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Abstract

The Kullback-Leibler (KL) divergence is at the centre ofdrrhation Theory and change detection. It is characterised
with a high sensitivity to incipient faults that cause urgicgable small changes in the process measurements. This
work yields an analytical model based on the KL divergencestamate the incipient fault magnitude in multivariate
processes. In practice, the divergence has no closed fadrit amust be numerically approximated. In the particular
case of incipient fault, the numerical approximation ofdireergence causes many false alarms and missed detections
because of the slight effect of the incipient fault. In thagppr, the ability and relevance to estimate the incipient
fault amplitude using the numerical divergence is studidte divergence is approximated through the calculation of
discrete probabilities for faultless and faulty signalke®stimation results that are obtained by simulation ieguc
error lower than % on the fault amplitude.

Keywords: Fault Estimation, Kullback-Leibler Divergence, Prindi@mmponent Analysis

1. Introduction

The last three decades have shown an increased demand forimgpthe economy and safety of industrial pro-
cesses. Health monitoring of such processes has been wieedjoped with studies of fault detection and diagnosis
(FDD). Early detection and severity assessment of impditdeffaults are main functions of fault detection [1]. Mea-
surements are basic representation of process behaviolfgalts in general manifest themselves as changes in their
properties. The detection of a particular fault is basedtatking whether the current measurements are statigticall
different from thea priori known faultless measurements. Detection indices withrobnharts are designed to this
end [2-4]. The MEWMA (Multivariate Exponentially Weightédoving Average) and the MCUSUM (Multivariate
Cumulative Sum) are able to detect deviations related tptbeess mean vector [5]. The MEWMA-CM (MEWMA-
Covariance Matrix) is used to detect changes in the proaessiance matrix [6]. The simultaneous monitoring of the
mean and the variance in an univariate framework has beaemiet in [7]. It was not extended to the multivariate

framework due to the complexity of multivariate probalilitistributions. Statistical multivariate techniques,cg
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which the Principal Component Analysis (PCA) is a major comgnt, are effective in the FDD of high dimensional
processes [8]. PCA is optimal in terms of capturing varigbih the data and constitutes a general framework for data
representation and modelling [9]. It has been used for rodni in a wide range of applications, including chemical
processes [10], aerospace [11, 12], electronics [13] naotive [14], semi-conductors [15], and many others.

The KL divergence has been proposed in the PCA framework sgodemeral fault indicator which is characterised
by high sensitivity with respect to incipient faults (theoshduration change whose amplitude is less than 10% of
the signal magnitude) [16]. It has been used as a distrititiEe control chart that makes no assumption about
the form of the process distribution. Consequently, itewdation requires the availability of a training sample of
observations from which the reference (fault-free) enspirprobability distribution can be computed. It showed
superior efficiency in the detection of incipient faultsymqmared to the fault indices that are commonly used with
PCA, namely the Hotelling'? statistic and the squared prediction errSIAE). Beside the fault detection, the fault
estimation problem has gained considerable attentiorcienteyears. If a fault in the process measurements has been
detected and the information contained into the data is itap4 it is necessary to retrieve the fault-free measurgsne
from the faulty ones [17-19]. Sensor validation and cofoadt concerned with the problem of identifying the fault
magnitude in order to retrieve the sensor response fronyfaahsor data [20, 21]. In a system under fault tolerant
control (FTC), whenever a fault is detected, the fault atagk is estimated in order to compensate its effect through
an appropriate reconfiguration of the controller module 2. The performance of the FTC system depends mainly
on the estimation accuracy of the fault magnitude. As foltfdetection, it is desirable for the fault estimation to be
robust with respect to noises and unexpected uncertaanigperturbations.

Most fault estimation approaches are optimisation-baaed thus optimisation techniques are used to solve the
fault estimation problem [24]. This paper looks into thelgem of estimating faults using the proposed PCA-based
KL divergence approach. The divergence that is numeriegijyroximated to make the fault detection [16] will be
used to estimate the incipient fault amplitude under théiqdar assumption of normal distribution. A theoretical
analysis leading to an estimate of the incipient fault atagé is described. The KL divergence has an analytical form
in case of normal distributions. The numerical approxioratf the divergence degrades the detection performance
and affects the fault estimation accuracy especially fapient faults. Therefore, the evaluation of the faultmstiion
accuracy is carried out in this paper. The probability dgrfsinction (pdf) of the obtained fault amplitude estimate i
calculated. The probabilistic model is validated and thatine error of estimation is assessed, through an AR psoces

model.

