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Fourth Algorithm for Stationary Gaussian Inputs
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Abstract—Some system identification problems impose nonneg-
ativity constraints on the parameters to estimate due to inherent
physical characteristics of the unknown system. The nonnegative
least-mean-square (NNLMS) algorithm and its variants allow to
address this problem in an online manner. A nonnegative least
mean fourth (NNLMF) algorithm has been recently proposed
to improve the performance of these algorithms in cases where
the measurement noise is not Gaussian. This paper provides a
first theoretical analysis of the stochastic behavior of the NNLMF
algorithm for stationary Gaussian inputs and slow learning. Sim-
ulation results illustrate the accuracy of the proposed analysis.

Index Terms—Adaptive filter, least mean fourth (LMF), mean
weight behavior, nonnegativity constraint, second-order moment,
system identification.

I. INTRODUCTION

DAPTIVE filtering algorithms are widely used to address

system identification problems in applications such as
adaptive noise cancellation, echo cancellation, active noise
control, and distributed learning [1]-[5]. Due to physical
characteristics, some problems require the imposition of non-
negativity constraints on the parameters to estimate in order
to avoid uninterpretable results [[6]. Over the last decades,
nonnegativity as a physical constraint has been studied ex-
tensively (see, e.g., the nonnegative least-squares [[7]—[10] and
the nonnegative matrix factorization [11]-[15]).
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The nonnegative least-mean-square (NNLMS) algorithm
was derived in [16] to address online system identification
problems subject to nonnegativity constraints. Its convergence
behavior was analyzed in [16], [17]. The NNLMS algorithm
is a fixed-point iteration scheme based on the Karush-Kuhn-
Tucker (KKT) optimality conditions. The NNLMS algorithm
updates the parameter estimate from streaming data at each
time instant and is suitable for online system identification.
Variants of the NNLMS algorithm were proposed in [[18] and
[19]] to address specific robustness and convergence issues of
NNLMS algorithm.

In certain practical contexts, it has been shown that adap-
tive algorithms with weight updates based on higher order
moments of the estimation error may have better mean-square
error (MSE) convergence properties than the LMS algorithm.
This is the case, for instance, of the least mean fourth (LMF)
algorithm, whose weight update is proportional to the third
power of the estimation error. The LMF algorithm was pro-
posed in [20], where it was verified that it could outperform the
LMS algorithm in the presence of non-Gaussian measurement
noise. This desirable property has led to a series of studies
about the convergence behaviors of the LMF algorithm and
some of its variants [21]-[31]. Recently, a nonnegative LMF
(NNLMF) algorithm was proposed in [32] to improve the
performance of the NNLMS algorithm under non-Gaussian
measurement noise. It was shown in [32] that, when com-
pared to the NNLMS algorithm, the NNLMF algorithm can
lead to faster convergence speed and equivalent steady-state
performance, and to improved steady-state performance for
the same convergence speed. The results shown in [32] were
exclusively based on Monte Carlo simulations. Nevertheless,
they clearly show that there is interest in better understanding
the convergence properties of the NNLMF algorithm. To this
moment, there has been no study of the stochastic behavior of
the NNLMF algorithm.

This paper provides a first statistical analysis of the NNLMF
algorithm behavior. We derive an analytical model for the
algorithm behavior for slow learning and Gaussian inputs.
Based on statistical assumptions typical to the analysis of
adaptive algorithms, we derive recursive analytical expressions
for the mean-weight behavior and for the excess MSE. The
high order nonlinearities imposed on the weight update by the
third error power and by the non-negativity constraints result in
a difficult mathematical analysis, requiring novel approxima-
tions not usually employed in adaptive filter analyses. Monte



Carlo simulation results illustrate the accuracy of the analysis.
It is known that the study of the stability of the LMF algorithm
is relatively complex [22]], [23]]. This complexity increases for
the NNLMF algorithm. The stability region of the NNLMF
algorithm is studied in this paper through simulations, where
it is explored how the algorithm stability depends on the
step-size and on the initialization of the adaptive weights.
A theoretical stability study could not accommodated in this
work, as is left for a future work.

The paper is organized as follows. In Section II, we describe
the system model and provide an overview of the NNLMS and
NNLMF algorithms. In Section III, we introduce the statistical
assumptions used in the analysis of the NNLMF algorithm.
The mean and mean-square analyses are performed in Sections
IV and V, respectively. Simulation results validate the analysis
in Section VI. Finally, Section VII concludes the paper.

In the sequel, normal font letters are used for scalars,
boldface lowercase letters for vectors, and boldface uppercase
letters for matrices. Furhermore, (-) T denotes vector or matrix
transposition, E{-} denotes statistical expectation, ||-|| is the
{y-norm of a vector, o denotes the Hadamard product, Tr{-}
computes the trace of a matrix, D, represents the diagonal
matrix whose main diagonal is the vector «, 1 is the all-one
column vector, and I is the identity matrix.

