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Abstract

We address the problem of channel estimation for cyclic-prefix (CP) Orthog-

onal Frequency Division Multiplexing (OFDM) systems. We model the chan-

nel as a vector of unknown deterministic constants and hence, do not require

prior knowledge of the channel statistics. Since the mean-square error (MSE)

is not computable in practice, in such a scenario, we propose a novel technique

using Stein’s lemma to obtain an unbiased estimate of the mean-square error,

namely the Stein’s unbiased risk estimate (SURE). We obtain an estimate of the

channel from noisy observations using linear and nonlinear denoising functions,

whose parameters are chosen to minimize SURE. Based on computer simula-

tions, we show that using SURE-based channel estimate in equalization offers

an improvement in signal-to-noise ratio of around 2.25 dB over the maximum-

likelihood channel estimate, in practical channel scenarios, without assuming

prior knowledge of channel statistics.
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1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) has become a popu-

lar modulation scheme for various mobile [1], wireless networking, and digital

television standards [2, 3]. One of the primary advantages of OFDM over single-

carrier modulation schemes is its superior performance in multipath channels.

Estimating the value of the channel frequency response (CFR) at each sub-

carrier accurately is crucial for recovering the transmitted data from the detri-

mental effects of the channel. To aid in channel estimation, typical OFDM

systems reserve a part of the sub-carriers for pilots. These pilots can either be

fractions of the sub-carriers in every OFDM symbol or be aggregated into one

OFDM symbol, called the preamble. Preamble symbols are used for obtaining

initial channel estimates, which can be further refined using pilots interleaved

within subsequent data symbols.

1.1. Related work on channel estimation for OFDM systems

In a survey paper, Ozdemir and Arslan [4] considered channel estimation

based on the maximum-likelihood (ML) criterion and the linear minimum mean-

square error (LMMSE) criterion using a preamble OFDM symbol. In the ML

approach, the channel is assumed to be a vector of unknown deterministic con-

stants. When the noise is additive and white-Gaussian, the channel estimation is

obtained by minimizing the Euclidean distance between the observation and the

parameter to be estimated. At low signal-to-noise ratio (SNR), the algorithm

fits the estimated parameter to the noise in the observation and hence, the ML

approach has limited performance. On the other hand, Bayesian techniques such

as the LMMSE estimator [5] outperform the ML estimate, but require a priori

knowledge of the autocorrelation matrix of the CFR, which may not always be

available in practice. In addition, the LMMSE channel estimator has a high

complexity, because it requires an inversion of the channel autocorrelation ma-

trix. Considerable efforts have been devoted to reducing the complexity as well

as to render the estimator robust to inaccuracies in the knowledge of the channel
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statistics. In particular, van de Beek et al. [6] obtained a reduction in the size of

the matrix to be inverted assuming prior knowledge of the length of the channel

impulse response (CIR). Edfors et al. [7] obtained a low-rank approximation

for the channel autocorrelation matrix by considering only its p largest singular

values, thus reducing the channel estimation complexity. Huang et al. [8] per-

formed computations in the spatial-domain of multiple-input-multiple-output

(MIMO) systems to reduce the complexity of the LMMSE estimator. Noh et

al. [9] proposed an approximation to the LMMSE that involved partitioning

the autocorrelation matrix into sub-matrices in order to reduce the dimensions

of the matrix to be inverted. Ye Li et al. [10] proposed a channel estimator

that is robust to inaccuracies in the knowledge of the channel statistics, while

assuming that the time-domain autocorrelation of the channel is characterized

by Jakes’ model [11]. Despite the advances, LMMSE-based channel estimation

algorithms are not a popular choice for practical implementation. Alternative

methods for channel estimation focus on transform-domain processing, which

involve applying linear or nonlinear functions such as thresholding to the CIR.

Minn and Bhargava [12] proposed an intra-symbol time-averaging based method

with most-significant-tap selection to denoise the CIR. Kang et al. [13] used a

thresholding function on the CIR to annull taps below a threshold, obtained

based on the noise variance. Krondorf et al. [14] proposed a method to es-

timate the delay-spread of the CIR and used it to annull taps having longer

delays than the estimated delay-spread. Yu and Sadeghi [15] proposed a low-

complexity method for least-squares (LS) estimation of the CIR using the LS

estimate of the frequency-domain pilot subcarriers. Although these algorithms

are in general ad hoc, they are less complex than the LMMSE technique and do

not require perfect prior knowledge of channel statistics. Their performance is

better than the ML technique, but inferior to the LMMSE technique.

