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Abstract

Nuclear magnetic resonance (NMR) spectroscopy is the prime technique for studying molecular

and biomolecular structure as well as dynamics. The time domain NMR signal can be ideally

modelled as the sum of damped complex exponentials in additive Gaussian noise. The spectrum

of the signal may contain regions having overlapping peaks. In order to understand the underlying

chemical structure, these peaks need to be detected and resolved. In this paper, we propose the

Localised Capon Estimator (LoCapE) for resolving closely spaced peaks in the NMR spectrum

when the actual number of peaks is unknown. The novel method is able to efficiently retrieve

the correct number of components and obtain high resolution spectral estimates in the selected

regions of the spectrum. LoCapE is tested with simulated and actual proton NMR spectra to verify

its performance.

Keywords: Capon; spectral estimation; peak detection; nuclear magnetic resonance

spectroscopy; coupling constant.

1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the study of molec-

ular and biomolecular structure and dynamics, [1, 2]. The acquired discrete time domain signal

obtained from the NMR spectrometer, which is referred to as the free induction decay (FID), can
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be ideally modelled as a sum of a number of decaying complex exponentials in additive noise [3],

x(n) =

I∑
i=1

aie jφie(−ηi+ j2π fi)n + w(n). (1)

In Eq. (1), we have n = 0 . . .N − 1. I is the number of components in the signal and is usually

unknown in practice. The parameters ai, φi, fi and ηi are respectively the absolute amplitude, the

initial phase, the frequency and the damping factor of the ith component. The noise terms w(n) are

assumed to be additive Gaussian noise with zero mean and variance σ2.

In practice, the spectrum of the FID usually contains heavily overlapped peaks – that is the

frequencies of different components are close to each other. In order to understand the underlying

structure of the chemical sample being tested, these overlapping peaks need to be resolved. In

practice, however, due to lineshape distortion caused by experimental artefacts such as magnetic

field inhomogeneities, the experimental NMR datasets usually deviate from the ideal model. At

the same time, the number of components I is unknown and the number of data points N is often

very large (N ≥ 214). These limitations make the spectral estimation task quite challenging.

There is a wealth of literature on spectral estimation algorithms that can be applied to NMR

signals to improve on the resolution of the spectrum. These may be classed into two main kinds:

parametric estimators and non-parametric estimators. When dealing with spectral estimation for

long FIDs with an unknown number of overlapping components, as is the case for NMR, tradi-

tional high resolution parametric estimators, such as MUSIC [4], ESPRIT [5, 6] and Matrix Pencil

[7], are not desirable as they require the component number to be known a priori. They are also

computationally heavy for estimating the parameters of the whole spectrum because of the sin-

gular value decomposition (SVD). The Information Theoretic Matrix Pencil Method (ITMPM)

[8], combines information theory criteria, such as the Akaike criteria (AIC) [9] or minimum de-

scription length (MDL) [10] with a high resolution parametric estimator to find the number of

components in the estimation process. Nonetheless, heavy computational cost still make the al-

gorithm undesirable. Frequency-selective estimators [11] have been proposed for reducing the

computational cost of parametric estimators by selecting spectrum regions of interest. However,

they cannot deal with the detection of numbers of components.

Non-parametric estimators including the Capon spectral estimator [12], the amplitude and
2



phase estimator (APES) [13] and the recent Iterative Adaptive Approach (IAA) [14], alongside

with the damped versions [15], on the other hand, do not need the a priori information of the

number of signal components. They rely on the design of adaptive finite impulse response (FIR)

filter-banks, with each filter tuned to one of the frequency bins of interest, by solving certain con-

strained minimisations. However, these methods require the estimation of the covariance matrix

of the signal, which results in a trade-off between the achievable resolution and smoothness of the

spectrum, [16]. Furthermore, the estimated covariance matrix must be inverted, which also causes

computational difficulties. Consequently, the achievable resolution of the estimated spectrum in

the case of large N is limited by these two problems. More recently, compressed sensing (CS)

techniques [17, 18, 19], as spectral analysis approaches, have been modified and applied to the

processing of NMR signals, especially for non-uniformly sampled datasets with the aim of reduc-

ing the data acquisition and hence experiment time particular in multi-dimensional experiments

[20]. However, the drawbacks of CS approaches are those of computational cost and performance

on noisy data. CS techniques generally require a dictionary, and as NMR data involves distorted

lines that deviate from ideal signal models, this necessitates the measurement of signal templates

[21], which can be a significant burden. In addition, the off-grid problem remains a challenge.

