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Abstract

This work shows how a carefully designed instrumental distribution can improve the per-

formance of a Markov chain Monte Carlo (MCMC) filter for systems with a high state

dimension. We propose a special subgradient-based kernel from which candidate moves are

drawn. This facilitates the implementation of the filtering algorithm in high dimensional

settings using a remarkably small number of particles. We demonstrate our approach in

solving a nonlinear non-Gaussian high-dimensional problem in comparison with a recently

developed block particle filter and over a dynamic compressed sensing (l1 constrained) al-

gorithm. The results show high estimation accuracy.

1. Introduction

Over the past decade we have witnessed an immense rise in the complexity of inference

tasks, primarily owing to recent advancements in computation power and ever increasing

performance expectations. Filtering algorithms nowadays confront the curse of dimensional-

ity in many real world high dimensional applications which include, among others, multiple

object and crowd tracking [1], learning algorithms, and reasoning in multi-agent systems. In

many typical problems in these domains and alike, even the most conservative restrictions

on the underlying spatio-temporal complexities would not alleviate the dimensionality issue.

A thoughtful study of the class of sequential Monte Carlo methods, otherwise known as

particle filters (PFs), has shown that it is the well-known importance sampling technique

which renders most state-of-the-art PF schemes inadequate for reasoning in complex high

dimensional settings [2]. Recently, various approaches have been proposed for overcoming

this downfall. These account for MCMC methods [3, 4], population PFs and log-homotopy

particle flow [5]. A number of local sequential Monte Carlo methods, called also block
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particle filters have been proposed by representing complex probability density functions

(pdfs) with a product of independent pdfs [6, 7, 8].

In this work we derive an efficient version of a genuine and simple MCMC particle filtering

algorithm of which several variants appeared in the literature. In particular, our proposed

methodology endows the plain MCMC filtering algorithm with an informative instrumental

density from which new moves are generated. As part of this, the local subgradient of the

likelihood is exploited for potentially steering the produced chain to highly probable regions

of the exploration space. This approach possesses an advantage over the prevalent particle

refinement technique which utilizes a Metropolis-within-Gibbs stage for making conditional

draws - a stage which has been conjectured to deteriorate the chain mixing time [3]. We

demonstrate the potential of our approach in complex settings involving nonlinear state

dynamics.

The rest of the paper is organised in the following way. Section 2 presents the problem

formulation. Section 3 describes a few existing MCMC filtering techniques for high dimen-

sional systems. Section 4 describes a new subgradient-based sampling approach for filtering

in potentially high dimensional state spaces. A few illustrative examples of the proposed

approach are provided in Section 5. Finally, Section 6 summarises the results.

2. General Particle Filtering Framework

Consider the problem of estimating the state of a dynamic system:

xk = f(xk−1,vk−1), (1a)

zk = h(xk, rk), (1b)

where xk ∈ R
nx is the unknown system state vector, zk ∈ R

nz is the observed measurement

vector and f(.) and h(.) are the process and measurement functions, respectively. The above

equations are driven by vk and rk which stand for the process and observation noises.

According to Bayes rule, the state filtering pdf p(xk|z1:k) of the state vector xk given

the measurement history z1:k = {z1, . . . , zk} may be written as

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (2)

where p(zk|z1:k−1) is the normalising constant. The state predictive distribution is given by
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the Chapman-Kolmogorov equation

p(xk|z1:k−1)=

∫

Rnx

p(xk|xk−1)p(xk−1|z1:k−1)dxk. (3)

The evaluation of the right hand side of (2) involves integration which can be avoided in

the particle filtering approach by approximating the filtering pdf p(xk|z1:k) with a set of

particles x
(i)
0:k, i = 1, . . . , N and their corresponding weights w

(i)
k [9]. Then the posterior

density can be written as follows

p(x0:k|z1:k) =
N
∑

i=1

w
(i)
k δ(x0:k − x

(i)
0:k), (4)

where δ(.) is the Dirac delta function, and the weights are normalised such that
∑

i w
(i)
k = 1.

Each pair {x
(i)
0:k, w

(i)
k } characterises the belief that the system is in state x

(i)
0:k. An estimate

of the variable of interest is obtained by the weighted sum of particles. Two major stages

can be distinguished: prediction and update. During prediction, each particle is modified

according to the state model, including the addition of random noise in order to simulate the

effect of the noise on the state. In the update stage, each particle’s weight is re-evaluated

based on the new data. A resampling procedure introduces variety in the particles by

eliminating those with small weights and replicating the particles with larger weights such

that the approximation in (4) still holds. This paper proposes a resample-move scheme

which is presented in details as Algorithms 1 and 2.

