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Abstract

A wireless sensor network (WSN) is considered where each node estimates a number of node-specific desired signals

by means of the distributed adaptive node-specific signal estimation (DANSE) algorithm. It is assumed that the

topology of the WSN is constructed based on one of two approaches, either a top-down approach where the WSN is

composed of heterogeneous nodes, or a bottom-up approach where the nodes are not necessarily heterogeneous. In

the top-down approach, nodes with the largest energy budgets are designated as cluster heads and the remaining nodes

form clusters around these nodes. In the bottom-up approach, an ad-hoc WSN is partitioned into a set of smaller

substructures consisting of non-overlapping cliques that are arranged in a tree topology. These two approaches are

shown to be conceptually equivalent, in that the same building blocks constitute both envisaged topologies, and

the functionality of the DANSE algorithm is extended to such topologies. In using the DANSE algorithm in such

topologies, the WSN converges to the same solution as if all nodes had access to all of the sensor signal observations,

and provides faster convergence when compared to DANSE in a single tree topology with only a slight increase in

per-node energy usage.
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1. Introduction

A wireless sensor network (WSN) is deployed in a sensing environment in order to monitor or estimate a set of

desired signals or set of environmental parameters. The sensing devices, or nodes, that form the WSN are typically

able to accomplish this estimation by means of cooperative communication, by combining the sensor data collected by

the di↵erent nodes. Instead of each node relaying this information to a fusion center, the nodes themselves can perform

a local estimation which incorporates information from neighboring nodes, thereby distributing the estimation of the

desired signals or parameters throughout the WSN.

In this paper, we consider WSNs where each node is tasked with estimating a number of node-specific desired

signals based on sensor signal observations of the entire WSN. The nodes can accomplish this estimation by means

of the distributed adaptive node-specific signal estimation (DANSE) algorithm. In the DANSE algorithm each node

transmits only a fused version of the sensor signal observations to other nodes in the WSN, and yet the algorithm

converges to the same solution as if each node receives all of the sensor signal observations from every node in the

WSN. The DANSE algorithm has been introduced in fully connected WSNs [1, 2] and in tree topologies [3] (T-

DANSE) and it has been applied for, e.g., speech enhancement in wireless acoustic sensor networks [4, 5] and artifact

removal in electroencephalography (EEG) networks [6].

However, in these existing versions of the DANSE algorithm, the adherence to a single topological structure can

have a negative impact on the resources and performance of the algorithm. In the fully connected case, each node

must communicate with every other node in the WSN, which over large distances can quickly deplete the energy

resources of the nodes. Conversely, while a tree topology can rely on a nearest neighbor communication strategy

to reduce energy consumption, the branching of the tree will lead to an increased number of hops in between nodes

which e↵ects the input-output delay as well as the convergence speed of the DANSE algorithm. We therefore look

to implement the DANSE algorithm in WSNs with more than a single topological structure, which will allow for a

trade-o↵ in performance which lies in between that of a single fully connected network and a single tree topology.

The topology of these WSNs will be constructed based on one of two approaches, namely either a top-down approach

where the WSN is composed of heterogeneous nodes, or a bottom-up approach where the nodes are not necessarily

heterogeneous.

With the multitude of di↵erent devices that can form a WSN, it is natural to assume that some of these devices come

equipped with larger energy budgets and processing capabilities. In the top-down approach the nodes with the largest

energy budgets are designated as cluster heads and the remaining nodes of the WSN form clusters around these nodes.

Such heterogeneous WSNs o↵er many benefits compared to homogeneous WSNs and have been explored in order to

extend the lifetime of WSNs [7, 8]. They have been used for such applications as wireless body area networks [9, 10]

and their benefits have been outlined for use in wireless multimedia sensor networks in [11]. The heterogeneous nodes

can be thought of as a partitioning of the WSN into two layers, where the top layer consists of the cluster heads, and

the bottom layer consists of the member nodes of the clusters. This type of partitioning can then easily be abstracted
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to a WSN that is primarily hierarchical in nature.

WSNs with a hierarchical structure for distributed parameter estimation have been studied where the actual esti-

mation is performed at a fusion center [12] whereas in this paper we look to distribute the estimation throughout the

network. These methods have also been extended to distributed hierarchical WSNs, as the one envisaged in this paper,

where the parameter estimation takes place using di↵usion or consensus based algorithms [13, 14, 15, 16]. In [17, 18]

the WSN is tasked with estimating a desired signal where each of the received signals at the individual clusters are

correlated with one another. However, all of the information is again transmitted to a fusion center which is the only

location in the WSN that performs an estimation of the desired signals.

Contrary to the top-down approach, in the bottom-up approach, the nodes are no longer necessarily heterogeneous

in nature and the WSN is first formed in an ad-hoc topology. An attractive attribute of an ad-hoc WSN is a lack of

fixed infrastructure which allows for greater flexibility in node deployment. This ad-hoc WSN can initially be formed

with a variety of constraints in mind such as: energy conservation [19, 20]; communication bandwidth [21, 22]; and

security [23]. However, due to the lack of fixed infrastructure, it has been shown that ad-hoc WSNs can su↵er from

scalability issues3 due to the fact that nodes must monitor and retain network wide routing tables which can require

a significant portion of the available network resources [24, 25]. This problem becomes even more prevalent if the

nodes are mobile requiring constant reconfiguration of these routing tables to pass information throughout the network

[26].

Fortunately many of the routing and scalability challenges associated with ad-hoc WSNs can be mitigated by

partitioning the ad-hoc configuration into a set of smaller, simpler topologies or substructures [27, 28, 29]. These

substructures also lessen the impact of mobile nodes as only a relatively small number of these substructures is

a↵ected at any one time [30]. In order to determine these substructures the WSN can rely on a so-called topology

control, which looks to extract these substructures from the original ad-hoc configuration [28, 31, 32, 33, 34]. In

the bottom-up approach the WSN is partitioned into a set of smaller substructures, namely non-overlapping cliques,

which are connected with each other in a tree topology.

The proposed top-down and bottom-up approaches will be shown to be conceptually equivalent, in that the same

building blocks constitute both the envisaged heterogeneous and mixed-topology WSNs. By way of pre-defined

fusion rules, the functionality of the DANSE algorithm is then extended to such mixed-topology WSNs. The DANSE

algorithm in a mixed-topology will be shown to converge to the same solution as if the nodes had access to all of the

sensor signal observations in the WSN. Simulations will show that the mixed-topology WSN consumes a significantly

lower amount of energy on a per-node basis when compared to the fully connected case. Furthermore, since the total

number of links is larger than in an exact (clique-free) tree, the average number of input signals per-node increases,

yielding more degrees of freedom at some nodes to perform an update. On average, this results in an overall faster

3Since the DANSE algorithm relies on in-network signal fusion, the nodes do not perform explicit routing tasks through the network, and hence

these scalability issues do not really apply here. Nevertheless, we will show that pruning an ad-hoc network into a set of smaller substructures is

still advantageous within the context of DANSE.

3



convergence time than T-DANSE, i.e., the DANSE algorithm operating in a clique-free tree, with only a slight increase

in per-node energy usage.

This paper is structured as follows : Section 2 discusses the data model and notation used throughout the paper as

well as optimal filtering based signal estimation in a centralized WSN, where it is assumed that all sensor signal obser-

vations are available at each node. Section 3 reviews the DANSE algorithm in a fully connected WSN, highlighting its

basic operation and convergence properties. Section 4 introduces the per-node signal fusion rules using the top-down

approach where the WSN consists of heterogeneous nodes. Section 5 introduces the per-node signal fusion rules us-

ing the bottom-up approach where the WSN first has an ad-hoc topology and is partitioned into smaller substructures.

Simulations are performed in Section 6, which highlight the improved convergence properties in the envisaged WSNs

and also compare the energy usage to that of DANSE in fully connected and clique-free tree topologies. Finally, in

Section 7, conclusions are presented.

2. Data model

We envisage a WSN containing N nodes that are distributed throughout an environment. Each sensor node,

n 2 {1, . . . ,N}, observes Mn complex valued sensor signals, which can be stacked in an Mn-dimensional vector, yn[t]

where t 2 N is the discrete time index. The signals are assumed to be short-term stationary and ergodic and for the

sake of brevity the time index t will be omitted from the following derivations, unless required for further explanation.

We define an M-dimensional stacked vector, y, where M =
PN

n=1 Mn, as

y = [yT
1 . . . y

T
N]T (1)

where the T indicates the transpose operator.