1.2. Contributions

In this paper, we focus on estimating the CFR from a preamble OFDM sym-

bol. We model the samples of the CFR as a vector of unknown deterministic
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constants and do not assume prior knowledge of the channel statistics. The

proximity of an estimate to the ground truth is quantified by the mean-square

error (MSE). Since the ground truth for the estimate of an unknown determinis-

tic constant is not available in practice, the MSE is not computable. Therefore,

we replace the oracle MSE with an unbiased estimate known as Stein’s unbiased

risk estimate (SURE) [16], which is dependent only on the noisy observations

of the unknown parameters (CFR) and the variance of noise. Next, we select

a parametric function to denoise the noisy observations, with the values of the

parameters chosen to minimize SURE.

SURE-based denoising methods have been extensively used in image and

speech processing. Luisier et al. [17], Blu and Luisier[18], Raphan and Si-

moncelli [19] proposed methods that use SURE for wavelet denoising in im-

ages. Kishan and Seelamantula [20] developed SURE methodology to optimally

choose parameters for bilateral filters. Muraka and Seelamantula [21, 22] derived

SURE-optimal frequency-domain based denoising functions and chose parame-

ters for functions that optimize perceptual distortion measures of speech. Zheng

et al. [23] performed denoising of discrete-cosine-transform coefficients using

SURE for speech recognition. Krishnan and Seelamantula [24] used SURE to

optimally compute the order of Savitsky-Golay filters for time-varying signals.

Our choice of the parametric denoising function is influenced by the following

two properties of the channel: (i) The samples of the CFR are correlated; and

(ii) The taps of the CIR with low SNR contribute significantly to the MSE and

can be eliminated to reduce the MSE. The main contributions of this paper are

as follows:

• We have designed a practically implementable algorithm for channel es-

timation, based on Stein’s lemma, that gives a considerable improvement

over the ML estimate of the channel.

• The channel estimation algorithm is designed to obtain channel estimates

by utilizing the correlation between subcarriers of the CFR and by atten-

uating the low-SNR taps of the CIR.
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• Using SURE-based channel estimate for equalization, we show a perfor-

mance improvement of 2.25 dB, in SNR, over the ML estimate.

1.3. Organization of the paper

In Section 2, we describe the OFDM system model. We briefly review the

existing channel estimation algorithms in Section 2.1. In Section 3, we intro-

duce SURE methodology and its application to channel estimation for OFDM

systems. We present the results of simulations in Section 4 and compare the

performance of SURE-based channel estimation algorithm with existing algo-

rithms in practical scenarios. Some concluding remarks are given in Section

5.

1.4. Notations

We use bold-face lower-case alphabets to denote column vectors x and bold-

face upper-case alphabets to denote matrices X. xk represents the kth element

of the vector x. (·)∗ , (·)T and (·)H represent the complex conjugate, transpose,

and conjugate transpose (Hermitian) operation, respectively. E {·} denotes the

expectation operator and Ex {·} denotes the expectation over the random vec-

tor x. IN represents an N × N identity matrix and ||·|| denotes the vector

norm. CN (µµµ,ΣΣΣ) represents the complex normal distribution with mean µµµ and

covariance matrix ΣΣΣ. ℜ{x} and ℑ{x} represents the real and imaginary parts,

respectively of the complex vector x. diag {a1, · · · , aN} is used to denote an

N ×N diagonal matrix with a1, · · · , aN occupying the diagonal positions.

2. System model

Consider a cyclic-prefix (CP) OFDM system withK sub-carriers. If {xk}
K−1
k=0

are the data values transmitted on the K sub-carriers, the transmitted OFDM

symbol can be written as,

sn =
1

K

K−1∑

k=0

xke
j2πkn

K , ∀n ∈ {−Kg,K − 1} ,
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where {sn}
K−1
n=−Kg

is the time domain OFDM symbol and Kg is the length of the

CP. If the time-domain OFDM symbol passes through a channel with impulse

response g of length P , the received symbol r′ obtained after discarding the

guard interval can be written as,

(1)r′ = g ⊗ s+ ηηη ,

where s = [s0 s1 · · · sK−1]
T , g = [g0 g1 · · · gP−1]

T , r′ = [r′0 r′1 · · · r
′
K−1]

