamic ranging
betters this estimate aroungl where the improvement of up to a factgi is primarily due to averaging
over K measurements. However, the error estimat&Xgf;, increases as we move away frag) which

is typical of Taylor series approximation. In addition, theor performance of the Classical MDS based
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107
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10" 10°
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Fig. 2: RMSEs of (a) range parameters, (b) relative position, ivglatelocity and (c) relative rotation matrix for
varying number of communication#() between the nodes for = 0.1 meters
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Fig. 3: RMSEs (a) range parameters, (b) relative position, relatielocity and (c) relative rotation matrix for
varying noise ¢) on the Time measurements with number of communicafioa: 100
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w o Classical MDS: X .45
S » Dynamic MDS: X, g,
3
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107 ‘ ‘ ‘
-3 -15 0 15 3
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Fig. 4. RMSE of relative positions at discrete time instan¢gsduring the time intervaAT = [-3, 3] with

K =100 for o = 0.1 meters

algorithm for relative velocity estimate (see Fig.](2b)y.Hi3B)) also hampers the solution X, 4. An

improved estimate for relative velocity estimation is ibés which will be addressed in future work.

VIIl. CONCLUSIONS

A novel framework is proposed to estimate the relative jpmsit up to a rotation for amanchorless
network of mobile nodewithout the use of Doppler measurements. The proposed $egstres based
dynamic ranging algorithm employs a classical Taylor sdo@sed approximation, which extracts pairwise
distance derivatives at a given time instant efficientlydeina linear velocity assumption, we show that the
time-varying relative positions can be estimated from teewdtives of the pairwise distances. The initial
relative positions, relative velocities and a unique fotaimatrix are sufficient to describe the relative
motion of the nodes during a small time interval. Subseduecibsed form MDS-based solutions are
presented to jointly estimate the relative positions andtive velocities of the nodes. In addition, the
unique rotation matrix which relates the direction of thiatige motion w.r.t. the relative position is also
estimated via least squares. The Cramér Rao bounds arelerised for the range parameters, and the
relative PV and simulations are conducted to verify andyaathe performance of the proposed least
squares estimators. The presented solutions are suitealifonomous networks with minimal a priori
knowledge, where the positions and velocities need to bmatsd atcold start In practice, over longer
durations, the estimated parameters can be readily exddndmth relative and absolute tracking, which

is beyond the scope of this article and will be addressed ollavw-up work.
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APPENDIXA

21

DISTANCE NON-LINEARITY

Consider an arbitrary pair of mobile nodes with time-vagyipositions{x;(¢),x;(¢)} and constant

velocities{y;, y;}. In addition, we define the position of the

nodes at ty as {x;,x;}. To show that

the time-varyingd;;(¢) is an infinitely differentiable function we derive the firgw derivatives ofl;;(t)

w.r.t. time. By definition, the initial pairwise distancettveen the nodes is the Euclidean norm

rij £ dij(to) =[x — x| (53)
1) First orderr;;: From [53), we can compute the first-order range parameter as
) d
iy = dii(t)
= () - =) () - %(0)
N QT‘Z'j dt ’ J ! J
1
= (Y;TFXi + y;‘FXj - yZTXj - y,j-FXz)
ij
= i (vi—y) (xi —x;) (54)

2) Second ordei;;: Similarly,

parameter usind (53) is

= ill® - 7‘%)

under the assumption of constant velocitieg, second-order range

1 T
G i =) (vi —vj)

(55)

3) Third order7;: The third-order derivative of the range parameter undeslirmotion [(5B) yields

d’
Ty = %dzj(t)
_9. ;
= 2y =yl =) -
= —ri; TijTij — 274;‘; TijTij
= —BTZ-_jl?'“Z'j?'"'ij

Monday 14" June, 2021
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The higher-order range derivatives can be derived alongasifines.

APPENDIX B

ALTERNATIVE DERIVATION FOR B,;, B, By,

With an abuse of notation, ldD(t) € RV*Y be the time-varying Euclidean Distance Matrix (EDM)

for a network of N nodes inP-dimensional Euclidean space and let

B(t) = —0.5PD(t)“?P, (57)
whereP = Iy — N~'1,,1% is the centering matrix. Then observe that at ¢,
X (58)

and the subsequent first derivative is

A dB(t) A .
B, 2 =2 —P(D(t)@D(t))P‘t:to
= X'H,, Y +Y'HL X. (59)

A step further, differentiating again w.r.t. time and sitsing ¢ = ¢, we have

dzB(t) A A X 32 T
2| 2 Byt OSPRORIRP)P=Y'Y (60)

whereR = [7;;] € RVN andR = [i#;] € RY*Y which, perhaps not surprisingly, concur with the
relations obtained if(41) and offer an alternative verifara

Secondly, unlike the time-varying distance functibrit), which is infinitely differentiableB(¢) is a
second-order function under the linear velocity assumpfiy). Differentiating [(6D) yet again, we have

d*B(t)

3|, = 05PRO R+3ROR)P = Oy, (61)

since generalizind (56) for alN nodes yields

PR,

e
-5 £ R=-3RT'OROR. (62)

The result[(6l) is expected, since under the constant wglassumption

(63)
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APPENDIXC

PROCRUSTES ALIGNMENT

Let Z,Z ¢ RP*N matrices which are identical up to a rotation, then therstexa rotation matri¥,

which minimizes the following cost function
min |Z - HZ| st H'H =1p (64)
and the corresponding optimBkrocrustes rotatior[19] is given by
H=Vv. U7 (65)
whereV, U, are obtained via the singular value decomposition of theixptoductZZ”, i.e.,

U,L.V, =27". (66)

APPENDIXD

CRAMER RAO BOUNDS FORX,Y

A. Relative positiorX

T

The problem of estimating the unknown positiaps = vedX) = |x7 x7 ... éﬂ € RNPX1 from
the distance measurements is formulated as

a;(¢,) —ds =1, (67)

which is obtained by vectorizind (31adl, = [ri2,713,...,"n(v-1)] € R2V*1 js the set ofnon-zero

_ N
Euclidean distances betweéh points, with N = . The distance vector is related to the positions

2
by a(¢,) = |a.(x;,Xs), a2(%X;,X3), . .. ,ax(gN_th)} € R2Vx1 where,
an(xx;) 2 (xIx; +xx; - 2xx;) " (68)