In this paper, we present a novel high resolution spectral estimator that is capable of efficiently

separating closely overlapped peaks in a specific region in NMR spectroscopy when the number

of components in the region is not given (in which case the parametric high resolution methods

are not implementable). We develop a localised version of the non-parametric damped Capon

estimator [15], which we call the Localised Capon Estimator (LoCapE). The undamped version

has previously been developed in [22]. This spectral estimator not only achieves a high resolution,

but also exhibits low computational complexity. Thus, it can be efficiently implemented for NMR

data processing as a “zooming” operator on user-defined spectral regions to resolve overlapping

peaks. We evaluate the estimator on both simulated undamped/damped exponential signals and

experimental 1H NMR datasets that contain heavily overlapped peaks. It is important to note that

this algorithm is applicable in areas other than NMR where the damped exponential model holds.

These include, mechanical systems, radar, sonar, etc...

The structure of the paper is organised as follows. In the following section, we present the
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detailed derivation of LoCapE with its efficient implementation left for the appendix. In Section 3,

we show the evaluation results of the estimator, which include the results on simulated exponential

signals and experimental 1H datasets of codeine. Finally, some conclusions are drawn in Section

4.

2. The Estimation Algorithm

2.1. Notation

In the rest of the paper, we use lower case and upper case bold characters, such as x and X, to

represent vectors and matrices respectively. The asterisk, ∗, is used to denote the conjugate of a

complex number. For a matrix A (equally for a vector), AT stands for its transpose and AH stands

for its conjugate transpose. Also, λ̂ stands for the estimated value of parameter λ. Finally, we use

dλe and bλc to respectively represent the ceiling and floor operations of λ.

2.2. The Damped Capon Estimator

For the clarity of presentation, before putting forward the localised version, we briefly re-

view the original damped Capon which is presented in [15]. Given a length-N signal x(n) ideally

modelled as Eq. (1), the goal of the damped Capon estimator is to design a length-M (M < N)

adaptive filter h( f , η) at frequency f and damping factor η that minimises the power of the out-

put signal, subject to the output of a damped exponential at f and η be constraint to 1. Now let

xl = [x(l − 1), x(l), . . . x(N − L − l)]T . The minimisation problem can be expressed as

min
h

L∑
l=1

|hH( f , η)xl|
2 s.t. hH( f , η)sM( f , η) = 1, (2)

where

sm( f , η) = [1, e− j2π f , . . . , e(−η− j2π f )(m−1)]T , (3)

is the damped Fourier template vector of length m.
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Let X be the M × L (L = N − M + 1 and M < L) Hankel matrix of the signal

X =



x(0) x(1) · · · x(L − 1)

x(1) x(2) · · · x(L)
...

...
. . .

...

x(M − 1) x(M) · · · x(N − 1)


, (4)

and R be the estimate of the signal covariance. The solution of the minimisation problem results

in the damped Capon spectral estimate at frequency f and damping factor η given by [15]:

âCapon( f , η) =
sH

M( f , η)R−1Xs∗L( f , η)
LηsH

M( f , η)R−1sM( f , η)
, f ∈ [−0.5, 0.5], η ∈ Γ, (5)

where Γ = [η(1), η(2), . . .]T is the pre-defined damping factor grid and

Lη =

L−1∑
n=0

e−2ηn. (6)

In Eq. (5), R can be obtained by the forward-only estimation,

R = RF = XXH, (7)

or the forward-backward averaged estimation,

R = RFB =
1
2

(
XXH + X̃X̃H

)
, (8)

where X̃ is the M × L Hankel matrix of the complex conjugate time-reversed signal,

X̃ =



x∗(N − 1) x∗(N − 2) · · · x∗(N − L)

x∗(N − 2) x∗(N − 3) · · · x∗(N − L − 1)
...

...
. . .

