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Abstract—In this paper, a sparse-based method for the es-
timation of the parameters of multidimensional (R-D) modal
(harmonic or damped) complex signals in noise is presented.The
problem is formulated asR simultaneous sparse approximations
of multiple 1-D signals. To get a method able to handle large
size signals while maintaining a sufficient resolution, a multigrid
dictionary refinement technique is associated with the simulta-
neous sparse approximation problem. The refinement procedure
is proved to converge in the singleR-D mode case. Then, for
the general multiple modesR-D case, the signal tensor model
is decomposed in order to handle each mode separately in an
iterative scheme. The proposed method does not require an
association step since the estimated modes are automatically
“paired”. We also derive the Cramér-Rao lower bounds of the
parameters of modalR-D signals. The expressions are given in
compact form in the single R-D mode case. Finally, numerical
simulations are conducted to demonstrate the effectiveness of the
proposed method.

Index Terms—Multidimensional modal retrieval, frequency
estimation, simultaneous sparse approximation, multigrid dictio-
nary refinement, Cramér-Rao lower bound, harmonic retrieval

I. I NTRODUCTION

T HE problem of estimating the parameters of sinusoidal
signals from noisy measurements is an important topic in

signal processing and several parametric and nonparameteric
approaches have been developed for one-dimensional (1-D)
signals [1]. Recently, this problem has received a renewed
interest thanks to the emergence of multidimensional (R-D)
applications. Indeed, parameter estimation fromR-D signals
is required in numerous applications in signal processing and
communications such as nuclear magnetic resonance (NMR)
spectroscopy, wireless communication channel estimation[2]
and MIMO radar imaging [3]. In all these applications, signals
are assumed to be a superposition ofR-D sinusoids or, more
generally, of exponentially decayingR-D complex exponen-
tials (modal signals). As for the 1-D case, the crucial step is
the estimation of theR-D modes (including frequencies and
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damping factors) because they are nonlinear functions of the
data.

In order to achieve high resolution estimates, parametric
approaches are often preferred to nonparamatric ones. Several
parametricR-D methods (R ≥ 2) have been proposed.
They include linear prediction-based methods such as 2-
D TLS-Prony [4], and subspace approaches such as matrix
enhancement and matrix pencil (MEMP) [5], 2-D ESPRIT [6],
multidimensional folding (MDF) [7], improved multidimen-
sional folding (IMDF) [8], [9], Tensor-ESPRIT [10], principal-
singular-vector utilization for modal analysis (PUMA) [11],
[12] and the methods proposed in [13], [14]. All these methods
perform at various degrees but it is generally admitted that
they yield accurate estimates at high SNR scenarios and/or
when the frequencies are well separated. This is obtained at
the expense of computational effort. For instance, MDF, IMDF,
2-D ESPRIT and MEMP are ESPRIT-type techniques. They
require to build large size matrices and apply the ESPRIT-
based method, which make their computational complexity
very high particularly in the case of largeR-D signals. The
Tensor-ESPRIT algorithm uses the structure inherent in the
R-D data at the expense of a high computational complexity.
Recently, TPUMA [11] was proposed as an accurate and
computationally efficient multidimensional harmonic retrieval
method, which attains the Cramér-Rao lower bound (CRLB)
and does not require to build large size matrix or tensor.
However its performance degrades rapidly with the increase
of the number of components present in theR-D signal.

Recently, methods based on sparse approximations have
been proposed to address the harmonic or modal retrieval prob-
lem [15]–[22]. For time-data spectral estimation, the dictionary
is formed from a set of (normalized) complex exponentials
potentially embedded in the data, which allows one to easily
include some prior knowledge about the position of certain
known modes. More generally, the usual choice is a uniform
spectral grid obtained by sampling the frequency and damping
factor lines. Clearly, a fine grid will lead to a good resolution
but, on the other hand, it will result in a huge dictionary [15].
This complexity is further increased in the case ofR-D signals
in which we are confronted with2R-D grids.

In order to reduce the computational burden, a multigrid
scheme for sparse approximation was proposed in [19] to
iteratively refine the dictionary starting from a coarse one. At
each iteration, a sparse approximation is performed and then
new grid points (atoms) are inserted in the vicinity of active
ones leading to a multiresolution-like scheme. So the multigrid
algorithm in [19] refines jointlyR 2-D grids. This algorithm
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is efficient but has mainly two drawbacks: 1) it does not have
convergence guarantees, 2) the dictionary becomes intractable
for large signals whenR ≥ 2.

The goal of the present paper is to propose a fast multi-
dimensional modal estimation technique able to handle large
signals and yielding a good estimation accuracy.

1) First, the proposed approach, as for some parametric
methods for modal retrieval, is based on the idea of esti-
mating the parameters independently along each dimension
r = 1, . . . , R. It will be shown that thesimultaneoussparse
approximation concept [20], [23] is well-suited forR-D
modal retrieval (R ≥ 2).

2) The second contribution consists in the proposition of a
new multigrid scheme which amounts to consider a two-
step refinement of 1-D grids, the first step for frequencies
and the second one for damping factors. One advantage of
the two-step multigrid is that it reduces the computational
time. The convergence issue of the proposed multigrid
strategy is analyzed firstly for single tone(F = 1) case,
and convergence conditions are derived. Condition for
convergence are expressed in terms of atom positions in
the initial dictionaries.

3) The extension of this result to the multiple tones case
(F > 1) is not trivial because, not only it depends on
the selected sparse approximation algorithm, but also on
the coherence of the dictionary [23]. Indeed, due to the
refinement strategy, the resulting dictionary is far from
being uncorrelated which may prevent convergence even
in the noiseless case. Consequently, for the multiple tones
case, we exploit an alternative representation of the data
model enabling the extraction of theR-D signal tones
separately. Therefore, the third contribution of this paper
consists in deriving a new algorithm for estimating param-
eters ofR-D damped signals in which the results of the
previous contribution apply. The effectiveness of the new
algorithm for multipleR-D tones is also analyzed. One
very interesting by-product of this approach is that the
pairing of R-D parameters is achieved for free, without
any further association stage.

To assess the performances of an estimation method, the
usual way consists in comparing the variance of the estimates
to the CRLB. In [5] Y. Hua derived the CRLB for 2-D
frequencies, i.e., undamped 2-D exponentials; no damped
signals are considered. Closed-form expressions of the CRLB
for the general undampedR-D case are derived in [24]. CRLB
for 2-D damped signals are derived in [25]. Therefore, to the
best of our knowledge, no compact expressions of the CRLB’s
are available for the generalR-D modal (damped) signal.
Thus, another contribution of this paper is the derivation of
the CRLB’s for the frequency, damping factor, amplitude and
phase of theR-D modal signal.

The remainder of this paper is organized as follows. In
section II, we introduce notation and present theR-D modal
retrieval problem. In section III, we formulate theR-D modal
estimation problem asR simultaneous sparse estimation prob-
lems, show how to construct a modal dictionary on a uniform
grid and then describe the new fast multigrid strategy. In

section IV, we give sufficient conditions for convergence ofthe
multigrid dictionary refinement scheme in the case of single
toneR-D signals. In light of these new results, we propose
in section V a new efficient algorithm for multiple tonesR-
D modal signals. In section VI, we derive the expressions of
the CRLB’s for the parameters ofR-D damped exponentials
in Gaussian white noise. We then give the CRLB in the
cases of single damped and undampedR-D cisoids. The
effectiveness of the proposed method is demonstrated using
simulation signals in section VII. Finally, conclusions are
drawn in section VIII.

II. N OTATION AND PROBLEM STATEMENT

A. Notation

In this paper, scalars are denoted as lower-case letters
(a, b, α), column vectors as lower-case bold-face letters(a,b),
matrices as bold-face capitals(A,B), and tensors as calli-
graphic bold-face letters(A,B). Let (·)T, (·)H and(·)† denote
the transpose, the Hermitian transpose and the pseudo-inverse,
respectively. The symbols “⊙” and “⊠” will denote the Khatri-
Rao product (column-wise Kronecker) and the Kronecker
product, respectively. Both words “mode” and “tone” are used
to refer to a component of the multidimensional signal. The
tensor operations used here are consistent with [26]:

• the outer product of two tensorsA ∈ CM1×···×MR and
B ∈ CK1×···×KN is given by:

C = A⊗B ∈ C
M1×···×MR×K1×···×KN ,

c(m1, . . . ,mR, k1, . . . , kN ) =

a(m1, . . . ,mR)b(k1, . . . , kN ) (1)

• the contraction product acting on therth index of a tensor
A ∈ CM1×···×MR and the2nd index of a matrixU ∈
CK×Mr is:

B = A •
r
U ∈ C

M1×···×Mr−1×K×Mr+1×···×MR ,

b(m1,m2, . . . ,mr−1, kr,mr+1, . . . ,mR) =
Mr∑

mr=1

a(m1,m2, . . . ,mR)u(kr,mr) (2)

• the matrixA(r) ∈ CMr×(M1···Mr−1Mr+1···MR) represents
the unfolding (dimension-r matricization) of the tensorA
and corresponds to the arrangement of the dimension-r
fibers ofA to be the columns of the resulting matrix.