Furthermore, the noise plaguing the distance vectay,is- N (0, 3,,), whereX,, = blkdiag%,,X,)
and X, is given by [2#).
The Cramér Rao lower Bound (CRB) for any unbiased estimhig, ois given by the inverse of the

Fisher Information Matrix (FIM) i.e.,
T(E{ (@, — )@, — ¢} ) 2 TH(S0) = TH(F; ) (69)
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where ¢ is an estimate of the unknown locatiéhand X, is the lowest achievable covariance. For the

data model[{67), the FINF, € RNPXNP jg

aar(¢m) T — 8aw(¢x)
Fr = [ 00T ] Zu { 0T } (70)
where the Jacobian is of the form
oo oxi T ox3 T oxy
whoseith element[aax(;b)] is given by
X;
da(xy,x,)7 Oa(x;,x3)7  dalxy_1,xn)"
az;r ’ aKZT ge ey az;r

whereVl < j, k < N, j # k, we have

d (x,-x)" W= (728)
aa(§'>§k) _ T -
W = _djkl (Ej - Kk) if =%k (72b)
OIT’- otherwise (72c)

The FIM (70) is rank deficient by for a P = 2 dimensional scenarid [20], [21] and is thus non-

invertible. Hence, we have the achievable CRB on the r@ginsition as

Tr(=,) > Tr(Fl). (73)
B. Relative velocityyY’
T
Vectorizing [31t), the relative velocity, = veqY) = [y”{,yg,...,yﬂ € RNP*1 estimation is
modeled as
ay(¢y) - dg?2 = ny (74)

T _
Wherea(d)y) = [ay(zl7z2)7 ay(X1>X3)> e 7ay(XN_17XN)] € R2N><1 and

ay(y, y) = ¥/Y, +y; ¥, -2y, (75)
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The distance squared vectd? = {r;iy; + 75*}V i,j < N,i # j € R2V*1, wherery;, 7;;, #; are the
corresponding range estimates. The nejge= {7,;} in the data model is
Myij = Tigliij + Tijrij + 27005 + @rijQiag + @i
R TiQigg + Tiideag + 2745455 (76)
whereq,;;, g5, gi;; are the noise variable plaguing the range parameters;;,;; respectively. The
covariance of the noise is subsequently defined as ,

Yy =E {nyng} ~ blkdiag%,,,%,,)* (77)

where

z,, ~ RER+RER +4RER (78)
R = diagr), R = diagi), R = diag(i*) are the range parameters abg, 3;, X; are the corresponding
covariances matrice§ (24). The Cramér Rao lower Bound (dBB¢, is given by

T(E{(d, ~ ¢,)($, - 8,7} ) 2 Tr(Z,) > Tr(F,") (79)

where gﬁy is an estimate of the unknown velocity and 33, is the lowest achievable covariance and

Fy c RNPXNP is

[oa,(8)]" __, [0ay(0,)
F, = 7(%5 ] ) 7(%5 (80)
where the Jacobian is of the form
aay(‘b;,) _ 8ay(¢y) aay(ﬁ%) aay(¢y) (81)
o, gyp  9y; 7 Oyy

aay(d))
dy]
daly,.y,)" daly,.y,)7T daly )"
aXZT ’ oyr oyT

=1

whoseith element[ ] is given by

=17

Monday 14" June, 2021 DRAFT



R.T.Rajan, G. Leus, A.-J.van der Veen 26

wherevl < j,k < N, j # k, we have

2 (z- —Xk)T if i = (82a)
8a(zj,zk) B .
o | 2(y,-y,) =k (82b)
oL, otherwise (82¢)

Similar to F,, the FIM (80) on velocity is also rank degeneratebfor a P = 2 dimensional case

and hence we have the CRB on the relative velocity as

(1]

(2]

(3]

(4]

(5]

Tr(%,) > Tr(F). (83)
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Abstract

Localization is a fundamental challenge for any wirelessvoek of nodes, in particular when the
nodes are mobile. We present an extension of the classicétidvhiensional scaling (MDS) for an
anchorless network of mobile nogasherein the solutions to the time-varying relative nodsifans
are shown to lie in the derivatives of the time-varying imedal pairwise distances. Moreover, we show
that the relative position of a mobile node at each time msas only dependent on the initial relative
position, relative velocity and a common rotation matrixtbé respective node, which are estimated
using MDS-like and least squares estimators. Simulatioesanducted to evaluate the performance of
the proposed solutions and the results are presented.

Index Terms

relative position and velocity, rotation matrix, Multi-Diensional Scaling (MDS), dynamic

ranging, anchor-free wireless network, Cramér Rao Bounds

. INTRODUCTION

Localization is a key requirement for the deployment of Wss networks in a wide range of ap-
plications. There are numerous absolute localizationrélgos, such as Time of Arrival (ToA), Time
Difference of Arrival (TDoA) and Received Signal StrengfRSS) which cater to anchored networks,

where only the positions of a few nodes are kno®jn Alternatively, when there are no reference anchors,
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then the relative positions of the nodes, up to a rotationteartslation, can still be obtained using Multi-
Dimensional Scaling (MDS) based solutior, [[?]. Such anchorless networks arise naturally when
the nodes are deployed in inaccessible locations or whehoarinformation is known intermittently.

In both anchored or anchorless scenarios, pairwise distaace one of the key inputs for almost
all localization techniques. For stationary nodes, thesiewise distances are classically obtained by
measuring the propagation delays of multiple time stamphamges between the nodes and averaging
these measurements over a time period.

A step further, when the nodes are mobile, then conventipreither the nodes are considered
relatively stationary within desired accuracies for thenptete duration of the measurement interval (i.e.,
multiple distance measurement$§] pr Doppler measurements are utilize®].[Unfortunately, Doppler
measurements are not always available and the assumptithre srode positional stability for large time
periods is not necessarily practical. For a mobile netwtr,application of classical MDS-based relative
positioning at every time instant yields a sequence of osinatrices with arbitrary rotation, thereby
providing no information on the relative velocities of thedes. The termrelative velocitiesindicates
the velocity vectors of the nodes, up to a common rotaticamdiiation and reflection. To the best of
the authors’ knowledge, the estimation of relative velesifor an anchorless network has not yet been

investigated in literature.