...

x∗(N − M) x∗(N − M − 1) · · · x∗(0)


. (9)

One may consider that using the forward-only covariance matrix, Eq. (7) returns higher reso-

lution of the estimator than the backward-forward covariance matrix Eq. (8) [23]. However, this

is only true when the filter length M is relatively small. As M approaches the smoothing length L,

the resolution of the forward-backward Capon becomes higher than the forward-only Capon.
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2.3. The Localised Capon Estimator

It is well-known that the resolution of the Capon estimator improves as the filter length M

increases [13, 24], however achieved at the expense of less averaging (dictated by L = N −M + 1)

giving a less smooth spectrum. In order to obtain a non-singular (invertible) covariance matrix

R, the number of samples being averaged must be strictly larger than the number of degrees of

freedom, that is M < L. Therefore, for any fixed N, the original algorithm is subject to a limit on

the achievable resolution of the spectrum estimation. Also, inverting the M × L covariance matrix

R is computationally expensive, especially for large N (that is long FIDs). To overcome these

limitations, we propose the localised version of the algorithm, LoCapE that permits us to relax

the averaging requirement in order to improve the resolution, as well as significantly reduce the

computational burden.

Let us start by assuming that the frequency grid of interest is the whole spectrum with each bin

separated by 1/M: f = M−1[0, 1, 2, . . . , (M − 1)]T . Define F as the M × M unitary Fourier matrix

scaled by
√

M:

F =



1 1 · · · 1

1 e j 2π
M · · · e j 2π(M−1)

M

...
...

. . .
...

1 e j 2π(M−1)
M · · · e j 2π(M−1)2

M


. (10)

Notice that sM( f , 0), where f ∈ f, is one of the columns of F. Eq. (5) can then be re-written as

âCapon( f , η) =
sH

M( f , η)FFHR−1FFHXs∗L( f , η)
LηsH

M( f , η)FFHR−1FFHsM( f , η)

=

[
FHsM( f , η)

]H (
FHRF

)−1
FHXs∗L( f , η)

Lη
[
FHsM( f , η)

]H (FHRF)−1 FHsM( f , η)
. (11)

Now it is clear that FHsM( f , η) is the discrete Fourier transform of sM( f , η) and most of the energy

of sM( f , η) is concentrated in a few elements in the neighbourhood of the element corresponding

to the column index of f . Therefore, we propose reducing the dimensionality of the problem

localising the Fourier matrix F to a matrix F̄ consisting of only a few column vectors, specifically

r � M vectors, around sM( f , η). In the following, we use the overbar to refer to the dimensionality-
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reduced quantities. Then

s̄r( f , η) = F̄HsM( f , η), (12)

is a length-r vector that has Lη for the entry corresponding to f . Clearly the localised algorithm

reverts to the original if we put r = M.

When the frequency grid of interest is denser than f, F is no longer a unitary matrix. Never-

theless, the fact that most of the energy of FHsM( f , η) is concentrated in a small number of points

in the neighbourhood of the frequency of interest f still holds. Now, let the desired sampling grid

of the spectrum be of size N f ≥ M. Then the frequency bins in the spectrum separated by 1/N f

and F is a N f ×N f matrix. In this case, we can construct the localised Fourier matrix F̄ to have the

centre column corresponding to the desired frequency, f , and p columns either side of f spaced

by q = bN f /Mc bins,

F̄ =



1 · · · 1 1 1 · · · 1

e
j2π( f− pq

N f
)

· · · e
j2π( f− q

N f
)

e j2π f e
j2π( f +

q
N f

)
· · · e

j2π( f +
pq
N f

)

...
...

...
...

...

e
j2π( f− pq

N f
)(M−1)

· · · e
j2π( f− q

N f
)(M−1)

e j2π f (M−1) e
j2π( f +

q
N f

)(M−1)
· · · e

j2π( f +
pq
N f

)(M−1)


. (13)

Now let X̄ = F̄HX and ¯̃X = F̄HX̃ be the localised Fourier-transformed Hankel signal matrices,

the localised Fourier-transformed forward-backward averaged covariance matrix becomes

R̄ = F̄HRFBF̄ =
1
2

(
X̄X̄H + ¯̃X ¯̃X

H
)
. (14)

This leads to the amplitude spectrum estimate at frequency f and damping factor η being

âLoCapE( f , η) =
s̄H

r ( f , η)R̄−1X̄s∗L( f , η)

Lηs̄H
r ( f , η)R̄−1s̄r( f , η)

. (15)

