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Abstract

Localization is a fundamental challenge for any wireless network of nodes, in particular when the

nodes are mobile. We present an extension of the classical Multidimensional scaling (MDS) for an

anchorless network of mobile nodes, wherein the solutions to the time-varying relative node positions

are shown to lie in the derivatives of the time-varying inter-nodal pairwise distances. Moreover, we show

that the relative position of a mobile node at each time instance is only dependent on the initial relative

position, relative velocity and a common rotation matrix ofthe respective node, which are estimated

using MDS-like and least squares estimators. Simulations are conducted to evaluate the performance of

the proposed solutions and the results are presented.

Index Terms

relative position and velocity, rotation matrix, Multi-Dimensional Scaling (MDS), dynamic

ranging, anchor-free wireless network, Cramér Rao Bounds

I. INTRODUCTION

Localization is a key requirement for the deployment of wireless networks in a wide range of ap-

plications. There are numerous absolute localization algorithms, such as Time of Arrival (ToA), Time

Difference of Arrival (TDoA) and Received Signal Strength (RSS) which cater to anchored networks,

where only the positions of a few nodes are known [1]. Alternatively, when there are no reference anchors,
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then the relative positions of the nodes, up to a rotation andtranslation, can still be obtained using Multi-

Dimensional Scaling (MDS) based solutions [2], [3]. Such anchorless networks arise naturally when

the nodes are deployed in inaccessible locations or when anchor information is known intermittently.

In both anchored or anchorless scenarios, pairwise distances are one of the key inputs for almost

all localization techniques. For stationary nodes, these pairwise distances are classically obtained by

measuring the propagation delays of multiple time stamp exchanges between the nodes and averaging

these measurements over a time period.

A step further, when the nodes are mobile, then conventionally either the nodes are considered

relatively stationary within desired accuracies for the complete duration of the measurement interval (i.e.,

multiple distance measurements) [4] or Doppler measurements are utilized [5]. Unfortunately, Doppler

measurements are not always available and the assumption onthe node positional stability for large time

periods is not necessarily practical. For a mobile network,the application of classical MDS-based relative

positioning at every time instant yields a sequence of position matrices with arbitrary rotation, thereby

providing no information on the relative velocities of the nodes. The termrelative velocitiesindicates

the velocity vectors of the nodes, up to a common rotation, translation and reflection. To the best of

the authors’ knowledge, the estimation of relative velocities for an anchorless network has not yet been

investigated in literature.

A. Applications

Our motivation for this work is triggered byinaccessiblemobile wireless networks, which have partial

or no information of absolute coordinates and/or clock references. Such scenarios are prevalent in under-

water communications [6], indoor positioning systems [7] and envisioned space based satellite networks

with minimal ground segment capability. A particular project of interest is Orbiting Low Frequency

Antennas for Radio astronomy (OLFAR) [8], a Dutch funded program which aims to design and develop

a detailed system concept for a scalable interferometric array of more than ten identical, autonomous

satellites in space (far from earth) to be used as a scientificinstrument for ultra low frequency observations

(0.3 kHz - 30 MHz). Due to limitations of earth-based tracking, the OLFARcluster will be an independent

cooperative network of nodes, whose positions and velocities need to be estimated jointly.

B. Contributions

In this article, our quest is to understand the relative kinematics of ananchorless network of mobile

nodes, with or without any information on the Doppler measurements. By the term anchorless, we empha-
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size that the absolute positions and the velocities of the nodes are unknown. We begin by approximating

the time-varying pairwise propagation delays (and subsequently the ranges) between the mobile nodes

as a Taylor series in time, which is aptly termed dynamic ranging (Section II). A simple yet efficient

time based monomial basis is employed, to estimate the derivatives of the pairwise distances at a given

time instant (Section III). Under the assumption of constant velocity for a short duration of time, we

show that the relative position of each node is dependent only on the initial relative position, the relative

velocity and a unique rotation matrix (Section IV). Furthermore, the solutions to the unknown initial

relative position, the relative velocity and the rotation matrix lie in the first three derivatives of the time-

varying pairwise distance. Subsequently, we present a MDS-like and least squares solutions to estimate

the unknown parameters in Section V and Cramér Rao Bounds are derived. Simulations are conducted

to evaluate the performance of the dynamic ranging algorithm and the MDS based estimators for relative

Positions and Velocities (Section VII).

Notation: The element wise matrix Hadamard product is denoted by⊙, (·)⊙N denotes element-wise

matrix exponent and⊘ indicates the element-wise Hadamard division. The Kronecker product is indicated

by ⊗ and the transpose operator by (·)T . 1
¯N

= [1, 1 . . . , 1]T ,0N = [0, 0 . . . , 0]T ∈ R
N×1, are vectors

of ones and zeros, respectively. The Euclidean norm is denoted by‖·‖, IN is a N ×N identity matrix

and 0M,N is a M × N matrix of zeros. A diagonal matrix of the vectora is represented by diag(a)

and a block diagonal matrixA = bdiag(A1,A2, . . . ,AN ) consists of matricesA1,A2, . . . ,AN along

the diagonal and0 elsewhere. vec(A) operator reshapes the matrixA into a vector.a ∼ N (µ,Σ) is

shorthand for a randomly distributed Gaussian variable with meanµ and varianceΣ.

II. DYNAMIC RANGING

A. Range model

Consider a cluster ofN nodes in aP -dimensional Euclidean space. If the nodes are fixed, then the

pairwise propagation delay at timet0 between a given node pair(i, j) is defined as

τij(t0) ≡ τji(t0) , c−1dij(t0), (1)

wheredij(t0) is the fixed distance between the node pair att0 andc is the speed of the electromagnetic

wave in the medium. However, when the nodes are mobile, the relative distances between the nodes

are a non-linear function of time (forP ≥ 2), even when the nodes are in linear motion1. For a small

1Later in the article, we will assume the nodes to be in constant velocities. However, here we present a generalized Taylor
approximation of the time-varying pairwise distance, for any motion.
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time interval∆t = t − t0, we consider these relative distances as a smoothly varyingpolynomial. The

propagation delayτij(t) ≡ τji(t) between a given node pair(i, j) is then (classically) an infinite Taylor

series around a time instantt0 within the neighborhood∆t. As an extension of the linear range model

[9], we have

τij(t0 +∆t) , c−1dij(t0 +∆t) , c−1dij(t), (2)

wheredij(t) is the distance att = t0 +∆t, given by

dij(t) = rij +
ṙij

1!
∆t+

r̈ij

2!
∆t2 + . . . , (3)

whereθij = [rij , ṙij , r̈ij , . . .] ∈ R
L×1 are the range parameters. The first coefficientrij ≡ dij(t0) is

the initial pairwise distance and the followingL− 1 coefficients are successive derivatives ofrij at t0.

Without loss of generality, assumingt0 = 0, we havet = ∆t and subsequently (2) and (3) simplify to

the Maclaurian series as

τij(t) = c−1
(
rij + ṙijt+

r̈ij

2!
t2 + . . .

)
. (4)

The uniquepairwise ranges between all theN nodes are collected in a vectorr ∈ R
N̄×1, whereN̄ =

N

2


 is the number of unique pairwise baselines. Along similar lines, we can definėr ∈ R

N̄×1,

r̈ ∈ R
N̄×1 and corresponding higher-order terms. The polynomial range basis is simplified further by

introducing [
rij , ṙij , r̈ij, . . .

]T
= diag(f)−1

[
rij, ṙij , r̈ij , . . .

]T
(5)

wheref = c[1, 1!, 2!, . . .]T ∈ R
L×1, such that (4) is

τij(t) = c−1dij(t) , rij + ṙijt+ r̈ijt
2 + . . . (6)

Following the definition ofθ =
[
r, ṙ, r̈, . . .

]
, we definer ∈ R

N̄×1, ṙ ∈ R
N̄×1, r̈ ∈ R

N̄×1 and similarly

higher-order terms.

Remark 1: (Doppler measurements): Observe that in essence,r is the ToA att0, the range ratėr is

the radial velocity (as obtained from a Doppler shift) and the second order range parameterr̈ is the

rate of radial velocity (as observed from a Doppler spread) between the nodes att = t0. These range

coefficients can be readily incorporated if these measurements are available.
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Fig. 1: A generalized Two-Way Ranging (TWR) between a pair ofmobilenodes, where the nodes transmit
and receive, during whichK time stamps are recorded at the respective nodes. Similar to[9], [10], [11],
we levy no constraints on the sequence, direction or number of communications.

B. Data Model

We now consider a relaxed Two-Way Ranging (TWR) setup for collecting distance information as

follows. Let a node pair(i, j) within the network be capable of communicating with each other as

shown in Fig.1. The nodes communicateK messages back and forth, and the time of transmission and

reception is registered independently at the respective nodes. Thekth time stamp recorded at nodei

when communicating with nodej is denoted byTij,k and similarly at nodej the time stamp isTji,k.

The direction of the communication is indicated byEij,k, whereEij,k = +1 for transmission from node

i to nodej andEij,k = −1 for transmission from nodej to nodei. Under ideal noiseless conditions, the

propagation delay between the node pair at thekth time instant isEij,k(Tij,k−Tji,k), and in conjunction

with the polynomial approximation (6), we have

τij,k = rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = Eij,k(Tji,k − Tij,k), (7)

whereτij,k ≡ τij(Tij,k) and without loss of generality we have replacedt with Tij,k.

Remark 2: (Synchronized nodes): By replacingtruetimet byTij,k, we assume without loss of generality

that Tij,k is in the neighborhood oft0 = 0 and the propagation delayτij is measured as a function of

the local time at nodei. Furthermore, we also assume that the clocks of these nodes are synchronized.

This is a valid assumption since for an asynchronous networkof mobile nodes, the clock parameters (up

to first order) can be decoupled from the range parameters andestimated efficiently as shown in [9],

[10], [11].
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In practice, the time measurements are also corrupted with noise and hence (7) is

rij + ṙij(Tij,k + qi,k) + r̈ij(Tij,k + qi,k)
2 + . . .

= Eij,k((Tji,k + qj,k)− (Tij,k + qi,k)) (8)

whereqi,k ∼ N (0,Σi), qj,k ∼ N (0,Σj) are modelled as Gaussian i.i.d. noise variables, plaguing the

timing measurements at nodei and nodej, respectively2. Rearranging the terms, we have

rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = Eij,k(Tji,k − Tij,k) + qij,k, (9)

where

qij,k = Eij,k(qj,k − qi,k)− (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .). (10)

For wireless communication withc = 3 × 108m/s, note that the modified range parameters are scaled

by c−1 (5). Furthermore, since the dynamic range model is proposedfor a small time interval, the

term (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .) is relatively small and subsequently the noise vector plaguing the

measurements can be approximated asqij,k ≈ Eij,k(qj,k − qi,k) which begets

qij,k ∼ N (0,Σij), (11)

whereΣij = Σi +Σj . Aggregating allK packets, we have

Aij︷ ︸︸ ︷[
1
¯K

tij t⊙2
ij . . .

]

θ
ij︷ ︸︸ ︷



rij

ṙij

r̈ij
...