• ‖A‖2 denotes the the Frobenius norm for tensors:‖A‖2 =∑
m1,...,mR

|a(m1, . . . ,mR)|2.

B. Problem Formulation

An R-D modal signal is modeled as the superposition ofF
multidimensional damped complex sinusoids:

ỹ(m1, . . . ,mR) =

F∑

f=1

cf

R∏

r=1

amr−1
f,r + e(m1, . . . ,mR) (3)

wheremr = 1, . . . ,Mr for r = 1, . . . , R. Mr denotes the sam-
ple support of therth dimension,af,r = exp (αf,r + jωf,r) ∈
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C is the f th mode in therth dimension,{αf,r}F,R
f=1,r=1,

αf,r ∈ R−, are the damping factors,{ωf,r = 2πνf,r}F,R
f=1,r=1

are the angular frequencies, andcf = λf exp(jφf ) is the
complex amplitude of thef th mode whereλf = |cf | de-
notes the magnitude andφf the phase.e(m1,m2, . . . ,mR)
is a zero-mean complex Gaussian white noise with variance
σ2 and mutually independent components in all dimensions.
Throughout this paper, the tilde symbol (˜ ) denotes a noisy
signal;e.g. ỹ(·) = y(·) + e(·).

In a tensor form, theR-D signal in (3) may be written as

Ỹ = Y + E (4)

where{Ỹ ,Y,E} ∈ CM1×M2×···×MR . The problem consists
in estimating the set of parameters{af,r}F,R

f=1,r=1 and{cf}Ff=1

from theR-D signal samples.

III. S IMULTANEOUS SPARSEAPPROXIMATION FORR-D
MODAL SIGNALS

A. Tensor Formulation of the Data Model

The noise-free data tensorY in (4) can be written in the
following form:

Y =

F∑

f=1

cf af,1 ⊗af,2 ⊗ · · · ⊗af,R (5)

whereaf,r = [1, af,r, . . . , a
Mr−1
f,r ]T, r = 1, . . . , R. Equation

(5) is called the Canonical Polyadic (CP) decomposition form,
or the Candecomp/Parafac decompostion of the tensorY [26],
[27]. The CP model (5) can be concisely denoted by

Y = Jc;A1,A2, . . . ,ARK (6)

whereAr = [a1,r, a2,r, . . . , aF,r], r = 1, . . . , R, and c =
[c1, c2, . . . , cF ]

T is the vector of complex amplitudes. Using
these definitions, the matricized form ofY along the rth
dimension is given by

Y(r) = Ar∆c(AR ⊙ · · · ⊙Ar+1 ⊙Ar−1 ⊙ · · · ⊙A1)
T

(7)

where∆c = diag(c). Then, we can write

Ỹ(r) = ArHr +E(r) (8)

whereHr ∈ CF×M ′
r is

Hr
def
= ∆c(AR ⊙ · · · ⊙Ar+1 ⊙Ar−1 ⊙ · · · ⊙A1)

T (9)

andM ′
r =

R∏
k=1
k 6=r

Mk. Therefore

Y(r)
def
= [y(r),1, . . . ,y(r),M ′

r
]

=




F∑

f=1

hr(f, 1)af,r , . . . ,

F∑

f=1

hr(f,M
′
r)af,r



 (10)

wherehr(f,m
′
r) is the (f,m′

r) entry of the matrixHr, for
f = 1, . . . , F andm′

r = 1, . . . ,M ′
r. We observe that, for a

given r, the columnsy(r),m′
r

of Y(r) are linear combinations
of the vectors{af,r}Ff=1. Hence, the columnsy(r),m′

r
can be

considered as multiple experiences involving the same one-
dimensional signal generated by the modesaf,r, f = 1, . . . , F,
but with different amplitudes for each experience. This prop-
erty will be used in the next section to formulate the problem
of estimating the mode coordinates in therth dimension as a
simultaneous sparse approximation problem.

B. Simultaneous Sparse Approximation

Assuming1 that Mr > F, ∀r, it is easy to see from (10)
that for a fixedr the mode coordinates{af,r}Fr

f=1 (Fr ≤ F )
in the rth dimension are identifiable from any column of
Y(r). This process can also be repeated on each dimension
r = 1, . . . , R to get all the modes coordinates. In practice,
we have to replace the matrixY(r) by its noisy counterpart
Ỹ(r) accounting for the additive white noise. In this case,
(10) holds only approximately. Consequently, for each column
ỹ(r),m′

r
,m′

r = 1, . . . ,M ′
r, the modal estimation problem can

be formulated as a sparse approximation problem correspond-
ing to the following constrained optimization:

xm′
r
= argmin

x
‖x‖0 subject to ‖ỹ(r),m′

r
−Qrx‖22 ≤ ǫ

(11)
whereQr ∈ CMr×N , N ≫ Mr, is a (known) modal dictio-
nary,x ∈ CN is a (sparse) vector containing the coefficients of
the activated columns inQr, andǫ is a small reconstruction
error related to the noise variance. The pseudo-norm‖x‖0
counts the number of nonzero elements in a vectorx. The
design ofQr is discussed in section III-C. The fact that each
vector ỹ(r),m′

r
corresponds to a 1-D signal generated by the

same modes implies that the position of nonzero entries in
xm′

r
should be the same form′

r = 1, 2, . . . ,M ′
R. Let X be

the matrix defined by

X = [x1,x2, . . . ,xM ′
r
], (12)

then the sparsity ofX may be measured by computing the
Euclidian norms of the rows; those providing a nonzero norm
define the rows of the activated atoms (which are estimations
of modesaf,r in the dimensionr) in the dictionaryQr.
Therefore, we are facing a simultaneous sparse approximation
problem:

Xr = argmin
X

‖X‖2,0 subject to ‖Ỹ(r) −QrX‖2F ≤ ǫ

(13)
where

‖Ỹ(r) −QrX‖2F = ‖vec(Ỹ(r) −QrX)‖22, (14)

‖X‖2,0 =
∥∥∥
[
‖X1,:‖2 · · · ‖XN,:‖2

]T∥∥∥
0
, (15)

and Xn,: stands for thenth row of X. The simultaneous
sparse representation models, called also Multiple Measure-
ment Vectors (MMV), have been studied from several angles
of view, and different approaches have been proposed [28],
using greedy strategies [29] such as Simultaneous Orthogo-
nal Matching Pursuit (SOMP) [23], convex relaxation meth-
ods [30], randomized algorithms such as REduce MMV and
BOost (ReMBo) [31] and subspace-augmented MUSIC [32].
As the goal of the present paper is to develop a fast approach

1Note that this assumption is considered only in this section.
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well adapted to large signals, we restrict our attention to the
SOMP algorithm [23], reported in Appendix A. However,
it is worth mentioning that, in more intricate cases and/or
small size signals, much more efficient simultaneous sparse
algorithms may be used at the price of an increased com-
putational burden. A straightforward way to get theR-tuples
{(af,1, . . . , af,R)}Ff=1 consists in estimating the modesaf,r in

the R dimensions using matrices̃Y(r), r = 1, . . . , R, which
requires a further pairing step to form theR-D modes in the
multiple tones case (F > 1). To get accurate estimates using
the described scheme, two conditions have to be satisfied, 1)
the dictionary should contain all possible modes present in
the signal, 2) the sparse approximation method should have
sufficient guarantees for selecting the true atoms from the
dictionary, which is known as “exact recovery guarantees”.
These problems are discussed in the following sections and
an alternative representation of the data is used to avoid the
pairing stage in the multiple tones case.

C. Modal Dictionary Design and Multigrid Strategy

1) Uniform Modal Dictionary: The dictionary Qr ∈
CMr×N can be defined as follows. LetNµ be the number of
points of a uniform grid covering the frequency interval[0, 1).
Similarly, let Nβ be the number of points of a uniform grid
covering the damping factor interval(βmin, 0], whereβmin is
a lower bound on{αf,r}Ff=1. ThenQr is given by

Qr = [qr(0, 0), . . . ,qr((Nµ − 1)δµ, 0),qr(0, δβ), . . . ,

qr((Nµ − 1)δµ, δβ), . . . ,qr((Nµ − 1)δµ, (Nβ − 1)δβ)]
(16)

where qr(µ, β) = ar(µ, β)/||ar(µ, β)||2 with ar(µ, β) =
[1, e(β+j2πµ), . . . , e(β+j2πµ)(Mr−1)]T, δβ = βmin/Nβ , and
δµ = 1/Nµ. In short,Qr is obtained from a discretization
of the (ν, α) plane. Each point of the grid corresponds to
a hypothetic mode. The total number of columns inQr is
N = NµNβ ≫ F , each of them is called atom. In the aim of
reducing the computational complexity, we propose to estimate
frequencies and then damping factors by calling twice the
sparse approximation method. At the first step, the frequencies
are estimated using a harmonic dictionary. In the second step,
the damping factors are estimated using a modal dictionary
formed by the already estimated frequencies and a damping
factor grid. These two steps are explained in section IV.