This stacked vector can be decomposed as

y = d + v (2)

where d is the M-dimensional desired signal vector and v is theM-dimensional additive noise vector. We assume that

the desired signals consist of a mixture of Q source signals, i.e.,

d = As (3)

where A is a deterministic (but unknown) M ⇥ Q-dimensional steering matrix with full row rank and s is a stochastic

Q-dimensional vector containing Q non-coherent source signals. This type of desired signal vector is often used for

such applications as speech enhancement with possibly more than one desired speaker [35], geophysical signals with

many exciters [36], and biomedical signals such as EEG [37].

Using this notation, the sensor signals of a node n may be given as

yn = dn + vn (4)

4



where dn and vn are both Mn-dimensional subvectors of the full vectors d and v respectively. The desired signals of

node n, dn, can then be represented as a mixture of the Q source signals with a Mn ⇥ Q-dimensional steering matrix

An similarly to (3) where, An contains a subset of the rows of A corresponding to the sensor signals of node n.

2.1. Linear signal estimation

We first assume that all of the sensor signal observations are collected and processed in a centralized fashion, i.e.,

each node broadcasts all of its sensor signal observations so that all of the sensor signals collected by the WSN are

available at every node. In Section 3 we describe how this estimation can be done in a decentralized fashion where

each node only has access to its own sensor signal observations and fused sensor signal observations from other nodes.

The goal of each sensor node is to estimate J node-specific desired signals, stacked in a J-dimensional vector dn,

from the M-dimensional vector y where it is also assumed that Mn > J. The node-specific desired signals are a linear

mixture of the source signals s, with a J ⇥ Q steering matrix An, i.e.,

dn = Ans, 8n 2 {1, . . . ,N} . (5)

Although this is not a strict requirement, the node-specific desired signals in dn are typically assumed to be a subset

of the desired signals, dn, of node n, in which case the matrix An is a subset of the rows of An and A in (3). This also

facilitates the computation of a linear estimator based on the sensor signals only, without any prior knowledge of An

(see Section 2.2). For the sake of an easy exposition of the DANSE algorithm presented in Section 3 and without loss

of generality, we set J = Q such that An becomes a square matrix.

Node n computes the M ⇥ Q linear minimum mean squared error (LMMSE) estimator,

bWn = arg min
Wn

E{||dn �WH
n y||22} (6)

where E{.} is the expectation operator and H indicates the conjugate transpose operator. It is noted that each node is

tasked with sensor signal denoising, i.e., node n aims to estimate the desired component dn as it impinges on its local

sensor(s). Although the desired component can be the result of a mixing process (see (5)), the aim is not to unmix

them. This is important in, e.g., speech enhancement in binaural hearing aids to preserve spatial cues in the estimated

signals [38], to preserve spatial information in the denoised signals for local direction-of-arrival estimation [39], or

for artifact removal in EEG sensor networks where the local artifact response in each individual EEG channel has to

be subtracted [6].

The solution to (6) is given as,
bWn = R�1

yy Rydn
(7)

where Ryy = E{yyH} is an M ⇥ M-dimensional sensor signal correlation matrix and Rydn
= E{yd

H
n } is an M ⇥ Q-

dimensional matrix representing the cross-correlation between the sensor signals and the node-specific desired signals.

Note, that while the node-specific desired signals, d̄n, are unobservable at each node, di↵erent estimation strategies
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may be used to estimate Rydn
= E{yd

H
n }. One of these methods, which assumes that the sources in s have an on-o↵

behavior, will be explained in Section 2.2.

The estimated desired signals at node n are then given as

bdn = bWH
n y. (8)

2.2. Estimation of signal statistics

In order to compute the LMMSE estimator at each node, it is implicitly assumed that the second-order statistics

are can be estimated throughout the estimation procedure. For the cross-correlation, Rydn
, this is not straightforward,

and its estimation often requires additional assumptions. For example, one can assume that training sequences of the

dn signals are known, or that the node-specific desired signals have an on-o↵ behavior which is used to estimate the

noise statistics4, as often done in speech enhancement algorithms [35]. In signal segments where only noise is present

in the signal, i.e., y = v a so-called noise-only correlation matrix is estimated as Rvv = E{vvH} which has a dimension

of M⇥M and when the desired sensor signal plus noise is present Ryy is estimated. Based on the assumed stationarity

and ergodicity, the Ryy and Rvv can readily estimated by time-averaging all the sensor signal observations.

Since the desired signals and noise are assumed to be statistically independent and hence uncorrelated, a so-called

desired signals correlation matrix may be estimated by subtracting the noise-only correlation matrix from the sensor

signals correlation matrix, i.e.,

Rdd = Ryy � Rvv. (9)

The cross-correlation between the sensors signals and the node-specific desired signals is then found using (9) as

Rydn
= E{yd

H
n }

= E{dd
H
n } + E{vd

H
n }

= E{dd
H
n }

= Rddn
. (10)

Hence, the cross-correlation between the sensor signals and the node-specific desired signals may be found by select-

ing the columns of the full desired signals correlation matrix, Rdd, that correspond to the node-specific desired signals

dn. We note that in practice inevitable estimation errors arise causing sub-optimal solutions [40, 41], however, these

errors are neglected in the sequel.

3. DANSE in a fully connected network

We now aim to achieve the same LMMSE signal estimate as the one presented in (8) at each node, n 2 {1, . . . ,N},
without each node having to broadcast all of its sensor signal observations. This is accomplished in a fully connected

4It is also assumed that the nodes come equipped with a mechanism to detect when the desired signals are active or not.
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network by means of the DANSE algorithm [1], where each node now broadcasts a fused version of its sensor signal

observations to every other node in the WSN. While the following analysis is performed in a fully connected network,

the DANSE algorithm can also be applied to tree topologies [3] with some slight modifications. In Sections 4 and 5

the DANSE algorithm will be extended to topologies that are composed of a combination of fully connected and tree

topologies. However, this will substantially change the convergence properties, as well as the theoretical convergence

analysis and the conditions to obtain convergence.

We first partition the LMMSE estimator as bWn = [bWT
n1 . . .

bWT
nN]T , where each bWnq represents a CMq⇥Q matrix that

is applied to the sensor signals of node q, yq. The node-specific LMMSE problem given in (6) is then equivalent to

bWn =

2
66666666666666664

bWn1
...

bWnN

3
77777777777777775
= arg min
{Wn1,...,WnN }

E{||dn �
X

q

WH
nqyq||22}. (11)

The DANSE algorithm uses an iterative updating scheme where, at every iteration i, a node updates its node-

specific parameters, which will be defined in the sequel, in a round-robin fashion. We introduce an intermediate

estimate of bWn at iteration i as Wi
n, where Wi

n = [WiT
n1 . . .W

iT
nN]T . Each node n then broadcasts observations of a

fused, i.e. linearly compressed, version of its sensor signal observations which is given as the Q-dimensional data

vector

zi
n =WiH

nnyn. (12)

Note that Wi
nn then acts as both a compressor matrix and as part of the network-wide estimator Wi

n. Node n now has

access to observations of its own sensor signal observations and N � 1 fused signals, zi
q, 8q 2 {1, . . . ,N}\{n}, from

other nodes.

In Section 2.1 it was stated that the dimension of the node-specific desired signal vector, dn was set to the dimen-

sion of the source signal vector, s, i.e. J = Q which is a requirement for the convergence of the DANSE algorithm [1].

If J < Q, since nodes have access to auxiliary channels that contain desired signal components as defined in (4), one

can add auxiliary estimation problems to obtain J = Q in order for the DANSE algorithm to converge. These auxiliary

channels can however be neglected when computing the local signal estimate (see (14) and (15)). Likewise for J > Q,

one can remove J � Q channels in dn to apply the DANSE algorithm. It can then be shown that, after convergence of

the DANSE algorithm, the removed channels can also be optimally estimated from the resulting fused signals. This

is because the removed J � Q channels from dn are linear combinations of the first Q channels, assuming An has full

rank (see (5)). We note that in [1], for the case when J > Q and where the J � Q channels are not removed, the nodes

still converge to a minimal MSE solution, albeit with a suboptimal compression since there will be linear dependency

in the broadcast signals zi
n.

We assume that each node n collects observations of the fused signals from other nodes which define a stacked

vector, zi
�n = [ziT

1 , . . . , z
iT
n�1, z

iT
n+1, . . . , z

iT
N ]T , where the subscript �n indicates that the fused signals of node n are not

included in the vector. The sensor signals at node n and the fused signals from the other nodes are placed into a

7



stacked vector given as

eyi
n =

2
666666664

yn

zi
�n

3
777777775 . (13)

In between iteration i and iteration i+ 1, each node n applies a local LMMSE estimatorfWi
n to the signals ineyi

n, to

compute the signal estimateedi
n as

edi
n =fWiH

n eyi
n (14)

=WiH
nnyn +GiH

n�n
zi
�n (15)

wherefWi
n = [WiT

nn GiT
n�n

]T and where Gi
n�n
= [GiT

n1, . . . ,G
iT
n�1,G

iT
n+1, . . . ,G

iT
nN]T consists of N � 1, Q ⇥ Q matrices that

are applied to the fused signals from other nodes.