= τ ij + qij, (12)

where

τ ij , eij ⊙ (tji − tij) ∈ R
K×1, (13)

eij = [Eij,1, Eij,2, . . . , Eij,K ] ∈ R
K×1, (14)

tij = [Tij,1, Tij,2, . . . , Tij,K ] ∈ R
K×1. (15)

2Alternatively, the noise on the time markers can also be modeled as a uniformly random variable, typically rising from
quantization errors. In addition, the proposed fixed variance model can be replaced a the distance-dependent variance model
[12], which penalizes large inter-nodal distances.
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The known Vandermonde matrixAij ∈ R
K×L contains the measured time stamps and is invertible if

Tij,k is unique. The direction vectoreij is encapsulated in the propagation delayτ ij and θij ∈ R
L×1

is a vector containing the unknown range parameters. The noise vector on this linear system isqij =

[qij,1, qij,2, . . . qij,K]T ∈ R
K×1, whereqij,k is given by (11) and the corresponding covariance matrix is

Σij , E
[
qijq

T
ij

]
= ΣijIK ∈ R

K×K . (16)

For a network ofN nodes, the normal equation (12) can be extended to

A︷ ︸︸ ︷[
IN̄ ⊗ 1

¯K
T T⊙2 . . .

]

θ︷︸︸︷


r

ṙ

r̈

...



= τ + q, (17)

where

T = bdiag(t12, t13, . . . t1N , t23, . . .),∈ R
N̄K×N̄ (18)

τ = [τ T
12, τ

T
13, . . . τ

T
1N , τ T

23, . . .]
T ∈ R

N̄K×1 (19)

contain the time stamp exchanges of theN̄ uniquepairwise links in the network andθ ∈ R
N̄L×1 contains

the unknown range parameters for the entire network. The noise vector isq = [qT
12,q

T
13, . . . ,q

T
1N , qT

23, . . .]
T ∈

R
N̄K×1 and the covariance matrix is

Σ , E
[
qqT

]
∈ R

N̄K×N̄K . (20)

Remark 3: (Mobility of the nodes): In (7), we implicity assumed that the nodes are relatively fixed

during a time period ofδtk = |Tij,k − Tji,k| i.e., the propagation time of the message. This is a much

weaker assumption compared to traditional TWR, where for a pair of fixed nodes (i.e.,L = 1), the

pairwise distance is assumed to be invariant for the total measurement period∆T = |Tij,K − Tij,1|.
In reality, when the nodes are mobile, the distance at eachkth time instant is dissimilar and this is

inherently represented in the presented Dynamic ranging model.

III. D YNAMIC RANGING ALGORITHM

Suppose that we have collected all the TWR timing data inA and τ , then in this section we find

an estimate for the unknownθ using the model (17). Given an estimate ofθ, the range coefficients
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θ = [r, ṙ, r̈, . . .] can be directly obtained from (5).

A. Weighted Least Squares

Under the assumption that the covariance matrixΣ is known, a Weighted Least Squares (WLS) solution

θ̂ is obtained by minimizing thel2 norm of the linear system (17), leading to

θ̂ = (ATΣ−1A)−1ATΣ−1τ (21)

which is a valid solution ifK ≥ L for each of theN̄ pairwise links. More generally, whenL is unknown,

an order recursive least squares [13] can be employed to obtain the range coefficients for increasing values

of L, until we reach an optimal polynomial fit for (17).

Furthermore, the Cramér Rao lower Bound (CRB) [13] for the least squares model (17) is

Σθ = (ATΣ−1A)−1 (22)

and in combination with the range scaling (5), the CRB onθ is given by

Σθ , F(ATΣ−1A)−1F (23)

where

Σθ =




Σr

Σṙ

Σr̈

. . .




(24)

is the lowest variance attained by any unbiased estimate of the range parametersθ = [rT , ṙT , r̈T , . . .]T

andF = diag(f)⊗IN̄ ∈ R
N̄L×N̄L. It is worth noting that (21) achieves this lower bound. In addition, the

lower bound is unaffected by the choice of direction vectoreij , ∀ i, j ≤ N , since all direction vectors

are encapsulated in the measurement vectorτ ij , which is not a part of the lower bound (23).

Remark 4: (Direction independence): In general, observe that the proposed solution (21) is feasible

for any direction markerEij,k, which is incorporated inτ (13). Hence communication between the nodes

could be arbitrary or one way, and need not be necessarily bi-directional. Note that, this is not true for

an asynchronous network, where two-way communication is pivotal in jointly estimating the clock and

range parameters [11]. In addition, there is no pre-requisite on the number, sequence or direction of

the communication links [4], [9], [10], [11]. Thus, the proposed solution is amenable to prevalent Two
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Way Ranging (TWR) protocols, such as classical pairwise communication [14], passive listening and

broadcasting [15].

B. Distributed Weighted Least Squares

If we consider independent pairwise communication betweenall the nodes, with no broadcasting, then

the noise in each pairwise link is independent of each other and subsequently the covariance matrix (20)

simplifies to

Σ = bdiag(Σ12,Σ13, . . .Σ1N , Σ23, . . .) . (25)

In which case, the centralized system (17) is a cascade of pairwise linear systems (12) and subsequently

(21) is a generalized version of solving the distributed pairwise system for estimating the pairwise range

parametersθij

θ̂ij = argmin
θ

ij

‖Σ−1/2
ij (Aijθij − τ ij)‖2

= (AT
ijΣ

−1
ij Aij)

−1AT
ijΣ

−1
ij τ ij (26)

which, similar to (21), has a valid solution forK ≥ L for each pairwise link.

IV. D ISTANCES, POSITIONS, VELOCITIES

AND RELATIVE K INEMATICS

In the previous section, we estimatedθ which contains the solution to the unknown range derivatives

θ =
[
r, ṙ, r̈, . . .

]
. Our next motive is to use these range derivatives to estimate the positions of the mobile

nodes. When the nodes are in motion, similar to the pairwise range rates, the position vector of each

node is also a Taylor series in time. However, exploiting piecewise linearity, we assume that the nodes

are in linear motion with no acceleration, which is valid fora sufficiently small measurement period.

(Note that despite this assumption, the pairwise distance is still non-linear.)

A. Linear motion

Let the position ofN (N ≥ P ) nodes in aP -dimensional Euclidean space at thekth time instant be

given byXk = [x1,k,x2,k, . . . xN,k] ∈ R
P×N , wherexi,k ∈ R

P×1 is the position vector of theith node

at thekth message exchange. Furthermore, at time instantt0, theith node has velocityyi ∈ R
P×1 and all

Monday 14th June, 2021 DRAFT
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such velocities are collected inY = [y1,y2, . . . yN ] ∈ R
P×N . Then, under a linear motion assumption,

we have

dyi

dt
= 0P ∀ i ≤ N. (27)

Now, let ∆tk = tk − t0 where for the sake of notational convenience and without loss of generality, we

assumetk = Tij,k ∀ k, then the position matrix at thekth time instant is

Xk = X+∆tkY (28)

whereX , X0 =
[
x1,x2, . . . xN

]
is the initial position matrix at time instantt0 andXk only depends

on the initial Position and Velocity (PV) of the nodes.

B. Range derivatives

To estimate the position matrixXk, we begin by stating explicit expressions for the range derivatives[
r, ṙ, r̈, . . .

]
in terms ofX,Y under linear velocity assumption.

Theorem 1:(Distance non-linearity) The pairwise distancedij(t) between a node pair(i, j) in P ≥ 2

dimensional Euclidean space is a non-linear function of time, even if the nodes are only in linear motion.

The range parameters[rij , ṙij , r̈ij , . . . ] at t = t0 satisfy

rij =
√

xT
i xi + xT

j xj − 2xT
i xj , (29a)

ṙij = r−1
ij (xi − xj)

T (yi − yj), (29b)

r̈ij = r−1
ij

(
‖(yi − yj)‖2 − ṙ2ij

)
. (29c)

Proof: See Appendix A.

Although these range parameters can be estimated up to the(L−1)th order efficiently (as demonstrated

in Section III), in the rest of this article we utilize the information only up toL = 3. Rearranging the

equations forrij , ṙij , r̈ij , from (29) we obtain

r2ij = (xi − xj)
T (xi − xj), (30a)

rij ṙij = (xi − xj)
T (yi − yj), (30b)

rij r̈ij + ṙ2ij = (yi − yj)
T (yi − yj). (30c)

Monday 14th June, 2021 DRAFT



R.T.Rajan, G. Leus, A.-J.van der Veen 11

Extending the above equations for allN nodes, defininggxx = diag(XTX) ∈ R
N×1,gxy = diag(XTY) ∈

R
N×1 andgyy = diag(YTY) ∈ R

N×1, we have

R⊙2 = gxx1
¯
T
N + 1

¯N
gT
xx − 2XTX, (31a)

R⊙ Ṙ = gxy1
¯
T
N + 1

¯N
gT
xy −XTY −YTX, (31b)

R⊙ R̈+ Ṙ⊙2 = gyy1
¯
T
N + 1

¯N
gT
yy − 2YTY, (31c)

where the square matricesR = [rij ] ∈ R+
N×N , Ṙ = [ṙij ] ∈ R

N×N and R̈ = [r̈ij] ∈ R+
N×N contain

the initial pairwise ranges, range rates and rates of range rates, respectively. It is worth noting thatR and

R̈ are Euclidean Distance Matrices (EDM)s, however,Ṙ although symmetric, may contain both positive

and negative values and is thus not an EDM.

It is evident from (31) that without apriori knowledge of a few known PV, estimating the PVs of the

network is an ill-posed problem and hence, we look to find solutions for the relative PV. Applying the

centering matrixP = IN −N−11
¯N

1
¯
T
N ∈ R

N×N on (31) and exploiting the propertyP1
¯N

= 0N , we

have

Bxx = PXTXP, (32a)

Bxy = P(XTY +YTX)P, (32b)

Byy = PYTYP, (32c)

where we for the sake of convenience, we have introduced

Bxx , −0.5PR⊙2P, (33a)

Bxy , −P(R⊙ Ṙ)P, (33b)

Byy , −0.5P(R ⊙ R̈+ Ṙ⊙2)P. (33c)

The equations (32a) and (32c) can now be used to estimate the initial relative positions and relative

velocities of the nodes, via MDS. However, prior to applyingMDS we first present definitions for the

relative PVs.

Monday 14th June, 2021 DRAFT
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C. Relative framework

We define the relative PV vectors as an affine transformation of the corresponding absolute PV (Xk,Y)

i.e.,

Xk = Hx,kXk + hx,k1
¯
T
N , (34)

Y = HyY + hy1
¯
T
N , (35)

whereXk is the relative position matrix of the nodes attk up to a rotationHx,k ∈ R
P×P and translation

hx,k ∈ R
P×1. Along similar lines, we define relative velocity asHyYk and relative velocity up to a

rotation asY, whereHy ∈ R
P×P is an unknown rotation matrix. The relative velocity of the nodesHyY

is relative to the group velocity of the network, which ishy ∈ R
P×1. Under a linear velocity assumption

(27), the group velocity is the rate at which the relative translation vector varies with time i.e.,

hy = ∆t−1
k (hx,k − hx,0). (36)

Furthermore, the rotation matricesHx,k,Hy are orthogonal i.e.,

HT
x,kHx,k = HT

y Hy = Ip ∀ 1 ≤ k ≤ K. (37)

Now, substituting (34) and (35) in (28), and using the property (36) we have

Hx,kXk = Hx,0X+∆tkHyY, (38)

where for the sake of notational simplicity, we useX , X0 to denote the relative position matrix att0.