A. Applications

Our motivation for this work is triggered hipaccessiblenobile wireless networks, which have partial
or no information of absolute coordinates and/or clocknezfees. Such scenarios are prevalent in under-
water communications?], indoor positioning systems] and envisioned space based satellite networks
with minimal ground segment capability. A particular pjef interest is Orbiting Low Frequency
Antennas for Radio astronomy (OLFARJ][ a Dutch funded program which aims to design and develop
a detailed system concept for a scalable interferometrayanf more than ten identical, autonomous
satellites in space (far from earth) to be used as a sciemgicument for ultra low frequency observations
(0.3 kHz - 30 MHz). Due to limitations of earth-based tracking, the OLF&Rster will be an independent

cooperative network of nodes, whose positions and vedscitieed to be estimated jointly.

B. Contributions

In this article, our quest is to understand the relative ikiacs of ananchorless network of mobile

nodes, with or without any information on the Doppler measents. By the term anchorless, we empha-
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size that the absolute positions and the velocities of tlies@re unknown. We begin by approximating
the time-varying pairwise propagation delays (and subsetly the ranges) between the mobile nodes
as a Taylor series in time, which is aptly termed dynamic ramgSectionl). A simple yet efficient
time based monomial basis is employed, to estimate theali@g of the pairwise distances at a given
time instant (Sectiofi1ll). Under the assumption of constaglocity for a short duration of time, we
show that the relative position of each node is dependegtamithe initial relative position, the relative
velocity and a unique rotation matrix (Sectipnl V). Furtimere, the solutions to the unknown initial
relative position, the relative velocity and the rotatioatnix lie in the first three derivatives of the time-
varying pairwise distance. Subsequently, we present a Ni@Sand least squares solutions to estimate
the unknown parameters in Sectioh V and Cramér Rao Bouradsglenived. Simulations are conducted
to evaluate the performance of the dynamic ranging algoriéimd the MDS based estimators for relative
Positions and Velocities (Sectign VII).

Notation: The element wise matrix Hadamard product is denotedby-)®Y denotes element-wise
matrix exponent and indicates the element-wise Hadamard division. The Kroaepkoduct is indicated
by ® and the transpose operator by’( 1y = [1,1...,1]7,05 = [0,0...,0]T € RN¥*1 are vectors

of ones and zeros, respectively. The Euclidean norm is ddrioy |-

, Iy is aN x N identity matrix
and 0y, y is a M x N matrix of zeros. A diagonal matrix of the vectaris represented by diga)
and a block diagonal matriA = bdiag A1, Ag, ..., Ay) consists of matrices\, As,..., Ay along
the diagonal and) elsewhere. vd@\) operator reshapes the matr into a vector.a ~ N(u,X) is

shorthand for a randomly distributed Gaussian variablé wieany and variance:.

[I. DYNAMIC RANGING
A. Range model

Consider a cluster oV nodes in aP-dimensional Euclidean space. If the nodes are fixed, then th

pairwise propagation delay at timg between a given node pait, j) is defined as

Tii(to) = Tyilte) £ ¢ dij(to), (1)

whered;;(to) is the fixed distance between the node paityadindc is the speed of the electromagnetic
wave in the medium. However, when the nodes are mobile, tladive distances between the nodes

are a non-linear function of time (faP > 2), even when the nodes are in linear mcﬁ.oﬁor a small

ILater in the article, we will assume the nodes to be in constafocities. However, here we present a generalized Taylor
approximation of the time-varying pairwise distance, fay anotion.
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time interval At = t — ¢y, we consider these relative distances as a smoothly vapohmomial. The
propagation delay;;(t) = 7;;(t) between a given node pait, j) is then (classically) an infinite Taylor
series around a time instaty within the neighborhood\t. As an extension of the linear range model

[?], we have
7ij(to + At) £ ¢ dyj(to + At) £ ¢ Hdy;(2), (2)

whered;;(t) is the distance at = ¢y, + At, given by

dij(t) = rij+ﬁm+§m2+..., 3)
where®,; = [rij,74j,7,...] € RE*! are the range parameters. The first coefficignt= " d;;(to) is

the initial pairwise distance and the following— 1 coefficients are successive derivativesrgfat .
Without loss of generality, assumirtg = 0, we havet = At and subsequently](2) and] (3) simplify to

the Maclaurian series as

_ ) T
T,-j(t):c 1<nj+rijt+%t2+...>. (4)
The unique pairwise ranges between all tié nodes are collected in a vectore RV*1 where N =

is the number of unique pairwise baselines. Along similaedi we can defing € RV*1,

2
i € RV*! and corresponding higher-order terms. The polynomial eapasis is simplified further by
introducing
T _ . T

|:£Z‘]7 il]’ ilj’ .. .:| == dlaQKf) |:T.Zj7 7:'7/]7 7;:7/], .. .:| (5)

wheref = ¢[1, 1!, 2!, ...]T € REX!, such that[(¥) is
| o . . ,2
Tz‘j(t) =c dz‘j(t) = 1y F it drgtt + (6)

Following the definition of§ = [I",i“, P } we definer € RV*1 i € RVx! # ¢ RV*! and similarly
higher-order terms.

Remark 1: (Doppler measurements): Observe that in essends,the ToA atty, the range rater is
the radial velocity (as obtained from a Doppler shift) ana thecond order range parametéris the
rate of radial velocity (as observed from a Doppler spreadjween the nodes at= ty. These range

coefficients can be readily incorporated if these measuntsnare available.
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Fig. 1: A generalized Two-Way Ranging (TWR) between a pamobilenodes, where the nodes transmit
and receive, during whiclk time stamps are recorded at the respective nodes. Similgd,t¢?], [?],
we levy no constraints on the sequence, direction or numbeommunications.

B. Data Model

We now consider a relaxed Two-Way Ranging (TWR) setup fotectihg distance information as
follows. Let a node pair(i, j) within the network be capable of communicating with eacheoths
shown in Fid.l. The nodes communicdtemessages back and forth, and the time of transmission and
reception is registered independently at the respectiviesioThekth time stamp recorded at node
when communicating with nodg is denoted byT;;;, and similarly at node the time stamp isl; ;..