2) Multi-Grid Dictionary Refinement:To achieve a high-
resolution modal estimation, a possible way is to define
uniform grids as before and selecting very small values forδµ
andδβ to retrieve the frequencies and damping factors, respec-
tively. As a consequence, the resulting dictionaries will lead to
prohibitive calculation cost and memory capacities requested.
Rather, we propose to start with a coarse one (Nµ and Nβ

low) and to adaptively refine it through a multigrid scheme.
The procedure is the same for estimating the frequency and
damping factor. The principle is sketched on Figure 1. The
main idea is the adaptation of the dictionary as a function
of the previous dictionary and the estimated coefficients. Let
ℓ be the current grid level (ℓ = 0, . . . , L − 1). At level ℓ,
we first restore the signalXr(ℓ) related to the dictionary

Level

µ or β

µ or β

µ or β

0

ℓ

ℓ+ 1 � � � � � �

Fig. 1. The multigrid dictionary refinement procedure withη = 1. (,) atoms
in the dictionary; (•,) activated atoms; (�) new atoms

Algorithm 1: Dictionary refinement(DICREF)

input : A vector d ∈ RN of sorted frequencies or damping factors, an
index setΩ of activated atoms, the number of atomsη ∈ N to
add at each side of an activated one

output: Updated vectordupdated

for i = 1 : numel(Ω) do
di,1 = linspace (d(Ω(i) − 1),d(Ω(i)), η)
di,2 = linspace(d(Ω(i)), d(Ω(i) + 1), η)
di = [dT

i,1,d
T

i,2(2 : η)]T

end
dupdated = union(d1, . . . ,dnumel(Ω))
return dupdated

Qr(ℓ) by applying the SOMP method. Then we refine the
dictionary by inserting atoms inbetween pairs ofQr(ℓ), in the
neighborhood of each activated atom and we apply again the
SOMP method at levelℓ+1 to restoreXr(ℓ+1) with respect
to the refined dictionaryQr(ℓ + 1). This process is repeated
until a desired level of resolution is reached. Algorithm 1
presents the one-step dictionary refinement (DICREF), from
level ℓ to ℓ + 1, where, fora and b reals, linspace(a, b, η)
generates a set ofη equispaced points in the interval[a, b]. The
difference between the present framework and that in [19] is
the following. In [19] the multigrid algorithm refines jointly
R 2-D grids, which leads to expensive computations when
R ≥ 2, without convergence guarantees. The present mutigrid
scheme refines linear grids, which leads to low computational
complexity with convergence guarantees as we will show in
the next section.

Finding the convergence conditions of the new multigrid
strategy in the general case (multiple tones) is not easy and
depends on the selected sparse approximation algorithm. By
contrast, it is possible to show that, under mild conditions, the
convergence may be guaranteed in the single tone case. This
issue is discussed in the next section. In section V, we make
use of an alternative representation of the data model in the
case of multiple tones and a method allowing one to retrieve
the signal tones separately.

IV. SINGLE R-D MODE ESTIMATION

In the previous section, we have shown how theR-D modal
retrieval problem may be tackled using a sparse approximation
algorithm by estimating the set of parameters in each dimen-
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sion r = 1, . . . , R. Here, we give the sufficient conditions for
convergence of the multigrid dictionary refinement scheme for
F = 1. Without loss of generality, we setR = 1. For notation
simplicity, we omit reference to the dimension indexr.

According to (3), the 1-D modal signal containing a single
mode can be written as follows:

y(m) = c1a
m−1
1 = c1e

(α1+j2πν1)(m−1),m = 1, . . . ,M.
(17)

Let Q be a normalized modal dictionaryQ = [q1, . . . ,qN ],
with

qn =
1√∑

m |qn|2m
[1, qn, . . . , q

M−1
n ]T, (18)

qn = exp(βn + j2πµn), µn ∈ [0, 1), βn ∈ (βmin, 0], for
n = 1, . . . , N . The single tone sparse approximation ofy

with respect toQ is the solution of the criterion:

min
x

J(x) = ||y −Qx||2 s.t. ||x||0 = 1. (19)

The optimal solution is given by

x∗
n = qH

ny, x∗
{1,...,N}\n = 0, J(x∗) = ||y||2 − yHqnq

H

ny

(20)
where n is the selected column number inQ. Finally, the
minimum J(x∗) is reached for an atomqn that maximizes
J ′(qn) = yHqnq

H

ny = |qH

ny|2, n = 1, . . . , N .

A. Estimating the Frequency: The Harmonic Dictionary

First, we estimate frequencyν1 using a harmonic dictionary
(i.e. assumingβn = 0, ∀n). In this case, we have:

J ′(µn) =
|c1|2
M

∣∣∣∣
1− eα1M+j2π(ν1−µn)M

1− eα1+j2π(ν1−µn)

∣∣∣∣
2

. (21)

The following theorem gives a sufficient condition for the
multigrid dictionary refinement scheme to converge to the
global maximum ofJ ′.

Theorem 1:Let y(m) be a single tone (F = 1) noiseless
signal of lengthM andQ(ℓ = 0) = [q1 q2 . . . qN(0)]

T be the
initial harmonic dictionary in which the columns are sortedin
increasing order ofµn(0), n = 1, 2, . . . , N(0) and covering
the frequency interval [0,1):µ1(0) = 0 and µN(0)(0) =
1 − 1/M . Then the refinement scheme is convergent (i.e.
∃n ∈ {1, . . . , N(ℓ)} s.t. limℓ→∞ µn(ℓ) = ν1) if the following
condition is satisfied:

max
n∈{1,...,N(0)−1}

|µn+1(0)− µn(0)| < 2ζM (22)

whereζM is a constant depending only onM .

Proof It is easy to check that the global maximum ofJ ′(µn)
is reached forµn = ν1, ∀α1. Figure 2 shows the variation of
J ′(µn) as a function ofµn for ν1 = 0.1, βn = 0 andM = 10.
Forα1 = 0, J ′(µn) reduces to a Fejér kernel which has exactly
one local maximum in the interval[ν1+k/M, ν1+(k+1)/M ],
k 6= 0. Let J ′

1 be the maximum value ofJ ′(µn) in the interval
[ν1 + 1/M, ν1 + 2/M ] andν1 + ζM be the value ofµn such
thatJ ′(µn = ν1+ζM ) = J ′

1 in the interval[ν1, ν1+1/M ] (we

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α1=0
α1=-0.1
α1=-0.3

PSfrag replacements

µn

J
′
(
µ
n
)
/
||
y
||
2

ζM

Fig. 2. J ′(µn) in the single mode case withν1 = 0.1 andβn = 0

assume2 thatM > 2). For the dictionary refinement strategy to
converge to the global maximum, it is sufficient to the sparse
approximation algorithm to select, at a given levelℓ, an atom
whose frequency satisfies|µn∗(ℓ)− ν1| < ζM < 1/M , where
µn∗(ℓ) = argmaxn J

′(µn). Indeed, ifµn∗(ℓ) ∈ (ν1−ζM , ν1+
ζM ) then adding two atoms whose frequencies are located on
both sides ofµn∗(ℓ) will lead to the selection, at levelℓ+ 1,
of an atom that satisfies|µn∗(ℓ+1)−ν1| ≤ |µn∗(ℓ)−ν1|: the
distance between the selected atom and the true frequency isa
monotonically decreasing sequence. Finally, the convergence
is guaranteed if the initial dictionary contains an atomn such
that |µn(0)− ν1| < ζM , which is satisfied if

max
n∈{1,...,N(0)−1}

|µn+1(0)− µn(0)| < 2ζM . (23)

given the fact that the sequence{µn(0)} covers the interval
[0, 1). For α1 < 0, the main lobe ofJ ′(µn) becomes broader
andζM larger than forα1 = 0. Consequently, condition (23)
is also sufficient forα1 < 0. �

Corollary 1: In the single tone case, the harmonic dictionary
refinement is convergent if the initial frequency grid (ℓ = 0)
is the Fourier grid.