The estimate obtained by Eq. (15) shows peaks at [ f̂i, η̂i], i = 1 . . . I. Similar to the approach given

in [15], we propose that the final 1-D amplitude spectrum estimate with respect to f is obtained

by the maximiser along the damping factor axis,

âLoCapE( f ) = max
η∈Γ

{
s̄H

r ( f , η)R̄−1X̄s∗L( f , η)

Lηs̄H
r ( f , η)R̄−1s̄r( f , η)

}
. (16)

Clearly when Γ = [0], LoCapE becomes the undamped version [22].
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The application of Eq. (15) for each frequency bin of interest involves operations on small size

matrices, which significantly reduces the dimensionality of the original algorithm. Furthermore,

as the covariance matrix is of size r × r, an L that is smaller than bN/2 + 1c is required for it to

be invertible. This reduced requirement on the amount of smoothing allows us to reduce L giving

a corresponding increase in M (for a fixed N) and consequently a significant improvement in the

spectral resolution with respect to the original algorithm.

Finally, we summarise the spectral estimation procedure as follows:

1. Define the LoCapE filter length M, where M > dN/2e, and set the corresponding smoothing

length L = N − M + 1. Partition the signal to the M × L Hankel matrices X and X̃ as shown

in Eqs. (4) and (9).

2. Set the length of the localised region r = 2p + 1, with p being a very small integer (e.g.

1, 2, 3...), selected according to the broadness of the peaks in the DFT spectrum. Also set N f

be the desired sampling density of the estimated spectrum.

3. Define the frequency grid f = [ f (1), f (2), . . . f (n f )]T for the region of interest in the spec-

trum (that is the region that is suspected of containing overlapping peaks). Generally we

have that n f � N f .

4. Define the damping factor grid Γ = [η(1), η(2), . . . , η(nη)] such that for the components that

fi ∈ f, η(1) < ηi < η(nη) (that the damping factors of all the signal components in the

spectrum region of interest are in the grid).

5. For each f ∈ f and η ∈ Γ, do:

(a) Construct the localised Fourier matrix F̄ of size M×r by Eq. (13), the Fourier template

vectors sM( f , η), sL( f , η) by Eq. (3) and then the localised Fourier vector s̄r( f , η) by Eq.

(12);

(b) Using the efficient method presented in Appendix A, calculate the Fourier-transformed

localised Hankel matrices X̄ and ¯̃X, and then get the Fourier-transformed localised

covariance matrix by Eq. (14);

(c) Obtain the 2-D spectrum estimation at frequency f and damping factor η by Eq. (11).

6. Finally, find the 1-D spectrum estimation using Eq. (16).
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3. Results

In this section we verify the ability of LoCapE to detect closely spaced peaks in NMR spectra.

We present results using simulated exponentials and two experimental 1H NMR datasets. For

both simulated and experimental results, we are only interested in the comparison of the ability of

various algorithms for peak separation and frequency estimation, and the comparison of amplitude

estimation is beyond the scope of this paper.

3.1. Simulation Results

We first apply the localised algorithm to a simulated exponential signal containing two closely

spaced components. Consider the signal

x(n) = e(−η+ j2π f1)n + e jθe(−η+ j2π f2)n + w(n), n = 0 . . .N − 1, (17)

where N = 64 is the signal length, η is the damping factor and f1, f2 ∈ [0, 1] are the normalised

frequencies. In the simulations, we fix the SNR to ρ = σ−2 = 25dB, set f1 = 0.5 and vary f2 from

0.485 to 0.499. θ is assumed to be uniformly distributed over [0, 2π] and is randomly selected in

each Monte Carlo run.

We compare the capability of LoCapE to resolve the two peaks with the original Capon [12],

ITMPM [8] and MUSIC [4]. Notice that among the methods, MUSIC requires the number of

components a priori. For LoCapE, we set the localised region to r = 5 and vary the smoothing

length L. We also use a spectral sampling density N f = 128N. For the original Capon, we obtain

the highest resolution by setting the filter length to M′ = N/2 = 32, which is identical to the the

matrix pencil parameter of ITMPM and the degree of freedom used in MUSIC. We report results

using both information criteria schemes in ITMPM for detecting the number of components.

