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Abstract—In this paper, a sparse-based method for the es- damping factors) because they are nonlinear functionsef th
timation of the parameters of multidimensional (R-D) modal data.
(harmonic or damped) complex signals in noise is presentedhe In order to achieve high resolution estimates, parametric

problem is formulated as R simultaneous sparse approximations .
of multiple 1-D signals. To get a method able to handle large approaches are often preferred to nonparamatric onestgbeve

size signals while maintaining a sufficient resolution, a mitigrid ~ Parametric R-D methods { > 2) have been proposed.
dictionary refinement technique is associated with the simita- They include linear prediction-based methods such as 2-

neous sparse approximation problem. The refinement procede D TLS-Prony [4], and subspace approaches such as matrix
is proved to converge in the singleR-D mode case. Then, for enhancement and matrix pencil (MEMP) [5], 2-D ESPRIT [6],

the general multiple modes R-D case, the signal tensor model - . . . .
is dgcomposed irl? order to handle each modge separately in an multidimensional folding (MDF) [7], improved multidimen-

iterative scheme. The proposed method does not require an Sional folding (IMDF) [8], [9], Tensor-ESPRIT [10], pringal-
association step since the estimated modes are automatigal singular-vector utilization for modal analysis (PUMA) [11
“paired”. We also derive the Cramér-Rao lower bounds of the [12] and the methods proposed in [13], [14]. All these method
parameters of modal i-D signals. The expressions are given in harform at various degrees but it is generally admitted that
compact form in the single R-D mode case. Finally, numerical . . - .
simulations are conducted to demonstrate the effectivensf the they yield accurate_ estimates at high SNR S:celnarlos.and/or
proposed method. when the frequencies are well separated. This is obtained at
Index Terms—Multidimensional modal retrieval, frequency the expense of computational effort. For instance, MDF’ D
estimation, simultaneous sparse approximation, multigrd dictio- 2-D _ESPRIT _and MEMP are ES_PRIT—type techniques. They
nary refinement, Cramér-Rao lower bound, harmonic retrieval fequire to build large size matrices and apply the ESPRIT-
based method, which make their computational complexity
very high particularly in the case of large-D signals. The
Tensor-ESPRIT algorithm uses the structure inherent in the
[. INTRODUCTION R-D data at the expense of a high computational complexity.
ecently, TPUMA [11] was proposed as an accurate and
mputationally efficient multidimensional harmonic reval
ethod, which attains the Cramér-Rao lower bound (CRLB)
d does not require to build large size matrix or tensor.
ever its performance degrades rapidly with the increase
the number of components present in tReD signal.

T HE problem of estimating the parameters of sinusoidg
signals from noisy measurements is an important topic i
signal processing and several parametric and nonpardamet
approaches have been developed for one-dimensional (1;
signals [1]. Recently, this problem has received a renews

interest thanks to the emergence of multidimensio#&aDy) Recently, methods based on sparse approximations have

.apphca_tlons.. Indeed, parame:ter_eshman(_)n fréD S|gn_als been proposed to address the harmonic or modal retrieviad pro
is required in numerous applications in signal processimt) a m [15]-[22]. For time-data spectral estimation, theidicary
communications such as nuclear magnetic resonance ('\ME ’

) . ) )formed from a set of (normalized) complex exponentials
spectroscopy, W|r_eles§ communication channel _estlm@])n potentially embedded in the data, which allows one to easily
and MIMO radar imaging [3]. '”_5!” these f_;\ppllc_anons, Slgnainclude some prior knowledge about the position of certain
are assumed to be a superposition?sD sinusoids or, more known modes. More generally, the usual choice is a uniform

generally, of exponentially decayin§-D complex exponen- : . : .
tials (modal signals). As for the 1-D case, the crucial SEpJ:sjpectraI grid obtained by sampling the frequency and dagnpin

th imat f the?-D mod including f . actor lines. Clearly, a fine grid will lead to a good resabuti
€ estimation o -D modes (including frequencies an ut, on the other hand, it will result in a huge dictionary][15