Now observe that the translation vectorshx,0,hy are unidentifiable from observations (32). Subse-

quently, we shall also see in the following section, that thesolution to the relative PVs are independent

of these translation vector and hence without loss of generality can be considered to be0P for notational

simplicity. Secondly, in order to have a meaningful interpretation of the relative position at thekth time

instant (38), we must choose a reference coordinate system e.g., Hx,0 = I. To this end, without loss of

generality and for notational simplicity, we have the following assumptions

Hx,0 = IP , (39a)

hx,0 = 0P , (39b)

hy = 0P . (39c)
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which simplifies (38) to

Xk = X+∆tkHyY, (40)

whereXk is the position of the nodes at thekth time instant up to a translation, under the assumption

(39). More significantly, observe that the relative position at eachkth time instant is only dependent on

the relative PV andHy. Hence in the following sections, our aim is to estimateX,Y andHy, using the

range parameters (R, Ṙ, R̈) defined in (33) and estimated in Section III.

D. Relative kinematic matrices

Substituting the expression for absolute PV from (34) and (35) respectively in (32), we have

Bxx = PXTXP = PXTHT
x,0Hx,0XP = XTX, (41a)

Bxy = P(XTY +YTX)P

= P(XTHT
x,0HyY +YTHT

y Hx,0X)P

= XTHyY +YTHT
yX, (41b)

Byy = PYTYP = PYTHT
y HyYP = YTY, (41c)

where we use the property (37) in (41a) and (41c), and the assumption (39a) in (41b).Bxx andByy

are Gramian matrices of the relative PVs and the expression for Bxy is the Lyapunov-like linear matrix

equation [16]. It is worth noting that the relative kinematic equationsBxx,Bxy,Byy are dependent only

on the relative PVs and the unique rotation matrix at timet0. For an alternative derivation of the relative

kinematic matrices, refer to Appendix B.

Given an estimate of the range matrices, i.e.,R̂,
̂̇
R,

̂̈
R, either using (21) or alternative methods,

an estimate of the relative kinematic matrices, i.e.,B̂xx, B̂xy, B̂yy can be readily obtained using (33).

Following which, we aim to estimate the relative position using (41a), the relative velocity using (41c)

and the unknown velocity rotation matrixHy using (41b).
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V. A LGORITHMS

A. Relative positions (X) and Relative velocities (Y)

An estimate of the relative PV can be directly obtained by thespectral decomposition of the matrices

Bxx,Byy. Let

B̂xx = UxΛxU
T
x , (42)

B̂yy = UyΛyU
T
y , (43)

whereUx,Uy ∈ R
N×N contain the eigenvectors and the diagonal matricesΛx,Λy ∈ R

N×N contain

the increasingly ordered eigenvalues of the matricesB̂xx, B̂yy respectively. Then, for aP -dimensional

setup, an estimate of the relative positionsX and relative velocitiesY of the nodes up to a rotation is

then

X̂ = Λ1/2
x UT

x , (44)

Ŷ = Λ1/2
y UT

y , (45)

where Λx,Λy ∈ R
P×P contain the firstP nonzero eigenvalues andUx,Uy ∈ R

N×P contain the

corresponding eigenvectors.

Relative positioning (44) from pairwise distance measurements using MDS is a well known technique

[2]. However, our contribution is the definition and estimation of relative velocities , i.e., (35) and (45)

respectively.

B. Rotation matrixHy

The estimate of the relative velocityY up to an arbitrary rotation gives no information on the direction

of the nodes in an anchorless scenario. Hence, it is important to estimate the relative velocities w.r.t. the

orientation of the initial positions i.e.,Hy. Substituting the estimates ofBxy,X,Y from (33b), (44) and

(45) respectively in (41b), we have

B̂xy = X̂
T
HyŶ + Ŷ

T
HT

y X̂, (46)

whereHy is the unknown unitary matrix which can be estimated by minimizing the cost function

Ĥy = argmin
Hy

(
‖B̂xy − (X̂

T
HyŶ + Ŷ

T
HT

y X̂)‖2
)
, (47)
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whereĤy is an estimate ofHy. Now, vectorizing (46) and rearranging the terms, we have

bxy = (Ŷ
T ⊗ X̂

T
) vec(Hy) + (X̂

T ⊗ Ŷ
T
) vec(HT

y )

= (IN2 + J)(Ŷ
T ⊗ X̂

T
) vec(Hy)

= Gvec(Hy), (48)

wherebxy = vec(B̂xy) is a vector of the known measurement matrixB̂xy from (32b) andJ ∈ R
N2×N2

is an orthogonal permutation matrix such thatJvec(Hy) = vec(HT
y ). The unknown unitary matrixHxy

can then be obtained by reformulating (47) and solving

Ĥy = argmin
Hy

‖Gvec(Hy)− bxy‖2 = (GTG)−1Gbxy, (49)

which has a feasible solution forN ≥ P . The proposed solution does not exploit the orthogonailty

property of the unknown rotation matrixHy. Hence, more optimal solutions are feasible [17] by solving

the constrained cost function

Ĥy = argmin
Hy

‖Gvec(Hy)− bxy‖2 s.t HT
y Hy = IP . (50)

VI. RELATIVE POSITION AT TIME INSTANT k

We now briefly summarize the steps to find the relative position at discrete time instances using the

time stamp measurements discussed in Section II.

A. Dynamic MDS

Given the noisy time stampŝTij,k = Tij,k + qi,k,∀ (i, j) node pairs in the network and∀ 1 ≤ k ≤ K

time instances, the relative position of the nodes at thekth time instance can be estimated as follows.

• Solve for an estimate of the Range derivativesR̂,
̂̇
R,

̂̈
R using Dynamic ranging (21).

• Using these estimated range derivatives, construct the relative kinematic matriceŝBxx, B̂xy, B̂yy

defined in (33a).

• Obtain an estimate of the relative PV and unitary matrix from(34), (35) and (49) respectively. Then,

using (40) and defining∆t̂k = T̂ij,k − T̂ij,0, the relative position at thekth time instant is

X̂k,dr = X̂+∆t̂kĤyŶ. (51)
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B. Classical MDS

Alternatively, the relative positions of the nodes can alsobe estimated using Classical MDS (CMDS).

Let Dk , c[τij,k] ∈ R
N×N be the EDM at each discrete time instantk where τij = Tij,k − Tji,k

and D̂k , c[τij,k + qij,k] be the corresponding noisy estimate whereqij,k is the noise plaguing the

measurements as shown in (11). Let−0.5P(D̂⊙2
k )P = ŪkΛ̄kŪ

T
k be an eigenvalue decomposition, then

the solution to the relative position is

X̂k,cmds = Λ̄
1/2
k Ū

T
k (52)

whereΛ̄k ∈ R
P×P contain the firstP nonzero eigenvalues and̄Uk ∈ R

N×P the corresponding eigen-

vectors.

Note that the relative position estimate using CMDS i.e.,X̂k,cmds is up to an arbitrary rotation and

translation, where aŝXk,dr yields the relative position of the nodes up to a translationalone.

VII. S IMULATIONS

Simulations are conducted to evaluate the performance of the proposed solutions. We consider a cluster

of N = 10 nodes inP = 2 dimensions, whose coordinatesX and velocitiesY are arbitrarily chosen as

X =


−382 735 959 630 800

9 7 727 366 −858


 ,

Y =


−6 8 −1 −10 3

8 −9 −7 −2 −8


 .

Without loss of generality, we assume that all nodes employ one-way communication, i.e.,eij =

1
¯K

,∀ i, j ≤ N . Furthermore, all nodes communicate with each other withinthe same time interval

∆T = [Tij,1, Tij,K ] = [−3, 3] seconds and the transmit time markers are chosen to be linearly spaced

within this interval. We consider a classical pairwise communication scenario, where all the pairwise

communications are independent of each other and thusΣ = σ2IN̄K .

The metric used to evaluate the performance of the range parameters is the Root Mean Square Error

(RMSE), given by RMSE(z) =

√
N−1

exp
∑Nexp

n=1 ‖ẑ(n)− z‖2, where ẑ(n) is the nth estimate of the

unknown vectorz ∈ R
N̄×1 during Nexp = 1000 Monte Carlo runs. To qualify these estimates, the

square Root of the Cramér Rao Bound (RCRB) is plotted along with the respective RMSE. We also use

the same metric for evaluating the rotationhxy = vec(Hxy).
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However, since the relative PVs (X, Y) andXk are known only up to an arbitrary rotation, we define

the RMSE for these matrices as RMSE(Z) =

√
N−1

exp
∑Nexp

n=1 ‖vec(HẐ(n)− ZP)‖2, whereP is the

centering matrix andH is the optimal Procrustes rotation, given the matrixZ and the corresponding

estimateẐ(n) of thenth Monte Carlo run. See Appendix C. For the relative PV the Cramér Rao bounds

are derived (Appendix D) and the corresponding RCRBs are plotted along with the RMSEs.

A. Varying Number of communications (K)

The dynamic ranging algorithm (21) is implemented forL = 4, where the number of communications

K is varied from10 to 100. The noise on the propagation delays isσ = 0.1 meters, which is typical in

classical TWR [18] or in conventional anchored MDS-based velocity estimation using Doppler measure-

ments [5]. Fig. 2a shows the RMSE of the first3 range coefficients (which are relevant for estimating the

relative velocities) achieving the RCRB asymptotically. The PV estimates are obtained using these range

coefficients via (44), (45) and the corresponding RMSEs are plotted in Fig. 2b, along with respective

RCRBs. Furthermore, the RMSEs of the relative rotation matrix Hxy estimate (49) is shown in Fig. 2c,

where the relative position and velocity estimates are used.

B. Varying noise on time measurements (σ)

A second experiment is carried out by varyingσ in the range[−10, 0] dB meters for a fixed number

of communicationsK = 100. The RMSEs of the range coefficients obtained via the dynamicranging

algorithm (21) are plotted in Fig. 3a, which achieve the RCRBasymptotically. The RMSEs on the relative

PV are shown in Fig. 3b, and the RMSE of the relative rotation matrix is presented in Fig. 3c, in addition

to the corresponding RCRBs. To the best of the our knowledge,given the novelty of the data model and

the corresponding solutions, there are no other relative velocity estimators available for comparison.

C. Relative position error over time

Figure 4 shows the RMS plots forXk,cmds andXk,dr for a time duration∆T = [−3, 3] with Gaussian

noise ofσ = 0.1 meters on the distance measurements. TheXk,cmds estimate steadily achieves a constant

RMSE, which is expected since CMDS is independently appliedat eachkth time instant, to estimate

the relative positions of the nodes. On the contrary, the relative position estimation via dynamic ranging

betters this estimate aroundt0, where the improvement of up to a factor
√
K is primarily due to averaging

overK measurements. However, the error estimate ofXk,dr increases as we move away fromt0, which

is typical of Taylor series approximation. In addition, thepoor performance of the Classical MDS based

Monday 14th June, 2021 DRAFT



R.T.Rajan, G. Leus, A.-J.van der Veen 18

10
1

10
2

10
−3

10
−2

10
−1

 

 

Range (m): r

Range rate (m/s): ṙ
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Fig. 2: RMSEs of (a) range parameters, (b) relative position, relative velocity and (c) relative rotation matrix for
varying number of communications (K) between the nodes forσ = 0.1 meters
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Fig. 3: RMSEs (a) range parameters, (b) relative position, relative velocity and (c) relative rotation matrix for
varying noise (σ) on the Time measurements with number of communicationK = 100
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Fig. 4: RMSE of relative positions at discrete time instancestk during the time interval∆T = [−3, 3] with
K = 100 for σ = 0.1 meters

algorithm for relative velocity estimate (see Fig. (2b), Fig. (3b)) also hampers the solution forXk,dr. An

improved estimate for relative velocity estimation is feasible, which will be addressed in future work.