II. NONNEGATIVE SYSTEM IDENTIFICATION

Online system identification problem aims at estimating
the system impulse response from observations of both the
input signal u(n) and the desired response d(n), as shown in
Figure 1. The desired response is assumed to be modeled by

d(n) = w* Tu(n) + z(n) (1)

where u(n) = [u(n),u(n — 1), ,u(n — M + 1)]T is the
input vector consisting of the M most recent input sam-
ples, w* = [wg,w}, - ,w}i, |]7 denotes the unconstrained
weight vector of the unknown system, and z(n) represents
the measurement noise. For nonnegative system identifica-
tion, nonnegativity constraints are imposed on the estimated
weights, leading to the constrained optimization problem [6]]

w® = argmin J(w)
subject to w; > 0 2

where i € {0,1,--- , M —1}, w is the estimated weight vector
with w; being its ith entry, J(w) is a differentiable and strictly
convex objective function of w, and w® represents the solution
to the above constrained optimization problem.

Based on the Karush-Kuhn-Tucker conditions, the authors
in [16] derived a fixed-point iteration scheme to address the
constrained optimization problem (2). Using the mean square
error (MSE) cost function

() = E{ [d(n) - wT (n)u(m)]’ | 3)

and a stochastic approximation yielded the NNLMS algorithm
update equation

w(n +1) = w(n) + pDymyw(n)e(n) )

Fig. 1. Block diagram of system identification using an adaptive filter, which
are widely used in many practical applications.

where w(n) denotes the weight vector of the adaptive filter at
instant n, e(n) = d(n) —w ' (n)u(n) is the error signal, and
[ 18 a positive step-size.

To improve the convergence performance of the adaptive
filter for non-Gaussian measurement noise, the authors in [32]
proposed to replace the MSE criterion with the mean fourth
error (MFE) criterion

()] = E{ [d(n) - w” (n)u(n)]'}. 5
This has led to the NNLMF algorithm update equation

w(n +1) = w(n) + pDyyw(n)e*(n)  (6)
The entry-wise form of (6) is

wiln +1) = wi(n) + pu(n — wi(n)edn)  (7)

where w;(n) is the ith entry of the weight vector w(n), i.e.,
w(n) = [wo(n), w1 (n), - ,wy—1(n)]". The update term of
(7) is highly nonlinear in w(n), leading to a more complex
behavior than that of the already studied LMF algorithm. In
the following we study the stochastic behavior of (7).

III. STATISTICAL ASSUMPTIONS

The statistical analysis of any adaptive filtering algorithm
requires the use of statistical assumptions for feasibility. The
analysis is based on the study of the behavior of the weight-
error vector, defined as

w(n) =w(n) — w* (8)

and we employ the following frequently used statistical as-
sumptions:

A.1) The input signal u(n) is stationary, zero-mean and
Gaussian.

A.2) The input vector u(n) and the weight vector w(n) are
independent.

A.3) The measurement noise z(n) is zero-mean, i.i.d., and
independent of any other signal. Moreover, it has an even
probability density function so that all odd moments of z(n)
are equal to zero.

A.4) The statistical dependence of @ (n)w ' (n) and @(n)
can be neglected.

A.5) The weight-error vector @(n) and [u' (n)w(n)] ? are
statistically independent.



Assumption A.2) is the well-known independence assump-
tion, which has been successfully used in the analysis of
many adaptive algorithms, including the LMF algorithm [21]].
Assumption A.3) is often used in the analysis of higher-
order moments adaptive algorithms, and is practically reason-
able. Assumption A.4) is reasonable because one can find
infinitely many vectors w(n) that would lead to the same
matrix @(n)w ' (n). Assumption A.5) is reasonable for a large
number of taps. Simulation results will show that the models
obtained using these assumptions can accurately predict the
behavior of the NNLMF algorithm.

IV. MEAN WEIGHT BEHAVIOR ANALYSIS
The ith entry of the weight-error vector (8) is given by
W;(n) = w;(n) —w}. )
Subtracting w; from both sides of (7), we have
wi(n + 1) = w;(n) + pu(n — i)w;(n)e3(n).
Substituting (@) into (T0) yields
Wi (n+1) = w;(n)+pu(n—i){[@;(n)+w;]e*(n) be(n). (11)

By employing (1) and (9), the estimation error e(n) can be
equivalently expressed in terms of @ (n) in the following form:

(10)

e(n) = z(n) + 'w*Tu(n) 'wT(n)u(n)
o (12)

=z(n)—w' (n)u(n)

where w(n) = w(n) — w*. Expression (9) implies that the
term [10;(n) + wi]e®(n) in ([I) is of fourth-order in w;(n).
This makes the analysis significantly more difficult than that
of the LMS or LMF algorithm.