3. High Dimensional Particle Schemes

The importance sampling approach, which essentially forms the core of every PF al-

gorithm, becomes prohibitively inefficient in high dimensions [2]. Over the past decade

this caveat has motivated the derivation of far more sophisticated particle schemes, most of

which rely on MCMC techniques [3, 4, 10]. The main purpose of this paper is to corroborate

and extend a single promising direction in this regard. We demonstrate the strong potential

of a class of genuine MCMC-based particle algorithms.

3.1. Sequential MCMC Filtering

The following sequential filtering scheme is closely related to the inference algorithms

presented in [10, 11] (see also [4]). Suppose that at time k−1 there are N samples {x
(i)
k−1}

N
i=1

drawn approximately from the filtering density p(xk−1 | z1:k−1) (i.e., the previous time
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target distribution). A new set of samples {x
(i)
k }Ni=1 representing p(xk | z1:k) can be then

simulated using a tailored Metropolis Hastings (MH) scheme.

The MH algorithm generates samples from an aperiodic and irreducible Markov chain

with a predetermined (possibly unnormalised) stationary distribution. This is a constructive

method which specifies the Markov transition kernel by means of acceptance probabilities

based on the preceding time outcome. Setting the stationary density as the joint filtering

pdf p(xk,xk−1 | z1:k) (the marginal of which is the desired filtering pdf p(xk | z1:k)), a new

set of samples from this distribution can be obtained after the MH burn-in period. This

procedure is described next.

First, we simulate a sample x′
k from the joint pdf p(xk,xk−1 | z1:k−1) by drawing

x′
k ∼ p(xk | x′

k−1), (5)

where x′
k−1 is uniformly drawn from the empirical approximation of p(xk−1 | z1:k−1) given

by

p̂(xk−1 | z1:k−1) = N−1
N
∑

i=1

δ(x
(i)
k−1 − xk−1). (6)

This sample x′
k is accepted or rejected using the following Metropolis rule.

Let (x
(i)
k ,x

(i)
k−1) be a sample from the realised chain of which the stationary distribution

is the joint filtering pdf. The MH algorithm accepts the new candidate pair (x′
k,x

′
k−1) as

the next realisation from the chain with probability

α = min
{

1, p(zk | x′
k)/p(zk | x

(i)
k )

}

, (7)

that is,

(x
(i+1)
k ,x

(i+1)
k−1 ) =











(x′
k,x

′
k−1), if u ≤ α

(x
(i)
k ,x

(i)
k−1), otherwise

(8)

with the uniform random variable u ∼ U [0, 1]. The above sampling scheme may be inefficient

in exploring the sample space as the underlying proposal density of a well behaved system

(i.e., of which the process noise is of low intensity) introduces relatively small moves. This

drawback can be alleviated by a secondary Metropolis-within-Gibbs refinement stage [10,

11].
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4. Subgradient-Based Efficient Sampling

The efficiency of MCMC samplers, which mainly refers to the mixing properties of the

produced chain, is prominently affected by the proposal density from which the candidate

moves are drawn. Good proposals facilitate the exploration of the sample space and in

particular of high probability regions irrespectively of the initial conditions. The mixing

problem is partially alleviated in both [10] and [11] where Metropolis within Gibbs refine-

ment stages are incorporated into the basic MCMC scheme. This approach has proved itself

viable for various multi object tracking applications.

In this work we investigate a rather different type of proposal in which the (sub)gradient

information of the likelihood is taken into account. As it would be demonstrated in the en-

suing this unique proposal facilitates the application of MCMC filtering in high dimensional

state spaces (as far as particle filtering is concerned) using a remarkably small number of

particles. The idea consists of constructing a proposal out of set of improved samples using

the joint propagated pdf p(xk,xk−1 | z1:k−1). Thus, the obtained samples from (5) are

pushed towards high probability regions based on the (sub)gradient of the likelihood

x̄
(i)
k = x′

k
(i)

− λ(i) log p(zk | x′
k
(i)
)

∥ t(i) ∥22
t(i), i = 1, . . . , N, (9)

where ∥ . ∥2 denotes the Euclidean norm, the relaxation parameter λ(i) ∼ pλ is sampled for

every i from some prescribed steering distribution pλ (e.g., uniform), and t(i) := ∂ log p(zk |

xk)/∂xk is the associated subgradient with respect to xk, computed at x′(i)
k . This technique

is essentially related to the acclaimed iterative convex optimisation method known as subgra-

dient projection [12]. Having the set of improved and propagated particles, {x̄
(i)
k ,x