_ _ _ This complexity is further increased in the case®D signals
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is efficient but has mainly two drawbacks: 1) it does not hasection IV, we give sufficient conditions for convergencéhef
convergence guarantees, 2) the dictionary becomes ialact multigrid dictionary refinement scheme in the case of single
for large signals whem® > 2. tone R-D signals. In light of these new results, we propose

The goal of the present paper is to propose a fast muliti- section V a new efficient algorithm for multiple tonés
dimensional modal estimation technique able to handleslar§ modal signals. In section VI, we derive the expressions of

signals and yielding a good estimation accuracy. the CRLB’s for the parameters g®-D damped exponentials

. in Gaussian white noise. We then give the CRLB in the
1) First, the proposed approach, as for some parametric . .
methods for modal retrieval, is based on the idea of eslia>o> of single damped and undamped cisoids. The

mating the parameters independently along each dimens?ofﬁecwenesS of the proposed method is demonstrated using

r=1,.... R Itwill be shown that theimultaneousparse zlmulat}on SI?naI\S/HIF section VII. Finally, conclusionsear
approximation concept [20], [23] is well-suited fdt-D rawn in section '
modal retrieval R > 2).
2) The second contribution consists in the proposition of a Il. NOTATION AND PROBLEM STATEMENT
new multigrid scheme which amounts to consider a twagk. Notation

step refinement of 1-D grids, the first step for frequencies |, this paper, scalars are denoted as lower-case letters
and the second one for damping factors. One advantag g’f@ «), column vectors as lower-case bold-face letters),

the two-step multigrid is that it reduces the computationglatrices as bold-face capitals\, B), and tensors as calli-
time. Th_e convergence issue qf the proposed mUItigréﬂaphic bold-face letterA, B). Let ()T, ()" and(-)! denote
strategy is analyzed firstly for single torié” = 1) case, he transpose, the Hermitian transpose and the pseudisénve
and convergence condmons. are derived. Condlt_pn f?éspectively. The symbols” and “X” will denote the Khatri-
convergence are expressed in terms of atom positionsg, product (column-wise Kronecker) and the Kronecker
the initial dictionaries. _ product, respectively. Both words “mode” and “tone” aredise
3) The extension of this result to the multiple tones casg refer to a component of the multidimensional signal. The
(£ > 1) is not trivial because, not only it depends 0Rgngor gperations used here are consistent with [26];
the selected sparse approximation algorithm, but also O the outer product of two tensod € CMix=xMz ang
the coherence of the dictionary [23]. Indeed, due to the Kixo X KN e i by-
refinement strategy, the resulting dictionary is far from BeC IS given By
being uncorrelated which may prevent convergence even C=A®Bec CMxXxMrpxKix-xKn
in the noiseless case. Consequently, for the multiple tones
case, we exploit an alternative representation of the data
model enabling the extraction of thB-D signal tones a(mi,...,mp)b(kr, ... k) @)
separately. Therefore, the third contribution of this pape, the contraction product acting on thth index of a tensor
consists in deriving a new algorithm for estimating param- 4 ¢ ¢M:xxMr gnd the2nd index of a matrixU <
eters of R-D damped signals in which the results of the ¢xxM, g
previous contribution apply. The effectiveness of the new
algorithm for multiple R-D tones is also analyzed. One
very interesting by-product of this approach is that the B, M2y« s Mrty Firy M1 - -y TR) =
pairing of R-D parameters is achieved for free, without Y M’ Y Y
any further association stage. 2 a(mi,ms,

c(ml,...7mR,k1,...7kN):

_ My XX Myp_1 XK XM, XX M
B—A:UEC 1 r—1 r+1 R’

oome)u(k.,my)  (2)
To assess the performances of an estimation method, the mp=1

usual way consists in comparing the variance of the estenate

to the CRLB. In [5] Y. Hua derived the CRLB for 2-D *

frequencies, i.e., undamped 2-D exponentials; no damped

signals are considered. Closed-form expressions of theBCRL

for the general undampe®-D case are derived in [24]. CRLB

for 2-D damped signals are derived in [25]. Therefore, to the

best of our knowledge, no compact expressions of the CRLB’s ZW»---MR la(my, ...

are available for the generd®-D modal (damped) signal.