T and ⊗

denotes circular convolution. ηηη = [η0 η1 · · · ηK−1]
T is the added white Gaussian

noise and ηηη ∼ CN (0, σ2IK). In (1), we have assumed that P , the length of

the CIR, is less than Kg, so that there is no loss of orthogonality due to inter-

symbol interference. We have also assumed that the synchronization algorithms

are accurate and that there is no inter-carrier interference. Multiplying both

sides of (1) by the K ×K discrete Fourier transform (DFT) matrix F, we get,

y′ = Fr′ = Xh+ Fηηη , (2)

where X = diag {x0, · · · , xK−1} and h is the channel frequency response given

by h = F


gT

K−P︷ ︸︸ ︷
0 · · · 0



T

. We restrict ourselves to estimating the channel from

a preamble symbol, that is, when the value of X is known. We also assume

that the symbols {x0, · · · , xK−1} and are chosen from a constant modulus con-

stellation set with unit power, so that XHX = IK . This assumption is valid

in practice, since binary phase-shift keying (BPSK) and quaternary phase-shift

keying (QPSK) are preferred modulation schemes for the preamble data, ow-

ing to their property of maximum separation between constellation points for a

given signal power. Pre-multiplying y′ by X−1 gives us a noisy observation of

the CFR :

y = X−1y′ = h+X−1Fηηη = h+w , (3)

where w = X−1Fηηη and w ∼ CN (0, σ2(XHX)−1). We define the noisy estimate

of the CIR as,

r = FHy = FH(h+w) = g + FHw = g+ v , (4)
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where v = FHw. We observe that the channel has two properties, which we

utilize to design a channel estimation algorithm :

1. The samples of the CFR are correlated.

Let chh(k, ℓ) , E
{
hkh

∗
k−ℓ

}
be the correlation between the channel value

at the kth sub-carrier with that of the k − ℓth sub-carrier. Assuming that

the taps of the CIR are uncorrelated with each other, we find that,

chh(k, ℓ) =
P−1∑

p=0

αpe
j 2πℓp

K ∀ k ∈ {0, 1, · · · ,K − 1} ,

= chh(ℓ),

(5)

where αp corresponds to the average power of the pth channel tap. From

(5), we infer that the samples of the channel frequency response are cor-

related with each other, and that chh(k, ℓ) is independent of the absolute

value of the carrier k and is only a function of the lag ℓ.

2. The taps of the CIR with a low SNR can be attenuated to improve the

MSE.

The MSE between the CIR g and it’s estimate ĝ is given as,

(6)

MSE =
1

K
E
{
||g − ĝ||2

}
,

=
1

K

K−1∑

k=0

|gk − ĝk|
2 ,

=
1

K

K−1∑

k=0

MSEk ,

where MSEk = 1
K
E
{
|gk − ĝk|

2
}

is the contribution to the MSE from

the estimate of the kth tap of the CIR. The MSE can be reduced by

using a thresholding function to attenuate taps with a low SNR, which we

demonstrate by means of the following example. If we define the estimate

ĝk as,

ĝk = akrk = ak(gk + vk),
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where ak ∈ {0, 1}, MSEk can be written as,

MSEk =




|gk|2 , ak = 0 ,

E
{
|vk|

2
}
= σ2 , ak = 1 .

The value of ak ∈ {0, 1} that minimizes MSE can be written as,

a
opt
k =




1 ,

|gk|
2

σ2 > 1 ,

0 , otherwise .

(7)

From (7), we infer that a reduction in MSE can be obtained using a

thresholding function and the magnitude of reduction is σ2 − |gk|2 when

the SNR of the kth tap (given by |gk|
2

σ2 ) is less than 1.

2.1. Brief review of existing channel estimation algorithms

2.1.1. Maximum-likelihood channel estimation

The maximum-likelihood estimation of the channel, when the noise is white

and Gaussian distributed, reduces to

ĥmle = argmin
h

||y − h||2

ĥmle = y ,

(8)

that is, that the maximum-likelihood estimate of the channel is the noisy ob-

servation itself [4].

2.1.2. Linear minimum mean-square error channel estimation

The LMMSE approach for channel estimation requires complete knowledge

of the channel statistics to obtain a set of linear coefficients that minimize the

MSE. The LMMSE estimate of the channel is given as [25]

ĥlmmse = Almmse y ,

with

Almmse = (Chh + σ2IK)−1Chh , (9)

where Chh , Eh
{
h hH

}
is the autocorrelation matrix of the channel frequency

response.
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2.1.3. Channel estimation using CIR thresholding

In [13] Kang et al. proposed a thresholding-based approach for denoising

the observations of the channel and calculated the threshold as,

T = 2σ̂2 , (10)

where σ̂2 is an estimate of the noise variance computed from the observations.