2. Analytical approach to estimate fault amplitude

2.1. Main Notations

The following notations will be used in the overall paper.

Let's considerX |y . ,, the data matrix ofn variables.



X =(@1,.., T, ..., Tm) = (245)i,;, Wherex; = [xlj...xNj]T is a vector of N observations acquired from thiéh
variable. For statistical significance, > 2 and N >> m [9]. Let X[Nxm], whereX = (%1, ..., j, ..., Tm), be the
corresponding centered matrix.

S is the sample covariance matrix ahid the dimension of the principal subspace. Many criterigelizeen proposed
in the literature to get the best choicelofAuthors in [25] compared 11 methods to determiimad concluded that
minimizing the Variance of Reconstruction Error (VRE) iefarable.

Pirxm), SUCh @sP = (p1, ..., pi, ...pm), is the matrix of eigenvectors &f associated t, ..., Ay, ..., Ap,.

g denotes the fault amplitude ang is the faulty variable.

The star mark (*) refers to faultless and noise-free datath@duperscript’f’ refers to reference faultless data.

2.2. Assumptions
The analytical model of the KL divergence depending on thé tnaracteristics is obtained based on the following

assumptions on the fault and data modeling:

1. Fault modeling: an incipient fault is often defined as angeaor a degradation that develops slowly [26].
The fault model adopted here assumes that during the figge sththe incipient fault development, the fault
amplitude (size or severity) is constant, see Fig.1. It imia dault characterised with a multiplicative factor
with amplitudeg that affects the lagtV — b) observations of the signdl.is the time occurrence of the fault.

2. Noise modeling: the process variables are affected witpendent and identically distributed (i.i.d) Gaussian
noise that represents measurement errors. The noise saanpleonsidered to be drawn from a normal distri-
bution with zero mean and varianeg@. The noise variance is supposed to be not affected by the &nte it
is not a process noise but rather an environmental or measuits nuisance.

3. Assumption of normality for PCA data : the initial datatdisutions along the original axes are assumed as
Gaussian. The principal components, which are linear coatioins of the original variables, will be thus
normally distributed. This assumption can usually take@ldecause basically PCA yields an optimal rep-
resentation for approximately multivariate normal datar #his case, the principal subspace is spanned by
the firstl eigenvectors of the sample covariance matrix leading tortheimum variance representation of the

dataset.

As a consequence, 18fy .1 be a noise vector aV samples drawn from the distributio¥ (0, 02). We can write
for ;-

ﬂjj:x;+Fj+V (1)
where
Fj=gx[0 ... 0 ap; ... aj; 1" )

The theoretical study concerns incipient faults, and thegault characteristics are considered quite small adegrd
to the signal characteristicg. is a near-zero unknown constant and it introduces small itudpl variations orx;.
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The result is that these variations will not change the eesutid the direction of the PCA's model. It has been shown
in [27] that the direction of the first few principal compomemwould not change following the occurrence of a small
fault. The direction of the last principal components skdag monitored in such case. In our case of incipient fault,

the covariance matri$ can be written as:
S = P*AP*T + 021, (3)

where
A=A+ AA 4)

A* = diag(A}, ..., A}, 0, .., 0) is the(m xm) matrix of eigenvalues associated to eigenvegigrs.., pj', py'y 1, - Py, -
AN = diag(A\, ..., ANy, is the change due to the fault occurrence &pnds them-identity matrix. SOAA = 0
wheng = 0. The last(m — [) eigenvalues correspond to the residual subspace. Singedtice, the distributions of
the last principal components may vanistj & 0) and their directions may change, the divergence is onlgeored

with the first/ principal components, for whick;, # 0 (k =1, ...,1).