Thus, another contribution of this paper is the derivatibn @. Problem Formulation

the CRLB's for the frequency, damping factor, amplitude and An R-D modal signal is modeled as the superpositiorFof

phase of tha.'%-D modal IS|gnaI. ] ] multidimensional damped complex sinusoids:
The remainder of this paper is organized as follows. In

the matrix A, € CM~x(Mi--Mr—1Mria--Mr) represents
the unfolding (dimensiom-matricization) of the tensad
and corresponds to the arrangement of the dimension-
fibers of A to be the columns of the resulting matrix.
||Al|* denotes the the Frobenius norm for tens@rdi|?> =
’mR)|2'

section Il, we introduce notation and present fid modal  _ a LA

retrieval problem. In section IlI, we formulate tieD modal g(ma,...,mg) = Z s H ag; +e(my,...,mgr) ()
estimation problem a®& simultaneous sparse estimation prob- f=1 =t

lems, show how to construct a modal dictionary on a uniformherem,. = 1,..., M, forr =1,..., R. M, denotes the sam-

grid and then describe the new fast multigrid strategy. lple support of theth dimensiona ., = exp (o, + jwy,r) €



C is the fth mode in therth dimension,{afm}?’:ﬁiw:l, considered as multiple experiences involving the same one-
s, € R™, are the damping factorgw;,, = Qﬁyj,n‘}?azf"i — dimensional signal generated by the modes, f = 1,..., F,

are the angular frequencies, angd = \; exp(j¢f) is the but with different amplitudes for each experience. Thisppro
complex amplitude of thefth mode where\; = |c;| de- erty will be used in the next section to formulate the problem
notes the magnitude angd; the phasee(mi,ms, ..., mg) of estimating the mode coordinates in titt dimension as a

is a zero-mean complex Gaussian white noise with variangéultaneous sparse approximation problem.

o? and mutually independent components in all dimensio

Throughout this paper, the tilde symbaol X denotes a noisy ) o
Assuming that M, > F,Vr, it is easy to see from (10)

signal;e.g.5(-) = y(-) + e(").  Assuming that M, > Fvor, i S
In a tensor form, the?-D signal in (3) may be written as that for a fixedr the mode coordinateguy, };2, (F- < F)
in the rth dimension are identifiable from any column of

Y=Y+E (4) Y. This process can also be repeated on each dimension

where{ff Y, £} € CMixMox--xMz The problem consists " = 1,..., R to get all the modes coordinates. In practice,
- estimatin ’the Setof parametd - }F_’R and{c;)F we have to replace the matriX,, by its noisy counterpart

J P B f=1r=1 ¢ Y,y accounting for the additi hite noise. In thi
from the R-D signal samples. r) unting for the additive white noise. In this case,
(10) holds only approximately. Consequently, for each igwiu
Y()m.,my. = 1,..., M, the modal estimation problem can
be formulated as a sparse approximation problem correspond
ing to the following constrained optimization:

"8: Simultaneous Sparse Approximation

IIl. SIMULTANEOUS SPARSEAPPROXIMATION FORR-D
MODAL SIGNALS

A. Tensor Formulation of the Data Model

The noise-free data tens@? in (4) can be written in the
following form:

X, = argmin |x|lo  subject to ||S’(r),m§‘ — er||§ <e
(11)
whereQ,. € CM~*N N > M,, is a (known) modal dictio-

l nary,x € CV is a (sparse) vector containing the coefficients of
Y= Zcf af1®afr®---QayR () the activated columns i), ande is a small reconstruction
J=t error related to the noise variance. The pseudo-nfxif
whereay, = [1,as,,...,a>="|T, » = 1,..., R. Equation counts the number of nonzero elements in a vestoiThe

I . o . )
(5) is called the Canonical Polyadic (CP) decompositiomfor de5|gn~onT is discussed in section III_-C. The fact that each
or the Candecomp/Parafac decompostion of the tepis@6], VECIOry(,),m; corresponds to a 1-D signal generated by the