The thresholding function is defined as

ĝk =




rk , ||rk||

2≥ T ,

0 , ||rk||2< T ,

(11)

and ĝk is an estimate of the kth tap of the CIR.

3. Proposed methodology

We devise a parametric function to denoise the measurements and obtain

the channel estimate. Rather than optimizing the parameters of the denoising

function with respect to the mean-square estimation error, which is not feasible

in the classical parameter estimation regime, we optimize an unbiased estimate

of the mean-square error, in particular, SURE. We consider both linear and non-

linear forms of the denoising function and compare their relative performance.

3.1. Mathematical preliminaries

For a K× 1 vector x and its estimate x̂, the mean-square error is defined as,

MSE = E

{
1

K
||x− x̂||2

}

=

{
1

K

K−1∑

k=0

E|xk − x̂k|
2

}
.

For the case where we observe the unknown parameter x in white Gaussian

noise, that is y = x +w, with w ∼ N (0, σ2IK), the multidimensional version

of Stein’s lemma [16] allows for an unbiased estimate of the MSE from the

observations y. The scalar version of Stein’s lemma, which can be extended to

the multidimensional case, is reproduced next.
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Lemma 1 (Stein, 1981 [16]). Let w be a N (0, 1) real random variable and let

f : R → R be an indefinite integral of the Lebesgue measurable function f ′,

essentially the derivative of f . Suppose also that E [|f ′(w)|< ∞]. Then

E(f ′(w)) = E(wf(w))

Since x̂ is obtained from the observation vector y using a denoising function

f(·), we write x̂ = f(y). Lemma 1 can be extended for the case when f : CK →

C
K as,

E
{
wH x̂

}
= E

{
wHf(y)

}
= E {∇. f(y)} , (12)

where the divergence term is given by

∇.f(y) =

K−1∑

k=0

∂fk(y)

∂yk
, (13)

with

x̂k = fk(y) . (14)

Using (12), we define a random variable ǫ [17, 18] as,

(15)
ǫ ,

1

K

[
||y||2 −Kσ2 + ||x̂||2 − 2ℜ

{
yH x̂

}
+ 2σ2ℜ{∇. x̂}

]
,

=
1

K

[
||y||2 −Kσ2 + ||f(y)||2 − 2ℜ

{
yHf(y)

}
+ 2σ2ℜ{∇. f(y)}

]
.

ǫ is Stein’s unbiased risk estimator and has a mean value equal to the MSE, as

shown in (16).

E {ǫ} = E

{
1

K

[
||y||2 −Kσ2 + ||f(y)||2 − 2ℜ

{
yHf(y)

}
+ 2σ2ℜ{∇. f(y)}

]}

=
1

K

{
||x||2+E

{
||f(y)||2

}
−2ℜ

{
E
{
yHf(y)

}}
+2ℜ

{
E
{
(y−x)Hf(y)

}}}

=
1

K

{
||x||2 + E

{
||x̂||2

}
− 2ℜ

{
E
{
yH x̂

}}
+ 2ℜ

{
E
{
(y − x)H x̂

}}}

= E

{
1

K
||x− x̂||2

}

= MSE .

(16)

ǫ is dependent only on the observations y and its variance is inversely propor-

tional to the square of the number of observations K [26]. For large values of K,
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SURE can be treated as equivalent to the oracle MSE in obtaining the optimal

parameters of the denoising function.

3.2. SURE-optimized linear estimate of the channel

We use the correlation between sub-carriers in (5) to define the linear de-

noising function while treating the channel coefficients h as a vector of unknown

deterministic constants. We take the channel estimate of the kth sub-carrier to

be a weighted linear combination of the observations on L sub-carriers on either

side of the kth sub-carrier:

ĥk =

L∑

ℓ=−L

aℓ.r(k+ℓ)K ∀k ∈ {0, 1, · · · ,K − 1} , (17)

where (·)K denotes the modulo-K operation. This procedure is repeated for

all k ∈ {0, 1, · · · ,K − 1} to obtain the estimate for each of the K sub-carriers.