The direction of the communication is indicated BY; ;,, whereE;; ;, = +1 for transmission from node
i to nodej and E;; ,, = —1 for transmission from nodg to nodei. Under ideal noiseless conditions, the
propagation delay between the node pair atitetime instant isE;; . (75;,x — Tji,x), and in conjunction

with the polynomial approximatiol6), we have
Tijk = L5 + ﬁisz'j,k + L]Tik +...= Eij,k(Tji,k - Tij,k)7 (7)

wherer;; . = 7;;(T35,1) and without loss of generality we have replacedith 7 ;..

Remark 2: (Synchronized nodes): By replacitrgetimet by T;; ., we assume without loss of generality
that 73; . is in the neighborhood ofy = 0 and the propagation delay;; is measured as a function of
the local time at nodé. Furthermore, we also assume that the clocks of these nagesyachronized.
This is a valid assumption since for an asynchronous netwbrkobile nodes, the clock parameters (up

to first order) can be decoupled from the range parameters @stinated efficiently as shown if][

[, [
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In practice, the time measurements are also corrupted witerand hencé (7) is
Ty =+ iij(Tijvk + i) + iz’j(Tz’j,k + Qi,k)z + ...
= Eijr(Tiik + ¢jx) — (Tijik + qik) (8)

whereg; , ~ N(0,%;), gjr ~ N(0,%X;) are modelled as Gaussian i.i.d. noise variables, plaguiag t

timing measurements at nodeand nodey, respective@. Rearranging the terms, we have
rij + 7Tk + 2T e + - - = BTk — Tigik) + igikes 9)

where

Gijk = Eij(@ik — i) — 85T nti e + Fijaig + - ) (10)

For wireless communication with = 3 x 10®m/s, note that the modified range parameters are scaled
by ¢! (B). Furthermore, since the dynamic range model is propdsec small time interval, the
term (2@]-1}]-716%71C + iijqfk + ...) is relatively small and subsequently the noise vector pragthe

measurements can be approximated,as ~ Ei; 1(q;r — ¢i,x) Which begets
Qije ~ N(0,%4), (11)

whereX;; = ¥; + X;. Aggregating allKX" packets, we have

Qw‘
—

A, Lij

A@2 Lij
Le by b5 - ] | =Tt s (12)

Tij

where

Tij £ €;; © (tji — tij) € RKXl, (13)
eij = |Fij1,FEijo,...,Fijx] € REXL (14)
tij = [Tj1,Tijo,-- -, Tijx) € REXL (15)

2Alternatively, the noise on the time markers can also be teddas a uniformly random variable, typically rising from
quantization errors. In addition, the proposed fixed vaamodel can be replaced a the distance-dependent variards [7,
which penalizes large inter-nodal distances.
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The known Vandermonde matri;; € RX*L contains the measured time stamps and is invertible if
T;jk is unique. The direction vectay;; is encapsulated in the propagation detay and9,; € REx1
is a vector containing the unknown range parameters. Theengctor on this linear system df; =

(9.1, Gij,2, - - - q,-j,K]T e REx1, whereg;; , is given by [(I1) and the corresponding covariance matrix is
Zij £ E [quqz;] = EijIK S RKXK. (16)

For a network of N nodes, the normal equation {12) can be extended to

[2)
~

r

A r

r
Iyely T T .|| |=7+q (17)

r

where

T = bdiagtlg,tlg,...th, t23,...),€RNKXN (18)
T = [7{277{37'--T{N7 7537"']T€RNKX1 (19)

contain the time stamp exchanges of flieiniquepairwise links in the network ané ¢ RVLX1 contains
the unknown range parameters for the entire network. Theenaictor isy = [q7,, ql5, ..., a1y, als, .. ]T €

RVEX1 and the covariance matrix is
¥ £ E[qq"] e RVEXNK, (20)

Remark 3: (Mobility of the nodes): In[{[7), we implicity assumed thhe tnodes are relatively fixed
during a time period obt, = |T;;, — T} x| i.e., the propagation time of the message. This is a much
weaker assumption compared to traditional TWR, where formm pf fixed nodes (i.e.,L = 1), the
pairwise distance is assumed to be invariant for the totabsmeement period\T" = |T;; x — Tjj1|-

In reality, when the nodes are mobile, the distance at elthtime instant is dissimilar and this is

inherently represented in the presented Dynamic rangingeho

[1l. DYNAMIC RANGING ALGORITHM

Suppose that we have collected all the TWR timing data\irand =, then in this section we find

an estimate for the unknowé using the model[(17). Given an estimate &f the range coefficients
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0 = [r,r,7,...] can be directly obtained frond](5).

A. Weighted Least Squares

Under the assumption that the covariance matis known, a Weighted Least Squares (WLS) solution

@ is obtained by minimizing thé, norm of the linear systeni (IL7), leading to
9 = ATz 'A)'ATs 7 (21)

which is a valid solution ifl’ > L for each of theV pairwise links. More generally, wheh is unknown,
an order recursive least squar@s¢an be employed to obtain the range coefficients for iningaglues
of L, until we reach an optimal polynomial fit for (1L7).

Furthermore, the Cramér Rao lower Bound (CRB)fpr the least squares modd) is
T = (AT 1A) ! (22)
and in combination with the range scalirg (5), the CRBébis given by
¥y 2 FATSTA)IF (23)

where

3 = (24)

is the lowest variance attained by any unbiased estimatheofange parametes= [r”, 7 i, .. ]
andF = diagf)®1Iy € RVLXNL |t js worth noting that[(21) achieves this lower bound. Inli&idn, the
lower bound is unaffected by the choice of direction veeigr V i, j < N, since all direction vectors
are encapsulated in the measurement vectprwhich is not a part of the lower bound (23).

Remark 4. (Direction independence): In general, observe that thepmsed solution(21) is feasible
for any direction marker;; ,,, which is incorporated in- (I3). Hence communication between the nodes
could be arbitrary or one way, and need not be necessariljifgictional. Note that, this is not true for
an asynchronous network, where two-way communicationvistali in jointly estimating the clock and
range parameters. In addition, there is no pre-requisite on the number, sepe or direction of

the communication links?, [?], [?], [?]. Thus, the proposed solution is amenable to prevalent Two
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Way Ranging (TWR) protocols, such as classical pairwisensonication [?], passive listening and

broadcasting ?].