[27]. The CP model (5) can be concisely denoted by same modes implies that the position of nonzero entries in
Xm Should be the same fon; = 1,2,..., M}. Let X be
YV =[c;A1,As, ..., AR] (6) the matrix defined by
where A, = [a1,,a2,,...,ap,], 7 = 1,...,R, andc = X = [x1,X2, ..., Xar], (12)
[c1,c2,...,cp]" is the vector of complex amplitudes. Using . " .
these definitions, the matricized form @ along therth then the sparsity oX may be measured by computing the
dimension is given by Euclidian norms of the rows; those providing a nonzero norm

define the rows of the activated atoms (which are estimations
Y =AA(ARO - OA 1 OA 1O OA)T of modesay, in the dimensionr) in the dictionary Q..
(7)  Therefore, we are facing a simultaneous sparse approximati

where A, = diag(c). Then, we can write problem:

~ _ : ; vV, . 2
Y = AH, + E, ®) X, = argmin [X][2,0 subjectto [[Y()—Q,X|r <e
, (13)
whereH, € CF*M: is where
def iyt il
H. = A(Ar® - 0A,110A, 1 @"'@AI)T 9) HY(r) _QTXH%' = HVQC(Y(r) —QTX)H§7 (14)
R X|[20 = H XUy e XN TH 15
and M/ = [] My. Therefore X 2.0 1%z | 2] 0’ (15)
Z;ﬁ and X™* stands for thenth row of X. The simultaneous
dof sparse representation models, called also Multiple Measur
Yo = Y)Yyl ment Vectors (MMV), have been studied from several angles

F F of view, and different approaches have been proposed [28],
= Zhr(f’ Dagy,..., ZhT(f’ M)ag, (10) using greedy strategies [29] such as Simultaneous Orthogo-
=1 = nal Matching Pursuit (SOMP) [23], convex relaxation meth-
o , _ ods [30], randomized algorithms such as REduce MMV and
whereh,.(f,m;) is the (f,m;) entry of the matrixH,, for ot (ReMBo) [31] and subspace-augmented MUSIC [32].

f=1... Fandm =1,.., M. We observe that, for & xq the goal of the present paper is to develop a fast approach
givenr, the columnsy ) ,,» of Y, are linear combinations

of the vectors{af,r}le. Hence, the columng, ,,» can be  Note that this assumption is considered only in this section



well adapted to large signals, we restrict our attentionhi® t Level
SOMP algorithm [23], reported in Appendix A. However,

it is worth mentioning that, in more intricate cases and/or

small size signals, much more efficient simultaneous sparse ;4 1
algorithms may be used at the price of an increased com-
putational burden. A straightforward way to get tRetuples
{(af,...,azr)}}_, consists in estimating the modes, in ¢
the R dimensions using matrice‘}?'(r),r =1,..., R, which

requires a further pairing step to form tli&D modes in the

multiple tones casel{ > 1). To get accurate estimates using

the described scheme, two conditions have to be satisfied, 1) 0 porpj

the dictionary should contain all possible modes present in

the signal, 2) the sparse approximation method should hasig 1. The multigrid dictionary refinement procedure witk= 1. (O) atoms
sufficient guarantees for selecting the true atoms from tHethe dictionary; () activated atoms;&) new atoms

dictionary, which is known as “exact recovery guarantees”
These problems are discussed in the following sections anflgorithm 1: Dictionary refinemen{DICREF)

an alternative representation of the data is used to avad th input : A vectord € RN of sorted frequencies or damping factors, an

pairing stage in the multiple tones case. index setQ2 of activated atoms, the number of atoms N to
add at each side of an activated one

output: Updated vectod,pdated

porp3

C. Modal Dictionary Design and Multigrid Strategy for 4 = 1 : numel(Q) do

1) Uniform Modal Dictionary: The dictionary Q, & g?; - ﬁﬁiﬁii&(&(&(ﬁ))_dgig)(i(?))’%)
CM-*N can be defined as follows. Léf,, be the number of d; = [dl ,,d] (2 :7) T ’
points of a uniform grid covering the frequency inter{@|1). end o