2.3. Definition

The KL divergence is an instance fdivergence family, which has been used in many signal msiog applica-
tions including anomaly detection [28, 29], pattern redtign [30] and fault diagnosis [31, 32]. For discrimination
between two continuous probability distribution funcsgiix) andh(z) of a random variable, the Kullback-Leibler
Information is defined in [36] as:

f(z)
I = log =—=dz.
(11 = [ fa)tog 2 (5)

The Kullback-Leibler divergence is the symmetric versidrtte Information [34], and it is given by (f, h) =
I(f||h) + I(h]| f). If f andh are normal densities such thate N (i1, 0%) andh ~ N (u2,03), whereuy, us are

the means and?, o3 are the variances fof andh respectively, the divergence is reduced to [34]

1 1 1 o2 o2
D(f.h) == |(= + = — )24+ L 422 9, 6
(fa ) 9 (Ug U%xﬂl /LQ) 0,5 U% ( )

2.4. Fault amplitude estimation

From the assumption of normality, it follows that each of tinst [ principal components has a pdf denotgd
such thatfy ~ N (0, \x +02). Itis proposed to comparg against its referencf{f. f,:f ~ N(0,\;+02). The fault
does not affect the mean parameter of the distributionsusecthe centre of the PCA's model is supposed unchanged

after the fault occurrence. It follows from (4):

A = Af A+ A (7)



Specializing (6) to the case considered as detailed in [1&kg

ANZ

D(f{’, fi) = [()\*+a2)()\*+02+A)‘k)

J: (8)

With this symmetric version of the divergence, the faulireation is unbiased.
The next step is then to writA A, in function of the fault amplitude.
Suppose);, is a function ofg and is infinitely differentiable in the neighborhood of zéro~ 0), the Taylor
development of\;, gives:
O 192\

1
Ae = AL+ =& - 24 =
E=At o, Ot 553 00 + 5

93’(0)g3+... (9)

It can be shown from [35] that writing in function of the parameter gives thenth-order eigenvalue derivative as:

"\ ,T0"S

dg" = Pk ag” Pk (10)
wherepj;, is the eigenvector associatedXp. The covariance matrig of X is given by :
s=-—1 xTx-_1_ (zrzq) (11)
N—-1 N —1 VY rg={1,..,m}

which is an unbiased estimate of the true covariance matroase of multinormally distributed data. Consider the

fault modeling described by (1) and (2), it follows that:

z; = i — 1yl
= <w;f*u;*-1>+<F 9% % L2 +V (12)
= :Ej + Fj +V
whereF; = F; — ~ Zl » 7;1, 1is a column vector ofV ones. Based on (3) and (4), the derivatiorbakith

respect tgy can be made under the assumption that the noise is indeperidea fault. if6, (r = 1,...,m) andr are

given by the following equations:

Z ( 7)"172}' vr

N . 2 (13)
T= Zq ( qj NZ’L b zg)
we can then write, while substitutirigy in S with its expression (12):

0xTz
Ee 0, Vg4 (14)

dg

ozT(z* + F;) 0(z* + F;)" &,

r@ e Ey) o+ B)E s




+ )& + F,

0; ) s 2. (16)
dg J

*
J

0 (r = 1,...,m) andr are functions of the original variables and can be computaa healthy data once for all.

The first-order derivative of the covariance matrix is thereg by:

[0 01 0 |

oS 1

8_g = m 51 e 25]' + 297’ e 5m (17)
L0 Om 0

The second-order sensitivity 8fwith respect to the fault amplitudgeis obtained by differentiating (17).
The higher-order sensitivities &f (n > 2) are all null, as for the eigenvalue derivatives. Writing thading

T
vectorp; aspy = |:p1k “ Dk } , it follows that

a9 Pk 9gPr T N 1
PNy L1025 , 2

0g> = Pk 8g2pk N -1

e L1dS , 2 m
_k =p T . (p]k Zp,-k&,- +p§k7‘g>

r=1
p?kT
and thus
. 2 i 3
Ade = Ae = A = 5 Pik ZPM&«Q + ﬁp?k792' (18)
r=1

An estimate, denoted, of ¢ is obtained based on (8) and (18\)? is the estimated\ ), squared. Lety; =

Dik Y omey Pricdy @andag = 3p§kr, the theoretical estimation gfthat depends on the divergence value is finally given

by

—an a3+ (N — Daz(N; + 02)(D + /(D? + 2D))

Q2

9= (19)

whereD is the shorthand of the divergence in (8). In practices numerically approximated. The objective then
is to evaluate the impact of the divergence approximatiotheraccuracy of the obtained model for incipient fault

amplitude estimation.