We now denote a block length L, which is the number of observations a node collects between DANSE iterations.

At iteration i, one particular node n performs an update of its local LMMSE estimatorfWi
n based on the L most recent

observations of ỹn given as

fWi+1
n =

2
666666664

Wi+1
nn

Gi+1
n�n

3
777777775 = arg min

Wnn,Gn�n

E
⇢�����

�����dn �


Wnn Gn�n

�H
eyi

n

�����

�����
2

2

�
. (16)

The solution to (16) is given as

fWi+1
n =

2
666666664

Wi+1
nn

Gi+1
n�n

3
777777775 = (Ri

eyey)�1Ri
eydn

(17)

where Ri
eyey = E{eyieyiH} and Ri

eydn
= E{eyid

H} which can be estimated based on the locally available signals in a similar

manner as presented in Section 2.2.

Based on (12) and (15) the network-wide estimator LMMSE Wi
n that defines the estimate of dn in between itera-

tions i and i + 1 is parameterized as

Wi
n =

2
66666666666666664

Wi
11Gi

n1
...

Wi
NNGi

nN

3
77777777777777775

(18)

where node n controls Wi
nn and Gi

n�n
. Since node n can control its own estimator matrix Wi

nn, we set Gnn = Inn by

definition to minimize the degrees of freedom, where Inn is a Q ⇥ Q identity matrix. The parameterization of (18)

simultaneously defines a solution space for all Wi
n ,8n 2 {1, . . . ,N}.

Between any two nodes in the network, say node n and node q, the node-specific desired signals, dn and dq, are

related by their node-specific steering matrices, i.e.,

dn = Ans

= An
⇣
Aq
⌘�1

Aqs

= An
⇣
Aq
⌘�1

dq. (19)
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Using this relationship between the node-specific desired signals, the LMMSE estimators can be related to one another

by

8n, q 2 {1, . . . ,N} : bWn = bWqAnq (20)

where Anq =
⇣
Aq
⌘�H

A
H
n . Therefore by setting Wi

nn = bWnn and Gi
nq = Anq, 8n, q 2 {1, . . . ,N} it is seen that the optimal

LMMSE estimators, bWn, 8n 2 {1, . . . ,N}, lie in the parameterized solution space of (18). It was shown in [1] that if

the node-specific desired signals are described by (5), and if the nodes perform the update (16) in a sequential round

robin fashion, then the parameterized network-wide estimators (18) indeed converge to the corresponding centralized

LMMSE estimators (11), i.e.,

limi!1Wi
n = bWn,8n 2 {1, . . . ,N} (21)

and hence each node n 2 {1, . . . ,N} is able to estimate its node-specific desired signal, dn as if it had access to all the

sensor signal observations of all other nodes, i.e.,

limi!1edi
n = dn. (22)

Remark 1. In order to minimize the communication cost, the iterations of the DANSE algorithm are usually spread

out over time. This means that the same block of data will not be transmitted in sequential iterations, i.e., each nodes

broadcast signal at iteration i, zi
n, will consist of a di↵erent time segment, i.e., over the next L sample times, than

the broadcast signal at iteration i + 1, zi+1
n . This di↵ers to other distributed algorithm which require that the same

block of data is passed multiple time throughout the WSN [34, 42]. This relies on the assumption that the second-

order statistics are fixed over time or slowly varying so that a Ri
eyey and Ri

eydn
can be reliably estimated. An improved

convergence speed or tracking performance can be obtained by iterating multiple times over the same signal segment

of L observations, i.e., each nodes broadcasts signal zi
n consists of the same segment of L samples for many iterations

of the DANSE algorithm. However, this comes at the cost of an increase in communication bandwidth.

4. Heterogeneous WSNs

In the previous section, it was assumed that the WSN was a single fully connected network, where it was noted

that the DANSE algorithm can also be applied in a network with a single tree topology. We now look to extend

the functionality of the DANSE algorithm to a network that contains both fully connected and tree topologies. We

first assume a heterogeneous WSN which contains K nodes with larger energy budgets and hence larger broadcast

capabilities making them more suitable for long-range communication [43], which are designated as cluster heads

(CH). In Section 5 the heterogeneity of the nodes is relaxed so that each node is assumed to have similar broadcast

capabilities. Clusters are now formed around these CHs with the remaining N � K nodes, which are designated as

member nodes (MN) of the K clusters. The CHs and MNs are placed into subsets KCH and KMN, respectively. We

define the set of nodes in cluster k as Kk, where each cluster is composed of a subset of MNs, Kk,MN ✓ KMN, and a
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single CH,Kk,CH ✓ KCH, so that Kk,MN [Kk,CH = Kk. We also denote the set of neighbors of a node n as Nn, where

node n itself is excluded.

Since the CHs have larger broadcast capabilities, we assume that they are able to communicate to the other CHs

in the WSN in a single-hop fashion, i.e., that they form a fully connected network. However, they may also be formed

in a tree topology where the methods presented in Section 5 can be applied to the CHs. The MNs of the clusters

can be formed in either a fully connected fashion or in a tree topology. This type of WSN can then be thought of

as being hierarchical in nature, i.e., the WSN contains two layers, an upper layer with CHs, where information is

exchanged across clusters (inter-cluster communication) and where these CHs communicate to the MNs in the lower

layer (intra-cluster communication). A hierarchical representation of the envisaged heterogeneous WSN is given in

Figure 1.

For the ease of exposition, we will further simplify the description in the sequel by assuming a star topology within

each cluster instead of a multi-level tree, i.e., a two-level tree where the CH acts as the root node. This means that each

MN can directly communicate with its corresponding CH. However, we re-iterate, that this is merely for the sake of

an easy exposition in order to avoid the elaborate description of the DANSE algorithm in a multi-level tree topology

(T-DANSE), where we refer the reader to [3] for further details.

The CHs are not only responsible for broadcasting information from their local cluster to the other CHs, but also

broadcasting the information from the other CHs to their local cluster. The CHs could simply act as relays, where

they would broadcast all information from the MNs in their cluster to the other CHs and vice versa, i.e., from the CHs

to the MNs. However, this broadcast strategy quickly becomes infeasible as the number of CHs and the number of

MNs becomes large. We therefore look for a way to allow the CHs to broadcast information such that the amount of

information is independent of not only the number of CHs but also the number of MNs in any cluster. In the following

description of the DANSE algorithm in a heterogenous WSN we show that the MNs of the clusters transmit a set

of fused sensor signal observations that are defined identically to that of the DANSE algorithm in a fully connected

WSN. The CHs need only broadcast two sets of fused sensor signal observations, one for inter-cluster communication

that is broadcast to all other CHs, and one for intra-cluster communication that is broadcast to the MNs of the cluster.

It is noted that the dimension of these signals will be independent of the number of CHs or MNs in any cluster.

4.1. Intra- and inter-cluster communication

The fused signals are now denoted as znq where the subscripts n and q denote that the fused sensor signal obser-

vations are transmitted from node n to node q.

The intra-cluster signals for a MN n and a CH q are given as

zi
nq =WiH

nnyn, n 2 Kk,MN ,8q 2 Kk,CH ,8k . (23)

This fusion rule is identical as the one in fully connected DANSE (see (12)). We note that if the cluster is formed in

a fully connected fashion instead of a star topology, the same fusion rule applies, although each MN would then also
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Member nodes

of clusters

Cluster heads

Figure 1: A hierarchical representation of the envisaged heterogeneous WSN. The top layer consists of a set of cluster heads (CH)s that form a

fully connected network with one another. The member nodes (MN)s of each cluster are formed in, e.g., a tree topology where the CHs act as root

nodes for their individual clusters.

receive intra-cluster signal observations from other MNs in the cluster.

The CHs now fuse the intra-cluster signals with their own sensor signals in order to generate the inter-cluster

signals. For node n which is the CH of cluster k, the inter-cluster signal is given as

⇣ i
n =WiH

nnyn +
X

q2Kk,MN

GiH
nqzi

qn , n 2 Kk,CH ,8k (24)

of which observations are broadcast to all other CHs.

In order to disseminate the information from the other CHs to their own cluster, the CHs now form fused sensor

signals, zn, that contain all of the received intra-cluster, zi
nq, and inter-cluster, ⇣ i

q, signals as well as their own sensor

signals as

zi
n =WiH

nnyn +
X

q2Kk,MN

GiH
nqzi

qn +
X

q2KCH\{n}
GiH

nq⇣
i
q , n 2 Kk,CH ,8k (25)

of which observations are broadcast to all MNs in the cluster.