VIII. C ONCLUSIONS

A novel framework is proposed to estimate the relative positions up to a rotation for ananchorless

network of mobile nodeswithout the use of Doppler measurements. The proposed leastsquares based

dynamic ranging algorithm employs a classical Taylor series based approximation, which extracts pairwise

distance derivatives at a given time instant efficiently. Under a linear velocity assumption, we show that the

time-varying relative positions can be estimated from the derivatives of the pairwise distances. The initial

relative positions, relative velocities and a unique rotation matrix are sufficient to describe the relative

motion of the nodes during a small time interval. Subsequently, closed form MDS-based solutions are

presented to jointly estimate the relative positions and relative velocities of the nodes. In addition, the

unique rotation matrix which relates the direction of the relative motion w.r.t. the relative position is also

estimated via least squares. The Cramér Rao bounds are alsoderived for the range parameters, and the

relative PV and simulations are conducted to verify and analyze the performance of the proposed least

squares estimators. The presented solutions are suited forautonomous networks with minimal a priori

knowledge, where the positions and velocities need to be estimated atcold start. In practice, over longer

durations, the estimated parameters can be readily extended to both relative and absolute tracking, which

is beyond the scope of this article and will be addressed in a follow-up work.
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APPENDIX A

DISTANCE NON-LINEARITY

Consider an arbitrary pair of mobile nodes with time-varying positions{x̄i(t), x̄j(t)} and constant

velocities{yi,yj}. In addition, we define the position of the nodes att = t0 as{xi,xj}. To show that

the time-varyingdij(t) is an infinitely differentiable function we derive the first few derivatives ofdij(t)

w.r.t. time. By definition, the initial pairwise distance between the nodes is the Euclidean norm

rij , dij(t0) = ‖xi − xj‖ (53)

1) First order ṙij : From (53), we can compute the first-order range parameter as

ṙij =
d

dt
dij(t)

=
1

2rij

d

dt

(
(x̄i(t)− x̄j(t))

T (x̄i(t)− x̄j(t))
)

=
1

rij

(
yT
i xi + yT

j xj − yT
i xj − yT

j xi

)

= r−1
ij (yi − yj)

T (xi − xj) (54)

2) Second order̈rij: Similarly, under the assumption of constant velocities, the second-order range

parameter using (53) is

r̈ij =
d2

dt2
dij(t)

= −r−2
ij ṙij

(
(yi − yj)

T (xi − xj)
)

+r−1
ij

d

dt

(
(yi − yj)

T (x̄i(t)− x̄j(t))
)

= −r−1
ij ṙ2ij + r−1

ij (yi − yj)
T (yi − yj)

= r−1
ij

(
‖yi − yj‖2 − ṙ2ij

)
(55)

3) Third order
...
r ij : The third-order derivative of the range parameter under linear motion (53) yields

...
r ij =

d3

dt3
dij(t)

= −r−2
ij ṙij(‖yi − yj‖2 − ṙ2ij)− r−1

ij

d2

dt2
(d2ij(t))

= −r−1
ij ṙij r̈ij − 2r−1

ij ṙij r̈ij

= −3r−1
ij ṙij r̈ij (56)
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The higher-order range derivatives can be derived along similar lines.

APPENDIX B

ALTERNATIVE DERIVATION FOR Bxx,Bxy Byy

With an abuse of notation, letD(t) ∈ R
N×N be the time-varying Euclidean Distance Matrix (EDM)

for a network ofN nodes inP -dimensional Euclidean space and let

B(t) = −0.5PD(t)⊙2P, (57)

whereP = IN −N−11
¯N

1
¯
T
N is the centering matrix. Then observe that att = t0,

B(t0) , Bxx = XTX (58)

and the subsequent first derivative is

Bxy ,
dB(t)

dt
, −P

(
D(t)⊙ Ḋ(t)

)
P

∣∣∣
t=t0

= XTHxyY +YTHT
xyX. (59)

A step further, differentiating again w.r.t. time and substituting t = t0 we have

d2B(t)

dt2

∣∣∣
t=t0

, Byy , −0.5P(R ⊙ R̈+ Ṙ⊙2)P = YTY (60)

where Ṙ = [ṙij ] ∈ R
N×N and R̈ = [r̈ij ] ∈ R

N×N
+ which, perhaps not surprisingly, concur with the

relations obtained in (41) and offer an alternative verification.

Secondly, unlike the time-varying distance functionD(t), which is infinitely differentiable,B(t) is a

second-order function under the linear velocity assumption (27). Differentiating (60) yet again, we have

d3B(t)

dt3

∣∣∣
t=t0

= −0.5P(R ⊙ ...
R+ 3Ṙ⊙ R̈)P = 0N,N , (61)

since generalizing (56) for allN nodes yields

d3R

dt3
,

...
R = −3R−1 ⊙ Ṙ⊙ R̈. (62)

The result (61) is expected, since under the constant velocity assumption

(63)
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APPENDIX C

PROCRUSTES ALIGNMENT

Let Z,Z ∈ R
P×N matrices which are identical up to a rotation, then there exists a rotation matrixH,

which minimizes the following cost function

min
H

‖Z−HZ‖ s.t. HTH = IP (64)

and the corresponding optimalProcrustes rotation[19] is given by

Ĥ = VzU
T
z (65)

whereVz,Uz are obtained via the singular value decomposition of the matrix productZZT , i.e.,

UxLzVz = ZZT . (66)

APPENDIX D

CRAMÉR RAO BOUNDS FORX,Y

A. Relative positionX

The problem of estimating the unknown positionsφx , vec(X) =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]T
∈ R

NP×1 from

the distance measurements is formulated as

ax(φx)− dx = ηx (67)

which is obtained by vectorizing (31a).dx = [r12, r13, . . . , rN(N−1)] ∈ R
2N̄×1 is the set ofnon-zero

Euclidean distances betweenN points, withN̄ =


N

2


. The distance vector is related to the positions

by a(φx) =
[
ax(x1,x2), ax(x1,x3), . . . , ax(xN−1,xN )

]T
∈ R

2N̄×1 where,

ax(xi,xj) ,
(
xT
i xi + xT

j xj − 2xT
i xj

) 1

2 . (68)

Furthermore, the noise plaguing the distance vector isηx ∼ N (0,Σηx), whereΣηx = blkdiag(Σr,Σr)

andΣr is given by (24).

The Cramér Rao lower Bound (CRB) for any unbiased estimate of φx, is given by the inverse of the

Fisher Information Matrix (FIM) i.e.,

Tr
(
E

{
(φ̂x − φx)(φ̂x − φx)

T
})

, Tr(Σx) ≥ Tr(F−1
x ) (69)
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whereφ̂ is an estimate of the unknown locationθ andΣx is the lowest achievable covariance. For the

data model (67), the FIMFx ∈ R
NP×NP is

Fx =

[
∂ax(φx)

∂φT
x

]T
Σ−1

ηy

[
∂ax(φx)

∂φT
x

]
(70)

where the Jacobian is of the form

∂ax(φx)

∂φT
x

=

[
∂ax(φx)

∂xT
1

,
∂ax(φx)

∂xT
2

, . . . ,
∂ax(φx)

∂xT
N

]
(71)

whoseith element

[
∂ax(φ)

∂xT
i

]
is given by

[
∂a(x1,x2)

T

∂xT
i

,
∂a(x1,x3)

T

∂xT
i

, . . . ,
∂a(xN−1,xN )T

∂xT
i

]

where∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(xj ,xk)

∂xT
i

=





d−1
jk

(
xj − xk

)T
if i = j (72a)

−d−1
jk

(
xj − xk

)T
if i = k (72b)

0TP . otherwise (72c)

The FIM (70) is rank deficient by3 for a P = 2 dimensional scenario [20], [21] and is thus non-

invertible. Hence, we have the achievable CRB on the relative position as

Tr(Σx) ≥ Tr(F†
x). (73)

B. Relative velocityY

Vectorizing (31c), the relative velocityφx , vec(Y) =
[
yT
1
,yT

2
, . . . ,yT

N

]T
∈ R

NP×1 estimation is

modeled as

ay(φy)− d⊙2
y = ηy (74)

wherea(φy) =
[
ay(y1

,y
2
), ay(y1

,y
3
), . . . , ay(yN−1

,y
N
)
]T

∈ R
2N̄×1 and

ay(yi
,y

j
) , yT

i
y
i
+ yT

j
y
j
− 2yT

i
y
j
. (75)
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The distance squared vectord⊙2
y = {rij r̈ij + ṙ⊙2

ij }∀ i, j ≤ N, i 6= j ∈ R
2N̄×1, whererij, ṙij , r̈ij are the

corresponding range estimates. The noiseηy = {ηy,ij} in the data model is

ηy,ij = rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij + qr,ijqr̈,ij + qṙ,ijqṙ,ij

≈ rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij, (76)

whereqr,ij, qṙ,ij, qr̈,ij are the noise variable plaguing the range parametersrij , ṙij , r̈ij respectively. The

covariance of the noise is subsequently defined as ,

Σηy = E
{
ηyη

T
y

}
≈ blkdiag(Σηy,Σηy)‘ (77)

where

Σηy ≈ RΣr̈R+ R̈ΣrR̈+ 4ṘΣr̈Ṙ , (78)

R = diag(r), Ṙ = diag(ṙ), R̈ = diag(r̈) are the range parameters andΣr,Σṙ,Σr̈ are the corresponding

covariances matrices (24). The Cramér Rao lower Bound (CRB) for φy is given by

Tr
(
E

{
(φ̂y − φy)(φ̂y −φy)

T
})

, Tr(Σy) ≥ Tr(F−1
y ) (79)

where φ̂y is an estimate of the unknown velocityφ and Σy is the lowest achievable covariance and

Fy ∈ R
NP×NP is

Fy =

[
∂ay(φy)

∂φT
y

]T

Σ−1
ηy

[
∂ay(φy)

∂φT
y

]
(80)

where the Jacobian is of the form

∂ay(φy)

∂φT
y

=

[
∂ay(φy)

∂yT
1

,
∂ay(φy)

∂yT
2

, . . . ,
∂ay(φy)

∂yT
N

]
(81)

whoseith element

[
∂ay(φ)

∂yT
i

]
is given by

[
∂a(y

1
,y

2
)T

∂yT
i

,
∂a(y

1
,y

3
)T

∂yT
i

, . . . ,
∂a(y

N−1
,y

N
)T

∂yT
i

]
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where∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(y
j
,y

k
)

∂yT
i

=





2
(
y
j
− y

k

)T
if i = j (82a)

−2
(
y
j
− y

k

)T
if i = k (82b)

0TP . otherwise (82c)

Similar to Fx, the FIM (80) on velocity is also rank degenerate by3 for a P = 2 dimensional case

and hence we have the CRB on the relative velocity as

Tr(Σy) ≥ Tr(F†
y). (83)
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Abstract

Localization is a fundamental challenge for any wireless network of nodes, in particular when the

nodes are mobile. We present an extension of the classical Multidimensional scaling (MDS) for an

anchorless network of mobile nodes, wherein the solutions to the time-varying relative node positions

are shown to lie in the derivatives of the time-varying inter-nodal pairwise distances. Moreover, we show

that the relative position of a mobile node at each time instance is only dependent on the initial relative

position, relative velocity and a common rotation matrix ofthe respective node, which are estimated

using MDS-like and least squares estimators. Simulations are conducted to evaluate the performance of

the proposed solutions and the results are presented.