Proof Fourier bins are obtained forN = M and µn(0) =
(n − 1)/M . SinceζM > 1/2M , the proof is straightforward
because|µn+1(0)− µn(0)| = 1/M < 2ζM . �

It is important to note that condition (23) is sufficient but
not necessary. Moreover, this condition is established when
adding a single atom on both sides of the selected one (i.e.
η = 1 in Algorithm 1). Whenη ≫ 1, the condition may be
relaxed and the rate of convergence is expected to be higher.

B. Estimating the Damping Factor: The Modal Dictionary

Assume that the previous sparse approximation method
using a harmonic dictionary has converged to select an atom
with µn = ν1. Now, we have to estimate the damping factor
α1. We form a modal dictionary using the damping factor
grid and the frequencyν1, i.e. qn = exp(βn + j2πν1).
Consequently,

J ′(βn) =
|c1|2(1 − e2βn)

1− e2βnM

(
1− e(α1+βn)M

1− e(α1+βn)

)2

. (24)

2The case ofM ≤ 2 in not of practical interest but the theorem is still valid
by settingζM = 1

2
becauseJ ′(µn) is a monotonically decreasing function

in the interval[ν1,min{ 1
2
, 1
2
+ ν1}].
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Theorem 2:Let y(m) be a single tone (F = 1) noiseless
signal of lengthM and Q(0) = [q1 q2 . . . qN(0)]

T be
the initial modal dictionary formed using the frequencyν1,
i.e., qn = exp(βn(0) + j2πν1), where ν1 is the frequency
of signal y. The columns are sorted in increasing order of
βn(0), n = 1, 2, . . . , N and covering the damping factor
interval (βmin, 0]. Then the refinement scheme is convergent
(i.e. ∃n s.t. limℓ→∞ βn(ℓ) = α1) if α1 ∈ (βmin, 0].

Proof Let g(βn) be the derivative ofJ ′(βn) in (24) with
respect toβn. It is easy to check thatg(βn) > 0 for βn < α1,
g(βn) < 0 for βn > α1, and g(βn) = 0 when βn = α1.
In other words,J ′(βn) is monotonically increasing before
the maximum reached atα1 and monotonically decreasing
after α1. Therefore, the multigrid algorithm converges toα1

if βmin < α1. �

As a consequence of Theorem 2, the initial modal dictionary
can be formed using only two points in the damping factor
grid: β1(0) = βmin andβ2(0) = 0.

We can now state that the multigrid algorithm based on two
sparse approximations (for frequency and then damping factor)
converges in the single tone case under some conditions. Note
that in the noisy case when the SNR is sufficiently high, the
convergence analysis is still valid as in the noiseless case,
and the proposed multigrid sparse scheme for single tone
converges to the global maximum of the Fejér kernel. The
extension to the single toneR-D modal retrieval problem
is straightforward and can be performed according to the
formulation presented in Section III-B. The details of this
approach (STSM: Single Tone Sparse Method) are presented in
Algorithm 2. The algorithm takes as input a noisy single tone
R-D signal, and a couple of integersην andηα that correspond
respectively to the number of frequency and damping factor
atoms to be added on both sides of the corresponding selected
ones. Next, for each dimensionr = 1, . . . , R, we execute two
tasks to estimate the frequency and then the damping factor:
in each step we apply SOMP combined to DICREF algorithm
using corresponding dictionaries and taking into account the
convergence conditions discussed previously. Then parameters
of ar, i.e.,νr andαr, are given by the corresponding selected
atoms. This approach will be exploited in the next section for
the multiple tones case.

V. M ULTIPLE R-D MODESESTIMATION

In the multiple tones case, sparse approximation algorithms
yield suboptimal solutions when the coherence of the dictio-
nary is high [29]. This is a crucial point because the refinement
procedure will increase the coherence with increasingℓ, which
may prevent convergence even in the noiseless case. In the
following, we present a low complexity algorithm that is ac-
curate and robust in the presence of noise. The idea is to begin
by an initialization step whereF single tone modal signals
of orderR − 1 are extracted from theR-D signal. Then an
iterative technique is proposed to improve this decomposition
and estimate the parameters.

It is assumed that the frequencies are distinct in at least one
dimension withMr > F . Then dimensions are permuted such

Algorithm 2: Sparse multigrid method for single tone
estimation (STSM)

input : A tensorY ∈ CM1×···×MR , (ην , ηα) ∈ N× N

output: Parameters of the singleR-D mode:a1, . . . , aR

initialization : (kν , kα) = (0, 0)

initialize d
(0)
ν andd(0)

α usingζ

for r = 1 : R do
while halting criterion falsedo

kν = kν + 1

Ω
(kν)
ν = SOMP(Q(d

(kν )
ν , 0),Y(r), Iter = 1)

d
(kν+1)
ν = DICREF(d

(kν )
ν ,Ω

(k)
ν , ην)

end
while halting criterion falsedo

kα = kα + 1

Ω
(kα)
α = SOMP

(
Q

(
d
(kν )
ν (Ω

(kν )
ν ),d

(kα)
α

)
,Y(r)

)

d
(kα+1)
α = DICREF(d

(kα)
α ,Ω

(k)
α , ηα)

end
ar = exp(d

(kα)
α (Ω

(kα)
α ) + 2π d

(kν)
ν (Ω

(kν )
ν ))

end
return a1, . . . , aR

that the dimension with distinct frequencies becomes the first
one (r = 1).

A. From Multiple Tones to Multiple Single-Tone Signals

According to (5),Y can be written as

Y = IR+1,F
R•

r=1
Ar •

R+1
cT (25)

= S •
1
A1 (26)

whereIR+1,F is the diagonal tensor of orderR+ 1 and size
F × F × · · · × F , containing ones on its diagonal, and

S = IR+1,F
R•

r=2
Ar •

R+1
cT (27)

is a complex tensor of orderR and sizeF × M2 × · · ·MR.
Similar expressions are evoked in, among others, [11]. The
new tensorS can also be written as the concatenation ofF
tensors along the first dimension

S = S1 ⊔1 S2 ⊔1 · · · ⊔1 SF (28)

where eachSf , f = 1, . . . , F is a modal(R− 1)-D signal of
size1×M2 × · · · ×MR containing a single(R− 1)-D tone:

Sf = cf af,2 ⊗ af,3 ⊗ · · · ⊗ af,R. (29)

The singular value decomposition (SVD) of̃Y(1) yields

Ỹ(1) = UΣVH (30)

where matricesU and V contain respectively the left and
right singular vectors ofỸ(1), and Σ is a diagonal matrix
containing the singular valuesσi, i = 1, . . . ,min{M1,M

′
1}

sorted in a decreasing order. As the number of components in
Y is equal toF , then an approximation ofY(1), denoted by
Ŷ(1), can be obtained using the firstF principal components
of the SVD:

Ŷ(1) = UFΣFV
H

F (31)

whereUF (resp.VF ) stands for the matrix formed with the
first F columns ofU (resp.V) andΣF = diag(σ1, . . . , σF ).
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It can be established from (8) and (31) thatA1 and UF

span the same subspace, and thus there exists an unknown
nonsingular matrixT that satisfies

A1 = UFT. (32)

Denote byM (resp.M) the matrix obtained fromM by delet-
ing the first (resp. last) row. By harnessing the Vandermonde
structure ofA1, there exists a diagonal matrixD such that
A1 = A1D. Since A1 = UFT and A1 = UFT, then
UFT = UFTD, which proves that matrixT can be estimated
by the eigenvectors ofU†

FUF .
TherebyS can be estimated from the noisy data andÂ1

using equation (26) as follows

Ŝ = Ỹ •
1
Â

†
1, (33)

then Ŝf , f = 1, . . . , F are extracted fromŜ according
to (28). EachYf = cfaf,1 ⊗ · · · ⊗ af,R can be estimated by
Ȳ

(0)
f = Ŝf •

1
âf,1. The sparse multigrid algorithm for single

tone (STSM) can be applied on each̄Y
(0)
f , f = 1, . . . , F to

estimate the parameters of modes. However, we propose in
the following to improve the separated components using an
iterative technique.

B. Improving the Estimation Accuracy

It is clear from (33) that, in the noisy case, the error in
estimatingS (due to the estimation ofA1) will propagate
when estimating the parametersaf,2, . . . , af,R. Hence, we pro-
pose to improve iteratively the mode estimates. The following
procedure is executed to update estimates at each iteration
i = 0, . . . ,K

1) apply STSM to estimateaf,2, . . . , af,R, f = 1, . . . , F

{âf,2, . . . , âf,R} = STSM(Ȳ
(i)
f , ην , ηα, r = 2, . . . , R)

(34)

2) estimatecfaf,1, f = 1, . . . , F by least squares using the
already estimatedaf,2, . . . , af,R, f = 1, . . . , F

ĉfaf,1 = Ȳ
(i)
f(1)

(
(âf,R ⊠ · · ·⊠ âf,2)

T
)†

(35)

3) computeŶ
(i)

f

Ŷ
(i)

f = ĉfaf,1 ⊗ âf,2 ⊗ · · · ⊗ âf,R (36)

where Ȳ
(i)
f = Ŷ

(i−1)

f + R
(i)
f−1, R(i)

(f) = R
(i)
f−1 + Ŷ

(i−1)

f −
Ŷ

(i)

f , f = 1, . . . , F , R
(i)
0

def
= R

(i−1)
F , and R

(0)
F = Ỹ −

∑F

f=1 Ŷ
(0)

f . This iterative scheme will be analyzed in the next
section.