B. Distributed Weighted Least Squares

If we consider independent pairwise communication betwadktine nodes, with no broadcasting, then
the noise in each pairwise link is independent of each othdrsabsequently the covariance matfix](20)

simplifies to
Y = bdiag(Elg,Elg,...ZlN, 223,...). (25)

In which case, the centralized systdml(17) is a cascade nfipailinear systems$ (12) and subsequently

(21) is a generalized version of solving the distributedwisie system for estimating the pairwise range

parameterd), ;
0, = argumin ;" (A0, —7y)|
= (Al zZ Ay ALE (26)

which, similar to [21), has a valid solution fdt > L for each pairwise link.

IV. DISTANCES, POSITIONS, VELOCITIES

AND RELATIVE KINEMATICS

In the previous section, we estimat@dvhich contains the solution to the unknown range derivative
0 = {r, T } Our next motive is to use these range derivatives to estithat positions of the mobile
nodes. When the nodes are in motion, similar to the pairasge rates, the position vector of each
node is also a Taylor series in time. However, exploitingcewise linearity, we assume that the nodes
are in linear motion with no acceleration, which is valid forsufficiently small measurement period.

(Note that despite this assumption, the pairwise distasitill non-linear.)

A. Linear motion

Let the position ofN (N > P) nodes in aP-dimensional Euclidean space at thil time instant be
given by Xy = [x1., X2k, .- Xy k] € RN, wherex; ,, € RP*! is the position vector of théth node

at thekth message exchange. Furthermore, at time inggatitiesith node has velocity; € R”*! and all
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such velocities are collected ¥ = [y1,y2,... yn] € RPN, Then, under a linear motion assumption,
we have

dy;
dt

=0p Vi<N. (27)

Now, let At, =t — tg where for the sake of notational convenience and withowg Gdsgenerality, we

assume, = T, V k, then the position matrix at theth time instant is
X, = X+ ALY (28)

whereX £ X = [x;,xo,... XN] is the initial position matrix at time instarig and X, only depends

on the initial Position and Velocity (PV) of the nodes.

B. Range derivatives

To estimate the position matriX;, we begin by stating explicit expressions for the rangevdévies
[r,f,n » } in terms of X, Y under linear velocity assumption.
Theorem 1:(Distance non-linearity) The pairwise distané¢g(t) between a node paig, j) in P > 2

dimensional Euclidean space is a non-linear function oétieven if the nodes are only in linear motion

The range paramete(s;;, 7;;, 7i;,... | att =ty satisfy
Tij = \/ [ x; +x]x; — 2x] x;, (29a)
g o= Ty (% — %) (i — ¥))s (29D)
Tij = Ti_jl (Iys = y)I? = 73) - (29¢)
Proof: See AppendixA. [

Although these range parameters can be estimated up td.the)th order efficiently (as demonstrated
in Sectionl), in the rest of this article we utilize the armation only up toL = 3. Rearranging the

equations forr;;, 7, 7;;, from (29) we obtain

r2 = (x; — %) (x; — x;), (30a)

1) J J
rigriy = (i —x5)" (yi —y5), (30b)
i+ = (yi—y) (Vi —y5)- (30c)
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Extending the above equations for Allnodes, defining,, = diag XTX) € RV*! g, = diag X’Y) €
RN*! andg,, = diagY7Y) € RV*!, we have

R®? = €015 + Lygl, — 2XTX, (31a)
ROR = g1} +1ygl — XY - Y7X, (31b)
RoOR+RY? = gy 1% + Lygl, —2YTY, (31c)

NxN contain

where the square matric® = [r;;] € R, VN R = [r;;] € RV*N andR =[] € R,
the initial pairwise ranges, range rates and rates of raags rrespectively. It is worth noting thRtand
R are Euclidean Distance Matrices (EDM)s, howeeralthough symmetric, may contain both positive
and negative values and is thus not an EDM.

It is evident from [(3]L) that without apriori knowledge of aM&nown PV, estimating the PVs of the
network is an ill-posed problem and hence, we look to find tsmhg for the relative PV. Applying the

centering matrixP = Iy — N~'1,1%, € RV*N on (31) and exploiting the properfyl, = 0y, we

have
B.. = PX'XP, (32a)
B,, = PX'Y+Y'X)P, (32b)
B, = PY'YP, (32¢)

where we for the sake of convenience, we have introduced

B.. £ —0.5PR®?P, (33a)

B,, £ -P(RGOR)P, (33b)
N A,

B,, = —-05P(ROR+R™)P. (33c)

The equations[(32a) anf (32c) can now be used to estimatenitied relative positions and relative
velocities of the nodes, via MDS. However, prior to applyM@®S we first present definitions for the

relative PVs.
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C. Relative framework

We define the relative PV vectors as an affine transformatidineocorresponding absolute PX(, Y)

ie.,

Xy = H, X, +h, 1%, (34)

Y = H,Y +h1%, (35)

whereX, is the relative position matrix of the nodestatup to a rotationH,, ;, € RP*P and translation
h,, € RP*1 Along similar lines, we define relative velocity %,Y, and relative velocity up to a
rotation asY, whereH, € R”*¥ is an unknown rotation matrix. The relative velocity of thedesH, Y

is relative to the group velocity of the network, whichlis € RP*!. Under a linear velocity assumption

(27), the group velocity is the rate at which the relativaengtation vector varies with time i.e.,
h, = At; '(h, ;. — hy o). (36)
Furthermore, the rotation matric&$, ,, H, are orthogonal i.e.,
H H,,= HH, =1, V1<k<K. (37)

Now, substituting[(34) and_(85) in_(P8), and using the prop8) we have
H, X, = H;oX+A{;HY, (38)

where for the sake of notational simplicity, we uXe= X, to denote the relative position matrix &t
Now observe that the translation vectdis o, h, are unidentifiable from observatiorls {32). Subse-
guently, we shall also see in the following section, thatgbkition to the relative PVs are independent
of these translation vector and hence without loss of gdihecan be considered to b@p for notational
simplicity. Secondly, in order to have a meaningful intetption of the relative position at thigh time
instant [[38), we must choose a reference coordinate sysgnik; o = I. To this end, without loss of

generality and for notational simplicity, we have the fellng assumptions

HSL‘,O = IP7 (39a)
heo = Op, (39b)
h, = 0p. (39c)
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which simplifies [[(38) to
X = X+ AtH,Y, (40)

where X, is the position of the nodes at tti¢h time instant up to a translation, under the assumption
(39). More significantly, observe that the relative positat eachkth time instant is only dependent on
the relative PV and1,. Hence in the following sections, our aim is to estimXteY andH,, using the

range parameter®( R, R) defined in [3B) and estimated in Sectlaq Il

D. Relative kinematic matrices

Substituting the expression for absolute PV frdml (34) arfs) (@spectively in[(32), we have