′(i)
k−1}

N
i=1,

a regularised proposal is constructed in the following manner

q(ȳk) ∝
N
∑

i=1

N (ȳk | ȳ
(i)
k , σ2), ȳk = [x̄T

k ,x
′T
k−1]

T , ȳ
(i)
k = [(x̄

(i)
k )T , (x

′(i)
k−1)

T ]T , (10)

where N (·) and σ denote the normal distribution and a roughening intensity parameter,

respectively. A MH procedure is then carried out in a fashion similar to (8). This time,

however, the acceptance probability of a new candidate pair (x̄k,x
′
k−1) ∼ q(ȳk), is given by

α = min

{

1,
p(zk | x̄k)p̂(x̄k,x

′
k−1 | z1:k−1)q(y

(i)
k )

p(zk | x
(i)
k )p̂(x

(i)
k ,x

(i)
k−1 | z1:k−1)q(ȳk)

}

, (11)

where ȳk) =
[

xT
k ,x

T
k−1

]T
is a vector containing the pair before the mix and p̂(x̄k,x

′
k−1 |
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z1:k−1) is the density of the move.

4.1. Setting Proposal and Steering Distributions

In the above scheme the proposal distribution q(ȳk) is obtained prior to the application of

the MH stage. This computationally excessive, albeit necessary, step is used in conjunction

with the MH for producing a reversible chain that will ultimately converge to the prescribed

stationary distribution. An efficient alternative for computing q(ȳk) is by replacing (10)

with a single Gaussian of which the statistical moments correspond to the sample mean and

covariance of the population {ȳ
(i)
k }Ni=1. A pseudo-code of this variant of the MCMC particle

filter is provided in Algorithm 1.

An approach that is likely to have an improved MH acceptance rate relies on using two

distinct proposals ql(ȳk), l = 1, 2 each of which involves a different steering distribution

plλ(λ). The new moves are then sampled from each of these two proposals in an alternat-

ing fashion. This approach, which is provided here without a theoretical justification, is

summarised in Algorithm 2.

Algorithm 1 MCMC Particle Filtering Algorithm

1: Given previous time samples x
′(i)
k−1, i = 1, . . . , N perform the following steps.

2: Draw x′
k
(i) ∼ p(xk | x

′(i)
k−1), i = 1, . . . , N .

3: Use (9) for producing x̄
(i)
k , i = 1, . . . , N . The set {x′

k
(i)
,x

′(i)
k−1}

N
i=1 simulates p̂(xk,xk−1 |

z1:k−1), whereas {ȳ
(i)
k }Ni=1, ȳ

(i)
k = [(x̄

(i)
k )T , (x

′(i)
k−1)

T ]T simulates q(ȳk) = N (ȳk | µk,Σk),
with mean µk and covariance Σk where

µk = N−1
N
∑

i=1

ȳ
(i)
k , Σk = N−1

N
∑

i=1

[

ȳ
(i)
k − µk

] [

ȳ
(i)
k − µk

]T

4: for i=1, . . . , N +NBurn−in do

5: Draw (x̄k,xk−1) ∼ q(ȳk).

6: Accept the new move as a sample in the chain x
(i)
k = x̄k with probability α given in

(11).
7: end for

8: Retain only N samples x
(i)
k subsequent to the end of the burn-in period.

Algorithm 2 Alternate Steering MCMC

1: Simulate q1(ȳk) and q2(ȳk) using two distinct steering distributions p1λ and p2λ, respec-
tively.

2: for i=1, . . . , N +NBurn−in do

3: Draw (x̄k,xk−1) ∼ q(ȳk) where q(ȳk) = q1(ȳk) if (i mod 2) = 1, and q(ȳk) = q2(ȳk),
otherwise.

4: Accept the new move as a sample in the chain x
(i)
k = x̄k with probability α given in

(11).
5: end for

6: Retain only N samples x
(i)
k subsequent to the end of the burn-in period.
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5. Illustrative Examples

In the following examples we compare the performance of a few nonlinear filtering algo-

rithms applied to systems with nx = 100 states. The filters refer to an Extended Kalman Fil-

ter (EKF), the compressed sensing Kalman filter (CSKF) of [13], and the proposed MCMC

particle filtering algorithm. The MCMC schemes use no more than 3000 particles and

1000 burn-in samples. The steering distributions p1λ and p2λ are set as U [−6, 6] and U [0, 6],

respectively. The non alternating MCMC scheme uses λ ∼ p1λ.