Finally, the algorithm we propose (MTSM: Multiple Tones
Sparse Method) is summarized in Algorithm 3. Note that no
association step ofR-D modes is required. The initialization
step consists in initializing: i)Â1 and Ŝ using (32), (33)
and (28), ii) the estimated single tones̄Y

(0)
f , f = 1, . . . , F .

Note that the columns of̂A1 are iteratively updated without
extracting the related modes, whereas the modes of the other
dimensions are extracted at each iteration using (34). Solely
after the last iteration (i = K), the parameters of the first

Algorithm 3: Sparse multigrid method for multiple tones
estimation (MTSM)

input : A tensorỸ ∈ CM1×···×MR , (ην , ηα) ∈ N× N

output: Parameters of the multipleR-D modes :{af,r}
F,R
f=1,r=1

initialization :
1) ComputeÂ1 and Ŝf , f = 1, . . . , F using (32), (33) and (28)

2) Ȳ
(0)
f

= Ŝf •
1
âf,1, f = 1, . . . , F

For f = 1, . . . , F , computeŶ
(0)
f using (34), (35) and (36)

R
(0)
F

def
= R

(1)
0 = Ỹ −

∑F
f=1 Ŷ

(0)
f

for i = 1 : K do
for f = 1 : F do

Ȳ
(i)
f

= Ŷ
(i−1)
f +R

(i)
f−1

computeŶ
(i)
f using (34), (35) and (36)

R
(i)
f

= Ȳ
(i)
f

− Ŷ
(i)
f , if f = F , thenR(i+1)

0
def
= R

(i)
F

end
end
For f = 1, . . . , F , extractaf,1 using

af,1 = STSM(Ŷ
(K)
f +R

(K)
F

, ην , ηα, r = 1)

return {âf,r}
F,R

f=1,r=1

dimension are extracted using STSM algorithm.K denotes
the maximum number of iterations, which is fixed to 2 in the
simulations since no improvement was observed forK > 2.

C. Analysis of the Algorithm

Following the separation step described in (30)–(33), we
can state that the algorithm yields the expected solution when
the SNR is sufficiently high. We want now to prove that
the second stage (next iterations), in addition to estimating
the parameters from the single tones, is also improving the
estimation accuracy. The general idea is inspired from greedy
forward/backward sparse approximation, where the solution is
refined by adding/removing atoms to/from the set of activated
atoms. The improvement of the estimates is stated by the
following theorem.

Theorem 3:Assuming that the noiseE is sufficiently small
such that the ordering of the singular values inΣ in (30) is
the same as the ordering of the corresponding singular values
whenE = 0. Using the procedure expressed by (34), (35) and
(36) to estimateYf at iterationi = 0, . . . ,K

Ŷ
(i)

f = argmin
X∈H

‖Ȳ(i)
f −X‖ (37)

whereH = {X ∈ CM1×···×MR |X = b1 ⊗b2 ⊗ · · · ⊗bR,
br ∈ P for r 6= 1} with P = {v ∈ CMr |v =
[1, v, . . . , vMr−1]T, v = exp(β + jω), β ∈ R−, ω ∈ [0, 2π)}.
Then, at each iterationi, i = 1, . . . ,K the residual is de-
creased:

∥∥∥Ỹ − Ŷ
(i)
∥∥∥ ≤

∥∥∥Ỹ − Ŷ
(i−1)

∥∥∥ (38)

whereŶ
(i)

=
∑F

f=1 Ŷ
(i)

f .
Proof See Appendix B. �

Figure 3 depicts a comparison between results obtained by the
MTSM algorithm with two different values ofK ∈ {0, 2}. The
results show that MTSM with the improving step yields accu-
rate estimates as compared to MTSM without the improving
step.
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Fig. 3. Frequency total root-mean square error for a 3-D signal containing
3 modes with identical modes in two dimensions and close modes in the
first dimension (Signal #4 in Table III).N(0) = 20, ην = 21, ηβ =
11, (M1,M2,M3) = (10, 10, 10). 100 Monte-Carlo.

D. Identifiability

Based on the assumptions under which Algorithm 3 is
operating, the identifiability condition can be stated asF <
M1 and min{M2, ....,MR} ≥ 2. In [33], the condition is
Mr ≥ 4, r = 1, . . . , R, andF ≤

⌊
M1

2

⌋∏R

r=1

⌈
Mr

2

⌉
.

We note that, whenMr ≥ 4, r = 1, . . . , R, the number
of identifiable modes is slightly smaller than in [33], but the
proposed algorithm is able to outperform the conventional
methods in terms of computational complexity and accuracy.
In addition, another advantage of the proposed algorithm is
clear when the number of samples in one or more dimensions
is less than 4 (i.e.Mr < 4), where identifiability in [33] is not
satisfied. This latter case (i.e.∃r,Mr < 4) can be encountered
in signal processing applications when the size of one or more
diversities (dimensions in our formulation problem) is less
than 4.

VI. CRAMÉR-RAO LOWER BOUNDS FORR-D CISOIDS IN

NOISE

In this section, we derive the expressions of the CRLB for
the parameters ofR-D damped exponentials in Gaussian white
noise. We then give the CRLB in the cases of single damped
and undampedR-D cisoids. We consider theR-D sinusoidal
model given in (3). Let

θ = [ω1,1 . . . ω1,R ω2,1 . . . ωF,R α1,1 . . . α1,R

α2,1 . . . αF,R λ1 . . . λF φ1 . . . φF ]
T

be the unknown parameter vector. The aim here is to derive
the CRLB of the parameters inθ.

The joint probability density function (pdf) of̃y is

p(ỹ; θ) =
1

(σ2π)M
exp

{
− 1

σ2
(ỹ − µ(θ))H(ỹ − µ(θ))

}

(39)
whereµ(θ) is the noise-free part ofy and

ỹ =[ỹ(1, . . . , 1, 1), . . . , ỹ(1, . . . , 1,MR),

ỹ(1, . . . , 2, 1), . . . , ỹ(1, . . . , 2,MR),

. . . , ỹ(M1, . . . ,MR)]
T. (40)

The ith entry ofµ(θ) can be written as:

µ(θ)i =

F∑

f=1

cf

R∏

r=1

a
ti,r
f,r , (41)

for i = 1, . . . ,M , where

ti,r =

⌊
i− 1

∏R

ℓ=r+1 Mℓ

⌋
mod Mr, (42)

and ⌊·⌋ is the floor function. In the following, we derive the
expressions of the CRLB in the general case (F > 1) and then
we deduce the result corresponding to a singleR-D modal
signal (F = 1).

A. Derivation of the CRLB

Given the joint pdf in (39), the(k, l) entry of the Fisher
information matrix is [34], [35]:

[F(θ)]kl =
2

σ2
Re

{[
∂µ(θ)

∂θk

]H
∂µ(θ)

∂θl

}
. (43)

We now express the derivatives∂µ(θ)i/∂θk for i = 1, . . . ,M
andk = 1, . . . , 2RF + 2F .

• For k = 1, . . . , RF , we have

∂µ(θ)i
∂θk

= jti,r(k)cf(k)

R∏

r=1

a
ti,r
f(k),r (44)

with r(k) = [(k − 1) mod R] + 1 and f(k) = ⌊(k −
1)/R⌋+ 1.

• For k = RF + 1, . . . , 2RF :

∂µ(θ)i
∂θk

= ti,r(k)cf(k)

R∏

r=1

a
ti,r
f(k),r (45)

with r(k) = [(k − RF − 1) mod R] + 1 and f(k) =
⌊(k −RF − 1)/R⌋+ 1.