To make the problem tractable, we linearize the nonlinear
term

fli(n)] = [w + i(n)]e* (n)

via a first-order Taylor expansion as done in [[18]]. Taking first
the derivative of f[w;(n)] with respect to w;(n), we have

O f[wi(n)] 2
ainn) ¢ ™
Considering that w;(n) fluctuates around E{w;(n)}, we ap-
proximate the high-order stochastic term f[w;(n)| at time
instant n by its first-order Taylor expansion about E{w;(n)}.
Hence,

13)

2e(n)u(n —i)[w} + w;(n)]. (14)

flwi(n)] ]
= o) + G| o) - B
= )

+ 2eg ;(n)u(n — i) [w] + E{w;(n) }|E{w;(n)}

+{efi(n) = 2epi(n)u(n — i)[w] + E{@;(n)}] }wi(n)
15)
where eg ;(n) = e(n)|gy ,(n), 1-€.»
ex,i(n) = z(n) — g ;(n)u(n)
—e(n) — u(n — )E{@i(n)} — @:(m)]  (16)

with
m]E,i(n) = ["I)O(n)v e 7wi—1(n)’ E{wz(n)}’
U~)Z-+1(n), T ’ﬁ)M?l(n)]T,
Combining (TTI), (13), and (I3) yields

y(n41) = ; (n) + pu(n— i) s (n) +5:(n)

a7

w;i(n)]e(n) (18)
where

*

zi(n) = eIQE,i(n)wi
+ 2egi(n)u(n — i) [w! + E{w;(n) }]E{w;(n)} (19)
si(n) = eIQE,i(n) —2eg;(n)u(n —i)[w; +E{w;(n)}]. (20)

Expressions in (T9) and (20) can be easily written in vector
form as follows:

z(n) = [zo(n), z1(n),+ ,zar—1(n)]
= D2, (myw" + 2De,(n) Du(n) D (n)}
x [w* + E{w(n)}] (21)
s(n) =[so(n), s1(n), -+, sp—1(n)]
= D2, ()1 = 2D, (n) Doy [w* + E{w(n)}] (22)
where
ex(n) =lego(n),eza(n), -, exn—1(n)]
=e(n)1 — Dy [E{w(n)} — w(n)]. (23)

Thus, we can write (I8) in matrix form as

(n) + uDuy(ny[®(n) + Dg(nyw(n)]

[z(n) — @ (n)u(n)]

(n) = Dy [£(n) + Dgmy(n)]® " (n)u(n)
Dy [#(n) + Dy(nyw(n)] z(n)

(n) — up(n) + pg(n) (24)

p(n) = Dy [2(n) + Dyy(n)|® " (n)u(n) (25)

q(n) = Dy(n) [T(n) + Dy(y(n)]2(n). (26)
Taking expectations of both sides of (24) yields
E{w(n + 1)} = E{w(n)} — pE{p(n)} + pE{q(n)}. (27)

Next, we need to calculate E{p(n)} and E{q(n)} to express
(27) in an explicit form. Using (23), the ith entry of p(n) can
be written as

pi(n) = u(n — i){ed (nyu;
+ 2ep s (n)u(n — i) [w] + E{;(n) }JE{:(n)}
+{€d(n) — 2ep.s(n)u(n — i) [w] + E{di(n)}]}
X @i(n) }ab T (n)u(n). 28)
We rewrite (28) as
pi(n) = pia(n) + pip(n) + pic(n) (29)



where

Pia(n) = u(n — i)eg ;(n)wid " (n)u(n) (30)
pib(n) = u(n —i)eg ;(n)i(n )@T(H)U(n) GD
Pie(n) = 2[w; +E{@;(n)}]u?(n - i)es,i(n)

x [E{wi(n)} — @i(n)]@ " (nu(n).  (32)

Define r; as the ith column vector of the input vector corre-
lation matrix R = E{u(n)u' (n)}. Using assumptions A.1)—
A.5), it is shown in Appendices A and B that the expected
values of (30) and (31) can be approximated by

E{pia(n)}

=E{u(n - z)e]%l(n)w*w—r(n)u(n)}

~ ?,Tr{RJE{w(n)}1E{wT n }}E{@T(n)}riw;
+ o2E{w " (n)}rjw} (33)
E{pis(n)}
= E{u n— i)e]zE J(n )d}l(n)ﬁﬁ(n)u(n)}
~ 3Tr{RIE{w WE{w " ( }}]E{'sz(n)}riE{wi(n)}
+ o2E{@ " (n) }r;E{w;(n)} (34)

where 02 = E{z%(n)} denotes the variance of the measure-
ment noise. It is also shown in Appendix A that g ;(n)u(n)
can be approximated by @ " (n)u(n). Using this approxima-
tion in (T6) yields

er,i(n) ~ z(n) —w
Substituting (33) into (32)), we have

Pic(n) = 2[w] + E{w;(n)}u’(n — )@ " (n)u(n)
x [E{w;(n)} —wi(n)]z(n)
— 2w} + E{d;(n)}u?(n — i) [@ 7 (n)u(n)]”
x [E{w;(n)} — @;(n)). (36)