B,, = PX"XP=PX"H! H,,XP =X"X, (41a)
B,, = PX'Y+Y'X)P

= P(XTHg,OHyX + XTHngvOX)P

= X"HY+Y"H]X, (41b)

B,, = PY'YP=PY'H'H,YP=Y"Y, (41c)

where we use the propertly (37) in_(41a) ahd {41c), and thengstson [394) in [(41b)B,, andB,,

are Gramian matrices of the relative PVs and the expressioBf, is the Lyapunov-like linear matrix
equation P]. It is worth noting that the relative kinematic equatioBs,, B.,, B,, are dependent only
on the relative PVs and the unique rotation matrix at tigne=or an alternative derivation of the relative
kinematic matrices, refer to AppendixX B.

Given an estimate of the range matrices, iﬁ,,f{, f{ either using [(21) or alternative methods,
an estimate of the relative kinematic matrices, iﬁm,ﬁw,ﬁyy can be readily obtained using_{33).
Following which, we aim to estimate the relative positionngs(41a), the relative velocity using (41c)

and the unknown velocity rotation matrk, using [41b).
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V. ALGORITHMS
A. Relative positionsX) and Relative velocitiesY)

An estimate of the relative PV can be directly obtained bydpectral decomposition of the matrices
B,.,B,,. Let

vs))

vy o = UyAyUZ> (43)

where U,,, U, € R¥*¥ contain the eigenvectors and the diagonal matritgsA, € RV*Y contain
the increasingly ordered eigenvalues of the matrﬁ%, ﬁyy respectively. Then, for @&-dimensional
setup, an estimate of the relative positidiisand relative velocitieY of the nodes up to a rotation is

then

= AY?UT, (44)

<)
I

1/2y1T
AUl (45)

where A,, A, € RP*P contain the firstP nonzero eigenvalues ard,,U, € RV*” contain the
corresponding eigenvectors.

Relative positioning{44) from pairwise distance measumets using MDS is a well known technique
[?]. However, our contribution is the definition and estimatiof relative velocities , i.e.[(35) and (45)

respectively.

B. Rotation matrixH,

The estimate of the relative velociyy up to an arbitrary rotation gives no information on the dit
of the nodes in an anchorless scenario. Hence, it is impotitagstimate the relative velocities w.r.t. the
orientation of the initial positions i.eH,,. Substituting the estimates &,,,X,Y from (33B), [44) and
(45) respectively in[(41b), we have

~T ~ ~T ~
B,, = X HY+Y H/X, (46)
whereH, is the unknown unitary matrix which can be estimated by mining the cost function

H, = argmin (B, -~ (X H,Y + Y H[X)|?), (47)
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Whereﬁy is an estimate oH,. Now, vectorizing [(46) and rearranging the terms, we have

~T ~T ~T ~T
b,y = (¥ ®X )veqdH,)+(X ®Y )veqH])
~T T
= In>+J)(XY ®X )vedH,)

= GveqH,), (48)

whereb,, = veqB,,) is a vector of the known measurement maifiy, from (32B) andJ € RN**N?
is an orthogonal permutation matrix such tdaeqH,) = vec(HZ). The unknown unitary matrifl,,

can then be obtained by reformulating](47) and solving
ﬁy:a@%@HGwde—bMP:(GWM*G@W (49)

which has a feasible solution fav > P. The proposed solution does not exploit the orthogonailty
property of the unknown rotation matriéd,,. Hence, more optimal solutions are feasiti¥ y solving

the constrained cost function
&:m%mmwm%mﬁstﬂm:h (50)

VI. RELATIVE POSITION AT TIME INSTANT k

We now briefly summarize the steps to find the relative pasitib discrete time instances using the

time stamp measurements discussed in Setfion II.

A. Dynamic MDS

Given the noisy time stampg; ; = Ty, x + i,V (i,j) node pairs in the network and1 < k < K

time instances, the relative position of the nodes atktietime instance can be estimated as follows.

~ o~

« Solve for an estimate of the Range derivati\fésR,R using Dynamic rangind (21).

« Using these estimated range derivatives, construct tragivelkinematic matrice:ﬁm,ﬁxy,ﬁyy

defined in [(33kA).
« Obtain an estimate of the relative PV and unitary matrix fri@@), (3%) and[(49) respectively. Then,

using [40) and defining\t;, = ﬁ]k — ﬁj,o, the relative position at th&th time instant is

Xpar = X+ AL H,Y. (51)
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B. Classical MDS

Alternatively, the relative positions of the nodes can discestimated using Classical MDS (CMDS).
Let D, £ c[r;x] € RY*N be the EDM at each discrete time instanwhere r;; = Ty — Tjik
and D, £ c[ijk + gk be the corresponding noisy estimate wheyg, is the noise plaguing the
measurements as shown inj(11). Lﬂl.5P(f)?2)P = U, A, UL be an eigenvalue decomposition, then

the solution to the relative position is
.~ x1/2~T
Xk,cmds = Ak/ Hk (52)

where A, € RP*P contain the firstP nonzero eigenvalues add, ¢ RV*? the corresponding eigen-
vectors.
Note that the relative position estimate using CMDS i}:ék,,cmds is up to an arbitrary rotation and

translation, where afik,d,n yields the relative position of the nodes up to a translatitome.

VIl. SIMULATIONS

Simulations are conducted to evaluate the performanceegbibposed solutions. We consider a cluster

of N =10 nodes inP = 2 dimensions, whose coordinat& and velocitiesY are arbitrarily chosen as

X - =382 735 959 630 800
9 7 727 366 —858
-6 8 -1 —-10 3
Y =
8 -9 -7 -2 =8

Without loss of generality, we assume that all nodes emplog-way communication, i.e;; =
1.,V i,j < N. Furthermore, all nodes communicate with each other withasn same time interval
AT = [T;;1,T;5,k] = [-3,3] seconds and the transmit time markers are chosen to belyirsgsaced
within this interval. We consider a classical pairwise commication scenario, where all the pairwise
communications are independent of each other and ¥heso?1 g .