Similarly, let N5 be the number of points of a uniform grid ~dupdated = union(d1, ..., duumel(s))
. . . . return - dypdated

covering the damping factor intervgb,,i,, 0], where Sy, is

a lower bound or(af,r}?zl. ThenQ, is given by

Q. =[q-(0,0),...,q,((N, —1)6,,,0),q,(0,05), ..., Q. (¢) by applying the SOMP method. Then we refine the
ar (N, —1)6,,05), ..., qr((Ny — 1)0,,, (Ng — 1)d3)] dic_tionary by inserting atoms inbetween pairs@f(¢), in the_
(16) neighborhood of each activated atom and we apply again the
B . _ SOMP method at level+ 1 to restoreX,.(£+ 1) with respect
vghe(rﬁeg;sﬁ)’ 2 _(Bzrjgli;t)ﬁ()]t/fl|flr)(l'|{7 ﬁgllz _Wlth ar(]/\? f) _d to the refined dictionarf..(¢ + 1). This process is repeated
([S’e_ 1' N "I"’(;] t. . bt]', dﬂf N ﬁmi&ﬁ/ B’t' ant_ until a desired level of resolution is reached. Algorithm 1
Olif tﬁe (/ “') ;I:n:rI,E(;zéhlsp(c))intagetherc;? dacolrsr(érseplozr? d':rl resents the one-step dictionary refinement (DICREF), from
Vv, . .
a hypothetic mode. The total number of columns@yp is evel £ to £ + 1, where, fora and b r_eals,h_nbpace(a,b, ")
No NN e ) h of th . led at In the ai ﬁenerates a set gfequispaced points in the intenjal b]. The
= N lVp > I7, €ach ot them 1S called atom. In the aiM Olyigterance petween the present framework and that in [19] is

reducing the computational complexity, we propose to ettm the following. In [19] the multigrid algorithm refines joigt
2-D grids, which leads to expensive computations when

frequencies and then damping factors by calling twice tr}g

next section.

Finding the convergence conditions of the new multigrid
strategy in the general case (multiple tones) is not easy and

epends on the selected sparse approximation algorithm. By
contrast, it is possible to show that, under mild conditjadhe
%%’nvergence may be guaranteed in the single tone case. This
o . . issue is discussed in the next section. In section V, we make
prohibitive calculation cost and memory capacities retpees use of an alternative representation of the data model in the

Rather, we propose to St‘fm V.V'th a coarse ON? @nd Ns case of multiple tones and a method allowing one to retrieve
low) and to adaptively refine it through a multigrid sc:heme[h

The procedure is the same for estimating the frequency ang signal tones separately.
damping factor. The principle is sketched on Figure 1. The
main idea is the adaptation of the dictionary as a function
of the previous dictionary and the estimated coefficien&d. L In the previous section, we have shown how itv® modal

¢ be the current grid level/(= 0,...,L — 1). At level ¢, retrieval problem may be tackled using a sparse approxamati
we first restore the signaX, (¢) related to the dictionary algorithm by estimating the set of parameters in each dimen-

factor grid. These two steps are explained in section IV.
2) Multi-Grid Dictionary RefinementTo achieve a high-

resolution modal estimation, a possible way is to defi

uniform grids as before and selecting very small values for

tively. As a consequence, the resulting dictionaries we#d to

IV. SINGLE R-D MODE ESTIMATION



sionr =1,..., R. Here, we give the sufficient conditions for
convergence of the multigrid dictionary refinement scheare f
F = 1. Without loss of generality, we sét = 1. For notation
simplicity, we omit reference to the dimension index

According to (3), the 1-D modal signal containing a single
mode can be written as follows:

’ 2

J (pn) /1yl

o 95 "9 o o o

5 8% 5 2 & & &

o
N

y(m) = cra" ' = crelartizmn)(m=1) , — 1 M.
(17)
Let Q be a normalized modal dictiona® = [q1, ..., qn], i ra—
with