In assessing the algorithms’ performance, two closely spaced peaks are considered to be re-

solved in the case of MUSIC and LoCapE if the following rule is satisfied [25]:

ε = 2â( fm) − â( f1) − â( f2) < 0 (18)

where â( f ) is the spectrum estimation at frequency f , and fm = 0.5( f1 + f2), which is the inter-

mediate frequency between f1 and f2. As for ITMPM, which finds the number of components
9



and the corresponding parameters instead of producing spectral estimates, we consider the two

components to be resolved when the estimated number of components is two.

Figure 1 shows the rate of successfully resolving both peaks as a function of f2 when η = 0.

The results show that as L becomes smaller, LoCapE has better ability to separate the two peaks.

When L = 20, it outperforms all the other methods including the state-of-art high resolution MU-

SIC, without knowing the actual number of components. Also, notice that the ITMPM-AIC always

has a success rate less than 100% (approximately 98% in this case). The results clearly show that

the proposed estimator exhibits the best ability to separate closely spaced exponentials. Figures 2

and 3 show the resolving power of various methods when η = 0.03 and η = 0.05, where LoCapE

shows similar behaviour while the performance of ITMPM and MUSIC deteriorates significantly.

Then we examine the accuracy of frequency estimation of LoCapE. In this simulation, we set

in Eq. (17) f1 = 0.5 and f2 = 0.48. θ were randomly chosen in each run. We obtain the frequency

estimates of LoCapE by peak picking in the estimated amplitude spectra. The parameters of

LoCapE and Capon are the same as the previous test. Figures 4 and 5 show the root mean square

error (RMSE) of the estimates of f1 versus SNR when η = 0 and η = 0.05 respectively. For

comparison, we also show the CRLB [26], the results of original Capon estimator, ESPRIT [5, 6]

and ITMPM. For ESPRIT, the degree of freedom length is set to M′ = N/2, which is identical to

the pencil parameter for ITMPM. I = 2 is given both ESPRIT and ITMPM as a priori information,

and we also show the result when we use MDL to determine the number of components in ITMPM.

It can be clearly found in Figure 4 that the RMSE of all the estimators are similar at high SNR and

follow the trend of the CRLB, with LoCapE having the lowest breakdown threshold. ESPRIT and

ITMPM share similar performance, but for ITMPM, when I is unknown and determined by MDL,

the breakdown threshold is higher than the case when I is given. We know that smaller L leads to a

less smoothed spectrum estimation. Therefore, the RMSE of LoCapE when L = 20 is marginally

larger, and it becomes closer to both CRLB and the original Capon as L approaches N/2. The

result illustrates that LoCapE is capable of achieving frequency estimates that is comparable to the

parametric estimators without knowing the number of components. This also illustrates the trade-

off that exists between the resolution and the RMSE. Before moving onto the next experiment, we

note that although related figures are not shown in this paper, we have tested the resolving power
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and estimation accuracy of LoCapE on signals with different N, where we obtained consistent

performance.

Next, we apply LoCapE to a simulated NMR signal consisting of six damped complex expo-

nentials according to the model given in Eq. (1). We set N = 2, 048 and φi to be zero for all i.

The amplitudes, frequencies and damping factors are listed in Table 1. The signal components

are chosen so that components 2 and 3 are very close to each other. Component 4, 5 and 6 are

closely spaced as well with one of them (component No. 4) being more damped than the other

two. The smoothing length of LoCapE that we employ in this example is L = bN/2c, and we set

the size of the localised region r = 7. We use N f = 16N points in the spectral estimation and apply

the localised algorithm to the selected regions of f1 = [0.497, 0.505] and f2 = [0.69, 0.71] with a

damping factor grid of Γ = [0.005, 0.02]. We compare the performance with N f -point DFT and

ITMPM, with the latter implemented using both detection schemes a pencil parameter L′ = N/2.

Figure 6 shows the success rate for simultaneously resolving two sets of components {2, 3}, and

{4, 5, 6} versus SNR for LoCapE, DFT and ITMPM. We see from the figure that LoCapE is still

capable of resolving the components down to a lower SNR than the other algorithms. Note that

although ITMPM - AIC operates down to a lower SNR than the ITMPM - MDL, its success rate

never reaches 100% even for high SNR. On the other hand, the DFT cannot resolve the components

at any SNR.