Stacking these estimates into a vector, we get the channel estimate ĥ. Further,

the fact that chh(k, ℓ) = chh(ℓ), allows us to use a single set of weighting coeffi-

cients a for every sub-carrier. Therefore, we redefine the channel estimate using

matrix notation as,

ĥ = Ya , (18)

where

YK×N =




y(−L)K y(−L+1)K . . . y(0)K . . . y(L−1) y(L)K

y(−L+1)K y(−L+2)K . . . y(1)K . . . y(L) y(L+1)K

...
...

. . .
...

. . .
...

...

y(−L+(K−1))K y(−L+K)K . . . y(K−1)K . . . y(L+K−2) y(L+(K−1))K




(19)

and

a , [a−L, · · · , a0, · · · , aL]
T

.

If P is the cyclic-permutation matrix,

PK×K =




0 · · · 0 1

IK−1

0...

1




,
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(19) can be rewritten as

Y =

[
PLy

... PL−1y
... · · · P0y · · ·

... P−L+1y
... P−Ly

]
.

By parameterizing the channel estimation function, we have reduced the prob-

lem of estimating the channel values inK sub-carriers to estimatingN weighting

coefficients, a that minimize SURE.

asure = argmin
a

{ǫ}

= argmin
a

1

K

{
||y||2 −Kσ2 + aHYHYa− 2ℜ

{
yHYa

}
+2σ2ℜ{∇ .Ya}

}
,

= argmin
a

1

K

{
||y||2 −Kσ2 + aHYHYa− 2ℜ

{
yHYa

}
+ 2σ2ℜ

{
bHa

}}
,

(20)

where

bN×1 ,




L︷ ︸︸ ︷
0, · · · , 0,M,

L︷ ︸︸ ︷
0, · · · , 0



T

and

N , 2L+ 1 .

The expression for the optimal weights turns out to be a solution to the following

system of equations:

YHY asure = YHy − σ2b

asure =
(
YHY

)−1 [
YHy − σ2b

]
.

(21)

For a circulant matrix with elements of the first column Gaussian distributed

and i.i.d., the eigenvalues are also Gaussian distributed and i.i.d. The probabil-

ity of this random matrix being singular is equal to the probability that at least

one of the eigenvalues is 0, which is 0. Since the columns of Y are a subset of

the columns of a circulant matrix, they are linearly independent and therefore,

YHY is of full rank with probability 1. The resulting estimate of the channel

using SURE optimized coefficients is given by

ĥsure = Y asure . (22)
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We also observe that a special case of this formulation, with N = 1, gives rise

to the James-Stein estimator [27] :

aJSsure = 1−
Kσ2

||y||2
.

3.3. SURE-optimized nonlinear estimate of the channel

To improve the MSE performance, we augment the linear denoising function

in (18) with a thresholding function to attenuate taps of the CIR that are

associated with a low SNR.

The estimate of the channel is rewritten as,

ĥ = Ya+ aL+1yT , (23)

where

yT = F rT ,

rT = r− q(r) ,

q(r) =
[
q1(r1) q2(r2) · · · qK−1(rK−1)

]T
,

(24)

and {qk(rk)}
K−1
k=0 is a collection of scalar point-wise thresholding functions op-

erating on the noisy observations of the CIR. Equation (24) is equivalent to the

convex combination of the linear denoising function (18) and the DFT of the

thresholding function q(r).

We experimented with the following nonlinear point-wise thresholding func-

tions:

• Hard-thresholding : qHk (rk) =




rk , |rk|≥ T ,

0 , |rk|< T ,

• Soft-thresholding : qSk (rk) = max {|rk|−T, 0}ej
6 rk ,

• Linear Expansion of Thresholds (LET) [17] : qLET
k (rk) = rk

(
1− e−

|rk|2

T

)
,

13



where T is the threshold. In Fig. 1, we plot the hard thresholding, soft thresh-

olding and LET functions for a real parameter input.