Index Terms

relative position and velocity, rotation matrix, Multi-Dimensional Scaling (MDS), dynamic

ranging, anchor-free wireless network, Cramér Rao Bounds

I. INTRODUCTION

Localization is a key requirement for the deployment of wireless networks in a wide range of ap-

plications. There are numerous absolute localization algorithms, such as Time of Arrival (ToA), Time

Difference of Arrival (TDoA) and Received Signal Strength (RSS) which cater to anchored networks,

where only the positions of a few nodes are known [?]. Alternatively, when there are no reference anchors,
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then the relative positions of the nodes, up to a rotation andtranslation, can still be obtained using Multi-

Dimensional Scaling (MDS) based solutions [?], [?]. Such anchorless networks arise naturally when

the nodes are deployed in inaccessible locations or when anchor information is known intermittently.

In both anchored or anchorless scenarios, pairwise distances are one of the key inputs for almost

all localization techniques. For stationary nodes, these pairwise distances are classically obtained by

measuring the propagation delays of multiple time stamp exchanges between the nodes and averaging

these measurements over a time period.

A step further, when the nodes are mobile, then conventionally either the nodes are considered

relatively stationary within desired accuracies for the complete duration of the measurement interval (i.e.,

multiple distance measurements) [?] or Doppler measurements are utilized [?]. Unfortunately, Doppler

measurements are not always available and the assumption onthe node positional stability for large time

periods is not necessarily practical. For a mobile network,the application of classical MDS-based relative

positioning at every time instant yields a sequence of position matrices with arbitrary rotation, thereby

providing no information on the relative velocities of the nodes. The termrelative velocitiesindicates

the velocity vectors of the nodes, up to a common rotation, translation and reflection. To the best of

the authors’ knowledge, the estimation of relative velocities for an anchorless network has not yet been

investigated in literature.

A. Applications

Our motivation for this work is triggered byinaccessiblemobile wireless networks, which have partial

or no information of absolute coordinates and/or clock references. Such scenarios are prevalent in under-

water communications [?], indoor positioning systems [?] and envisioned space based satellite networks

with minimal ground segment capability. A particular project of interest is Orbiting Low Frequency

Antennas for Radio astronomy (OLFAR) [?], a Dutch funded program which aims to design and develop

a detailed system concept for a scalable interferometric array of more than ten identical, autonomous

satellites in space (far from earth) to be used as a scientificinstrument for ultra low frequency observations

(0.3 kHz - 30 MHz). Due to limitations of earth-based tracking, the OLFARcluster will be an independent

cooperative network of nodes, whose positions and velocities need to be estimated jointly.

B. Contributions

In this article, our quest is to understand the relative kinematics of ananchorless network of mobile

nodes, with or without any information on the Doppler measurements. By the term anchorless, we empha-

Monday 14th June, 2021 DRAFT



Joint relative position and velocity estimation for an anchorless network of mobile nodes : R.T.Rajan, G. Leus, A.-J.van der Veen3

size that the absolute positions and the velocities of the nodes are unknown. We begin by approximating

the time-varying pairwise propagation delays (and subsequently the ranges) between the mobile nodes

as a Taylor series in time, which is aptly termed dynamic ranging (Section II). A simple yet efficient

time based monomial basis is employed, to estimate the derivatives of the pairwise distances at a given

time instant (Section III). Under the assumption of constant velocity for a short duration of time, we

show that the relative position of each node is dependent only on the initial relative position, the relative

velocity and a unique rotation matrix (Section IV). Furthermore, the solutions to the unknown initial

relative position, the relative velocity and the rotation matrix lie in the first three derivatives of the time-

varying pairwise distance. Subsequently, we present a MDS-like and least squares solutions to estimate

the unknown parameters in Section V and Cramér Rao Bounds are derived. Simulations are conducted

to evaluate the performance of the dynamic ranging algorithm and the MDS based estimators for relative

Positions and Velocities (Section VII).

Notation: The element wise matrix Hadamard product is denoted by⊙, (·)⊙N denotes element-wise

matrix exponent and⊘ indicates the element-wise Hadamard division. The Kronecker product is indicated

by ⊗ and the transpose operator by (·)T . 1
¯N

= [1, 1 . . . , 1]T ,0N = [0, 0 . . . , 0]T ∈ R
N×1, are vectors

of ones and zeros, respectively. The Euclidean norm is denoted by‖·‖, IN is a N ×N identity matrix

and 0M,N is a M × N matrix of zeros. A diagonal matrix of the vectora is represented by diag(a)

and a block diagonal matrixA = bdiag(A1,A2, . . . ,AN ) consists of matricesA1,A2, . . . ,AN along

the diagonal and0 elsewhere. vec(A) operator reshapes the matrixA into a vector.a ∼ N (µ,Σ) is

shorthand for a randomly distributed Gaussian variable with meanµ and varianceΣ.

II. DYNAMIC RANGING

A. Range model

Consider a cluster ofN nodes in aP -dimensional Euclidean space. If the nodes are fixed, then the

pairwise propagation delay at timet0 between a given node pair(i, j) is defined as

τij(t0) ≡ τji(t0) , c−1dij(t0), (1)

wheredij(t0) is the fixed distance between the node pair att0 andc is the speed of the electromagnetic

wave in the medium. However, when the nodes are mobile, the relative distances between the nodes

are a non-linear function of time (forP ≥ 2), even when the nodes are in linear motion1. For a small

1Later in the article, we will assume the nodes to be in constant velocities. However, here we present a generalized Taylor
approximation of the time-varying pairwise distance, for any motion.
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time interval∆t = t − t0, we consider these relative distances as a smoothly varyingpolynomial. The

propagation delayτij(t) ≡ τji(t) between a given node pair(i, j) is then (classically) an infinite Taylor

series around a time instantt0 within the neighborhood∆t. As an extension of the linear range model

[?], we have

τij(t0 +∆t) , c−1dij(t0 +∆t) , c−1dij(t), (2)

wheredij(t) is the distance att = t0 +∆t, given by

dij(t) = rij +
ṙij

1!
∆t+

r̈ij

2!
∆t2 + . . . , (3)

whereθij = [rij , ṙij , r̈ij , . . .] ∈ R
L×1 are the range parameters. The first coefficientrij ≡ dij(t0) is

the initial pairwise distance and the followingL− 1 coefficients are successive derivatives ofrij at t0.

Without loss of generality, assumingt0 = 0, we havet = ∆t and subsequently (2) and (3) simplify to

the Maclaurian series as

τij(t) = c−1
(
rij + ṙijt+

r̈ij

2!
t2 + . . .

)
. (4)

The uniquepairwise ranges between all theN nodes are collected in a vectorr ∈ R
N̄×1, whereN̄ =

N

2


 is the number of unique pairwise baselines. Along similar lines, we can definėr ∈ R

N̄×1,

r̈ ∈ R
N̄×1 and corresponding higher-order terms. The polynomial range basis is simplified further by

introducing [
rij , ṙij , r̈ij, . . .

]T
= diag(f)−1

[
rij, ṙij , r̈ij , . . .

]T
(5)

wheref = c[1, 1!, 2!, . . .]T ∈ R
L×1, such that (4) is

τij(t) = c−1dij(t) , rij + ṙijt+ r̈ijt
2 + . . . (6)

Following the definition ofθ =
[
r, ṙ, r̈, . . .

]
, we definer ∈ R

N̄×1, ṙ ∈ R
N̄×1, r̈ ∈ R

N̄×1 and similarly

higher-order terms.

Remark 1: (Doppler measurements): Observe that in essence,r is the ToA att0, the range ratėr is

the radial velocity (as obtained from a Doppler shift) and the second order range parameterr̈ is the

rate of radial velocity (as observed from a Doppler spread) between the nodes att = t0. These range

coefficients can be readily incorporated if these measurements are available.
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Fig. 1: A generalized Two-Way Ranging (TWR) between a pair ofmobilenodes, where the nodes transmit
and receive, during whichK time stamps are recorded at the respective nodes. Similar to[?], [?], [?],
we levy no constraints on the sequence, direction or number of communications.

B. Data Model

We now consider a relaxed Two-Way Ranging (TWR) setup for collecting distance information as

follows. Let a node pair(i, j) within the network be capable of communicating with each other as

shown in Fig.1. The nodes communicateK messages back and forth, and the time of transmission and

reception is registered independently at the respective nodes. Thekth time stamp recorded at nodei

when communicating with nodej is denoted byTij,k and similarly at nodej the time stamp isTji,k.

The direction of the communication is indicated byEij,k, whereEij,k = +1 for transmission from node

i to nodej andEij,k = −1 for transmission from nodej to nodei. Under ideal noiseless conditions, the

propagation delay between the node pair at thekth time instant isEij,k(Tij,k−Tji,k), and in conjunction

with the polynomial approximation (6), we have

τij,k = rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = Eij,k(Tji,k − Tij,k), (7)

whereτij,k ≡ τij(Tij,k) and without loss of generality we have replacedt with Tij,k.

Remark 2: (Synchronized nodes): By replacingtruetimet byTij,k, we assume without loss of generality

that Tij,k is in the neighborhood oft0 = 0 and the propagation delayτij is measured as a function of

the local time at nodei. Furthermore, we also assume that the clocks of these nodes are synchronized.

This is a valid assumption since for an asynchronous networkof mobile nodes, the clock parameters (up

to first order) can be decoupled from the range parameters andestimated efficiently as shown in [?],

[?], [ ?].
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In practice, the time measurements are also corrupted with noise and hence (7) is

rij + ṙij(Tij,k + qi,k) + r̈ij(Tij,k + qi,k)
2 + . . .

= Eij,k((Tji,k + qj,k)− (Tij,k + qi,k)) (8)

whereqi,k ∼ N (0,Σi), qj,k ∼ N (0,Σj) are modelled as Gaussian i.i.d. noise variables, plaguing the

timing measurements at nodei and nodej, respectively2. Rearranging the terms, we have

rij + ṙijTij,k + r̈ijT
2
ij,k + . . . = Eij,k(Tji,k − Tij,k) + qij,k, (9)

where

qij,k = Eij,k(qj,k − qi,k)− (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .). (10)

For wireless communication withc = 3 × 108m/s, note that the modified range parameters are scaled

by c−1 (5). Furthermore, since the dynamic range model is proposedfor a small time interval, the

term (2r̈ijTij,kqi,k + r̈ijq
2
i,k + . . .) is relatively small and subsequently the noise vector plaguing the

measurements can be approximated asqij,k ≈ Eij,k(qj,k − qi,k) which begets

qij,k ∼ N (0,Σij), (11)

whereΣij = Σi +Σj . Aggregating allK packets, we have

Aij︷ ︸︸ ︷[
1
¯K

tij t⊙2
ij . . .

]

θ
ij︷ ︸︸ ︷



rij

ṙij

r̈ij
...