In order to clearly demonstrate how LoCapE performs in the selected regions of interest, we

include in Figure 7 the “zoomed in” spectra around f = 0.5 and f = 0.7. In each selected

region, we show 10 realisations of the estimated spectra of LoCapE overlaid on the magnitude

DFT spectrum. Since we are only interested in the peak separation, we show the spectra with the

magnitude normalised. It can be clearly seen that for both regions, the closely spaced peaks are

not separated in the DFT but are clearly resolved by LoCapE and the energy of the components

are more concentrated near the true frequencies.

3.2. Experimental Data Analysis

In order to further demonstrate the capacity of LoCapE for resolving closely spaced peaks

in NMR spectrum, we applied the algorithm to an experimental 1H NMR dataset of codeine in
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solvent deuteriochloroform (CDCl3). The FID is of length 16, 384. For this dataset, we applied

LoCapE in five regions of interest and resolve the heavily overlapping peaks, so as to extract the

coupling information that cannot be revealed by the DFT. In keeping with common practice in

NMR, we compare the experimental results with the real part of the DFT of the signal with all

the initial phases removed. The phase removal task is done using the phase correction function

in the Bruker Topspin NMR processing software1. Although no coupling information of codeine

is presented in the literature, as codeine as an opiate derivative shares a very similar structure to

morphine, we use the coupling information of morphine [27] [28] [29] as a reference to support

our deductions. In this test, according to the characteristic of proton datasets [30], the damping

factor grid of the LoCapE is selected to be Γ = [0.0002, 0.0012]. For comparison purposes, we

also included the results of the original Capon estimator with L = N/2 + 1 (so M = N/2), which

achieves the highest resolution.

Applying the algorithm to the selected regions of f1 = [1.86, 1.94] (ppm) and f2 = [2.56, 2.64]

(ppm), the peaks in region f1 and f2 provide coupling information of protons H15(eq) and H16(eq)

respectively2 [32]. From [27] we know that H15(eq) is coupled with protons H15(ax), H16(ax) and

H16(eq) which results in region f1 a doublet of doublet of doublet. Besides, proton H16(eq) is coupled

with protons H16(ax), H15(ax), H15(eq) and H9 [27] and should appear as a doublet of doublet of

doublet of doublet in region f2. In these two regions, LoCapE was performed by setting the

smoothing length to be L = bN/3c and the size of the localised region to be r = 3. We can

find from Figure 9 that LoCapE can resolve the doublet of doublet of doublet in region f1, while

Capon detected various spurious peaks due to the trade-off between accuracy and resolution, and

DFT mis-detected the doublet with the smallest coupling constant. For region f2, only a doublet

of doublet can be clearly observed from the DFT (which only shows the coupling information of

H16(eq)−H16(ax) and H16(eq)−H15(ax)), whereas LoCapE is able to give an extra doublet corresponded

to the coupling of H16(eq) and H15(eq) which can be hardly observed through the DFT. Also notice

that the rightmost peak of LoCapE spectral estimate is clearly a doublet, which reveals the coupling

of H16(eq) and H9 which has the smallest coupling constant.

1https://www.bruker.com/products/mr/nmr/nmr-software/software/topspin/overview.html.
2H(eq) and H(ax) denote respectively the equatorial and axial protons associated with the same carbon [27, 31].
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Then LoCapE was applied to the interested regions of f3 = [2.27, 2.36] (ppm), f4 = [3.00, 3.08]

(ppm) and f5 = [6.57, 6.61] (ppm), which contain peaks corresponding to proton H10(α), H10(β) and

H1 respectively 3 [32]. Particularly, apart from the coupling with H2, proton H1 is also equivalently

coupled with H10(α) and H10(β) with a very small coupling constant of around 1 Hz [28] [27]. But

this coupling can hardly be observed from the DFT in region f5, and is even not observable at

f3 and f4. LoCapE was performed by using a smoothing length L = bN/6c, with the size of the

localised region remained as r = 3. From Figure 10 we can find that the coupling between protons

H1 and H10 is clearly indicated by LoCapE. LoCapE shows three peaks in each bulk in region

f5, implying respectively the coupling information of H1 − H2, H1 − H10(α) and H1 − H10(β) with

the latter two close to equivalent. At the same time, a doublet of doublet of doublet in region f3

can be found, indicating the coupling information of H10(α) − H10(β), H10(α) − H9 and H10(α) − H1

accordingly [28]. In terms of region f4, the estimate of LoCapE also shows a doublet of doublet,

indicating the coupling information of H10(β) −H10(α) and H10(β) −H1. Capon, on the other hand, is

biased and has a lot of false alarms in these regions.