3. Probability density function of the fault amplitude estimate : approximation with a Gamma distribution

The divergence is used to measure the difference betwedwehgrobability distributions corresponding to the
faultless and faulty signals. As the divergence betweendrhitrary probability distributions has no closed form,
the integral function given by Eq.(5) should be numericalpproximated. The common method to estimate the
divergence value uses the interpretation of the Informatiderm of the likelihood ratio: the KL information from

6



probability distributionf to & is the expected log-likelihood ratiog(f /:) under the distributioh. This induces two

assumptions:

1. an observation set composedéfindependent and identically distributed (i.i.d.) obséioms {z;}2 drawn from

f is supposed available.
2. h(z;) can be calculated, and thyss supposed to be known.

Under these assumptions, the Monte Carlo approximatiogisisin computing:

Ino(fIIh) = Zl (20)
However in our application, the probability distributios® unknowra priori. Nevertheless, two observation sets are
available (the current and the reference), from which eicgdiprobability distributions can be calculated.

An intuitive and fast way to approximate the divergence leetmtwo unknown probability distributions consists in the
discrete form that uses probabilities from histogramsidaton [36]. Consider an equipartition of the faultle gyl

into ! disjoint intervals{[so, so + As), [so + As, s + 2As), ..., [so + (I — 1)As, s;)} wheresy ands; are the min
and max values of the signal level. The probabilifies , w-, ..., w; } of the faultless signal levels are estimated as the
proportion of the number of points within each interval te thhole number of points in the signal. The probabilities

{u1,uaq, ..., u; } of the faulty signal levels are calculated for the same settefvals. ThenD is approximated by:

l

D= szlog— + Zullog— = Z( - ui)log% (21)

i=1 ¢
To evaluate the accuracy of estimatinpthrough (19),D in (19) is substituted by. If D fits a known distribution,
the distribution ofj can be calculated based on the following theorem [37]:
Let X have pdffx(z) and letY = (X), wheret is a monotone function. Let = {z : fx(z) > 0} and
Y = {y:y=1y(zx) for somer € X}. Suppose thafx (z) is continuous on¥ and thaty)~*(y) has a continuous

derivation on), then the pdf ofY” is given by:

d
fx@ ) | 47 y) | yey
fr(y) = dy (22)
0 otherwise.
—a1—|— \/al N —Das(Af + 02)(z + /(2?2 + 22)) _ .
Considern)(x . The variabler refers toD.

(6%)

The calculation ofi)’(x) proves thaty is monotone '(z) > 0V = > 0). The inverse function of) is
_ 1 (a1y + agy?)? : N
1 = = , Where the variable refers tog, a = X\ + 02, a1 = 2a7/(IN — 1) and
’l/) (y) 2a(a+a1y+a2y2) g ) k v 1 1/( )

7



a2 :a2/(N71) 4 2,4 2 2\,,3 2 2
L . 2 3 2
The derivation ofy~! () denotedZ(y) = (v~1(y))"is: Z(y) = ——2 i (GZZTLCZZ)?JJF ;;y;;zlaw + 2001y

The simulations of the system represented by (24) and (28yesth that the probability densitj/X(ﬁ) of the
Hya—1

estimated divergence can fit with Gamma distributiofys(D) ~ F(We:ch(fD/H).

« [e3

As a consequence, the fault amplitude estinjatéll also be Gamma distributed. Thus according to (22) thiegid

the fault amplitude estimatgis given by:

—Yg
@) @) e (20 (29
wherea andf are obtained by a numerical fitting with the minimization afwdratic error.