In the first example we consider a system model, which is an extension of the wide spread

example from [9]

x
j
k = x

j
k−1 +

25
∑nx

i=1 x
i
k−1

1 +
(
∑nx

i=1 x
i
k−1

)2 + cos(1.2k) + v
j
k−1 (12a)

z
j
k =

(

x
j
k

)2

20
+ r

j
k, j = 1, . . . , nx (12b)

where the superscript j denotes the jth element in the vector. The noises v
j
k and r

j
k are

assumed to be Gaussian with unit covariance matrices. All other related parameters are

set as in [9]. The residual resampling algorithm [14] is applied here. This is a two step

procedure making use of sampling-importance-resampling (SIR) scheme.

The performance of the EKF and of both MCMC variants, namely, the alternate steering

MCMC (alternating) and the non-alternating, is shown in Figures 1 and 2. The normalised

RMSE, defined as E [∥ x̂k − xk ∥2 / ∥ xk ∥2]
1/2

, is approximated based on 50 Monte Carlo

runs and is shown in Fig. 1. Figure 2 presents the mean acceptance rate of both MCMC

variants. Figure 2 demonstrates the superiority of the alternating MCMC filtering approach

in terms of estimation accuracy and sampling efficiency (i.e., improved acceptance rate). A

comparison with the block PF developed in [8] is also presented. The block PF splits the high

dimensional state vector into low-dimensional state vectors and calculate likelihoods over

these low dimensional state sub-vectors. The block PF is implemented with the same number

N = 3000 of particles as in the proposed MCMC filters and respectively with blocks with

state sub-vectors, with sizes, respectively, 25 and 100. The results are shown on Figure 1.

Figure 1 demonstrates the outperformance of the sub-gradient MCMC algorithms compared

with the block PF of Rebeschini and the EKF. The block PF [8] calculates independent

likelihoods over blocks of smaller state sub-spaces. However since the subgradient MCMC

filter uses the latest measurements and moves the particles towards more likely regions, the

subgradient MCMC algorithm outperforms the block PF.
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In our last example we demonstrate the performance of the non-alternating MCMC ap-

proach in solving a dynamic compressed sensing problem [13]. The system model is similar

to the one considered in [13] with nx = 100 states out of which only 10 are either non-

vanishing or non-compressible (i.e., the state process is sparse/compressible). The signal

itself becomes corrupted over time and its corresponding complexity in the sense of sparse-

ness rises (see illustration in Fig. 3). At each time step the observations are generated from

zk = Hxk + rk. The system and measurement noise covariances are unit matrices and the

sensing matrix is in the form: H = [sign(z(1), . . . , sign(z(nz))] where sign(z(i)) denotes the

sign function of the ith element of zk (i.e. sign(zk(i)) = 1 if zk(i) > 0) and sign(zk(i)) = −1

otherwise. The likelihood function of the MCMC algorithm is given as

p(zk | xk) ∝ exp
{

−0.5 ∥ zk −Hxk ∥22 −β ∥ xk ∥1
}

(13)

with β = 100.

The performance shown in Figures 3 and 4 demonstrates the viability of the MCMC

approach in solving the compressed sensing problem. The estimation errors of both the

CSKF and the MCMC nearly coincide from a certain compressibility level (the increased

complexity is manifested by the positive slope of the estimation error lines). The estimation

accuracy of a conventional Kalman filter is also depicted showing its uselessness for such a

problem.
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6. Conclusions

This paper presents a Markov chain Monte Carlo approach for high dimensional nonlin-

ear filtering. The new algorithm utilises an improved proposal distribution that essentially

incorporates the latest measurement and subgradient information of the underlying likeli-

hood function. This proposal is then used for generating candidate moves in high probability

regions of the sample space. The alternating MCMC scheme with the steering distribution

accelerates the generation of new samples and has a much higher success rate than the

MCMC filter with nonalternating sampling rate. The subgradient MCMC algorithm is

shown to outperform the block PF [8] which subdivides the whole state vector into blocks

with smaller dimensions and calculates individual likelihoods for each block. The numerical

study demonstrates the potential of the new filtering scheme for high dimensional nonlinear

state estimation.
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Figure 1. The RMSE based on 50 Monte Carlo runs, 3000 particles of the

subgradient-based MCMC algorithm with Metropolis Hastings step compared

with the EKF and block PF. Nonlinear system with 100 states.
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