°

o

1 M-11T
an = —F=———=(LGn,- -+ @, ]
V2 l4n ™

Gn = exp(Bn + 527 pn)s fin € [0,1), Bn € (Bumin, 0], for assuméthatM > 2). For the dictionary refinement strategy to
n = 1,...,N. The single tone sparse approximationyf Converge tq the glot_)al maximum, it is su_ff|C|ent to the sparse
with respect toQ is the solution of the criterion: approximation algorithm to select, at a given le¥ghn atom
whose frequency satisfidg,,- (¢) — v1| < (ur < 1/M, where
minJ(x) = ||y — Qx[|* st [|x[lo = 1. (19)  pn- () = argmaxy, J' (). INdeed, ifu,« (£) € (v1—Cur, i+
* ¢n) then adding two atoms whose frequencies are located on
The optimal solution is given by both sides ofu,~(¢) will lead to the selection, at leveél+ 1,
. " . . ) "o of an atom that satisfigg,,« ((+ 1) — 11| < |pn~(¢) — 11| the
Tp =AY, X1, vpe =0 JXT) =lyIIF =¥ ana,Y  distance between the selected atom and the true frequeacy is
monotonically decreasing sequence. Finally, the converge

wheren is the selected column number @. Finally, the 5 gyaranteed if the initial dictionary contains an atarsuch
minimum J(x*) is reached for an atom,, that maximizes that |, (0) — 11| < Car, which is satisfied if

J'(an) = ylandlly = ldlly[>, n=1,... N.

(18) Fig. 2. J'(un) in the single mode case witty = 0.1 and83, = 0

)

maX [n+1(0) = pn(0)] <2Cnr. (23)

A. Estimating the Frequency: The Harmonic Dictionary  given the fact that the sequen¢g,,(0)} covers the interval
[0,1). For oy < 0, the main lobe of/’(u,,) becomes broader

First, timate f i h ic dicti L
s, We estimaie frequenay Using a harmonic dictionary and (s larger than fore; = 0. Consequently, condition (23)

(i.e. assumings,, = 0, ¥n). In this case, we have:

is also sufficient for; < 0. [ |
«@ )27 (v, — 2 . . ..
T () = ler|? |1 — et MAi2m(va—pn) M 1) Corollary 1: In the single tone case, the harmonic dictionary
" M 1 — exr+i2m(vi—pn) refinement is convergent if the initial frequency grid=€ 0)

The following theorem gives a sufficient condition for the® the Fourier grid.

multigrid dictionary refinement scheme to converge to tHeroof Fourier bins are obtained fav = M and p,,(0) =
global maximum of.J’. (n—1)/M. Since(y > 1/2M, the proof is straightforward

Theorem 1:Let y(m) be a single toneK = 1) noiseless becauseyi,;1(0) — 1, (0)] = 1/M < 2. [ |
signal of length\/ andQ(¢ = 0) = [q1 q2 ... qn(o)]' be the
initial harmonic dictionary in which the columns are sorted
increasing order of:,,(0),n = 1,2,...,N(0) and covering
the frequency interval [0,1)u1(0) = 0 and py((0) =
1 — 1/M. Then the refinement scheme is convergent (i.?e
Ine{l,....,N)} s.t. limy_ oo pn (¢) = v1) if the following
condition is satisfied:

It is important to note that condition (23) is sufficient but
not necessary. Moreover, this condition is establishednwhe
adding a single atom on both sides of the selected one (i.e.
= 1 in Algorithm 1). Whenn > 1, the condition may be
laxed and the rate of convergence is expected to be higher.

B. Estimating the Damping Factor: The Modal Dictionary

max g 1(0) — i (0)] < 2Cars (22) Assume that the previous sparse approximation method
ne{l,...N(0)-1} using a harmonic dictionary has converged to select an atom
where(y; is a constant depending only o with u,, = v1. Now, we have to estimate the damping factor

_ _ a1. We form a modal dictionary using the damping factor

Proof It is easy to check that the global maximum.{x,) grid and the frequency,, i.e. ¢, = exp(Bn, + j2mvy).
is reached fon,, = vy, Ya;. Figure 2 shows the variation of Consequently,
J'(ur) as a function ofu,, for vy = 0.1, 8, = 0 and M = 10. 9
Foras — 0, J' i i jer2(1 = ) (1= eleatBM