The metric used to evaluate the performance of the rangemnedeas is the Root Mean Square Error
(RMSE), given by RMSEz) = \/N;C}D zf:;uzm) — z||2, where z(n) is the nth estimate of the

unknown vectorz € RVx1 during Ne,, = 1000 Monte Carlo runs. To qualify these estimates, the

square Root of the Cramér Rao Bound (RCRB) is plotted aloitig the respective RMSE. We also use

the same metric for evaluating the rotatibp, = veqdH,,).
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However, since the relative PVX(Y) and X, are known only up to an arbitrary rotation, we define
the RMSE for these matrices as RM@E = \/Ne}}, Zf:f”veo(HZ(n) — ZP)|]?2, whereP is the

centering matrix andd is the optimal Procrustes rotation, given the matlixand the corresponding
estimatei(n) of the nth Monte Carlo run. See AppendiX C. For the relative PV then@&aRao bounds
are derived (Appendix D) and the corresponding RCRBs argeplalong with the RMSEs.

A. Varying Number of communication& )

The dynamic ranging algorithri_(R1) is implemented foe 4, where the number of communications
K is varied from10 to 100. The noise on the propagation delaysris= 0.1 meters, which is typical in
classical TWR P] or in conventional anchored MDS-based velocity estinratising Doppler measure-
ments P]. Fig.[2a shows the RMSE of the fir8trange coefficients (which are relevant for estimating the
relative velocities) achieving the RCRB asymptoticallheTPV estimates are obtained using these range
coefficients via[(44),[(45) and the corresponding RMSEs é#ottenl in Fig.[Zb, along with respective
RCRBs. Furthermore, the RMSEs of the relative rotation mdf,, estimate[(40) is shown in Fig.12c,

where the relative position and velocity estimates are .used

B. Varying noise on time measurement} (

A second experiment is carried out by varyiagn the range—10, 0] dB meters for a fixed number
of communicationsk’ = 100. The RMSEs of the range coefficients obtained via the dynaamging
algorithm [21) are plotted in Fig. Ba, which achieve the RGRBmptotically. The RMSEs on the relative
PV are shown in Fid._3b, and the RMSE of the relative rotati@trix is presented in Fig. Bc, in addition
to the corresponding RCRBs. To the best of the our knowlegigen the novelty of the data model and

the corresponding solutions, there are no other relatilecitg estimators available for comparison.

C. Relative position error over time

Figure[4 shows the RMS plots &, ;4 and X, o for a time durationAT' = [-3, 3] with Gaussian
noise ofo = 0.1 meters on the distance measurements. Xhe 4 estimate steadily achieves a constant
RMSE, which is expected since CMDS is independently appdieéachkth time instant, to estimate
the relative positions of the nodes. On the contrary, thatived position estimation via dynamic ranging
betters this estimate aroungl where the improvement of up to a factgi is primarily due to averaging
over K measurements. However, the error estimat&Xgf;, increases as we move away frag) which

is typical of Taylor series approximation. In addition, theor performance of the Classical MDS based
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Fig. 2: RMSEs of (a) range parameters, (b) relative position, ivglatelocity and (c) relative rotation matrix for
varying number of communication#() between the nodes for = 0.1 meters
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Fig. 3: RMSEs (a) range parameters, (b) relative position, relatielocity and (c) relative rotation matrix for
varying noise ¢) on the Time measurements with number of communicafioa: 100
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Fig. 4. RMSE of relative positions at discrete time instan¢gsduring the time intervaAT = [-3, 3] with

K =100 for o = 0.1 meters

algorithm for relative velocity estimate (see Fig.](2b)y.Hi3B)) also hampers the solution X, 4. An

improved estimate for relative velocity estimation is ibés which will be addressed in future work.

VIIl. CONCLUSIONS

A novel framework is proposed to estimate the relative jpmsit up to a rotation for amanchorless
network of mobile nodewithout the use of Doppler measurements. The proposed $egstres based
dynamic ranging algorithm employs a classical Taylor sdo@sed approximation, which extracts pairwise
distance derivatives at a given time instant efficientlydeina linear velocity assumption, we show that the
time-varying relative positions can be estimated from teewdtives of the pairwise distances. The initial
relative positions, relative velocities and a unique fotaimatrix are sufficient to describe the relative
motion of the nodes during a small time interval. Subseduecibsed form MDS-based solutions are
presented to jointly estimate the relative positions andtive velocities of the nodes. In addition, the
unique rotation matrix which relates the direction of thiatige motion w.r.t. the relative position is also
estimated via least squares. The Cramér Rao bounds arelerised for the range parameters, and the
relative PV and simulations are conducted to verify andyaathe performance of the proposed least
squares estimators. The presented solutions are suitealifonomous networks with minimal a priori
knowledge, where the positions and velocities need to bmatsd atcold start In practice, over longer
durations, the estimated parameters can be readily exddndmth relative and absolute tracking, which

is beyond the scope of this article and will be addressed ollavw-up work.

Monday 14" June, 2021 DRAFT



Joint relative position and velocity estimation for an aoidéss network of mobile nodes : R.T.Rajan, G. Laus, A.xldear Veen

APPENDIXA

DISTANCE NON-LINEARITY

Consider an arbitrary pair of mobile nodes with time-vagyipositions{x;(¢),%;(¢)} and constant
velocities{y;, y;}. In addition, we define the position of the nodeg at ¢, as {x;,x;}. To show that
the time-varyingd;;(¢) is an infinitely differentiable function we derive the firgw derivatives ofl;;(t)

w.r.t. time. By definition, the initial pairwise distancettveen the nodes is the Euclidean norm
rig & dig(to) =[x — x4 (53)

1) First orderr;;: From [53), we can compute the first-order range parameter as

ij = %dij(t)
d
= g () 5 (0 Gtt) ~ 550)
1
= E (y;rxi + y;‘rxj - y;‘FXj - yfxi>
= 7}‘;1(}% —vi) " (xi — x;) (54)

2) Second ordei’;;: Similarly, under the assumption of constant velocitieg, second-order range

parameter usind (53) is

1o T
= —r Ty Vi— i) (vi— )

=yl =) (55)

|
<
S
A
—_
<
S

3) Third order7;: The third-order derivative of the range parameter undeslirmotion [(5B) yields
d?
Ty o= i)
—_92. 2 .2 -1 d2 2
= —ry iy = yill” = 75) — 3 @(dij(t))

v

= T Tijrij — 2rij rijrij

== —3T‘Z-_j17:‘ij’i:ij (56)
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The higher-order range derivatives can be derived alongasifines.