• For k = 2RF + 1, . . . , 2RF + F :

∂µ(θ)i
∂θk

= ejφf(k)

R∏

r=1

a
ti,r
f(k),r (46)

wheref(k) = k − 2RF .
• For k = 2RF + F + 1, . . . , 2RF + 2F :

∂µ(θ)i
∂θk

= jcf(k)

R∏

r=1

a
ti,r
f(k),r (47)

wheref(k) = k − 2RF − F .
Hence, theM × (2RF + 2F ) matrix ∂µ(θ)/∂θ expresses as

∂µ(θ)

∂θ
= [jZ′Φ Z′Φ Zφ jZφ]︸ ︷︷ ︸

V

· blkdiag(Λ,Λ, IF ,λ)︸ ︷︷ ︸
S

(48)

where

Z′ = [Z′
1, . . . ,Z

′
F ] ∈ C

M×RF ,with Z′
f (i, l) = ti,l

R∏

r=1

a
ti,r
f,r ,

(49)

Λ = blkdiag(λ1IR, . . . , λF IR) ∈ R
RF×RF , (50)

Φ = blkdiag(ejφ1IR, . . . , e
jφF IR) ∈ C

RF×RF , (51)

Z = [z1, . . . , zF ] ∈ C
M×F ,with zf (i) =

R∏

r=1

a
ti,r
f,r , (52)

λ = diag([λ1, . . . , λF ]) ∈ R
F×F , (53)

φ = diag([ejφ1 , . . . , ejφF ]) ∈ C
F×F . (54)
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Finally, the inverse of the Fisher information matrix is

F−1(θ) =
σ2

2
S−1

[
Re{VHV}

]−1
S−1 =

σ2

2
S−1WS−1

(55)
where Re{·} stands for the real part. The CRLB ofθk is given
by [F−1(θ)]kk. More explicitly, for f = 1, . . . , F and r =
1, . . . , R:

CRLB(ωf,r) =
2σ2WR(f−1)+r,R(f−1)+r

λ2
f

(56)

CRLB(αf,r) =
2σ2WRF+R(f−1)+r,RF+R(f−1)+r

λ2
f

(57)

CRLB(λf ) = 2σ2W2RF+f,2RF+f (58)

CRLB(φf ) =
2σ2W2RF+F+f,2RF+F+f

λ2
f

(59)

Theorem 4:For the generalR-D exponential process, the
CRLB’s for f = 1, . . . , F andr = 1, . . . , R satisfy

CRLB(ωf,r) = CRLB(αf,r) (60)

CRLB(λf ) = λ2CRLB(φf ) (61)

Proof It is based on the special block structure of matrix
Re{VHV} (see for instance [34]).

B. Single Mode Case

In this section, the CRLB’s will be simplified in the case
of a single R-D modal signal (F = 1) to obtain more
precise details on their parameter dependency. For the sake
of simplicity, the subscripts denoting the modef = 1 will
be omitted. First, assume that|ar| = exp(αr) < 1. We
shall express the productsZ′HZ′, ZHZ andZ′HZ. After some
calculations, we get:

[Z′HZ′]nk =

R∏

r=1
r 6=n,k

(
1− |ar|2Mr

1− |ar|2
)

×






Mn−1∑

m=0

m|an|2m
Mk−1∑

m=0

m|ak|2m, if n 6= k

Mn−1∑

m=0

m2|an|2m, if n = k

(62)

ZHZ =

R∏

r=1

(
1− |ar|2Mr

1− |ar|2
)

(63)

[Z′HZ]n =

R∏

r=1
r 6=n

(
1− |ar|2Mr

1− |ar|2
)
×

Mn−1∑

m=0

m|an|2m. (64)

Denoting M (α) =
∏R

r=1(1 − |ar|2Mr )/(1 − |ar|2),
q1(n) =

∑Mn−1
m=0 m|an|2m/

∑Mn−1
m=0 |an|2m and q2(n) =∑Mn−1

m=0 m2|an|2m/
∑Mn−1

m=0 |an|2m, we then obtain:

[P]nk = M (α) ×
{
q1(n)q1(k), if n 6= k

q2(n), if n = k
(65)

G = M (α) (66)

[Q]n = M (α)q1(n), (67)

and

Re{VHV} =




P 0 0 Q

0 P Q 0
0 QT G 0
QT 0 0 G


 . (68)

The inversion ofRe{VHV} yields the following expressions
of the CRLB’s:

CRLB(ωr) = CRLB(αr) =
σ2

2λ2M (α)

× (1− |ar|2)2(1 − |ar|2Mr )2

[−M2
r |ar|2Mr (1− |ar|2)2 + |ar|2(1− |ar|2Mr )2]

,

(69)

CRLB(λ)

λ2
= CRLB(φ) =

σ2

2λ2M (α)

×
(
1 +

R∑

r=1

q21(r)

q2(r)− q21(r)

)
. (70)

Finally, for a singleR-D purely harmonic signal (αr = 0, ∀r),
we haveM (α) =

∏R

r=1Mr = M and taking the limit of the
CRLB’s whenαr → 0 leads to:

lim
αr→0

CRLB(ωr) =
6σ2

λ2M(M2
r − 1)

(71)

lim
αr→0

CRLB(λ)

λ2
=

σ2

2λ2M

(
1 + 3

R∑

r=1

Mr − 1

Mr + 1

)
. (72)

Hence, for the undamped case, our result in (71) is consistent
with [11].

VII. S IMULATION RESULTS

Numerical simulations have been carried out to assess
the performances of the proposed method for 2-D and 3-
D modal signals in the presence of white Gaussian noise.
The performances are measured by the total root-mean square
error (RMSE) on estimated parameters and the computa-
tional time. The total RMSE is defined asRMSEtotal =√

1
RF

Ep

{∑R

r=1

∑F

f=1(ξf,r − ξ̂f,r)2
}

where ξ̂f,r is an esti-

mate ofξf,r, andEp is the average onp Monte-Carlo trials. In
our simulations,ξf,r can be either a frequency or a damping
factor.

A. RMSE for 2-D and 3-D Signals

Experiment 1:to show the interest of the multigrid scheme,
this experiment presents the results obtained on Signal #1 with
different multigrid levels and different initial grids. Signal #1
is a single tone 2-D modal signal of size10 × 10 whose
parameters are presented in Table I. The number of multigrid
levels is fixed toL = 2, i.e., ℓ = 0, 1, 2. Then the results are
presented as a function of the number of atoms in the initial
dictionariesN(0) and the number of atomsην or ηα added
at each levelℓ. The results we obtain for the first step, i.e.,
for the harmonic estimation, are presented in Figure 4. We
can observe that the frequency RMSE obtained with theR-D
sparse algorithm can reach the CRLB using a uniform initial
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TABLE I
2-D PARAMETERS OFSIGNAL #1

f νf,1 αf,1 νf,2 αf,2 cf

1 0.22 −0.011 0.34 −0.015 1

harmonic dictionary of 10 atoms andην = 31 (Figure 4.a).
Figure 4.b shows that the frequency RMSE is improved at low
SNR if the initial dictionary contains 20 atoms, and reachesthe
optimal estimates withην = 21. Figure 5 shows the damping
factor RMSE obtained byR-D sparse algorithm using different
settings of the initial damping factor dictionary andηα. We
can observe that the damping factor RMSE depends on the
number of atoms in the dictionary, the more atoms the better.
At low SNR, the RMSE also dependsβmin. Therefore, it is
better to chooseβmin with small absolute value if we have
a prior knowledge of the interval of damping factors in the
signal. In general, the estimation error is of order1

N(0)η2 . For
instance, in the frequency step estimation, we recommend to
choseN(0) to be greater than or equal to32Mr if we want
a good accuracy at lower SNR levels. Otherwise, we can set
N(0) = Mr. OnceN(0) is set,η can be chosen with respect
to the desired accuracy. Letε be the desired estimation error,
thenε = 1

N(0)η2 and we can setη = 1√
εN(0)

.

In the rest of this section, the proposed algorithms are com-
pared with 2-D ESPRIT [6], Tensor-ESPRIT [10], PUMA [12]
and TPUMA [11]. If theR-D signal contains one tone then
Algorithm 2 (STSM) is used, otherwise Algorithm 3 (MTSM)
is used. Thus, to facilitate notation, both proposed algorithms,
Algorithm 2 and Algorithm 3, will be calledR-D sparse.
For the proposed method, the initial grid used to build the
harmonic dictionary is the same for all dimensions; it contains
50 frequency points uniformly distributed over the interval
[0, 1) and 10 damping factorsβ ∈ [−0.05, 0]. To simulate a
random dictionary, at each run, the frequency grid is perturbed
by a small random quantity. As a consequence of experiment 1,
we use the following settings(L, ηµ, ηβ) = (2, 21, 11). The
number of iterations in Algorithm 3 is set toK = 2 because
no improvement was observed forK > 2.

Since the proposed method is applied directly on data
without using spatial smoothing, i.e., it does not require the
construction of a large matrix or an augmented order tensor,
then a relevant comparison will be with algorithms that do
not use spatial smoothing. Thereby, in the next experiments,
the proposed algorithm is compared to PUMA [12] and
TPUMA [11], which are algorithms that do not require spatial
smoothing. We also report comparisons with 2-D ESPRIT [6]
and Tensor-ESPRIT [10], which need spatial smoothing.