1 =0, J'(,) reduces to a Fejér kernel which has exactly J'(By) = ) (24)
one local maximum in the intervél, +k/M, vy + (k+1)/M], 1— 2B M 1 — elenthn)

/ H / H H

k # 0. Let Jl be the maximum value of (M") in the interval 2The case of\/ < 2 in not of practical interest but the theorem is still valid

[v1 +1/M,vy +2/M] andvy + (ur be the value ofu, such py settingc,, = 1 because/’(uun) is a monotonically decreasing function
thatJ'(p, = v1+(a) = Ji inthe intervallyy, vy +1/M] (we  in the interval[vy, min{3, 3 +11}].




Theorem 2:Let y(m) be a single tone{ = 1) noiseless Algorithm 2: Sparse multigrid method for single tone
signal of lengthM and Q(0) = [q1 g2 ... an(]' be estimation §TSM)
the initial modal dictionary formed using the frequeney, input : A tensory € CM1xxMg (n, 'n. )€ Nx N
i.e., gn = exp(Bn(0) + j2m14), wherev; is the frequency  output: Parameters of the singlg-D mode:ay, ..., ar
of signaly. The columns are sorted in increasing order of initialization : (k. , ko) = (0, 0)

Bn(0),n = 1,2,...,N and covering the damping factor initialize d'” andd'” using¢

interval (8min, 0]. Then the refinement scheme is convergentfor »r =1: R do

(i.e. In s.t.limy_, o Bn(€) = 1) if @1 € (Bmin, 0]. Whilihéﬂtizg Jcrriierion falsedo

Proof Let ¢(3,) be the derivative of/’(3,) in (24) with Qi) = SOMP(Q(dY™,0), Y, Iter = 1)
respect to3,. It is easy to check that(3,) > 0 for 3, < ax, d*Y = DICREF(@{*, o, )

g(ﬂn) < 0 for G, > 041., andg(ﬁ")_ =0 When ﬁﬁ = ai. \(/avrr]:ijle halting criterion falsedo

In other words,J'(3,) is monotonically increasing before ko = Koy + 1

the maximum reached at; and monotonically decreasing olFa) — soMP (Q dgku)(ggku)),dgkw),y“))
after o;. Therefore, the multigrid algorithm convergesde alket) — prcrREF(@F), o) 5a)

if Bmin < Q1. | end

_ (ka) ((ka) (kv) (o (kv)
L L. ar = exp(dy Qo + 27 dy Q,
As a consequence of Theorem 2, the initial modal dictionary end <P ( )+ 2m ( 2

can be formed using only two points in the damping factor retum ai,...,ar
grid: 51(0) = Bmin and B2(0) = 0.

We can now state that the multigrid algorithm based on two
sparse approximations (for frequency and then dampingifactthat the dimension with distinct frequencies becomes tis¢ fir
converges in the single tone case under some conditions. Nefe ¢ = 1).
that in the noisy case \_/vher_1 the .SNR i$ sufficien_tly high, th&. From Multiple Tones to Multiple Single-Tone Signals
convergence analysis is still valid as in the noiseless,case ) )
and the proposed multigrid sparse scheme for single toneccording to (5),y can be written as
converges to the global maximum of the Fejér kernel. The - R T
extension to the single ton&-D modal retrieval problem Y =ZTri1F rl1A" A€ (25)
is straightforward and can be performed according to the =SeA; (26)
formulation presented in Section IlI-B. The details of this !
approach$TSM: Single Tone Sparse Methade presented in WhereZ g1 r is the diagonal tensor of ordét + 1 and size
Algorithm 2. The algorithm takes as input a noisy single ton& x ' x --- x F', containing ones on its diagonal, and
R-D signal, and a couple of integes andn,, that correspond S_T B oA T 27
respectively to the number of frequency and damping factor TARALE 8,8 28 © (27)
atoms to be added on both sides of the corresponding selegteq complex tensor of ordeR and sizeF x Mo x - - - Mg.