However, in broadcasting observations of (25) to the MNs, a feedback path develops as zi
n contains all of the MN

intra-cluster signals. This type of feedback has been shown to prevent the nodes from converging to their LMMSE

solution [3]. The MNs can remove this feedback component by subtracting their own intra-cluster signal zi
qn from the

CH’s intra-cluster broadcast signal, zi
n, to generate the signal

zi
nq = zi

n �GiH
nqzi

qn, 8n 2 Kk,CH , q 2 Kk,MN ,8k . (26)

Note that this requires the CHs to periodically transmit their Gi
nq, q 2 Kk,MN, to all of their MNs. Although this does

increase the transmission bandwidth it is negligible5 compared to the continuous transmission of the observations.

5It is noted that the nodes share many sensor signal observations in between two iterations of the DANSE algorithm, such that su�ciently

11



(a) (b) (c)

Figure 2: Data-driven flow in a heterogeneous WSN utilizing the DANSE algorithm : The MNs of each cluster send observations of their intra-

cluster signals (23) to their respective CH (a). The CHs broadcast observations of their inter-cluster signals (24) to the other CHs in the WSN (b).

The CHs broadcast observations of their intra-cluster signals (25) to their respective MNs where the MNs use (26) to cancel out their feedback

portion (c).

4.2. Data-driven signal flow

Since there are dependencies between the signals defined in (23) - (26), the nodes have to transmit their signals

observations in a specific order. However, this can be done in a purely data-driven fashion, without network-wide

coordination.

This data-driven signal flow first starts in the individual MNs of each cluster since (23) does not depend on the

signals from any other node. When a new block L of sensor signal observations becomes available, a MN fuses its

observations based on (23) and sends these fused sensor signal observations to its CH. The CH generates observations

of the inter-cluster signals based on (24) and broadcasts this to the other CHs. Once all of the observations of the

inter-cluster signals from the other CHs have been received, a CH generates its intra-cluster signal observations based

on (25), and broadcasts these to its MNs. A MN then uses the intra-cluster signal observations from its CH (25) as

well as the Gi
nq transformation matrix to cancel out the feedback portion based on (26). This data-driven signal flow

is depicted in Figure 2.

4.3. Node-specific local parameter updating

Notice that, because of the star (or more generally tree) topology in the clusters and the fully connected topology

amongst the CHs in Figure 1, there is a unique shortest path, P, between any two nodes in the network. This unique

shortest path essentially defines an ordered set of nodes that is represented as Pp1!pt = (p1, p2, . . . , pt�1, pt) for the

path from node p1 to node pt and where the inverse path is given as Pp1 pt (in the case of star-topology clusters, these

paths have a maximum length of 3 hops, and pass through a maximum 4 nodes). We also define

Gp1 pt = Gpt�1 pt Gpt�2 pt�1 . . .Gp2 p1 (27)

accurate covariance matrix estimates can be computed to solve (16). Furthermore, Gi
nq only changes whenever node n e↵ectively performs an

update of its node-specific parameters.
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where the same path is followed as in Pp1 pt . The parameterization given in (18) can then be similarly defined using

(27) as

Wi
n =

2
66666666666666664

Wi
11Gi

n 1
...

Wi
NNGi

n N

3
77777777777777775
. (28)

Again this parameterization defines a solution space for all Wi
n, n 2 {1, . . . ,N}, simultaneously and is similar to the

one defined in the fully connected case (18).

Theorem 1. If (5) holds, then the LMMSE estimators bWn given in (7) are in the solution space defined by the

parameterization (28).

Proof. By setting the Gi
nq matrices equal to Gi

nq = Anq =
⇣
A
⌘�H

n
A

H
q and because of (27) we automatically have that

Gi
n l = Anl for any n and l since AlAn = Anl for any , l, and n. By also setting Wi

qq = bWqq, 8q 2 {1, . . . ,N} and

using (20), we then see that the solution space defined by the parameterization (28) contains the optimal solutions

given in (7).

We now let the matrix Gn�n denote the stacked version of all Gnq matrices for which q 2 Nn. We also denote

ỹi
n, similarly to (13), as the stacked vector of node n’s sensor signals, yn, and the fused sensor signals of all of the

neighbors of node n, zi
Nn

, i.e.,

ỹi
n = [yT

n ziT
Nn

]T . (29)

Table 1 shows how the node-specific local parameter updating is performed during the operation of the DANSE

algorithm in the envisaged heterogeneous WSN where the updating order is defined by an arbitrary path through

the network, i.e., the updating node should be a neighbor of the node that updated last (we will elaborate on this

requirement in Subsection 4.4). To this end, we define P as an arbitrary path through the network that starts at node n

and ends at node q 2 Nn, visiting each node at least once. The nodes will then perform updates in the order defined by

a periodic repetition of P. The signal flow described in Subsection 4.2 is not included in Table 1 as the node updating

and the signal flow are performed independently, albeit in parallel.

The update order, or path, can be described in the following fashion for the WSN in Figure 2 (assuming the

individual clusters have a star topology); a CH, n, of cluster k updates its local parameters by way of (30). The next

update occurs in a MN of the CH after which the next update again occurs at the CH. This update procedure is then

repeated between every MN in cluster k and the CH . Once every node in cluster k has updated its local parameters

once, this process can begin in a neighboring cluster. This process repeats for every cluster until finally arriving back

at the CH of cluster k.

The signal estimate,edi
n, at node n can be found at any point in the iterative process as (compared with (14))

edi
n =WiH

nnyn +GiH
n�n

zi
Nn
. (32)
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Table 1: The DANSE algorithm in a heterogeneous WSN

1. Initialize 0! i, p1 ! n

Initialize W0
qq and G0

q�q
randomly, 8q 2 {1, . . . ,N}

2. Node n updates its node-specific local parameters, Wnn and Gn�n , by minimizing its LMMSE

criterion based on the L most recent observations of its own local sensor signals and the fused

sensor signals received from neighboring nodes as defined in Section 4.1:

2
666666664

Wi+1
nn

Gi+1
n�n

3
777777775 = arg min

Wnn,Gn�n

E
⇢�����

�����dn �


Wnn Gn�n

�H
ỹi

n

�����

�����
2

2

�
(30)

The other nodes do not update their node-specific local parameters :

8q 2 {1, . . . ,N}\{n} : Wi+1
qq =Wi

qq,G
i+1
q�q
= Gi

q�q
(31)

3. i+1! i

4. pt ! n with t = (i mod |P|) + 1

5. return to 2

4.4. Convergence and optimality

Using the heterogeneous hierarchical representation given in Figure 1 we now show that even though the WSN

consists of a fully connected topology and several tree topologies (here assumed to be stars), the DANSE algorithm

is still able to converge to the same solution, at each node, as if each node had access to all of the sensor signal

observations in the entire WSN. Even though convergence and optimality of the DANSE algorithm in a fully con-

nected topology and in a tree have been proven in [1] and [3], respectively, these proofs can not straightforwardly be

generalized to the case of mixed topologies.

For one specific (but naive) updating procedure, the convergence of the DANSE algorithm in a heterogeneous

WSN can be straightforwardly established by applying the convergence proofs of both DANSE in a fully connected

network and the T-DANSE algorithm, which is explained as follows. We first consider a single cluster k where the

fused sensor signals from the other clusters are temporarily viewed as fixed additional (virtual) sensor signals for

the CH. The cluster k can then be viewed as a subnetwork with a tree topology, in which the T-DANSE algorithm

can be run until convergence. From [3], it is known that the signal estimate edn, for every node n in the cluster, will

then converge to the same LMMSE solution as if it had access to all sensor signal observations within the cluster.

This convergence of the cluster can be thought of as a single DANSE update in the fully connected network that is

composed of the CHs, i.e., it is as if the CH of cluster k has solved (16), where the MNs of cluster k are viewed as

virtual sensors of the CH. After this first cluster has converged, the same process happens in the next cluster where
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again the T-DANSE algorithm is run until convergence and this repeated for all K clusters in the network. Since the

CHs converge to the same solution as if they had access to all of the sensor signal observations within their cluster,

the DANSE algorithm that operates among the CHs will then converge to the same solution as if each CHs had access

to all of the sensor signal observations of each cluster.

However this updating scheme is not practical as one cluster (in theory) has to perform i! 1 number of iterations

until convergence is reached before the next cluster can start the T-DANSE algorithm. We therefore aim to show that

the same solution can be found by following an arbitrary updating path, P, through the heterogeneous WSN that does

not need to wait for each cluster in the WSN to converge. This will allow for faster convergence of all of the nodes in

the WSN.