4. Simulation results

A typical application of the divergence model would be irustural health monitoring (SHM) systems, where
the objective is to detect and identify incipient faultstdeges in the structure using sensor data (typically vibnati
data) [38, 39]. The SHM relies on measurements acquired &aense sensor network that provides sufficient
analytical redundancy for diagnosis. Itis of crucial imamice that the acquired measurements are reliable forasaly
and decision. Therefore, sensor faults should be detecigddantified correctly so to avoid misinterpretation and
confusion with structural faults. In such application, gemsor network can be modelled as a Gaussian process [40]
(assumption 3), or any other type of distribution processvail be illustrated in the following simulation result$he
process dimension can be reduced by using PCA for exampieifeités not optimal in the non Gaussian case. The
divergence can be proposed to address sensitivity andtraassissues [41] in this application, while the analytical
divergence model is able to estimate the severity of seastisf especially the gain faults.

The theoretical estimation will be evaluated here on a maiitite AR system inspired from [27]:

0.118 —-0.191 1 2
x(i) = x(i—1)+ u(i—1)
0.847  0.264 3 -4
y(i) = x(i) + (i) (24)

whereu is the correlated input,

_ 0.811 —0.226 | 0.193  0.689 _
u(i) = u(i—1)+ w(i —1). (25)
0.477  0.415 —0.320 —0.749

wis avector of 2 inputsy = [w; wy)’ . Results will be shown in two cases: when the condition oftivariate

8



normal distribution data is met and in case it is violated.the first case, the inputs; andw- are uncorrelated
Gaussian signals with zero mean and unit variance. In trenseane, denoted as tiixed case in the followingw;
is still Gaussian and, is drawn fromy? distribution with two degrees of freedom.= [u; u,|T is the vector of
measured inputs, and=[y; y,]T is the vector of outputs corrupted by uncorrelated Gaussigors with zero
mean and variance?.

The vector of process variables will be formed with the meadinputs and outputs of the process at instant
e [y1()) wa2(d) wi(d) wa(d)]” -

PCA is applied on the corresponding covariance matrixyieg# principal components with loading vectérs. }
and variance3;, = {40.26, 4.9, 1.14, 0.17}. The first principal componert accounts for 86.6% of variations, it
will be used to estimate the fault affecting the outputlf X is the centered data matrix, thep= Xp;.

The faultis modeled ag (i) = (1 + g)z=2(i) +v2(i) wherew, is the additive noise of varianeé. The added process
noise allows a SNR of 25 dB which is a considerable noise leyakference to many industrial applications (like
electrical systems). The 1a26% samples ofj, are affected by the fault (for which £ 0).

Considering small values af, specificallyg = {0.01, 0.015, 0.02, 0.025} meaning variations of 1%, 1.5%, 2%,
2.5%} of the signal amplitude, the pdfs of the estimageabtained through the approximated divergence and destribe
by (21) are displayed in Fig.2. The pdfs of the estimatioescéearly centered at the actual fault amplitudes.

With the pdfs and considering a wide fault amplitude rangenf0.001 (0.1%) to 0.3 (30%), we obtain Fig.3 that
displays the actual and estimated fault amplitudes in thes&an and th#lixed cases. Fig.4 shows the relative error
E. = (g —g9)/(1+ g) on the estimated variabig (i) = (1 + §)z2(i) + v2(i) of the faulty variabley,.

In the Gaussian case the estimation relative error is lessltfi. However, even if the Gaussian assumption is no
longer valid, the estimation relative error is still acage with a maximum value of approximated$. Thanks to
this accurate estimation, the faultless observationse¢hnde reconstructed from the faulty ones which is intargsti

for monitoring purposes.

5. Conclusion

An analytical approach based on the KL divergence is praposerder to estimate the incipient fault amplitude
in highly dimensional processes. As the divergence hasasedlform it has been approximated numerically. After
the derivation of the analytical model of the fault ampligusktimate, its relevance has been studied with the proba-
bility density functions approximated as a gamma distidut The estimated fault amplitude, when evaluated on a
simulated AR process, has proven to be close to the actuad yedlative error lower thah% in the Gaussian case
and3% in the Mixed case for a fault amplitude in th@.001; 0.3] interval). With such an estimation, the faultless

observations can be reconstructed from the faulty oneshwdan be very useful for control and monitoring purposes.
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Figure 1: Incipient fault model
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