= τ ij + qij, (12)

where

τ ij , eij ⊙ (tji − tij) ∈ R
K×1, (13)

eij = [Eij,1, Eij,2, . . . , Eij,K ] ∈ R
K×1, (14)

tij = [Tij,1, Tij,2, . . . , Tij,K ] ∈ R
K×1. (15)

2Alternatively, the noise on the time markers can also be modeled as a uniformly random variable, typically rising from
quantization errors. In addition, the proposed fixed variance model can be replaced a the distance-dependent variance model [?],
which penalizes large inter-nodal distances.
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The known Vandermonde matrixAij ∈ R
K×L contains the measured time stamps and is invertible if

Tij,k is unique. The direction vectoreij is encapsulated in the propagation delayτ ij and θij ∈ R
L×1

is a vector containing the unknown range parameters. The noise vector on this linear system isqij =

[qij,1, qij,2, . . . qij,K]T ∈ R
K×1, whereqij,k is given by (11) and the corresponding covariance matrix is

Σij , E
[
qijq

T
ij

]
= ΣijIK ∈ R

K×K . (16)

For a network ofN nodes, the normal equation (12) can be extended to

A︷ ︸︸ ︷[
IN̄ ⊗ 1

¯K
T T⊙2 . . .

]

θ︷︸︸︷


r

ṙ

r̈

...



= τ + q, (17)

where

T = bdiag(t12, t13, . . . t1N , t23, . . .),∈ R
N̄K×N̄ (18)

τ = [τ T
12, τ

T
13, . . . τ

T
1N , τ T

23, . . .]
T ∈ R

N̄K×1 (19)

contain the time stamp exchanges of theN̄ uniquepairwise links in the network andθ ∈ R
N̄L×1 contains

the unknown range parameters for the entire network. The noise vector isq = [qT
12,q

T
13, . . . ,q

T
1N , qT

23, . . .]
T ∈

R
N̄K×1 and the covariance matrix is

Σ , E
[
qqT

]
∈ R

N̄K×N̄K . (20)

Remark 3: (Mobility of the nodes): In (7), we implicity assumed that the nodes are relatively fixed

during a time period ofδtk = |Tij,k − Tji,k| i.e., the propagation time of the message. This is a much

weaker assumption compared to traditional TWR, where for a pair of fixed nodes (i.e.,L = 1), the

pairwise distance is assumed to be invariant for the total measurement period∆T = |Tij,K − Tij,1|.
In reality, when the nodes are mobile, the distance at eachkth time instant is dissimilar and this is

inherently represented in the presented Dynamic ranging model.

III. D YNAMIC RANGING ALGORITHM

Suppose that we have collected all the TWR timing data inA and τ , then in this section we find

an estimate for the unknownθ using the model (17). Given an estimate ofθ, the range coefficients
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θ = [r, ṙ, r̈, . . .] can be directly obtained from (5).

A. Weighted Least Squares

Under the assumption that the covariance matrixΣ is known, a Weighted Least Squares (WLS) solution

θ̂ is obtained by minimizing thel2 norm of the linear system (17), leading to

θ̂ = (ATΣ−1A)−1ATΣ−1τ (21)

which is a valid solution ifK ≥ L for each of theN̄ pairwise links. More generally, whenL is unknown,

an order recursive least squares [?] can be employed to obtain the range coefficients for increasing values

of L, until we reach an optimal polynomial fit for (17).

Furthermore, the Cramér Rao lower Bound (CRB) [?] for the least squares model (17) is

Σθ = (ATΣ−1A)−1 (22)

and in combination with the range scaling (5), the CRB onθ is given by

Σθ , F(ATΣ−1A)−1F (23)

where

Σθ =




Σr

Σṙ

Σr̈

. . .




(24)

is the lowest variance attained by any unbiased estimate of the range parametersθ = [rT , ṙT , r̈T , . . .]T

andF = diag(f)⊗IN̄ ∈ R
N̄L×N̄L. It is worth noting that (21) achieves this lower bound. In addition, the

lower bound is unaffected by the choice of direction vectoreij , ∀ i, j ≤ N , since all direction vectors

are encapsulated in the measurement vectorτ ij , which is not a part of the lower bound (23).

Remark 4: (Direction independence): In general, observe that the proposed solution (21) is feasible

for any direction markerEij,k, which is incorporated inτ (13). Hence communication between the nodes

could be arbitrary or one way, and need not be necessarily bi-directional. Note that, this is not true for

an asynchronous network, where two-way communication is pivotal in jointly estimating the clock and

range parameters [?]. In addition, there is no pre-requisite on the number, sequence or direction of

the communication links [?], [ ?], [ ?], [ ?]. Thus, the proposed solution is amenable to prevalent Two
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Way Ranging (TWR) protocols, such as classical pairwise communication [?], passive listening and

broadcasting [?].

B. Distributed Weighted Least Squares

If we consider independent pairwise communication betweenall the nodes, with no broadcasting, then

the noise in each pairwise link is independent of each other and subsequently the covariance matrix (20)

simplifies to

Σ = bdiag(Σ12,Σ13, . . .Σ1N , Σ23, . . .) . (25)

In which case, the centralized system (17) is a cascade of pairwise linear systems (12) and subsequently

(21) is a generalized version of solving the distributed pairwise system for estimating the pairwise range

parametersθij

θ̂ij = argmin
θ

ij

‖Σ−1/2
ij (Aijθij − τ ij)‖2

= (AT
ijΣ

−1
ij Aij)

−1AT
ijΣ

−1
ij τ ij (26)

which, similar to (21), has a valid solution forK ≥ L for each pairwise link.

IV. D ISTANCES, POSITIONS, VELOCITIES

AND RELATIVE K INEMATICS

In the previous section, we estimatedθ which contains the solution to the unknown range derivatives

θ =
[
r, ṙ, r̈, . . .

]
. Our next motive is to use these range derivatives to estimate the positions of the mobile

nodes. When the nodes are in motion, similar to the pairwise range rates, the position vector of each

node is also a Taylor series in time. However, exploiting piecewise linearity, we assume that the nodes

are in linear motion with no acceleration, which is valid fora sufficiently small measurement period.

(Note that despite this assumption, the pairwise distance is still non-linear.)

A. Linear motion

Let the position ofN (N ≥ P ) nodes in aP -dimensional Euclidean space at thekth time instant be

given byXk = [x1,k,x2,k, . . . xN,k] ∈ R
P×N , wherexi,k ∈ R

P×1 is the position vector of theith node

at thekth message exchange. Furthermore, at time instantt0, theith node has velocityyi ∈ R
P×1 and all
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such velocities are collected inY = [y1,y2, . . . yN ] ∈ R
P×N . Then, under a linear motion assumption,

we have

dyi

dt
= 0P ∀ i ≤ N. (27)

Now, let ∆tk = tk − t0 where for the sake of notational convenience and without loss of generality, we

assumetk = Tij,k ∀ k, then the position matrix at thekth time instant is

Xk = X+∆tkY (28)

whereX , X0 =
[
x1,x2, . . . xN

]
is the initial position matrix at time instantt0 andXk only depends

on the initial Position and Velocity (PV) of the nodes.

B. Range derivatives

To estimate the position matrixXk, we begin by stating explicit expressions for the range derivatives[
r, ṙ, r̈, . . .

]
in terms ofX,Y under linear velocity assumption.

Theorem 1:(Distance non-linearity) The pairwise distancedij(t) between a node pair(i, j) in P ≥ 2

dimensional Euclidean space is a non-linear function of time, even if the nodes are only in linear motion.

The range parameters[rij , ṙij , r̈ij , . . . ] at t = t0 satisfy

rij =
√

xT
i xi + xT

j xj − 2xT
i xj , (29a)

ṙij = r−1
ij (xi − xj)

T (yi − yj), (29b)

r̈ij = r−1
ij

(
‖(yi − yj)‖2 − ṙ2ij

)
. (29c)

Proof: See Appendix A.

Although these range parameters can be estimated up to the(L−1)th order efficiently (as demonstrated

in Section III), in the rest of this article we utilize the information only up toL = 3. Rearranging the

equations forrij , ṙij , r̈ij , from (29) we obtain

r2ij = (xi − xj)
T (xi − xj), (30a)

rij ṙij = (xi − xj)
T (yi − yj), (30b)

rij r̈ij + ṙ2ij = (yi − yj)
T (yi − yj). (30c)
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Extending the above equations for allN nodes, defininggxx = diag(XTX) ∈ R
N×1,gxy = diag(XTY) ∈

R
N×1 andgyy = diag(YTY) ∈ R

N×1, we have

R⊙2 = gxx1
¯
T
N + 1

¯N
gT
xx − 2XTX, (31a)

R⊙ Ṙ = gxy1
¯
T
N + 1

¯N
gT
xy −XTY −YTX, (31b)

R⊙ R̈+ Ṙ⊙2 = gyy1
¯
T
N + 1

¯N
gT
yy − 2YTY, (31c)

where the square matricesR = [rij ] ∈ R+
N×N , Ṙ = [ṙij ] ∈ R

N×N and R̈ = [r̈ij] ∈ R+
N×N contain

the initial pairwise ranges, range rates and rates of range rates, respectively. It is worth noting thatR and

R̈ are Euclidean Distance Matrices (EDM)s, however,Ṙ although symmetric, may contain both positive

and negative values and is thus not an EDM.

It is evident from (31) that without apriori knowledge of a few known PV, estimating the PVs of the

network is an ill-posed problem and hence, we look to find solutions for the relative PV. Applying the

centering matrixP = IN −N−11
¯N

1
¯
T
N ∈ R

N×N on (31) and exploiting the propertyP1
¯N

= 0N , we

have

Bxx = PXTXP, (32a)

Bxy = P(XTY +YTX)P, (32b)

Byy = PYTYP, (32c)

where we for the sake of convenience, we have introduced

Bxx , −0.5PR⊙2P, (33a)

Bxy , −P(R⊙ Ṙ)P, (33b)

Byy , −0.5P(R ⊙ R̈+ Ṙ⊙2)P. (33c)

The equations (32a) and (32c) can now be used to estimate the initial relative positions and relative

velocities of the nodes, via MDS. However, prior to applyingMDS we first present definitions for the

relative PVs.
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C. Relative framework

We define the relative PV vectors as an affine transformation of the corresponding absolute PV (Xk,Y)

i.e.,

Xk = Hx,kXk + hx,k1
¯
T
N , (34)

Y = HyY + hy1
¯
T
N , (35)

whereXk is the relative position matrix of the nodes attk up to a rotationHx,k ∈ R
P×P and translation

hx,k ∈ R
P×1. Along similar lines, we define relative velocity asHyYk and relative velocity up to a

rotation asY, whereHy ∈ R
P×P is an unknown rotation matrix. The relative velocity of the nodesHyY

is relative to the group velocity of the network, which ishy ∈ R
P×1. Under a linear velocity assumption

(27), the group velocity is the rate at which the relative translation vector varies with time i.e.,

hy = ∆t−1
k (hx,k − hx,0). (36)

Furthermore, the rotation matricesHx,k,Hy are orthogonal i.e.,

HT
x,kHx,k = HT

y Hy = Ip ∀ 1 ≤ k ≤ K. (37)

Now, substituting (34) and (35) in (28), and using the property (36) we have

Hx,kXk = Hx,0X+∆tkHyY, (38)

where for the sake of notational simplicity, we useX , X0 to denote the relative position matrix att0.