Theorem 2. Consider a WSN with a heterogeneous topology as described above. Let P represent a path through

the WSN that traverses through every node and begins at node n and ends with node q 2 Nn. If (5) holds then the

DANSE algorithm as described in Table 1 converges for every node n and for any initialization of its parameters to

the centralized estimator given in (7).

Proof. See Appendix A.

The above results also hold for general tree topologies within each cluster. We again refer to [3] for more details

on the generalization of DANSE towards a tree topology. It is noted that updating the nodes according to a path

through the network is a su�cient condition for convergence, but not a necessary condition, i.e., convergence is also

often (but not always) observed if nodes update in a random order. Nevertheless, updating orders that follow a path

through the network generally yield a faster convergence (which was also observed in [3]).

5. Mixed-topology ad-hoc WSNs

We now look to the case where the nodes in the WSN are not necessarily heterogeneous and are first formed in an

ad-hoc configuration. Since the nodes are not considered to be heterogeneous, the hierarchical structure presented in

Section 4 is not as readily apparent in the envisaged network. Instead, we now look to partition the WSN into smaller

substructures, namely non-overlapping fully connected networks, or cliques, which are either directly connected to

one another or which are connected by cycle-free subnetworks with nodes in the WSN. We show that the DANSE

algorithm can be implemented in such mixed-topology networks by employing similar fusion rules to those defined

in Section 4.

5.1. Distributed clique formation

A partitioning of the WSN into smaller substructures can be accomplished by performing so-called topology

control on the WSN, where substructures are formed by adding or removing links in order to form a given set of

topological structures [28, 31, 32, 33]. The particular partitioning of the WSN into non-overlapping cliques, as
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(a) (b) (c)

Figure 3: A depiction of the partitioning of an ad-hoc configuration (a) into a set of non-overlapping cliques connected by unique paths (b) which

is then further abstracted to a tree topology (c).

envisaged in this paper, can be done in a distributed fashion, by means of a modified Bron-Kerbosch algorithm [44],

where nodes need only exchange local connection information with neighboring nodes. We note that there are several

other methods to find cliques in a given graph but this is not the main focus of this work. During clique formation,

we assume the WSN is partitioned into K non-overlapping cliques, where the set of nodes that form clique k is given

as Ck. We also apply a constraint that there is a unique path between adjacent cliques which can be accomplished by

pruning some links in the network. To be more precise, if the cliques would be replaced by a single node (see Fig.

3c), there exists a unique path between any two nodes in the resulting (virtual) network.

Once the network has been partitioned into a set of non-overlapping cliques and the unique paths are defined

between the cliques, the network may be further abstracted to that of a single tree topology where the cliques are

again viewed as single nodes. The process of topology control in which the WSN is first formed into non-overlapping

cliques and then given as an abstraction to a tree topology is depicted in Figure 3.

We see in Figure (3b) that there are three distinct types of nodes : non-clique nodes or nodes that do not belong

to any clique; clique nodes whose neighboring set only comprises nodes in the same clique, i.e., if node n belongs to

clique k then Nn = Ck\{n}; and clique nodes whose neighboring set does not only comprise nodes in the same clique.

In the following section we describe how each type of node fuses its sensor signal observations with the fused signal

observations from its neighbors.

5.2. Intra- and inter-clique communication

Since the partitioned WSN can be abstracted to that of a tree topology, the fused sensor signals for non-clique nodes

are defined in exactly the same manner as in the T-DANSE algorithm, which will be repeated here for convenience

and where the reader is again referred to [3] for a more in depth discussion. We assume that the non-clique nodes use
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a point-to-point communication protocol where a di↵erent signal is transmitted to each of its neighbors given as

zi
nq =WiH

nnyn +
X

l2Nn\{q}
GiH

nl zi
ln ,8n < Ck ,8k . (33)

This transmission strategy (where node q is removed from Nn in the summation) e↵ectively removes a feedback path

that would otherwise develop by sending a signal including node q’s own fused signal zqn. We note that a similar

transmission strategy and feedback removal could instead be employed as in (25) and (26) which then allows a node

to broadcast the same signal to each of its neighbors. However, both can be shown to be theoretically equivalent [3]

and (33) is now used to avoid an overly complex description of the T-DANSE algorithm.

Clique nodes whose neighboring nodes are not solely comprised of nodes in the same clique have a similar

functionality to that of the CHs presented in Section 4 in that they are responsible for intra-clique communication

(between nodes in the same clique) and inter-clique communication (between a clique and nodes not in the same

clique). In fact, there is a duality between the inter-cluster signals (Section 4) and intra-clique signals. The signal that

a clique node n 2 Ck broadcasts to all other nodes in the clique Ck (intra-clique communication), is denoted as ⇣ i
n. This

signal is computed by fusing the sensor signal observations at node n along with the fused sensor signal observations

of its neighbors that do not belong to the same clique k as node n, i.e., q 2 Nn\Ck which is given as (compare with

(24))

⇣ i
n =WiH

nnyn +
X

q2Nn\Ck

GiH
nqzi

qn ,8n 2 Ck ,8k . (34)

In order for a clique node to disseminate information from its clique k, it uses a similar transmission strategy as

in (33) where a di↵erent inter-clique signal, zi
nq, is sent to each of its neighbors that are not in the same clique, i.e.,

non-clique nodes and nodes belonging to other cliques, given as

zi
nq =WiH

nnyn +
X

l2Nn\{Ck ,q}
GiH

nl zi
ln +

X

l2Ck\{n}
GiH

nl ⇣
i
l ,8n 2 Ck ,8k . (35)

This is in fact the same transmission strategy used by the non-clique nodes in (33) where the right most summation is

set to zero. By plugging (25) into (26) the feedback cancellation for intra-cluster signals is theoretically equivalent to

(35) as alluded to earlier. This inter-clique signal is therefore defined in the same manner to that of the intra-cluster

broadcast signals given in (25).

Finally, for clique nodes whose neighbors only belong to the same clique, e.g., node n for whichNn = Ck\{n}, the

sum on the right hand side of (34) vanishes as Nn\Ck = ; which then results in the fusion rule (12) for DANSE in a

fully connected network. As previously noted, the intra-clique signals are defined similarly to that of the inter-cluster

signals (24).

5.3. Data-driven signal flow

Since the nodes are not grouped into the same hierarchical structure as in Section 4, the same data-driven signal

flow cannot be readily applied to the mixed-topology WSN. However, the definitions of the intra- and inter-clique
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signals (34), (35) as well as the non-clique nodes, who transmit the same signals as in the T-DANSE algorithm, have

implicit causality constraints. This again allows for the signal flow to occur in a purely data-driven fashion that does

not rely on network-wide coordination. The signal flow in the envisaged mixed-topology WSN can be thought of

analogously to the T-DANSE algorithm in that it consists of a data flow toward the root node of the tree (fusion flow)

and a data flow away from the root node (di↵usion flow) [3]. However, if data-driven ’firing’ rules are used at each

node, the signal flow emerges naturally without an explicit definition and coordination of the fusion flow, the di↵usion

flow, or the root node. This is described in the sequel and illustrated in Figure 4.

The non-clique nodes transmit zi
nq when they have received a block of (fused) signal observations from all of their

neighbors, except of a neighbor node q. Note that this data-driven ’firing’ rule holds both in the fusion and di↵usion

flow, and it will automatically initiate the former due to the presence of the so-called leaf nodes of the tree, which only

have a single neighbor.

Once new sensor signal observations become available for clique nodes whose neighboring set is comprised only

of nodes in the same clique, the intra-clique signal, ⇣ i
n as defined in (34) (with vanishing rightmost sum), can be

immediately computed and broadcast to all clique neighbors.

Clique nodes whose neighboring set is not comprised only of nodes in the same clique can broadcast their intra-

clique signal (34) once they have received the signals from all of their non-clique neighbors. They can transmit their

inter-clique signal (35) when they have received a block of (fused) signal observations from all of their neighbors,

except of a neighbor node q.

If we again let the matrix Gn�n denote the stacked versions of all Gnq,8q 2 Nn and ỹi
n denote the stacked vector of

a nodes sensor signals and fused sensor signals from neighboring nodes, the DANSE algorithm in a mixed-topology

WSN can be implemented in the same fashion as in a heterogeneous WSN given in Table 1.