Since Stein’s lemma is defined only for weakly differentiable functions that

have a bounded-derivative, the usage of a hard-thresholding function is ruled

out. Alternatively, soft-thresholding has bounded weak derivatives but does not

lend itself to a closed-form solution and requires nonlinear optimization with

respect to T . To work around these hurdles, we resort to the LET function. In

(23), we augment (18) with the LET function using a weight aL+1. We choose

aL+1 in conjunction with weights a−L, . . . , aL to annul taps that are associated

with a low SNR. Define

a† ,

[
a︷ ︸︸ ︷

a−L, . . . , aL aL+1

]

(N+1)×1

,

and

YT , [Y
... yT]M×(N+1) ,

where yT is obtained from (24) with rT = qLET(r). We obtain the optimum

values of a† and threshold T by minimizing SURE. To simplify the optimization,

we fix T and minimize over the remaining N + 1 parameters. The SURE cost

function from (15) for a given value of T is written as,

ǫ(T ) =
1

K
||ĥ− h||2

=
1

K

{{
YTa

†
}H

YTa
† − 2ℜ

{
rHYTa

†
}
+ 2σ2ℜ

{
∇. ĥ

}}
.

We consider the values of T in the range (0, 25σ2). The i.i.d. property of the

added noise ensures that
(
YT

HYT

)
is invertible with probability 1. ǫ(T ) is

simplified as,

(25)
ǫ(T ) =

1

K

∣∣∣∣
∣∣∣∣
(
YT

HYT

) 1
2

a† −
(
YT

HYT

)− 1
2
{
YT

Hr− σ2βββ
}∣∣∣∣
∣∣∣∣
2

−
1

K

(
YT

Hr− σ2βββ
)H (

YT
HYT

)−1 (
YT

Hr− σ2βββ
)

,

14



where

∇.ĥ = βββ
Ha† ,

βββ(N+1)×1 ,




L︷ ︸︸ ︷
0, . . . , 0,M,

L︷ ︸︸ ︷
0, . . . , 0 ∇r.rT



T

,

and

∇r.rT =
K−1∑

k=0

∂
{
qLET
k (rk)

}

∂rk
=

K−1∑

k=0

[
exp

{
−
|rk|2

T

}(
1−

|rk|2

T

)]
.

From (25), we see that ǫ(T ) attains a minimum when

a†
(T )

sure =
(
YT

HYT

)−1 [
YT

Hr− σ2βββ
]
. (26)

However, the computation of the optimal value of T is a non-convex problem.

In Fig. 2, we show the variation of the MSE of the channel estimate with T in

3GPP (Third Generation Partnership Project) typical urban channel scenario.

A similar behaviour was observed for other channel scenarios that we considered.

Based on these observations, we hypothesize that empirically setting T to a

constant (between 10σ2 and 15σ2) is sufficient for all scenarios of the channel,

OFDM symbol sizes, and SNR. Sophisticated optimization with respect to T

was not found to yield commensurate gains.

4. Simulation Results

We compare the mean-square error performance of the channel estimates

based on the LMMSE, CIR-thresholding [13] maximum-likelihood criterion, and

SURE criterion. We also compare the bit-error-rate (BER) performance of the

channel estimation methods, post equalization, for various channel scenarios,

namely, the AWGN environment, single-tap Rayleigh fading channel and the

3GPP typical urban channel scenario [28].

4.1. Simulation setup

We simulate the considered channel estimation algorithms for OFDM sym-

bol sizes K = 64, 256, and 1024. To render SURE-based channel estimate
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completely data-dependent, the true value of the noise variance σ2 has been

replaced by an estimate σ̂2 that is obtained from 500 blank OFDM carriers.

In computing the BER and the MSE, 20, 000 trials were simulated for each

SNR value. For the BER simulation, data was taken from a 16 quadrature

amplitude modulation (QAM) constellation and encoded with a rate 1/2 con-

volutional code with generator polynomial G1(D) = 1+D3+D4+D5+D6 and

G2(D) = 1 +D3 +D4 +D6. The receiver used a symbol-by-symbol maximum

a posteriori probability (MAP) estimator with hard-decision Viterbi decoding.

From our simulation, we observed that setting T = 12σ2 for SURE-based

nonlinear channel estimation algorithm provided optimal results for various

channel scenarios.

4.2. Simulation results

In Figs. 3 and 4, we show the MSE and BER, at various values of SNR,

for the ML, LMMSE, linear and nonlinear SURE-based estimators for various

channel scenarios with OFDM symbol size K = 64. We see an improvement in

the MSE and consequently, the BER for both SURE-based linear and nonlinear

channel estimates. An interesting observation is that the performance of SURE-

based nonlinear channel estimate is similar to that of its linear counterpart

in 3GPP typical urban channel scenario, primarily because of the existance

of few CIR taps with low SNR. However, for the single-tap Rayleigh channel

environment, the nonlinear thresholding takes advantage of the presence of only

one strong tap in the CIR, providing significant improvement with respect to

SURE-based linear channel estimate. The performance improvement, in terms

of SNR (dB) for 10−3, is tabulated in Table 1.