Then, using assumptions A.2) A.3) and A.5), the expected
value of (36) becomes

n)u(n). (35)

E{pi,c(n)}
= —2[uw} + E{d:()E{u*(n — i) [@ 7 (n)u(n)]”}
x E{[E{wi(n)} — i(n)]}
=0 (37
due to the last expectation. Therefore, we have
E{pi(n)} = E{pi,o(n)} + E{pip(n)}. (38)
Its vector form is consequently given by
E{p(n)} = E{pa(n)} + E{py(n)} (39)

where
E{p.(n)} = 3Tr{RE{w NE{w " (
+ 02Dy RE{w(n)}
E{py(n)} = 3Tr{ RE{d(n) }E{@" ()} } Daam)
x RE{@(n)} + 02 Dggp(n) RE{®(n)}. (41)

n)} } Du RE{i0(n)}
(40)

Therefore, we have
E{p(n)}
= 3Te{ RE{@ (n) }E{ " (1)} } D s 200 RE{ ()}
+ 02 D 1w (n)y RE{w(n)}. 42)

From (26), we directly find that the ith entry of g(n) can be
written as

=u(n — z){eE i
+ 2ei(n)u(n — 2)[10 + E{@;(n) }JE{w;(n)}
+{ek i (n) — 2ezi(n)u(n — i)[w] +E{w;(n)}]}
x () 2 (n) 43)
Using (T6), we rewrite the above equation as
¢i(n) = gi,a(n) + qip(n) — Gic(n) + gia(n) (44
where
Gi.a(n) = u(n —1) [z(n) — wii(n)u(n)}zwfz(n) (45)
gip(n) = u(n —1) [z(n) — ’J)gz(n)u(n)f@(n)z(n) (46)
Gie(n) = 2[2(n) — @ ;(n)u(n)]u*(n — i)
x [wy 4 E{wi(n) Hwi(n)z(n) 47)
¢i,a(n) =2 [z(n) — @gl(n)u(n)]uz(n —1)
x [wi + E{@;(n) JE{@;(n)}2(n) (48)

Using assumptions A.1)-A.4) as well as the approximation
E{w;(n)w;(n)} ~ E{w;(n)}E{w;(n)}, Vi, j, for the reason
that the mean weight behavior is usually not sensitive in
such kind of approximation (see [[16] and [18] for detailed

explanation), we have

E{¢a(n)} ~ —2]E{z2 u(n — @)wgl(n)u(n)}w*

K2

= —20%w; E{w n)}r; (49)
E{qip(n)} =~ —2E{2*(n)u(n — i) ; (n)u(n)E{w;(n)} }
= —20%w; E{w n)}r; (50)
E{gi,c(n)} ~ QUiE{’LL n—1i)|w! + E{wz(n)}]}
x E{w;(n)} (51)
E{gi.a(n)} = 202E{u?(n — i)[w] + E{@;(n)}]}
x E{w;(n)}. (52)
Consequently, {@4) leads to

=E{¢i.a(n)} + E{gis(n)} — E{gi.c(n)} + E{gia(n)}

~ =207 [w; + E{w;(n)}JE{@" (n) }r; (53)
which can be written in matrix form as
E{q(n)} = =202 Djw 45 {w(n)y RE{W(n)}. (54)

Finally, using (42) and (54) in (27), we obtain
E{w(n+1)}
=E{@(n)} — 3p 02Dy,
- 3/LTI'{R]E{’U] }E{w

+E{w(n)} RE{®(n)}

}}D[w *+E{w(n)}] RIE{’U)( )}
(55)



Expression (53) predicts the mean weight behavior of the
NNLMF algorithm. It will be used to compute the second-
order moment in the next section.

In the case that the input to the system is a zero-mean white
noise, i.e., R =021 with 02 = E{u?(n)}, (53) reduces to
E{w(n+1)}
= E{w(n)} — 3uc?

- 3uU4Tr{E{'w }E{w
= E{w(n)} — 3/J,UZO'uD]E{ﬁ,(n)}[’w* + E{’lf)(n)}]

— 30, |[E{@(n) }||” D (i (ny} [w* + E{@(n)}].
Its entry-wise form can be expressed as
E{w;(n+ 1)}

— E{i(n)} — 3u0202E{i:(n) Heot + E{as(n)}]
M—1
— 30t S B2, (m) VEA: (n) e} + EB{an () }].(57)
m=0
Using the equality E{w;(n + 1)} = E{w;(n)} as n — oo,
becomes

E{w;(00) Hw; + E{wi(o0)}]
M-1
X {S,uafoi + 3uo Z E2 {1y, (00 } = 0.(58)
m=0

Solving (58), we obtain E{w;(c0)} = 0 or E{w;(c0)} =
—wyj, which means that w,; = w; and w,; = 0 are the
two fixed points of the mean weight behavior of the NNLMF
algorithm. This result is consistent with that of the NNLMS
algorithm.