We tabulate in Table 2 the estimated coupling constants in all five regions obtained by LoCapE

compared with the corresponding coupling information of morphine provided in literature [27],

where we can find that the coupling constants are almost consistent. The reliability of LoCapE on

resolving closely spaced peaks in NMR signals is therefore verified.

Finally, in order to demonstrate the repeatability of the experimental spectral estimate, in Fig-

ures 11 and 12 we show the performance of LoCapE on the same regions of another codeine

sample with 32,768 time domain complex data points. To process this data, r = 9 and L = bN/2c

are used in regions f1 and f3, while r = 5 and L = bN/3c are used in regions f2, f4 and f5. We can

find from the results that LoCapE is still capable of resolving the overlapped peaks thus retrieving

the corresponding coupling constants.

3Hα and Hβ denote two equivalent protons associated with the same carbon [27, 31].
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4. Conclusion

In this paper, we have presented the Localised Capon Estimator (LoCapE) for resolving closely

spaced peaks in NMR spectrum. The algorithm is based on designing an adaptive filter bank

that minimises the power of the output signal and the resulting spectrum estimate can achieve

very high resolution by requiring no a priori information of the number of components. The

presented algorithm can be efficiently implemented and it is capable to work as “zoom in” operator

for detecting overlapped components in regions of interest in the DFT spectrum in rapid NMR

analysis. The superiority of LoCapE on component detection and separation is confirmed by

applications on both simulated and actual proton NMR signals.

Appendix: Efficient Implementation

From the above context we find that LoCapE requires the inversion of much smaller matrices

than the original versions (r � M and r � L). This significantly reduces the computational cost

per frequency bin and it remains much smaller than the efficient implementations of the original

versions [33, 34] for a reasonable number of bins. However, as the number of bins to be calculated

increases, especially when calculating a dense grid, direct implementation of the localised versions

can become burdensome. This is mainly caused by the brute force calculation of FHX, which has

a computational cost of O(nηnF ML) (O(LnηN f log N f ) for calculating the whole spectrum). Nev-

ertheless, as is presented in the following, the localised algorithm can be efficiently implemented

and the computational cost for computing each bin can be significantly reduced.

We now present the steps for efficiently calculating the estimation at every single frequency bin

of interest f and every single damping factor bin η and show the necessary multiplications at each

step. After the signal Hankel matrices are constructed, we first use the brute force implementation

of Fourier transform to the first column of X and X̃ to find the first column of X̄ and ¯̃X. Denoting

X̄ = [y1, y2, . . . , yL], ¯̃X = [ỹ1, ỹ2, . . . , ỹL] we have:

y1 = F̄Hx1 and ỹ1 = F̄Hx̃1 (19)

where F̄ is given by Eq. (13). To calculate Eq. (19) we need 2rM multiplications. Utilising the
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special structure of Hankel matrices, we can then obtain the lth column of X̄ by:

yl = [yl−1 − x(l − 1)] · v + x(l + M)u, (20)

where

v =

[
e

j2π( f− pq
N f

)
, . . . , e

j2π( f− q
N f

)
, e j2π f , e

j2π( f +
q

N f
)
, . . . , e

j2π( f +
pq
N f

)
]T
, (21)

and

u =

[
e

j2π( f− pq
N f

)(M−1)
, . . . , e

j2π( f− q
N f

)(M−1)
, e j2π f (M−1), e

j2π( f +
q

N f
)(M−1)

, . . . , e
j2π( f +

pq
N f

)(M−1)
]T
. (22)

Note that “ ·” is the point-wise multiplication of two vectors. This requires 2r multiplications. The

lth of column of ¯̃X can be similarly obtained by:

ỹl = [ỹl−1 − x̃(l − 1)] · v + x̃(l + M)u

= [ỹl−1 − x∗(N − l)] · v + x∗(N − l − M − 1)u. (23)

As a result, all the other columns of X̄ and ¯̃X can be efficiently calculated only using y1 and ỹ1 and

the total computational cost is 4r(L − 1) multiplications.