It is re-iterated that the signal flow or the in-network signal fusion happens independently from the distributed

algorithm that updates the local estimator parameters at each node (see Table 1), i.e., the estimate of dn, at node n, can

be found at any point in the iterative process as

edi
n =WiH

nnyn +GiH
n�n

zi
Nn
. (36)

5.4. Convergence and optimality

The mixed-topology WSN can be thought of as an extension to the hierarchical structure presented in Section 4,

which now contains many fully connected components that are connected via their MNs. Due to the constraint that

there must be a unique path between any two cliques, there also exists a unique shortest path between any two nodes

in the network. Therefore, the parameterization given in (28) is the same for the mixed-topology WSN and Theorem

1 still holds.

Since the mixed-topology WSN can be abstracted to that of a tree topology, the same convergence as that of

the T-DANSE algorithm can be guaranteed as long as the individual cliques also converge. Convergence for the

mixed-topology WSN can therefore be shown in a similar manner as in Theorem 2.
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Figure 4: A depiction of the data-driven signal flow of DANSE in a mixed-topology WSN where node 5 is the closest to the root node.

Corollary 1. Consider a WSN with a mixed-topology. Let P represent an ordered set of nodes that defines a unique

path through the WSN that traverses through every node and begins at node n and ends with a neighbor, q 2 Nn. If

(5) holds, then the DANSE algorithm as described in Table 1 converges for every node n and for any initialization of

its parameters to the centralized estimator given in (7).

Due to the similarities between the heterogeneous WSN and mixed-topology WSN, i.e., the cliques may be viewed

similarly to the CHs and the non-clique nodes similarly to the MNs, the proof of convergence follows from a gener-

alization of the proof of Theorem 2. The corollary then follows by recursively applying Lemmas 1 and 2, in a similar

fashion as in the proof of Theorem 2.

Corollary 1 states that the updating order must correspond to a unique path through the WSN that traverses

every node at least once. The convergence of the DANSE algorithm in a mixed-topology WSN also implies that

if node n were to update its node-specific parameters then the next node, say q, in the updating order must be a

neighbor of node n, i.e., q 2 Nn. However this is only a su�cient not a necessary condition which is explained

in more detail in Remark 2 in the Appendix. An example comparing a possible updating order for DANSE in a

mixed-topology WSN to that of T-DANSE is given in Figure 5. For the mixed-topology in Figure 5a a possible

updating order is Pmixed = [5, 4, 3, 2, 1, 2, 4] and for the tree topology in Figure 5b a possible updating order is

Ptree = [5, 4, 2, 3, 2, 1, 2, 4]. We see that the length of Pmixed is smaller than the length of Ptree. This means that it

takes fewer iterations to update each node at least once, which often leads to a faster overall convergence, as shown
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(b) Tree topology based on the

mixed-topology WSN.

Figure 5: A possible updating order for the mixed-topology (a) is P = [5, 4, 3, 2, 1, 2, 4] and for the tree topology (b) is P = [5, 4, 2, 3, 2, 1, 2, 4].

in Section 6. Another reason for this increased convergence can be explained by larger degrees of freedom available

at the clique nodes and is explained in more detail in Remark 3 in the Appendix. It is noted that Ptree is also a valid

updating order in a mixed-topology WSN, but Pmixed is not valid in a tree topology.

5.5. Changing topologies

For changing topologies, links are added and removed between nodes. It is assumed, however, that the WSN can

still be partitioned into a set of fully connected and tree topologies that form a connected WSN.

Using Figure 5 as an example, the WSN is first in a mixed-topology where the link between node 3 and 4 fails,

creating a tree topology. We first assume that the neighbors of a node after the link removal are a subset of the nodes

before the link removal, i.e., if N i
n represents the neighbors of node n at iteration i before link removal, and N i+1

n

represents the neighbors of node n at iteration i + 1 after link removal, then N i+1
n ✓ N i

n.

If the DANSE algorithm has converged such that the LMMSE estimators at each node are Wi
nn = bWnn and

Gi
nq = Anq, then removing the link does not a↵ect the optimality at each node if N i+1

n ✓ N i
n. This can be described

using the parameterization of (28) before and after the removal of the link. If we look at parameterization of (28) for

node 3 before link removal using (27) and the proof of Theorem 1 then

Wi
3 =

2
66666666666666666666666666666664

Wi
11Gi

3 1

Wi
22Gi

3 2

Wi
33

Wi
44Gi

3 4

Wi
55Gi

3 5

3
77777777777777777777777777777775

=

2
66666666666666666666666666666664

Wi
11Gi

21Gi
32

Wi
22Gi

32

Wi
33

Wi
44Gi

34

Wi
55Gi

45Gi
34

3
77777777777777777777777777777775

=

2
66666666666666666666666666666664

bW11A31

bW22A32

bW33

bW44A34

bW55A35

3
77777777777777777777777777777775

= bW3 . (37)

When removing the link, the paths from nodes 4 and 5 to node 3 now go through node 2. Using the fusion signal

rules based on (33) the parameterization of node 3 now becomes

Wi
3 =

2
66666666666666666666666666666664

Wi
11Gi

3 1

Wi
22Gi

3 2

Wi
33

Wi
44Gi

3 4

Wi
55Gi

3 5

3
77777777777777777777777777777775
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2
66666666666666666666666666666664

Wi
11Gi

21Gi
32

Wi
22Gi

32

Wi
33

Wi
44Gi

24Gi
32

Wi
55Gi

45Gi
24Gi

32

3
77777777777777777777777777777775

=

2
66666666666666666666666666666664

bW11A31

bW22A32

bW33

bW44A34

bW55A35

3
77777777777777777777777777777775

bW3 . (38)
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Since the Gnq coe�cients are known optimally, even though a link was removed, we still find the network wide

LMMSE estimators.

When links are added or more generally when nodes are mobile with changing neighbors, such that N i+1
n * N i

n,

the parameterization becomes more complicated. Using the previous example, going from topology in Figure 5b to

the one in Figure 5a node 3 must initialize a new variable Gi
34 to apply to ⇣ i

4 and node 4 initializes a new variable Gi
43

to apply to ⇣ i
3 which would require re-convergence. However, with some coordination and extra broadcasting between

nodes this re-converge can be circumvented. Using the same example, before the link between node 4 and 3 is made,

the estimator of node 2 is given as

bW2 =

2
666666664
bW22

Gi
2�2

3
777777775 =

2
666666666666666666666664

bW22

Gi
21

Gi
23

Gi
24

3
777777777777777777777775

=

2
666666666666666666666664

bW22

A21

A23

A24

3
777777777777777777777775

. (39)

Once the link between node 3 and node 4 is made, then if node 2 were to transmit Gi
24 to node 3, Gi

34 can be found

optimally at node 3 by a simple product given as

Gi
34 = Gi

24Gi
32 = A34 . (40)

This can directly be applied to ⇣ i
4, which again produces the parameterization of (37). Obviously, as the topology

becomes more complicated and with several changing links, more G coe�cients will need to be exchanged between

not necessarily neighboring nodes.

If the DANSE algorithm has not yet converged and the topology continually changes then this will a↵ect con-

vergence as the parameterization of (28) is topology dependent due to Gp1 pt . Essentially this means that at every

iteration, the nodes will be optimizing a di↵erent problem with regards to Gi
n�n

in (30) preventing convergence of the

algorithm.

6. Simulations

In this section numerical simulations are performed by way of the DANSE algorithm in a mixed-topology WSN.

The simulations are implemented in batch mode which means that the estimation of the second-order statistics in all

iterations of the DANSE algorithm are performed on data obtained from the entire length of the signals. In real-time

scenarios, the data can be segmented into frames in order to perform the estimation in a block-adaptive fashion as in

[1, 2].

For the simulations, the MSE cost function at each node Jn is e↵ectively replaced by the corresponding finite-

length equivalent least-squares (LS) cost function given as

Jn(Wn) =
T�1X

t=0

||dn[t] �WH
n yn[t]||2 (41)
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where the signal length is given as T and where dn[t] and yn[t] denote the observation of the signals dn and yn at

sample time t, respectively. We first given an example of DANSE in a mixed-topology WSN compared to DANSE

in a fully connected WSN as well as in a tree topology WSN with various node updating orders. In Section 6.2,

Monte-Carlo simulations are performed on 1000 randomly generated sensing environments.

6.1. Single scenario simulation

We first consider an example scenario as depicted in Figure 6a. The WSN consists of 17 nodes deployed through-

out a sensing environment. Each node has 3 sensors that are spaced uniformly around a 10 cm radius from the center

of the node. There are Q = 2 sources distributed throughout the environment ( ) where each desired source signal

consists of T = 10000 samples generated from a uniformly distributed random process on the interval [-0.5 0.5].