02 D 1E{w(n) ) B{® (1)}
}}D[w*Jr]E{u'J(n)}]E{ﬁ}(n)}

(56)

V. SECOND ORDER MOMENT ANALYSIS

Let K(n) = E{@(n)w' (n)} be the covariance matrix of
the Welght error vector. Under certain simplifying assumptions
[2], the excess mean square error (EMSE) is given by

§(n) = T{RK(n)}. (59)

In the previous section, we used the approximation K (n) ~
E{w(n)}E{®" (n)}. This approximation is accurate enough
for the analysis of the mean weight behavior. However, the
effect of the second-order moments of the weight-error vector
on the EMSE behavior becomes more significant [16]. Thus,
we need a more accurate expression for K (n) in order to
characterize the EMSE.
Subtracting w* from both sides of (6) yields

W(n+ 1) = w(n) + pDyyw(n)e’(n). (60)
Post-multiplying by its transpose, considering the equality

Dy (nyw(n) = Dyyyu(n), and taking the expected value, we
have
K(n+1) = K(n)+ u®1(n) + p*®2(n) (61)
where
@, (n) = E{e?’(n) [ (n)u" () Do)
+ Dyyu(n)@ ' (n)] } (62)
Py(n) = E{eﬁ(n)Dw(n)u(n)uT (n) Dy } (63)

By using (12), €3(n) and ¢5(n) can be expanded, respectively,
as follows
e*(n)
— 2%(n) — 322(n)u’ (n)®(n) + 32(n) [u’ (n)d(n)]”
— [uT ()@ (n)]’ (64)
e’(n)
=25(n) — 62°(n)u” (n)B(n) + 152%(n) [u” (n)(n)]”
— 202" ( YuT (n)@(n)]° + 1522(n) [uT (n)@(n)]"
= 62(n) [u” (ma(n)]” + [u” (W) (n)]" (65)

Using (64) in (62) with assumption A.3), we have
Pi(n) = E{{ —322(n)u’ (n)w(n) — [uT(n)'JJ(n)]S}

X {tb(n)uT(n)Dw(n) + Dw(n)u(n)w—r(n)}}

= 3020, (n) — 36207 (n) + Oy(n) + O, (n)(66)

where

O1(n) =E{@(n)®" (n)u(n)u" (n)Dym)} (67)
O(n) = —E{Dwm)U(n)uT( Y (n)w " (n)u(n)
xu' (n)w(n)@’ (n)}. (68)
Similarly, using (63) in (63) with assumption A.3), we have
®>(n) =E{2°(n) }O3(n) + 15E{z*(n) }O4(n)

+150205(n) + O (n) (69)

where
©4(n) = E{ [u (n)i(n))* Day(ny(m)u” (n) Duugry | (71)
O;5(n) :IE{[UT(n)IIJ(n)] Dw(n)u(n)uT(n)D (n)} (72)
Os(n) = E{ [T (n)ib(n)] GDw(n)u(n)uT(n)Dw(n)}.(73)

In the following, we compute @1 (n) through Og(n).
©:(n): Using (§) in (67), and considering assumptions A.2)
and A.4), we can approximate (67) by
O(n) = E{'LT) "T(n)u(n)uT(n)Dﬁ,(n)}
—HE{w @ (n)u(n)u’ n) Doy~ }
K(n )RDIE{w(n)} + K (n)RD,-
O (n): Using (@) in (68), and considering assumptions A.2)
and A.4), we can approximate by
O3(n) = —E{Dg(n)E(n)} — E{Dw-Z(n)}
~ *DE{w(n)}E{H( n)} — Dy-E{ZE(n)}

(74)

(75)
where

En) =um)u' (n)®wn)w ' (n)un)u' (n)d(n)d" (n).

(76)



Notice that in the second line of we neglect the correlation
between D,y and Z(n). This approximation is reasonable
as Z(n) is a function of fourth-order products of elements
of w(n), whose values can be obtained from infinitely many
different vectors w(n). In [21]], the expected value of =(n)
for zero-mean Gaussian inputs has been approximated using
assumptions A.4) and A.5) by

E{ZE(n)} ~ 3Tr{RK(n)}RK(n). 77)
Using in yields
O3 (n) ~ —3Tr{ RK (n) }[Dg{w(n)} + Dw|RK(n). (78)

©Os(n): Substituting (8) into and using assumption
A.3), we have

O5(n) = E{Dgmyu(n)u’ (n)Dgn)}

+E{Dg (n)u(n)u' (1) Dy- }

+E{Dy-u(n)u’ (n)Dg(n)}

+E{Dy-u(n)u" (n)Dy-}. (79)
It was shown in [16] that E{D,,,)@(n)w " (n)Dym)} =~

R o K(n). Since
Dgmyu(n)u’ (n)Dg(ny = Dayny@(n)® " (n) Dy (80)
we can approximate by