In Figs. 5 and 6, we present the MSE and BER, at various values of SNR,

for the nonlinear SURE-based estimator for different values of OFDM symbol

size K in various channel scenarios. The performance improvement can be

attributed to two factors: (i) The variance of ǫ is a function of the number of

data points K used to estimate the mean-square error — larger values of K

reduce the variance of the risk estimate ǫ and bring the parameters a† closer to
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the MMSE solution; and (ii) Increasing the value of OFDM symbol size K for

a channel with a given delay spread pads zeros to the CIR, which are taps with

low SNR and can be attenuated for a better MSE.

In Fig. 7(a), we compare the oracle MSE with Stein’s unbiased estimate of

the risk as a function of the parameter aL+1. We observe that, for N = 3, the

minima of both curves are close to each other, indicating that the value of aL+1

obtained by minimizing SURE is close to the value obtained by minimizing the

oracle MSE. However, this is not the case for N = 5 since the variance of SURE

increases with the number of parameters that have to be estimated. In Fig.

7(b), we observe that SURE-based channel estimate with N = 5 has a higher

MSE than that with N = 3. Therefore, from our simulations, we conclude that

for practically used values of OFDM symbol sizes, N = 3 provides the maximum

performance improvement.

5. Conclusions

We considered the preamble-based channel estimation problem in an OFDM

system. Modelling the CFR as a vector of unknown deterministic parameters,

we proposed a method based on minimizing SURE to derive optimal parame-

ters of denoising functions to obtain channel estimates. We showed that SURE-

optimized channel estimation algorithm provided a significant improvement over

the conventional ML estimate of the channel in both the linear and nonlinear for-

mulations. For channels with a large number of low SNR taps, the performance

of the non-linear SURE based function, while not assuming prior knowledge of

the channel statistics, was shown comparable to the LMMSE channel estimate.

However, the performance improvement was dependent on the variance of ǫ,

which from simulation, was found to be acceptable for N = 3 and for values of

OFDM symbol size K and SNR commonly encountered in practice. Moreover,

The algorithm for N = 3 requires a 4×4 matrix inversion and has the advantage

of practical implementability coupled with a performance improvement of 2.25

dB in realistic channel scenarios.
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Channel type AWGN Single-tap

Rayleigh channel

(10−1.5 BER)

3GPP typical ur-

ban channel

N = 3 6.88 dB 7.26 dB 2.35 dB

Table 1: Performance improvement in SNR (decibel) for SURE-optimized nonlinear channel

estimate over the ML estimate for different channels and K = 64.
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Figure 1: Plot of various point-wise thresholding functions for a real parameter input.
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Figure 3: Comparison of (a) mean-square error performance and (b) bit error rate per-

formance between the LMMSE estimate, the ML estimate, CIR-thresholding [13] and the

SURE-based (linear and nonlinear) estimate with N = 3, OFDM symbol size K = 64 and

16-QAM constellation,. The simulation has been performed for the single-tap Rayleigh fading

channel scenario.
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Figure 4: Comparison of (a) mean-square error and (b) bit error rate performance of a receiver

using LMMSE, ML, CIR-thresholding [13] and SURE-based (linear and nonlinear) channel

estimates. The simulations has been performed with N = 3, OFDM symbol size K = 64,

16-QAM constellation, and for 3GPP typical urban channel scenario
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Figure 5: Comparison of the (a) mean-square error and (b) bit error rate performance for

the SURE-based (linear and nonlinear) channel estimates with N = 3, OFDM symbol size

K = 64, 256 and 1024, and 16-QAM constellation. The simulation has been performed for the

single-tap Rayleigh fading channel scenario
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Figure 6: Comparison of (a) the mean-square error and (b) bit error rate performance of a

receiver using the SURE-based nonlinear channel estimate with N = 3, OFDM symbol size

K = 64, 256 and 1024 and, 16-QAM constellation. The simulation has been performed for

3GPP typical urban channel scenario
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Figure 7: (a) Plot of the oracle MSE v/s ǫ for different choices of the parameter aL+1. (b)

Comparison of the mean-square error performance for single-tap Rayleigh fading channel sce-

nario. The simulation has been performed for the single-tap Rayleigh fading channel scenario

with 0 dB SNR and OFDM symbol size K = 256
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