1) Single toneR-D modal signal:
Experiment 2:This experiment tends to show the efficiency

of the proposed algorithm in estimating parameters of single
tone R-D modal signals. We simulate a 2-D signal of size
10×10 (Signal #1) whose parameters are presented in Table I.
OurR-D sparse algorithm is compared to 2-D ESPRIT [6] and
PUMA [12]. For each level of noise, 1000 Monte-Carlo trials
are performed. Figure 6 shows the obtained results. We can
observe that: i) the proposed algorithm and PUMA reach the

−10 −5 0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

SNR (dB)

T
ot

al
 R

M
S

E
 (

H
z)

 

 

PSfrag replacements

N(0) = 10, ην = 5

N(0) = 10, ην = 11

N(0) = 10, ην = 31

N(0) = 20, ην = 5

N(0) = 20, ην = 11

N(0) = 20, ην = 21

CRLB

(a) N(0) = 10

−10 −5 0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

SNR (dB)

T
ot

al
 R

M
S

E
 (

H
z)

 

 

PSfrag replacements

N(0) = 10, ην = 5

N(0) = 10, ην = 11

N(0) = 10, ην = 31

N(0) = 20, ην = 5

N(0) = 20, ην = 11

N(0) = 20, ην = 21

CRLB

(b) N(0) = 20
Fig. 4. Frequency RMSE usingR-D sparse algorithm with differentην . 2-
D signal containing a single tone (Signal #1).(M1,M2) = (10, 10). 1000
Monte-Carlo trials. (a) The initial harmonic dictionary containsN(0) = 10
atoms, (b)N(0) = 20 atoms.

TABLE II
DIFFERENT CONFIGURATIONS FOR EXPERIMENTS3 THROUGH 5

F Dimension 1 Dimension 2 Dimension 3

Exp. 3 2 ∆ν > ∆Fr ∆ν > ∆Fr ∆ν > ∆Fr

Exp. 4 3 ∆ν ≥ ∆Fr ∃ identical modes ∃ identical modes
Exp. 5 3 ∆ν < ∆Fr ∃ identical modes ∃ identical modes

CRLB and outperform 2-D ESPRIT, ii)R-D sparse outperform
PUMA in SNR less than 3 dB.

2) Multiple tones R-D modal signals:Several configu-
rations are studied in the case of multiple tones to com-
pare the proposed algorithm with Tensor-ESPRIT [10] and
TPUMA [11]. These configurations (Experiments 3, 4, 5)
are summarized in Table II, in which the number of modes
and the distance between frequencies in different dimensions
are varied.∆Fr denotes the Rayleigh frequency resolution
limit, which has the same value in all dimensions because
M1 = M2 = M3. In Experiment 6 we examine the case
when the size of only one dimension is larger than 4, i.e., the
identifiability condition of [33] is not satisfied. The parameters
of the used signals are given in Table III.

Experiment 3:In this experiment, we simulate a 3-D signal
(Signal #2) of size8×8×8 and containing two modes whose
frequencies in each dimension are well separated. Parameters
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Fig. 5. Damping factor RMSE usingR-D sparse algorithm with differentηα,
βmin andN(0). 2-D signal containing a single tone (Signal #1).(M1,M2) =
(10, 10). 1000 Monte-Carlo trials.
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Fig. 6. Frequency total root-mean square error for a 2-D signal containing a
single tone (Signal #1).(M1,M2) = (10, 10). 1000 Monte-Carlo trials.

of the signal are given in Table III. Figure 7 shows the obtained
results. Here, the proposed method performs as TPUMA.
Tensor-ESPRIT yields slightly worse RMSE.

Experiment 4:3-D signal of size10 × 10 × 10 containing
three 3-D modes (Signal #3). Note that there exists identical
modes in two dimensions and frequencies in the first dimen-
sion are separated by1/M1. Figure 8 shows the results. In
this configuration, TPUMA and Tensor-ESPRIT give similar
results and the proposed method performs better for all SNR
levels.

Experiment 5:3-D signal of size10 × 10 × 10 containing
three 3-D modes (Signal #4). Note that there exists iden-
tical modes in two dimensions and frequencies in the first
dimension are separated by less than1/M1. The results are
shown on Figure 9. Here again the proposedR-D sparse
approach performs better than TPUMA and Tensor-ESPRIT.
Observe also that Tensor-ESPRIT outperforms TPUMA in
this configuration (close frequencies and identical modes in
dimensions 2-3).

Experiment 6:Results on Signal #5 of size10 × 3 × 3
containing 4 modes are given in Figure 10. We observe that
the proposed method outperforms TPUMA algorithm mainly
in low SNR levels.

TABLE III
3-D PARAMETERS OFSIGNAL #2 THROUGH #5

Signal νf,1 αf,1 νf,2 αf,2 νf,3 αf,3 cf

#2 0.40 −0.01 0.1 −0.01 0.1 −0.01 1
0.20 −0.01 0.3 −0.15 0.25 −0.01 1

#3 0.30 −0.01 0.31 −0.01 0.22 −0.01 1
0.10 −0.01 0.45 −0.015 0.11 −0.01 1
0.20 −0.01 0.31 −0.01 0.11 −0.01 1

#4 0.28 −0.01 0.31 −0.01 0.22 −0.01 1
0.12 −0.01 0.45 −0.015 0.11 −0.01 1
0.20 −0.01 0.31 −0.01 0.11 −0.01 1

#5 0.30 −0.01 0.1 −0.01 0.1 −0.01 1
0.13 −0.01 0.45 −0.015 0.4 −0.01 1
0.20 −0.01 0.31 −0.01 0.1 −0.01 1
0.42 −0.012 0.22 −0.01 0.32 −0.01 1

B. Numerical Complexity

It is known that in the case of 1-D signals of sizeM ,
OMP costsO(NFM) in terms of multiplications [36];F
is the sparsity (number of components) andN is the num-
ber of atoms in the dictionary. For aM -measurementsR-
D signal, the complexity of the STSM algorithm over a
set of L multigrid levels isO(MNLR), assuming that the
number of dictionary atoms is maintained constant (equal
to N ) over all levels. Regarding the approach proposed in
Algorithm 3, the main operations are the call of STSM and the
update ofĉfaf,1 = Ȳ

(i)
f(1)

(
(âf,R ⊠ · · ·⊠ âf,2)

T
)†

which has a

complexity ofO(M) since
(
(âf,R ⊠ · · ·⊠ âf,2)

T
)†

is a row of

length
∏R

r=2Mr andȲ(i)
f(1)

is a matrix of sizeM1×
∏R

r=2 Mr.
Therefore, the whole complexity of the proposed algorithm is
O((NL(F (R − 1)K + 1) + FK)M), which is linear in the
number of measurementsM . The complexity of the Tensor-
ESPRIT algorithm with spatial smoothing is mainly related to
that of the SVD which is at leastO(ktF (R + 1)PM) where
kt is a constant depending on the implementation of the SVD
algorithm. HereP =

∏R

r=1 Pr where {Pr}Rr=1 are design
parameters used to get smoothed measurements (see [10]).
The accuracy of the estimates provided by ESPRIT depends on
these parameters. Since the optimal value forPr is a fraction of
Mr (e.g.[37]–[39]), the complexity of the SVD step is, in fact,
O(M2). The complexities of PUMA and TPUMA algorithms
areO(M3) andO(ktM(R+F−1))+

∑R
r=1 O(K(F+1)M3

r ),
respectively. Compared to PUMA and TPUMA, the proposed
algorithm has an attractive computational complexity for large
size signals. Figure 11 shows the CPU time results of the
proposed, Tensor-ESPRIT and TPUMA algorithms versus
M1 for a 3-D damped signal containing two modes with
M2 = M3 = 4. We observe that the proposed method has low
computational complexity compared to TPUMA and Tensor-
ESPRIT whenM1 is large.

VIII. C ONCLUSION

We presented an efficient sparse estimation approach for
the analysis of multidimensional (R-D) damped or undamped
modal signals. The idea consists in exploiting the simultaneous
sparse approximation principle to separate this joint estimation
problem intoR multiple measurements problems. To be able
to handle large size signals and yield accurate estimates, a
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Fig. 7. Frequency total root-mean square error for a 3-D signal containing
two 3-D modes (Signal #2).(M1,M2,M3) = (8, 8, 8). 1000 Monte-Carlo.
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Fig. 8. Frequency total root-mean square error for a 3-D signal containing 3
modes with identical modes in two dimensions (Signal #3).(M1,M2,M3) =
(10, 10, 10). 200 Monte-Carlo.

multigrid dictionary refinement scheme is associated with the
simultaneous orthogonal matching pursuit (SOMP) algorithm.
We gave the convergence proof of the the refinement procedure
in the single tone case. Then, for the general multiple tones
R-D case, the signal tensor model is decomposed in order
to handle each tone separately in an iterative scheme so that
the pairing of theR-D parameters is automatically achieved.
Also, the CRLB of theR-D modal signal parameters were
derived. The tests performed on simulated signals showed that
the proposed algorithm attains the CRLB and outperforms
state-of-the-art subspace algorithms. We also have shown that
the complexity of the algorithm is linear with respect to the
number of measurements, which allows the processing of large
size signals. Finally, it is worth mentioning that this approach
can be straightforwardly applied to other multidimensional
array processing problems.