O3(n) ~Ro K(n) + Dg{g(n)} RDuw-

+ Doy« RDp{g(n)} + Dw<RDqyx. (81)

O, (n): Substituting (@) into and using assumption
A.3), can be written by

©4(n) = 15E{ [u” ()i(n)]* Day(yu(n)u” (1) Duuir }
= 15E{ [u” (n) (1)} Dunyw(n)w" () Duny |
= 15E{ Dy [i3(n) T (n)w(n)

x @ (n)u(n) () +w' | Dyt }

+wu

=15[@44(n) + O (n) + Oye(n) + Ouq(n)]  (82)
where
Oy, (n)
=K Du(n)'w*uT(n)ﬁ}(n)'d)—r(n)u(n)w*TDu(n)} (83)
Oy (n)
= E{ Dyywu (my@(n)u” () @n)@ " (n)Dugey | (84
Oy.(n)
= & Dyt @) ()i (myu(nyw' Dugy ) 69)

O44(n)
= E{ Dy ®(n) (n)u(n)u” (0 ()" (n) D) (36

We find that the above quantities, @44 (n)-O4q(n), correspond
to equations (45)—(48) in [16], respectively, which have been

computed under assumptions A.1)—A.5). Therefore, the results
obtained in [16] can be used directly here, yielding

O44(n) = Dy {2RK ()R + Tt{RK (n)} R} Dy~ (87)
O4(n) = Dy {2RK (n) R + Tr{RK (n)} R} Dy 5(n))(88)
O4.(n) ~ Dgp(n)}{2RK ()R + Tr{RK (n }R}Dw {89)
©.14(n) ~ {2RK(n)R + Tt{RK (n)}R} o K (n) (90)

Defining Y (n) = 2RK (n)R + Tr{ RK (n)} R and substitut-
ing (87)—(0) into leads to
@4(71) o~ [Dw*T(n)Dw* + Dw*‘r(n)D]E{ﬁ,(n)}

—+ DE{@(n)}T(n)Dw* + T(n) o K(TL)] o1

Os(n): The term Os(n) contains higher order mo-
ments of w(n) and w(n). Computing this term also re-
quires approximations. One approximation that preserves
the second order moments is to split the expectation as
E{[u" (n)w(n)]* }E{Dymyu(n)u’ (n)Dy)}. The intu-
ition behind this approximation is that each element of the
matrix Dw(n)u( ul w(n% corresponds to only one of
the M? terms of the sum , which tends to
reduce their correlation for reasonably large M. Moreover,
we shall assume that ' (n)w(n) is zero-mean Gaussian to
simplify the evaluation of the above expectations. This as-
sumption becomes more valid as M increases (by the Central
Limit theorem) and tends to be reasonable for practical values
of M. Under these assumptions, we have

O5(n) = E{ [u (n)@(n)]* }E{ Duugny(n)u” (1) Duuiry |

2
= 3(E{[uT(n)w(n)}2}) Os(n)
= 3(T{RK (n)})*{R o K(n) + De(a(n) RDuw-
+ Dy RDg(g5(n)} + Duv- RDyr }. (92)

©Os(n): Using the same assumptions used to calculate
O;s(n), Og(n) in can be approximated by

T }]E{Dw(n)u(n)uT(n)Dw(n)}

5(E{[ (i <n>]2})3@3<n>

(TI"{RK ) {R o K ) + D]E{ﬁ',(n)}RDw*
+Dyye RDg(5(n)} + Dup- RDyy }. (93)

Finally, using ©1(n) through GOg(n) in (62) and (63) , we
obtain

451( )

—3{o2+ Tr{RK(n)}}{K(n)

D]E{’[[;(n)} + Dw*]
+[Dg{wn)} + Dw<|RK(n)}

(94)



and
By (n) ~
{]E{z6(n)} +450%(Tr{RK (n)})” + 15(Tr{RK(n>})3}
x{ Ro K(n) + D (a(n), RDur
+ Doy RDg((n)) + Dap- RDyye }
+15E{z4(n)}{Dw*T(n)Dw* + Doy Y (1) Di iy}

+ D) X () Dy + Y1) 0 K (n) }.
95)

Substituting and (93) into (6I) we obtain a recursive
analytical model for the behavior of K (n), which can then be
used in (39) to predict the EMSE behavior for the NNLMF
algorithm. Note that E{z%(n)} and E{z%(n)} depend on
the statistical distribution of the noise z(n). For instance,
if z(n) is zero-mean Gaussian, then E{z*(n)} = 30? and
E{z5(n)} = 1505.