The coe�cients of A in (3) are proportional to an attenuation factor of 1
r where r is the distance between the desired

source and the sensor. The desired signal dn at node n is defined as in (5) where the matrix An is a 2 ⇥ 2 matrix that

consists of a subset of rows of A corresponding to two randomly selected sensors of node n. There are also 4 spatially

located noise sources ( ) where the noise signals are generated with a similar process as the source signals. Spatially

uncorrelated white noise, representative of sensor noise, that is half the average power of the desired signals, is added

to each sensor.

There are K = 5 cliques, each containing 3 nodes, which are first deployed in the sensing environment along with

two other non-clique nodes. A nearest neighbor broadcasting scheme is then used, where the transmission ranges

of the nodes are increased until the network is connected, i.e., every node is reachable in the WSN. A minimum

spanning tree (MST) algorithm is then performed where each clique is considered to be a single node in the topology.

The resultant topology is then a set of cliques that are connected via a tree topology and is depicted in Figure 6a. In

order to compare the convergence results to that of the T-DANSE algorithm the links between clique nodes, who do

not have a non-clique neighbor, are pruned so that the WSN has a tree topology which is depicted in Figure 6b.

We use an ideal transmission scheme given in [45] where the transmission rate is constant for every sensor and

delays in the system are ignored. The power required to transmit from node n to node q is given as

P(rn!q) = Cr↵n!q (42)

where C is a constant (C ⇡ 10�10J/m↵/bit), ↵ = 2.3 is a power loss factor (nominally between 2 and 6), and rn!q

is the distance between node n and node q. Note that if the WSN is in a large, heterogeneous environment, ↵ could

be defined uniquely for each node [46]. We assume a sensor link capacity, S , of 212kb/s. The transmission energy

required for each sensor en is then given by

en(rn!q, S ) = max
q2Nn

S Cr↵n!q . (43)

In the case of a fully connected WSN, rn!q is chosen as the maximum distance between node n and q, 8q 2
{1, . . . ,N}\{n}.
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Figure 6: (a) A simulated environment with 2 desired signal sources ( ), 4 noise sources ( ) and a WSN consisting of 17 nodes where each node

has 3 sensors and where the root node is designated as . The nodes are grouped in K = 5 cliques containing 3 nodes each and two non-clique

nodes. (b) A spanning tree using the original node positions given in (a).
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For the sake of brevity, DANSE in a fully connected WSN will be denoted as DANSE-FC and DANSE in a mixed

topology WSN will be denoted as DANSE-MT.

The minimal LS cost is first found in a centralized fashion, where it is assumed that all sensor signal observations

of the entire WSN are available to compute (41). The updating order of DANSE-FC is also run in two di↵erent

variations, first where the nodes update their node-specific parameters in a round-robin fashion denoted as DANSE-

FC-RR, and second where the nodes update their node-specific parameters according to P, i.e., following the same

updating order as T-DANSE denoted as DANSE-FC-TUO. This allows a comparison of both the e↵ect of the per-node

updating frequency and the per-node degrees of freedom on the convergence speed. T-DANSE is implemented with a

path-based tree updating order, P, where the WSN is connected as in Figure 6b. DANSE-MT is also implemented in

two di↵erent variations, first where the nodes update their node-specific parameters using an update order as described

in Section 5.4 denoted as DANSE-MT-MUO, and second where the nodes update their node-specific parameters

following the update order according to P, i.e., in the same order as in T-DANSE, denoted as DANSE-MT-TUO.

Figure 7 (top) shows the LS cost at the node indicated as and (bottom) shows the sum of the cost functions

at each node, i.e.,
PN

n=1 Jn(Wi
n) for the various implementations of the DANSE algorithm. We see that DANSE-

FC-RR converges the fastest to the optimal solution. DANSE-MT-MUO and DANSE-MT-TUO both outperform the

T-DANSE algorithm.

The improved convergence of DANSE-MT compared to that of T-DANSE may also be attributed to the fact that

the nodes in the cliques have an increased number of signals, and hence more degrees of freedom in the local LS min-

imization problem, whereas the degrees of freedom for the T-DANSE is restricted to that of a smaller set of neighbors.

However, this improved convergence only holds on average, i.e., we have observed rare cases where DANSE-MT or

even DANSE-FC converged slower than T-DANSE. This actually occurs more often in smaller networks, e.g, when

N < 4.

The update order of T-DANSE must also traverse a specific path through the WSN as stated in Remark 2. With

a highly branched tree, this updating order may have a considerable number of steps. Since the updating order

in a clique can be relaxed to mimic that of DANSE-FC, i.e., where nodes with non-clique neighbors update in a

round-robin fashion, the update order for DANSE-MT can always be defined using a smaller number of steps than in

T-DANSE. This also contributes to the faster convergence of DANSE-MT compared to that of T-DANSE. This e↵ect

is demonstrated in Fig. 7 by observing that DANSE-MT-MUO converges faster than DANSE-MT-TUO. Indeed as

discussed in Section 5.4, the length of Pmixed is smaller to that of Ptree which means that it takes fewer iterations to

update each node at least once, which often leads to a faster overall convergence.

The total sum of energy used for transmission for all of the nodes in the WSN using DANSE-FC, T-DANSE and

DANSE-MT is shown in Figure 8. Although DANSE-FC converges much faster, it also requires a larger amount

of energy when compared to that of DANSE-MT and T-DANSE. DANSE-MT converges significantly faster than T-

DANSE, but requires hardly any additional energy. Since the tree topology is a pruned version of the mixed-topology,

there is a 3% di↵erence in the total energy used in the WSN between the DANSE-MT and T-DANSE.
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Figure 7: The LS cost of the root node (a) and the sum of LS cost of all of the node in the network (b) versus the number of iterations for DANSE-

FC with round robin updating (DANSE-FC-RR), DANSE-FC using the tree update order (DANSE-FC-TUO), T-DANSE, DANSE-MT using an

update order as described in Section 5.3 (DANSE-MT-MUO), and DANSE-MT using the tree update order (DANSE-MT-TUO)
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Figure 8: Sum of the energy used for transmission using DANSE-FC, T-DANSE, and DANSE-MT.

6.2. Monte-Carlo simulations

Monte-Carlo simulations are performed on 1000 sensing environments with similar parameters as those presented

previously. The sensing environments are constructed where there are K = 4 cliques all consisting of 3 nodes and 5

additional non-clique nodes. The mixed-topology WSN and tree topology WSN were derived using the same method

as presented in Section 6.1.

The optimal LS cost for each Monte-Carlo run di↵ers due to the random nature of the generated signals and the

placement of nodes throughout the sensing environment. In order to account for this, the summed di↵erence between

the LS cost at each iteration and the optimal summed LS cost,
PN

n=1 Jn(Wi
n)� Jn(bWn), was normalized by the optimal

summed LS cost, i.e.,

J̃i
Tot =

PN
n=1 Jn(Wi

n) � Jn(bWn)
PN

n=1 Jn(bWn)
(44)

for each Monte-Carlo run.

Figure 9 shows the median of the sum of the normalized LS cost of all of the nodes in the network versus the

number of DANSE iterations where again DANSE in a mixed-topology has convergence properties in between that

of DANSE in a fully connected and tree topology. Figure 10 shows the median over the 1000 simulated sensing

environments of the total sum of energy used for transmission for all of the nodes in the WSN using DANSE-FC,

T-DANSE and DANSE-MT.

There was a 28% decrease in the number of iterations needed for convergence when comparing T-DANSE to

DANSE-MT-MUO. This decrease in the number of iterations only comes at a 2.6% increase in the sum of energy

consumption between T-DANSE and DANSE-MT.
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Figure 9: The median of the sum of the LS cost of all of the nodes in the network versus the number of iterations for DANSE-FC with round

robin updating (DANSE-FC-RR), DANSE-FC using the tree update order (DANSE-FC-TUO), T-DANSE, DANSE-MT using an update order as

described in Section 5.3 (DANSE-MT-MUO), and DANSE-MT using the tree update order (DANSE-MT-TUO)
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Figure 10: The average sum of energy used for transmission for DANSE-FC, T-DANSE and DANSE-MT for the Monte-Carlo simulations.
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7. Conclusions

A WSN was envisaged, where each node performs the estimation of a number of node-specific desired signals

by way of the DANSE algorithm. This WSN was partitioned into a set of substructures that encompassed both

heterogeneous and mixed-topology WSNs. The fusion rules of the DANSE algorithm were modified to take into

account this type of partitioning showing a duality between the heterogeneous and mixed-topology case. It was

shown that the DANSE algorithm in both cases converges to the same solution as if every node had access to all of

the sensor signal observations in the WSN, which was also confirmed by means of numerical simulations. Using the

DANSE algorithm in a mixed topology WSN also improved the convergence speed when compared to the T-DANSE

algorithm with only a slight increase in the per-node energy usage. This is due to two complimentary e↵ects, i.e., the

increased per-node updating frequency, and the increased number of degrees of freedom in the local optimization task

at certain nodes.