APPENDIX A
SOMP ALGORITHM

In this appendix we report the SOMP method (Algo-
rithm 4) [23]. In this description,jm2 denotes them2

th vector
of the canonical basis inCM2 .
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Fig. 9. Frequency total root-mean square error for a 3-D signal containing 3
modes with identical modes in two dimensions (Signal #4), same as Signal
#4 with close modes in the first dimension (0.28,0.12,0.2).(M1,M2,M3) =
(10, 10, 10). 200 Monte-Carlo.
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Fig. 10. Frequency total root-mean square error for a 3-D signal containing
4 modes with(M1,M2,M3) = (10, 3, 3) (Signal #5). 200 Monte-Carlo.

Algorithm 4: SOMP
input : A matrix Y ∈ CM1×M2 , a matrixQ ∈ CM1×N (with

normalized columns)
output: An index setΩ of activated atoms. A matrix of sparse vectors

X ∈ CN×M2

initialization : k = 0,Ω0 = ∅,X = 0, R0 = Y
while halting criterion falsedo

k = k + 1

nk ∈ arg maxn
∑M2

m2=1 |〈Rk−1jm2 ,qn〉|
Ωk = Ωk−1 ∪ {nk}
Xk = (QH

Ωk
QΩk

)−1QH
Ωk

Y

Rk = Y −QΩk
Xk

end
return Ω = Ωk,X = Xk

APPENDIX B
PROOF OFTHEOREM 3

We begin the proof by introducing the following lemma.
Lemma 1:ConsiderỸ = Y+∆Y , whereỸ is the perturbed

version of the data tensorY and ∆Y is the perturbation.
Assuming that∆Y is sufficiently small such that the ordering
of the F singular values inΣ in (30) is the same as the
ordering of the corresponding singular values when∆Y = 0.
Then the perturbation∆Yf contains a linear combination of
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Fig. 11. Average CPU time for a single run underM2 = M3 = 4 and
F = 2.

all Yf , f = 1, . . . , F :

∆Yf = Df +

F∑

i=1

vf,iY i

where vT

f = [vf,1, . . . , vf,F ] = ∆A
†
1(f, :)A1 and Df =

∆Y •
1
af,1A

†
1(f, :) +Ys,f •

1
∆af,1.

Proof From (33)S = Y •
1
A

†
1, we differentiate and obtain

∆S = ∆Y •
1
A

†
1 +Y •

1
∆A

†
1

Then,

∆Sf = ∆Y •
1
A

†
1(f, :) + S •

1
∆A

†
1(f, :)A1︸ ︷︷ ︸
vT

= ∆Y •
1
A

†
1(f, :) + S •

1
vT

= ∆Y •
1
A

†
1(f, :) +

F∑

p=1

vf,pSp

Yf is estimated usingYf = Sf •
1
af,1, we differentiate and

obtain

∆Yf = ∆Sf •
1
af,1 + Sf •

1
∆af,1

=

F∑

p=1

vf,pYp + Sf •
1
∆af,1 +∆Y •

1
af,1A

†
1(f, :)

�

Using the previous lemma

Ȳ
(0)
f = Sf •

1
(af,1 + vf,faf,1 +∆af )+

F∑

p=1,p6=f

vf,pYp +∆Y •
1
af,1A

†
1(f, :)

Therefore,af,2, . . . , af,R, f = 1, . . . , F can be estimated
using STSM algorithm since

Ȳ
(0)
f(r)

= cfaf,r(af,R ⊠ · · ·⊠ af,r+1 ⊠ af,r−1⊠

· · ·⊠ (af,1 + vf,faf,1 +∆af,1))

+




F∑

p=1,p6=f

vf,pYp +∆Y •
1
af,1A

†
1(f, :)





(r)

.

SinceȲ(0)
f(1)

has the following form

Ȳ
(0)
f(1)

= cf (af,1 + vf,faf,1 +∆af,1)(af,R ⊠ · · ·⊠ af,2)

+




F∑

p=1,p6=f

vf,pYp +∆Y •
1
af,1A

†
1(f, :)




(1)

,

we estimatecfaf,1 by least squares onceaf,2, . . . , af,R are
estimated using STSM

ĉfaf,1 = min
a

‖Ȳ(0)
f − a⊗ âf,2 ⊗ · · ·⊗ âf,R‖

= Ȳ
(0)
f(1)

(
(âf,R ⊠ · · ·⊠ âf,2)

T
)†

So, we putŶ
(0)

f = ĉfaf,1 ⊗ âf,2 ⊗ · · · ⊗ âf,R and Rf =

Ȳ
(0)
f − Ŷ

(0)

f . Therefore, the procedure to estimateYf at
iteration i = 0, . . . ,K can be summarized in (34), (35) and
(36). Note that this procedure is optimal because STSM and
the least squares are optimal when they are used to estimate
af,2, . . . , af,R, f = 1, . . . , F and cfaf,1, f = 1, . . . , F ,
respectively.

Now we present the technique for improving the estimation

of Yf . Let R(0)
F = R

(1)
0 = Ỹ −

∑F
f=1 Ŷ

(0)

f and

Ŷ
(1)

f = argmin
X∈H

‖Ŷ(0)

f +R
(1)
f−1 −X‖ (73)

whereR(1)
f = Ŷ

(0)

f +R
(1)
f−1 − Ŷ

(1)

f , f = 1, . . . , F , andŶ
(i)

f

is an improved estimate ofYf . We follow the same procedure

as described in equations (34), (35) and (36) to calculateŶ
(1)

f .
We can state that there is improvement in the estimation of

Yf if
∥∥∥∥∥∥
Ỹ −

F∑

f=1

Ŷ
(1)

f

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
Ỹ −

F∑

f=1

Ŷ
(0)

f

∥∥∥∥∥∥
(74)

We have‖R(1)
0 ‖ = ‖Ȳ(0)

1 − Ŷ
(0)

1 +
∑F

f=2 Rf + V‖ where

V = Ỹ − Ȳ and Ȳ =
∑F

f=1 Ȳ
(0)
f . It can be verified that

‖R
(1)
f ‖ =

∥

∥

∥

∥

∥

∥



Ȳ
(0)
f +

f−1
∑

p=1

(Ȳ
(0)
p − Ŷ

(1)

p ) +
F
∑

p=f+1

Rp + V



− Ŷ
(1)

f

∥

∥

∥

∥

∥

∥

‖R
(1)
f−1‖ =

∥

∥

∥

∥

∥

∥



Ȳ
(0)
f +

f−1
∑

p=1

(Ȳ
(0)
p − Ŷ

(1)

p ) +
F
∑

p=f+1

Rp +V



− Ŷ
(0)

f

∥

∥

∥

∥

∥

∥

However, from equation (73),̂Y
(1)

f is the minimizer with
respect toX ∈ H of

∥∥∥∥∥∥



Ȳ
(0)
f +

f−1∑

p=1

(Ȳ
(0)
p − Ŷ

(1)

p ) +

F∑

p=f+1

Rp



 −X

∥∥∥∥∥∥
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Therefore, ‖R(1)
f ‖ ≤ ‖R(1)

f−1‖, f = 1, . . . , F . As con-

sequence,‖R(1)
F ‖ ≤ ‖R(0)

F ‖, which we are seeking in
expression (74). Similarly, we can prove that‖R(i)

F ‖ ≤
‖R(i−1)

F ‖, i > 1, using the general forms ofR(i)
f andR(i)

f−1

R
(i)
f =



Ȳ
(0)
f +

f−1
∑

p=1

(Ȳ
(0)
p − Ŷ

(i)

p ) +

f−1
∑

p=f+1

(Ȳ
(0)
p − Ŷ

(i−1)

p ) + V





− Ŷ
(i)

f (75)

R
(i)
f−1 =



Ȳ
(0)
f +

f−1
∑

p=1

(Ȳ
(0)
p − Ŷ

(i)

p ) +

f−1
∑

p=f+1

(Ȳ
(0)
p − Ŷ

(i−1)

p ) + V





− Ŷ
(i−1)

f (76)

which we are seeking in (38).
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