APPENDIX B

ALTERNATIVE DERIVATION FOR B,;, B, By,

With an abuse of notation, ldD(t) € RV*Y be the time-varying Euclidean Distance Matrix (EDM)

for a network of N nodes inP-dimensional Euclidean space and let

B(t) = —0.5PD(t)“?P, (57)
whereP = Iy — N~'1,,1% is the centering matrix. Then observe that at ¢,
X (58)

and the subsequent first derivative is

A dB(t) A .
B, 2 =2 —P(D(t)@D(t))P‘t:to
= X'H,, Y +Y'HL X. (59)

A step further, differentiating again w.r.t. time and sitsing ¢ = ¢, we have

dzB(t) A A X 32 T
2| 2 Byt OSPRORIRP)P=Y'Y (60)

whereR = [7;;] € RVN andR = [i#;] € RY*Y which, perhaps not surprisingly, concur with the
relations obtained if(41) and offer an alternative verifara

Secondly, unlike the time-varying distance functibrit), which is infinitely differentiableB(¢) is a
second-order function under the linear velocity assumpfiy). Differentiating [(6D) yet again, we have

d*B(t)

3|, = 05PRO R+3ROR)P = Oy, (61)

since generalizind (56) for alN nodes yields

PR,

e
-5 £ R=-3RT'OROR. (62)

The result[(6l) is expected, since under the constant wglassumption

(63)
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APPENDIXC

PROCRUSTES ALIGNMENT

Let Z,Z € RP*N matrices which are identical up to a rotation, then therstexa rotation matri¥,

which minimizes the following cost function
min |Z - HZ| st H'H =1p (64)
and the corresponding optimBlrocrustes rotatior{?] is given by
H=Vv. U7 (65)
whereV, U, are obtained via the singular value decomposition of theirptoductZZ”, i.e.,

U,L.V, =27". (66)

APPENDIXD

CRAMER RAO BOUNDS FORX,Y
A. Relative positiorX

T
The problem of estimating the unknown positiaps = vedX) = |x7 x7 ... éﬂ € RNPX1 from

the distance measurements is formulated as

az(¢,) —da =1, (67)
which is obtained by vectorizind (31adl, = [ri2,713,...,"n(v-1)] € R2V*1 js the set ofnon-zero

_ N
Euclidean distances betweéh points, with N = . The distance vector is related to the positions

2
by a(¢,) = |a.(x;,Xs), a2(%X;,X3), . .. ,ax(gN_th)} € R2Vx1 where,
an(xx;) 2 (xIx; +xx; - 2xx;) " (68)

Furthermore, the noise plaguing the distance vectay,is- N (0, 3,,), whereX,, = blkdiag%,,X,)
and X, is given by [2#).
The Cramér Rao lower Bound (CRB) for any unbiased estimhig, ois given by the inverse of the

Fisher Information Matrix (FIM) i.e.,
T(E{ (@, — )@, — ¢} ) 2 TH(S0) = TH(F; ) (69)
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where ¢ is an estimate of the unknown locatiéhand X, is the lowest achievable covariance. For the
data model[(87), the FINF, € RVP*XNF g

aar(¢m) 4 —1 8a$(¢x)
v [Ter| =0 [T 7o
where the Jacobian is of the form
o, ox{ ' oxj T oxp
whoseith element[aax(;b)] is given by
X;
da(x1,%9)" da(xy,x3)"  dalxy_1,xn)"
a&? ’ aKZT gee ey az;f
whereVl < j, k < N, j # k, we have
(- x;)" if i = (72a)
da(x,;, X
P L g )T = (72b)
oL, otherwise (72¢)

The FIM (70) is rank deficient bg for a P = 2 dimensional scenari@], [?] and is thus non-invertible.

Hence, we have the achievable CRB on the relative position as

Tr(Z,) > Tr(FL). (73)
B. Relative velocityyY’
T
Vectorizing [31E), the relative velocity, = vedY) = [y?,yg,,”,yg\}] € RNVPx1 estimation is
modeled as
ay(¢y) - dg)z = ny (74)

T :
wherea(¢,) = [ay(zlab),ay(zl,zg),...,ay(XN_l,XN)] € R?M*! and

ay(y.,y.) = XTX —i—X;FX. — 2XTX- . (75)
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The distance squared vectd? = {r;i; + 75*}V i,j < N,i # j € R2V*1, wherery;, 7;;,#; are the
corresponding range estimates. The nejge= {7,;} in the data model is
Myij = Tigliij + Tijrij + 27005 + QrijQia + i@
R TG+ Tiirag + 274455 (76)
whereq,;;, q:,ij, gi,;; are the noise variable plaguing the range parameters;;,;; respectively. The
covariance of the noise is subsequently defined as ,

Yy =E {nyng} ~ blkdiag%,,,%,,)* (77)

where

z,, ~ RER+RER +4RER (78)
R = diagr), R = diagi), R = diag(i*) are the range parameters abg, 3;, X; are the corresponding
covariances matrice§ (24). The Cramér Rao lower Bound (dBB¢, is given by

T(E{(d, ~ ¢,)($, - 8,7} ) 2 Tr(Z,) > Tr(F,") (79)

where gﬁy is an estimate of the unknown velocity and 33, is the lowest achievable covariance and

Fy c RNPXNP is

[oa,(8)]" __, [0ay(0,)
F, = 7(%5 ] ) 7(%5 (80)
where the Jacobian is of the form
aay(‘b;,) _ 8ay(¢y) aay(ﬁ%) aay(¢y) (81)
o, gyp  9y; 7 Oyy

Oay (9)
oyT

=1

whoseith element[ ] is given by

daly,.y,)" daly,.y,)7T daly )"
aXZT ’ oyT B oyT

3 =17
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wherevl < j,k < N, j # k, we have

2 (Xj — Xk)T if i — (82a)
8a(zj,zk) B .
oy | 2y, -y,) =k (82b)
oL, otherwise (82¢)

Similar to F,, the FIM (80) on velocity is also rank degeneratebfor a P = 2 dimensional case

and hence we have the CRB on the relative velocity as

Tr(%,) > Tr(F). (83)
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