VI. SIMULATION RESULTS

This section presents simulations in the context of system
identification with nonnegativity constraints to illustrate the
accuracy of the models derived in Sections IV and V. The
impulse response w* of the unknown system was given by
[0.8,0.6,0.5,0.4,0.3,0.2.0.1, —0.1, —0.3, —0.6] . The initial
weight w(0) was made equal to a vector vy drawn from
the uniform distribution U([0;1]) and kept the same for all
realizations. Both w* and 1)y are shown in Fig. The
input was either a zero-mean white Gaussian signal of unit
power, or a correlated signal obtained by filtering a zero-mean
white Gaussian noise with variance % through a first-order
system H(z) = 1/(1 — 0.5271), which yields a correlated
input with unit variance. The above simulation setups are the
same as those in [16]. The measurement noise was either
uniformly distributed in [—5, 5] (SNR = —9.2 dB) or a binary
sequence with samples randomly drawn from the set {2, —2}
(SNR = —6 dB). All mean weights and EMSE curves were
obtained by averaging over 200 independent realizations.

Figs. B] and [4] show the mean weight behavior for white
and correlated inputs, respectively, and 1 = 2 x 107° was
chosen for slow learning. An excellent match can be verified
between the behavior predicted by the proposed model and
that obtained from Monte Carlo simulations. Figs. [5] and [6]
show the EMSE (in dB) behavior for the same example. Here
again one can verify an excellent match between theory and
simulation results.

The theoretical models presented in this paper predict
the stochastic behavior of the NNLMF algorithm under the
assumption of convergence. It is well known that the con-
vergence of both the LMF and NNLMS algorithms depends
on the step-size as well as on the weight initialization. This
is because higher-order moments of the weights in the update
equations lead to coupled nonlinear oscillation systems. This is
also the case for the NNLMF algorithm. The stability analysis
for the LMF algorithm is relatively complex [22], [23]], and
this complexity increases for the NNLMF algorithm. Thus, the
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Fig. 2. The impulse response w* of the unknown system (line a) and the
initial weight vector w(0) = 4o (line b) drawn from the uniform distribution
U([0;1]).

theoretical stability study is left for future work. We present
in the following some simulation results that illustrate the
dependence of the NNLMF algorithm stability on the step-
size and on the adaptive weights initialization.

Defining d = " (0)@(0) as a measure of the distance
between the initial weight vector and the weight vector of the
unknown system, we experimentally determined the regions
for which the EMSE of the NNLMF algorithm diverges. To
vary d, the initial weight vector was set to w(0) = k) in this
simulation so that d = [k1pg — w*] " [ky — w*]. We varied
w from 0.1 x 1075 to 2.1 x 1075 with step 0.2 x 10~° and d
from 2 to 102 with step 10. For the sake of convenience,
we marked the experimentally observed test results of the
algorithm in the 1 — d plane to illustrate convergence and
divergence regions, as well as the transition between them.
The divergence or convergence of the NNLMF algorithm in
each point (u, d) was tested by more than 1000 independent
realizations of 5 x 10° input samples. The obtained results are
shown in Figs. [7] and [§] for white and correlated input signals,
respectively. Notice that these convergence and divergence
regions are just statistically observed results under the given
simulation conditions. It is clear from these figures that the use
of larger step-sizes requires some information that permits a
better initialization of the weight vector.

VII. CONCLUSION

The NNLMF algorithm can outperform the NNLMS algo-
rithm when the measurement noise is non-Gaussian. This pa-
per studied the mean and second-moment behavior of adaptive
weights of the the NNLMF algorithm for stationary Gaussian
input signals and slow learning. The analysis was based on
typical statistical assumptions and has led to a recursive model
for predicting the algorithm behavior. Simulation results have
shown an excellent matching between the simulation results
and the behavior predicted by the theoretical models. As the
stability conditions for the NNLMF algorithm for convergence
is difficult to determine analytically, we have shown through
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Fig. 3. Convergence of the mean weights of the NNLMF algorithm in the case where the input is the white Gaussian signal with step-size u = 2 x 1072.
Two types of measurement noise are considered: (a) uniformly distributed noise; (b) binary random noise. The theoretical curves (red dot line) obtained from

(33) and simulation curves (blue solid line) are perfectly superimposed.
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Fig. 4. Convergence of the mean weights of the NNLMF algorithm in the case where the input is the correlated signal with = 2 x 1072, Two types
of measurement noise are considered: (a) uniformly distributed noise; (b) binary random noise. The theoretical curves (red dot line) obtained from 43_3[) and

simulation curves (blue solid line) are perfectly superimposed.

simulations that it depends on both the step-size value and on
the initialization of the weights. A theoretical stability analysis
will be a topic for future work.