Appendix A.

This proof relies on additional concepts and lemmas that have been introduced in [3] which, due to their length

and complexity, will only be re-iterated here without proof for convenience.

We introduce a partitioning, P, of the nodes into non-overlapping subsets, i.e., P = (F,C1, . . . ,Ct) where the

specific node subsets, F,C1, . . . ,Ct, will be defined later. The first subset, F, will be referred to as the free subset,

for reasons explained in the sequel, and the other subsets will be referred to as the constrained subsets. We assume

that for a certain subset of nodes, say S , the corresponding stacked version of all the Wnq’s (see (11)) for which

q 2 S is given as Wn|S . We now introduce a centralized updating scheme that updates the entries of Wn in a sequence

of alternating optimizations (AO). At each AO-step, i, a LMMSE optimization similar to (6) is performed where

constraints are added that correspond to the constrained subsets of a given partitioning Pi. For the set of partitionings

Pi = (Fi,Ci
1, . . . ,C

i
ti ), 8i 2 {1, . . . , l}, the corresponding AO update is then given as

{Wi+1
n1 , . . . ,W

i+1
nN ,C1, . . . ,Cti } = arg min

Wn1,...,WnN ,C1,...,Cti

E

8>><
>>:||dn �

NX

l=1

WH
nlyl||2

9>>=
>>; (A.1)

s.t.

8>>>>>>>><
>>>>>>>>:

Wn|Ci
1
=Wi

n|Ci
1
C1

...

Wn|Ci
ti
=Wi

n|Ci
ti
Cti

where C1, . . . ,Cti are Q ⇥ Q matrices. Notice that the part of W corresponding to the constrained subset C are

constrained to the subspace spanned by the columns of Wi
n|C from the previous iteration, whereas the part of W

corresponding to the free subset F has no such constraints.

We denote the MSE cost function of node n, defined in (6), using the full estimator, Wn (11), as

Jn(Wn) = Jn([WT
n1 . . .W

T
nN]T ). (A.2)
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It is easy to see that for every AO-step defined in (A.1), Jn(Wi
n), will monotonically decrease, i.e.,

Jn(Wi+1
n )  Jn(Wi

n). (A.3)

Lemma 1. Consider an AO sequence defined by (A.1) where the constraints are defined by a given sequence of

partitionings (Pi)i=0,...,l�1 with Pi = (Fi,Ci
1, . . . ,C

i
ti ). This AO sequence is simultaneously applied to the cost function

Jn(Wn) of node n to update Wi
n and to the cost function Jq(Wq) of node q to update Wi

q, assuming that the two initial

centralized estimators W0
n and W0

q are identical. If (5) is satisfied, then the following holds for any i 2 {1, . . . , l � 1} :

Wi
n =Wi

qAnq, (A.4)

with Anq =
⇣
Aq
⌘�H

A
H
n .

Proof. See the proof of Lemma A.1 in [3].

Lemma 1 shows that in a centralized scenario, where the node-specific estimators are updated according to the

AO procedure defined in (A.1), then the resultant network-wide Wn’s span the same Q-dimensional subspace.

We now look at a node n in a single tree topology, i.e., the tree is not yet connected in the envisaged heterogeneous

topology. In a tree topology there is always a unique graph cut that cuts the edge (n,q) and no other edge in the network.

We assume that the tree topology is cut along the edge (n,q) so that the tree is now divided into two complementary sets

denoted as Cnq, which contains node n, and Cqn, which contains node q. Let us consider the network-wide estimator

for the estimation problem at node n, Wn, which is parameterized according to the tree topology (see also (28)). The

part Wn|Cqn of Wn can only be manipulated by means of the Q ⇥ Q transformation matrix, Gnq, that is applied in (30)

to the signal received from node q.

This means that an update at node n corresponds to an AO step (A.1) in which Cqn is a constrained subset, since

it can only transform Wn|Cqn through a Q ⇥ Q transformation matrix Gnq. We can then define a similar constrained

subset for all the other neighbors q 2 Nn of node n. In this way, we can define a one-to-one relationship between a

node n and a specific partitioning, i.e.,

n, P = ({n}; CNn ) (A.5)

where the constrained subsets are given by CNn = {Cq1n,Cq2n, . . . ,Cqtn} with qi 2 Nn, i.e., CNn contains all the subsets

Cqn for q 2 Nn. Considering the corresponding AO step in (A.1), node n is free to manipulate its own local estimator

Wnn and its Gnq matrices in order to manipulate the constrained variables. Similar to (A.5), we can describe a one-

to-one relationship between a path of length l through the network and a sequence of partitionings that defines the

constraints in l iterations of the AO sequence defined in (A.1), i.e.,

P, (Pi)i=0...l�1. (A.6)

Lemma 2. Consider a network with a tree topology and a path Pn!n through this network with length l � 1, that

never passes through node n, except at the start and at the end. Consider the T-DANSE updating sequence equivalent
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to the l-step AO sequence defined by the partitioning (Pi)i=0,...,l�1 , Pn!n. Then if (5) is satisfied the resulting Wl
n,

parameterized by (28), will be the same as if node n had access to all sensor signal observations and performed all

optimizations in the AO sequence by itself with respect to its own cost function Jn.

Proof. See [3].

We now consider the envisaged heterogeneous topology and look at the CH n of cluster k. Applying Lemma 2

to the CH, we see that, after each node n in cluster k has performed at least one update (in the order defined by a

path Pn!n, starting and ending at node n), it is as if node n itself has performed l subsequent AO iterations, resulting

in a decrease of its local LMMSE cost function Jn (note that, by definition, each AO step yields a decrease in cost).

The partitionings of the CHs are defined in the same manner as in (A.5) where now the constrained subset Cqn for

n, q 2 KCH , is defined as above, but based on a graph cut in the virtual tree where the links between any two CHs

(except these of node n) are removed.

Based on Lemma 1, an important observation is now that another CH, say q, would obtain the same solution6 (up

to a Q ⇥ Q transformation) as if it were to apply the same AO sequence, but this time based on its own cost function

Jq. Therefore if CH q would apply the appropriate Q ⇥ Q transformation to its received signal from node n, then it

would still achieve the same reduction in cost even though the update occurred in another cluster in the network. This

shows then, that each time a CH updates, this update decreases the cost function of the other K � 1 CHs, as long as

the other CH can adjust their G-coe�cients, which will eventually occur when the CHs update their local parameters.

Thus, Jn(Wi
n) ,8n 2 {1, . . . ,N}, will monotonically decrease when evaluated after each update at node n. Since

the cost is bounded below by zero, the cost at each node must converge to a fixed value, i.e.,

limi!1Jn(Wi
n) = J1n . (A.7)

It can then be shown, using similar strategies as in [3], that this convergence of the MSE values also results in

convergence of the individual estimation parameters at each node and that limi!1Wi
n = bWn (details omitted). ⇤

Remark 2. It was noted in [3] that the condition that successive updates occur in neighboring nodes was a su�cient,

but not a necessary condition in order to guarantee convergence, meaning that convergence is also sometimes possible

if the nodes update in any order regardless of their place in the WSN. However, this does not hold in general, i.e.,

simulations show that convergence is only guaranteed if the updating order indeed follows a path through the network.

Although this imposes some additional coordination, it was noted in [3] that such a path-based updating order not

only guarantees convergence, but it usually also yields the fastest convergence.

6It is noted that Lemma 1 requires the initial network-wide estimators of node n and node q to be equal. This is achieved if all Gq�q ,8q 2
{1, . . . ,N} in the T-DANSE algorithm are initialized as an identity matrix. However, this is not a strict requirement to achieve convergence as

shown in [3].
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Remark 3. In a mixed-topology WSN, the total number of links is obviously larger than in an exact (clique-free) tree

that can be obtained by pruning some of the links of the mixed-topology WSN. Hence, the number of fused sensor

signals at the clique-nodes is larger, yielding more degrees of freedom to perform an update. On average, this results

in an overall faster convergence than for the T-DANSE algorithm operating in a clique-free tree. It is noted that this

is purely due to the additional degrees of freedom in the per-node LMMSE optimization (30) and not due to a faster

dissemination or di↵usion of information as in consensus- or gossip-based approaches such as, e.g., [34]. Indeed,

in our framework, the signal fusion itself is not an iterative process, i.e., it is a finite in-network fusion process, as

explained in Sections 4.2 and 5.3, which does not have any influence on the convergence speed of the distributed

node-updating algorithm.
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