Now observe that the translation vectorshx,0,hy are unidentifiable from observations (32). Subse-

quently, we shall also see in the following section, that thesolution to the relative PVs are independent

of these translation vector and hence without loss of generality can be considered to be0P for notational

simplicity. Secondly, in order to have a meaningful interpretation of the relative position at thekth time

instant (38), we must choose a reference coordinate system e.g., Hx,0 = I. To this end, without loss of

generality and for notational simplicity, we have the following assumptions

Hx,0 = IP , (39a)

hx,0 = 0P , (39b)

hy = 0P . (39c)
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which simplifies (38) to

Xk = X+∆tkHyY, (40)

whereXk is the position of the nodes at thekth time instant up to a translation, under the assumption

(39). More significantly, observe that the relative position at eachkth time instant is only dependent on

the relative PV andHy. Hence in the following sections, our aim is to estimateX,Y andHy, using the

range parameters (R, Ṙ, R̈) defined in (33) and estimated in Section III.

D. Relative kinematic matrices

Substituting the expression for absolute PV from (34) and (35) respectively in (32), we have

Bxx = PXTXP = PXTHT
x,0Hx,0XP = XTX, (41a)

Bxy = P(XTY +YTX)P

= P(XTHT
x,0HyY +YTHT

y Hx,0X)P

= XTHyY +YTHT
yX, (41b)

Byy = PYTYP = PYTHT
y HyYP = YTY, (41c)

where we use the property (37) in (41a) and (41c), and the assumption (39a) in (41b).Bxx andByy

are Gramian matrices of the relative PVs and the expression for Bxy is the Lyapunov-like linear matrix

equation [?]. It is worth noting that the relative kinematic equationsBxx,Bxy,Byy are dependent only

on the relative PVs and the unique rotation matrix at timet0. For an alternative derivation of the relative

kinematic matrices, refer to Appendix B.

Given an estimate of the range matrices, i.e.,R̂,
̂̇
R,

̂̈
R, either using (21) or alternative methods,

an estimate of the relative kinematic matrices, i.e.,B̂xx, B̂xy, B̂yy can be readily obtained using (33).

Following which, we aim to estimate the relative position using (41a), the relative velocity using (41c)

and the unknown velocity rotation matrixHy using (41b).
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V. A LGORITHMS

A. Relative positions (X) and Relative velocities (Y)

An estimate of the relative PV can be directly obtained by thespectral decomposition of the matrices

Bxx,Byy. Let

B̂xx = UxΛxU
T
x , (42)

B̂yy = UyΛyU
T
y , (43)

whereUx,Uy ∈ R
N×N contain the eigenvectors and the diagonal matricesΛx,Λy ∈ R

N×N contain

the increasingly ordered eigenvalues of the matricesB̂xx, B̂yy respectively. Then, for aP -dimensional

setup, an estimate of the relative positionsX and relative velocitiesY of the nodes up to a rotation is

then

X̂ = Λ1/2
x UT

x , (44)

Ŷ = Λ1/2
y UT

y , (45)

where Λx,Λy ∈ R
P×P contain the firstP nonzero eigenvalues andUx,Uy ∈ R

N×P contain the

corresponding eigenvectors.

Relative positioning (44) from pairwise distance measurements using MDS is a well known technique

[?]. However, our contribution is the definition and estimation of relative velocities , i.e., (35) and (45)

respectively.

B. Rotation matrixHy

The estimate of the relative velocityY up to an arbitrary rotation gives no information on the direction

of the nodes in an anchorless scenario. Hence, it is important to estimate the relative velocities w.r.t. the

orientation of the initial positions i.e.,Hy. Substituting the estimates ofBxy,X,Y from (33b), (44) and

(45) respectively in (41b), we have

B̂xy = X̂
T
HyŶ + Ŷ

T
HT

y X̂, (46)

whereHy is the unknown unitary matrix which can be estimated by minimizing the cost function

Ĥy = argmin
Hy

(
‖B̂xy − (X̂

T
HyŶ + Ŷ

T
HT

y X̂)‖2
)
, (47)
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whereĤy is an estimate ofHy. Now, vectorizing (46) and rearranging the terms, we have

bxy = (Ŷ
T ⊗ X̂

T
) vec(Hy) + (X̂

T ⊗ Ŷ
T
) vec(HT

y )

= (IN2 + J)(Ŷ
T ⊗ X̂

T
) vec(Hy)

= Gvec(Hy), (48)

wherebxy = vec(B̂xy) is a vector of the known measurement matrixB̂xy from (32b) andJ ∈ R
N2×N2

is an orthogonal permutation matrix such thatJvec(Hy) = vec(HT
y ). The unknown unitary matrixHxy

can then be obtained by reformulating (47) and solving

Ĥy = argmin
Hy

‖Gvec(Hy)− bxy‖2 = (GTG)−1Gbxy, (49)

which has a feasible solution forN ≥ P . The proposed solution does not exploit the orthogonailty

property of the unknown rotation matrixHy. Hence, more optimal solutions are feasible [?] by solving

the constrained cost function

Ĥy = argmin
Hy

‖Gvec(Hy)− bxy‖2 s.t HT
y Hy = IP . (50)

VI. RELATIVE POSITION AT TIME INSTANT k

We now briefly summarize the steps to find the relative position at discrete time instances using the

time stamp measurements discussed in Section II.

A. Dynamic MDS

Given the noisy time stampŝTij,k = Tij,k + qi,k,∀ (i, j) node pairs in the network and∀ 1 ≤ k ≤ K

time instances, the relative position of the nodes at thekth time instance can be estimated as follows.

• Solve for an estimate of the Range derivativesR̂,
̂̇
R,

̂̈
R using Dynamic ranging (21).

• Using these estimated range derivatives, construct the relative kinematic matriceŝBxx, B̂xy, B̂yy

defined in (33a).

• Obtain an estimate of the relative PV and unitary matrix from(34), (35) and (49) respectively. Then,

using (40) and defining∆t̂k = T̂ij,k − T̂ij,0, the relative position at thekth time instant is

X̂k,dr = X̂+∆t̂kĤyŶ. (51)
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B. Classical MDS

Alternatively, the relative positions of the nodes can alsobe estimated using Classical MDS (CMDS).

Let Dk , c[τij,k] ∈ R
N×N be the EDM at each discrete time instantk where τij = Tij,k − Tji,k

and D̂k , c[τij,k + qij,k] be the corresponding noisy estimate whereqij,k is the noise plaguing the

measurements as shown in (11). Let−0.5P(D̂⊙2
k )P = ŪkΛ̄kŪ

T
k be an eigenvalue decomposition, then

the solution to the relative position is

X̂k,cmds = Λ̄
1/2
k Ū

T
k (52)

whereΛ̄k ∈ R
P×P contain the firstP nonzero eigenvalues and̄Uk ∈ R

N×P the corresponding eigen-

vectors.

Note that the relative position estimate using CMDS i.e.,X̂k,cmds is up to an arbitrary rotation and

translation, where aŝXk,dr yields the relative position of the nodes up to a translationalone.

VII. S IMULATIONS

Simulations are conducted to evaluate the performance of the proposed solutions. We consider a cluster

of N = 10 nodes inP = 2 dimensions, whose coordinatesX and velocitiesY are arbitrarily chosen as

X =


−382 735 959 630 800

9 7 727 366 −858


 ,

Y =


−6 8 −1 −10 3

8 −9 −7 −2 −8


 .

Without loss of generality, we assume that all nodes employ one-way communication, i.e.,eij =

1
¯K

,∀ i, j ≤ N . Furthermore, all nodes communicate with each other withinthe same time interval

∆T = [Tij,1, Tij,K ] = [−3, 3] seconds and the transmit time markers are chosen to be linearly spaced

within this interval. We consider a classical pairwise communication scenario, where all the pairwise

communications are independent of each other and thusΣ = σ2IN̄K .

The metric used to evaluate the performance of the range parameters is the Root Mean Square Error

(RMSE), given by RMSE(z) =

√
N−1

exp
∑Nexp

n=1 ‖ẑ(n)− z‖2, where ẑ(n) is the nth estimate of the

unknown vectorz ∈ R
N̄×1 during Nexp = 1000 Monte Carlo runs. To qualify these estimates, the

square Root of the Cramér Rao Bound (RCRB) is plotted along with the respective RMSE. We also use

the same metric for evaluating the rotationhxy = vec(Hxy).
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However, since the relative PVs (X, Y) andXk are known only up to an arbitrary rotation, we define

the RMSE for these matrices as RMSE(Z) =

√
N−1

exp
∑Nexp

n=1 ‖vec(HẐ(n)− ZP)‖2, whereP is the

centering matrix andH is the optimal Procrustes rotation, given the matrixZ and the corresponding

estimateẐ(n) of thenth Monte Carlo run. See Appendix C. For the relative PV the Cramér Rao bounds

are derived (Appendix D) and the corresponding RCRBs are plotted along with the RMSEs.

A. Varying Number of communications (K)

The dynamic ranging algorithm (21) is implemented forL = 4, where the number of communications

K is varied from10 to 100. The noise on the propagation delays isσ = 0.1 meters, which is typical in

classical TWR [?] or in conventional anchored MDS-based velocity estimation using Doppler measure-

ments [?]. Fig. 2a shows the RMSE of the first3 range coefficients (which are relevant for estimating the

relative velocities) achieving the RCRB asymptotically. The PV estimates are obtained using these range

coefficients via (44), (45) and the corresponding RMSEs are plotted in Fig. 2b, along with respective

RCRBs. Furthermore, the RMSEs of the relative rotation matrix Hxy estimate (49) is shown in Fig. 2c,

where the relative position and velocity estimates are used.

B. Varying noise on time measurements (σ)

A second experiment is carried out by varyingσ in the range[−10, 0] dB meters for a fixed number

of communicationsK = 100. The RMSEs of the range coefficients obtained via the dynamicranging

algorithm (21) are plotted in Fig. 3a, which achieve the RCRBasymptotically. The RMSEs on the relative

PV are shown in Fig. 3b, and the RMSE of the relative rotation matrix is presented in Fig. 3c, in addition

to the corresponding RCRBs. To the best of the our knowledge,given the novelty of the data model and

the corresponding solutions, there are no other relative velocity estimators available for comparison.

C. Relative position error over time

Figure 4 shows the RMS plots forXk,cmds andXk,dr for a time duration∆T = [−3, 3] with Gaussian

noise ofσ = 0.1 meters on the distance measurements. TheXk,cmds estimate steadily achieves a constant

RMSE, which is expected since CMDS is independently appliedat eachkth time instant, to estimate

the relative positions of the nodes. On the contrary, the relative position estimation via dynamic ranging

betters this estimate aroundt0, where the improvement of up to a factor
√
K is primarily due to averaging

overK measurements. However, the error estimate ofXk,dr increases as we move away fromt0, which

is typical of Taylor series approximation. In addition, thepoor performance of the Classical MDS based
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Fig. 2: RMSEs of (a) range parameters, (b) relative position, relative velocity and (c) relative rotation matrix for
varying number of communications (K) between the nodes forσ = 0.1 meters
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Fig. 3: RMSEs (a) range parameters, (b) relative position, relative velocity and (c) relative rotation matrix for
varying noise (σ) on the Time measurements with number of communicationK = 100
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Fig. 4: RMSE of relative positions at discrete time instancestk during the time interval∆T = [−3, 3] with
K = 100 for σ = 0.1 meters

algorithm for relative velocity estimate (see Fig. (2b), Fig. (3b)) also hampers the solution forXk,dr. An

improved estimate for relative velocity estimation is feasible, which will be addressed in future work.