After the calculation of X̄ and ¯̃X, the inverse of the Fourier transformed localised autocorrela-

tion matrix R̄−1 and the computation of X̄s∗L( f ) are then obtained by direct multiplication, which

need 2r2L + r3 + rL multiplications. Finally calculating Eq. (11) requires another r2 + 2r multipli-

cations and one division.

Summing up the required multiplications yields the total computational cost for the estimation

of one bin to be:

Ω = 2rM + 4r(L − 1) + 2r2L + r3 + rL + r2 + 2r

≈ r[2M + (5 + 2r)L]

∼ O(N). (24)

Here we also use the facts r � M and r � L. Obviously, the cost for estimating nηn f bins is only

Ω ∼ O(nηn f N) and the computational cost is now significantly reduced.
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Table 1: Parameters of the simulated NMR signal.

Component No. Amplitude Frequency Damping (×10−2)

1 5 0.2 2

2 1 0.5 1

3 0.8 0.502 1

4 0.3 0.695 1.8

5 1 0.7 1.5

6 0.5 0.703 1.5
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Table 2: Estimated coupling constants in Hz for protons in the five selected regions of codeine compared with the

coupling constants for the corresponding opiate protons of morphine presented in [27].

System Codeine (in CDCl3) Morphine (in CDCl3) Morphine (in CD3OD)

H15(eq) - H15(ax) 12.65 12.4 12.7

H15(eq) - H16(eq) 1.85 - 1.7

H15(eq) - H16(ax) 3.85 3.6 3.6

H16(eq) - H16(ax) 12.1 12.1 12.3

H16(eq) - H15(ax) 5.0 5.0 5.1

H16(eq) - H9 1.0 - 0.8

H1 - H2 7.9 8.1 8.1

H1 - H10 1.19 - 0.95

H10(β) - H10(α) 18.5 18.5 18.6

H10(α) - H9 6.25 6.1 6.3
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Figure 1: Evaluation of the ability to resolve two closely spaced undamped peaks of LoCapE and other algorithms

versus the distance between the peaks. SNR = 25dB, f1 = 0.5 and θ were randomly chosen. 1,000 Monte Carlo runs

were used.
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Figure 2: Evaluation of the ability to resolve two closely spaced damped peaks of LoCapE and other algorithms versus

the distance between the peaks. SNR = 25dB, f1 = 0.5, η = 0.03 and θ were randomly chosen. 1,000 Monte Carlo

runs were used.

22



f
2

0.49 0.491 0.492 0.493 0.494 0.495 0.496 0.497 0.498 0.499

S
u

c
c
e

s
s
 R

a
te

 (
×

1
0

0
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LoCapE, L = 30
LoCapE, L = 20
ITMPM - AIC
ITMPM - MDL
MUSIC
Capon

Figure 3: Evaluation of the ability to resolve two closely spaced undamped peaks of LoCapE and other algorithms

versus the distance between the peaks. SNR = 25dB, f1 = 0.5, η = 0.05 and θ were randomly chosen. 1,000 Monte

Carlo runs were used.
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Figure 4: Evaluation of the frequency estimation accuracy obtained by LoCapE and other algorithms versus SNR.

f1 = 0.5, f2 = 0.48, η = 0 and θ were randomly chosen in each run. 5,000 Monte Carlo runs were used.
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Figure 7: Evaluation of the performance of LoCapE in resolving closely spaced peaks in the simulated NMR spectrum

with SNR = 60dB. 10 realisations of the LoCapE result are shown in each region. Black: Magnitude DFT spectrum;

Blue: LoCapE.
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Figure 9: Evaluation of the performance of LoCapE on separating the peaks in regions f1 and f2 in codeine. Black:

Real part of DFT; Blue: LoCapE; Red: Capon.
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Figure 10: Evaluation of the performance of LoCapE on separating the peaks in regions f3, f4 and f5 in codeine. Black:

Real part of DFT; Blue: LoCapE; Red: Capon.
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Figure 11: Evaluation of the performance of LoCapE on separating the peaks in regions f1 and f2 in another codeine

sample. Black: Real part of DFT; Blue: LoCapE.
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Figure 12: Evaluation of the performance of LoCapE on separating the peaks in regions f3, f4 and f5 in another codeine

sample. Black: Real part of DFT; Blue: LoCapE.
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