APPENDIX A
DETAILED CALCULATION OF (33)

Substituting (T6) into (33) yields
E{pi,a(n>}
= E{u(n —1) [z(n) — 'lIJ]Ei

= E{u(n —1) ['JJE ;

- QE{u(n - z)z(n)wgz(n)u(n w:"u?T(n)u(n)}
+E{u(n —i)22(n)w;® " (n)u(n)} (96)

Using assumptions A.2) and A.3) and noting that w] is
deterministic, we can simplify (©6) to

E{pia(n)} = E{u(n - ) [®F, (n)u(n)]*@" (n)u(n) fu;

+o2E{® " (n)}riw;. (97)
Using (T7) and the definition of u(n), we obtain
i—1
W ;(n)u(n) = Y @j(n)uln - j) + E{@(n — i) }u(n i)
=0
’ M-1
+ D> dj(n)un—j) (98)
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Fig. 5. Convergence of the second-order moment of the NNLMF algorithm in the case where the input is the white Gaussian signal with © = 2 x 107°.
Two types of measurement noise are considered: (a) uniformly distributed noise; (b) binary random noise. The theoretical curves (red lines) show good match

with the simulation results (blue lines).
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Fig. 6. Convergence of the second-order moment of the NNLMF algorithm in the case where the input is the correlated signal with ;1 = 2 x 1072, Two
types of measurement noise are considered: (a) uniformly distributed noise; (b) binary random noise. The theoretical curves (red lines) show good match with

the simulation results (blue lines).

Also,
5T (nyuln) = 3 @5 ()u(n — ) + @(n — iyu(n — i)
=0
M—-1
+ > i (n)u(n — j). (99)
j=i+1

We note that (O8) has the same expression as (Q9) except
for the ith term, E{w(n — i) }u(n — i)}. Therefore, we can
approximate ﬂ)g’ ;(n)u(n) by @' (n)u(n) for large values of
N. With this approximation, (97) can be written as

*

E{pi.a(n)} = E{u(n i) [@7 (n)u(n)]” fu;

+ o?E{@ " (n)}rjw}. (100)

The following approximation has been derived in [21]:

]E{u(n) [wT(n)u(n)f} ~ 3Tr{RK (n)} RE{®(n)}.

(101)
The ith entry of (T0T) satisfies
E{u(n —4) [wT(n)u(n)]?’}
~ 3Tr{RK (n)}r, E{w(n)}
=3Tr{RK (n)}E{w" (n)}r;.  (102)
Substituting (102) into (I00) yields
E{pia(n)} ~3Tt{RK (n)}E{@ " (n)}r;w]
+ o2E{@ " (n)}ryw} (103)

In order to simplify the model and avoid higher-order statistics,
the approximation E{w(n)w " (n)} ~ E{w(n)}E{w ' (n)}
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Fig. 7. Experimentally observed convergence and divergence regions for the white Gaussian input signal, where blue grids represent convergence region
and red grids represent the region in which the NNLMF algorithm is sometimes or always divergent. Two types of measurement noise are considered: (a)

uniformly distributed noise; (b) binary random noise.
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Fig. 8. Experimentally observed convergence and divergence regions for the correlated input signal, where blue grids represent convergence region and red
grids represent the region in which the NNLMF algorithm is sometimes or always divergent. Two types of measurement noise are considered: (a) uniformly

distributed noise; (b) binary random noise.

was used in the mean weight behavior analysis of the NNLMS,
for which the detailed explanation was given in [16]. Using
this approximation in (I03), we obtain (33). Notice that the
recursive model derived for K(n) in Section V can also
be employed to predict the mean weight behavior of the
NNLMF algorithm. Nevertheless, a sufficiently accurate mean
weight behavior model can be obtained by using this first-order
approximation.

APPENDIX B
DETAILED CALCULATION OF (34)

Using the approximation wg ;(n)u(n) ~ @' (n)u(n)

E
shown in Appendix A, E{p;;(n)} can be written as

E{pio(n)} = E{u(n — ) [&" (n)u(n)] @) |

+ o?E{u(n — i) (n)u(n)wi(n)}. (104)

The term w;(n) in (I04) can be considered weakly correlated
with u(n — i)[w " (n)u(n)]® according to assumptions A.2),
A.4) and A.5). Therefore, the first term of the right-hand side



of (T04) can be approximated by
E{u(n — ) [@T(n)u(n)]3wi(n)}

~ E{u(n —1) [@T(n)u(n)]?)}E{d}Z(n)}

~ 3Tr{RK (n)}E{w " (n) }r;E{@;(n)}

~ 3Tr{RE{1IJ(n)}E{1I)T(n)}}E{@T(n)}riﬂi{wi(n)}.
(105)

The approximation E{w(n)w ' (n)} ~ E{w(n)}E{w ' (n)}
implies that E{w;(n)w;(n)} ~ E{@;(n)}E{®;(n)},Vi,J.
Thus, with assumptions A.2) and A.4), the second term of
the right-hand side of (I04) can be written as

o?E{u(n — i)@' (n)u(n)w;(n)}

~ o?E{w " (n)}rE{w;(n)}. (106)

Finally, using (T03) and (106) in (T04) one obtains (34).
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