VIII. C ONCLUSIONS

A novel framework is proposed to estimate the relative positions up to a rotation for ananchorless

network of mobile nodeswithout the use of Doppler measurements. The proposed leastsquares based

dynamic ranging algorithm employs a classical Taylor series based approximation, which extracts pairwise

distance derivatives at a given time instant efficiently. Under a linear velocity assumption, we show that the

time-varying relative positions can be estimated from the derivatives of the pairwise distances. The initial

relative positions, relative velocities and a unique rotation matrix are sufficient to describe the relative

motion of the nodes during a small time interval. Subsequently, closed form MDS-based solutions are

presented to jointly estimate the relative positions and relative velocities of the nodes. In addition, the

unique rotation matrix which relates the direction of the relative motion w.r.t. the relative position is also

estimated via least squares. The Cramér Rao bounds are alsoderived for the range parameters, and the

relative PV and simulations are conducted to verify and analyze the performance of the proposed least

squares estimators. The presented solutions are suited forautonomous networks with minimal a priori

knowledge, where the positions and velocities need to be estimated atcold start. In practice, over longer

durations, the estimated parameters can be readily extended to both relative and absolute tracking, which

is beyond the scope of this article and will be addressed in a follow-up work.
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APPENDIX A

DISTANCE NON-LINEARITY

Consider an arbitrary pair of mobile nodes with time-varying positions{x̄i(t), x̄j(t)} and constant

velocities{yi,yj}. In addition, we define the position of the nodes att = t0 as{xi,xj}. To show that

the time-varyingdij(t) is an infinitely differentiable function we derive the first few derivatives ofdij(t)

w.r.t. time. By definition, the initial pairwise distance between the nodes is the Euclidean norm

rij , dij(t0) = ‖xi − xj‖ (53)

1) First order ṙij : From (53), we can compute the first-order range parameter as

ṙij =
d

dt
dij(t)

=
1

2rij

d

dt

(
(x̄i(t)− x̄j(t))

T (x̄i(t)− x̄j(t))
)

=
1

rij

(
yT
i xi + yT

j xj − yT
i xj − yT

j xi

)

= r−1
ij (yi − yj)

T (xi − xj) (54)

2) Second order̈rij: Similarly, under the assumption of constant velocities, the second-order range

parameter using (53) is

r̈ij =
d2

dt2
dij(t)

= −r−2
ij ṙij

(
(yi − yj)

T (xi − xj)
)

+r−1
ij

d

dt

(
(yi − yj)

T (x̄i(t)− x̄j(t))
)

= −r−1
ij ṙ2ij + r−1

ij (yi − yj)
T (yi − yj)

= r−1
ij

(
‖yi − yj‖2 − ṙ2ij

)
(55)

3) Third order
...
r ij : The third-order derivative of the range parameter under linear motion (53) yields

...
r ij =

d3

dt3
dij(t)

= −r−2
ij ṙij(‖yi − yj‖2 − ṙ2ij)− r−1

ij

d2

dt2
(d2ij(t))

= −r−1
ij ṙij r̈ij − 2r−1

ij ṙij r̈ij

= −3r−1
ij ṙij r̈ij (56)
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The higher-order range derivatives can be derived along similar lines.

APPENDIX B

ALTERNATIVE DERIVATION FOR Bxx,Bxy Byy

With an abuse of notation, letD(t) ∈ R
N×N be the time-varying Euclidean Distance Matrix (EDM)

for a network ofN nodes inP -dimensional Euclidean space and let

B(t) = −0.5PD(t)⊙2P, (57)

whereP = IN −N−11
¯N

1
¯
T
N is the centering matrix. Then observe that att = t0,

B(t0) , Bxx = XTX (58)

and the subsequent first derivative is

Bxy ,
dB(t)

dt
, −P

(
D(t)⊙ Ḋ(t)

)
P

∣∣∣
t=t0

= XTHxyY +YTHT
xyX. (59)

A step further, differentiating again w.r.t. time and substituting t = t0 we have

d2B(t)

dt2

∣∣∣
t=t0

, Byy , −0.5P(R ⊙ R̈+ Ṙ⊙2)P = YTY (60)

where Ṙ = [ṙij ] ∈ R
N×N and R̈ = [r̈ij ] ∈ R

N×N
+ which, perhaps not surprisingly, concur with the

relations obtained in (41) and offer an alternative verification.

Secondly, unlike the time-varying distance functionD(t), which is infinitely differentiable,B(t) is a

second-order function under the linear velocity assumption (27). Differentiating (60) yet again, we have

d3B(t)

dt3

∣∣∣
t=t0

= −0.5P(R ⊙ ...
R+ 3Ṙ⊙ R̈)P = 0N,N , (61)

since generalizing (56) for allN nodes yields

d3R

dt3
,

...
R = −3R−1 ⊙ Ṙ⊙ R̈. (62)

The result (61) is expected, since under the constant velocity assumption

(63)
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APPENDIX C

PROCRUSTES ALIGNMENT

Let Z,Z ∈ R
P×N matrices which are identical up to a rotation, then there exists a rotation matrixH,

which minimizes the following cost function

min
H

‖Z−HZ‖ s.t. HTH = IP (64)

and the corresponding optimalProcrustes rotation[?] is given by

Ĥ = VzU
T
z (65)

whereVz,Uz are obtained via the singular value decomposition of the matrix productZZT , i.e.,

UxLzVz = ZZT . (66)

APPENDIX D

CRAMÉR RAO BOUNDS FORX,Y

A. Relative positionX

The problem of estimating the unknown positionsφx , vec(X) =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]T
∈ R

NP×1 from

the distance measurements is formulated as

ax(φx)− dx = ηx (67)

which is obtained by vectorizing (31a).dx = [r12, r13, . . . , rN(N−1)] ∈ R
2N̄×1 is the set ofnon-zero

Euclidean distances betweenN points, withN̄ =


N

2


. The distance vector is related to the positions

by a(φx) =
[
ax(x1,x2), ax(x1,x3), . . . , ax(xN−1,xN )

]T
∈ R

2N̄×1 where,

ax(xi,xj) ,
(
xT
i xi + xT

j xj − 2xT
i xj

) 1

2 . (68)

Furthermore, the noise plaguing the distance vector isηx ∼ N (0,Σηx), whereΣηx = blkdiag(Σr,Σr)

andΣr is given by (24).

The Cramér Rao lower Bound (CRB) for any unbiased estimate of φx, is given by the inverse of the

Fisher Information Matrix (FIM) i.e.,

Tr
(
E

{
(φ̂x − φx)(φ̂x − φx)

T
})

, Tr(Σx) ≥ Tr(F−1
x ) (69)
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whereφ̂ is an estimate of the unknown locationθ andΣx is the lowest achievable covariance. For the

data model (67), the FIMFx ∈ R
NP×NP is

Fx =

[
∂ax(φx)

∂φT
x

]T
Σ−1

ηy

[
∂ax(φx)

∂φT
x

]
(70)

where the Jacobian is of the form

∂ax(φx)

∂φT
x

=

[
∂ax(φx)

∂xT
1

,
∂ax(φx)

∂xT
2

, . . . ,
∂ax(φx)

∂xT
N

]
(71)

whoseith element

[
∂ax(φ)

∂xT
i

]
is given by

[
∂a(x1,x2)

T

∂xT
i

,
∂a(x1,x3)

T

∂xT
i

, . . . ,
∂a(xN−1,xN )T

∂xT
i

]

where∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(xj ,xk)

∂xT
i

=





d−1
jk

(
xj − xk

)T
if i = j (72a)

−d−1
jk

(
xj − xk

)T
if i = k (72b)

0TP . otherwise (72c)

The FIM (70) is rank deficient by3 for aP = 2 dimensional scenario [?], [?] and is thus non-invertible.

Hence, we have the achievable CRB on the relative position as

Tr(Σx) ≥ Tr(F†
x). (73)

B. Relative velocityY

Vectorizing (31c), the relative velocityφx , vec(Y) =
[
yT
1
,yT

2
, . . . ,yT

N

]T
∈ R

NP×1 estimation is

modeled as

ay(φy)− d⊙2
y = ηy (74)

wherea(φy) =
[
ay(y1

,y
2
), ay(y1

,y
3
), . . . , ay(yN−1

,y
N
)
]T

∈ R
2N̄×1 and

ay(yi
,y

j
) , yT

i
y
i
+ yT

j
y
j
− 2yT

i
y
j
. (75)
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The distance squared vectord⊙2
y = {rij r̈ij + ṙ⊙2

ij }∀ i, j ≤ N, i 6= j ∈ R
2N̄×1, whererij, ṙij , r̈ij are the

corresponding range estimates. The noiseηy = {ηy,ij} in the data model is

ηy,ij = rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij + qr,ijqr̈,ij + qṙ,ijqṙ,ij

≈ rijqr̈,ij + r̈ijqr,ij + 2ṙijqṙ,ij, (76)

whereqr,ij, qṙ,ij, qr̈,ij are the noise variable plaguing the range parametersrij , ṙij , r̈ij respectively. The

covariance of the noise is subsequently defined as ,

Σηy = E
{
ηyη

T
y

}
≈ blkdiag(Σηy,Σηy)‘ (77)

where

Σηy ≈ RΣr̈R+ R̈ΣrR̈+ 4ṘΣr̈Ṙ , (78)

R = diag(r), Ṙ = diag(ṙ), R̈ = diag(r̈) are the range parameters andΣr,Σṙ,Σr̈ are the corresponding

covariances matrices (24). The Cramér Rao lower Bound (CRB) for φy is given by

Tr
(
E

{
(φ̂y − φy)(φ̂y −φy)

T
})

, Tr(Σy) ≥ Tr(F−1
y ) (79)

where φ̂y is an estimate of the unknown velocityφ and Σy is the lowest achievable covariance and

Fy ∈ R
NP×NP is

Fy =

[
∂ay(φy)

∂φT
y

]T

Σ−1
ηy

[
∂ay(φy)

∂φT
y

]
(80)

where the Jacobian is of the form

∂ay(φy)

∂φT
y

=

[
∂ay(φy)

∂yT
1

,
∂ay(φy)

∂yT
2

, . . . ,
∂ay(φy)

∂yT
N

]
(81)

whoseith element

[
∂ay(φ)

∂yT
i

]
is given by

[
∂a(y

1
,y

2
)T

∂yT
i

,
∂a(y

1
,y

3
)T

∂yT
i

, . . . ,
∂a(y

N−1
,y

N
)T

∂yT
i

]
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where∀1 ≤ j, k ≤ N, j 6= k, we have

∂a(y
j
,y

k
)

∂yT
i

=





2
(
y
j
− y

k

)T
if i = j (82a)

−2
(
y
j
− y

k

)T
if i = k (82b)

0TP . otherwise (82c)

Similar to Fx, the FIM (80) on velocity is also rank degenerate by3 for a P = 2 dimensional case

and hence we have the CRB on the relative velocity as

Tr(Σy) ≥ Tr(F†
y). (83)
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