ones. Next, for each dimension=1,..., R, we execute tWo gimjjar expressions are evoked in, among others, [11]. The

tasks to estimate the frequency and then the damping factoky tensors can also be written as the concatenationFof
in each step we apply SOMP combined to DICREF algorithigsors along the first dimension

using corresponding dictionaries and taking into accohat t
convergence conditions discussed previously. Then paease S=8 1S Ui SF (28)

of a., i.e.,v, anda,., are given by the corresponding selecteg{,here eactS;, f = 1 F is a modal(R — 1)-D signal of

atoms. This approach will be exploited in the next sectian fQi_o 1 37 ... « i1 containing a singléR — 1)-D tone:
the multiple tones case. ? r '

Sf =crafa®ar3®---®ayfR. (29)
V. MULTIPLE R-D MODESESTIMATION The singular value decomposition (SVD) ¥, yields
In the multiple tones case, sparse approximation algosthm ?(1) —yxnvH (30)

yield suboptimal solutions when the coherence of the dictio
nary is high [29]. This is a crucial point because the refinemewhere matricesU and V_contain respectively the left and
procedure will increase the coherence with increagjnghich  right singular vectors ofY;), and X is a diagonal matrix
may prevent convergence even in the noiseless case. In g¢aataining the singular values;,i = 1,...,min{M;, M7}
following, we present a low complexity algorithm that is acsorted in a decreasing order. As the number of components in
curate and robust in the presence of noise. The idea is to bedji is equal toF', then an approximation oY (;), denoted by
by an initialization step wheré’ single tone modal signals Y1), can be obtained using the fir8t principal components
of order R — 1 are extracted from thé2-D signal. Then an of the SVD:
iterative technique is proposed to improve this decomuosit
and estimate the parameters.

It is assumed that the frequencies are distinct in at least omhere Uy (resp. V) stands for the matrix formed with the
dimension withM,. > F. Then dimensions are permuted sucfirst F columns ofU (resp.V) and Xy = diag(oy,...,0F).

Yy =UpEpVh (31)



It can be established from (8) and (31) thAat and Ur  Algorithm 3: Sparse multigrid method for multiple tones
span the same subspace, and thus there exists an unknogglimation (MTSM)

nonsingular matriXT" that satisfies input : A tensory € CMix-xMr (p, n.yeNxN
_ output: Parameters of the multipl®-D modes :{af,,.}j?’:R1 -1
A, =UrT. (32) initialization : "

1) ComputeA; andSy, f =1,..., F using (32), (33) and (28)

Denote byM (resp.M) the matrix obtained frorM by delet- SO a
2) yf :sf:af,17f:17"'7F

ing the first (resp. last) row. By harnessing the Vandermonde
structure of A4, there exists a diagona_l matri& such that Forf=1,...,F, computej)ﬁf” using (34), (35) and (36)
A, = AD. SinceA; = U,T and A; = UpT, then RO df (1) _ 55 s $(©

U, T = UprTD, which proves that matriT' can be estimated o/ — 1 . & do =1

by the eigenvectors g/}, U. ) for f=1:Fdo .
TherebyS can be estimated from the noisy data afg yP = iy +R{,

using equation (26) as follows computed” using (34), (35) and (36)
. _ R (4) (3 o () . i+1) def (7)
5=YeAl, (33) Ry =9 ¥ g = FohenR(TY S R

1 end
« « ) end
then Sy, f = 1,...,F are extracted fromS according Forf=1,...,F, extractay using

t9(5)28). Eachy; = cray1 @---@ayr can be estimated by o, = STS%Q;K) +RE) s = 1)
Vi = Sf:éf_rl. The sparse multigrid algorithm for single retun {ag,};%;

tone (STSM) can be applied on ea@fﬂf)), f=1,...,Fto

estimate the parameters of modes. However, we propose in

the following to improve the separated components using dinénsion are extracted using STSM algorithii. denotes
iterative technique. the maximum number of iterations, which is fixed to 2 in the

simulations since no improvement was observedKor 2.

B. Improving the Estimation Accuracy
It is clear from (33) that, in the noisy case, the error i€. Analysis of the Algorithm

estimatingS (due to the estimation ofA,) will propagate  Following the separation step described in (30)—(33), we
when estimating the parameteis,, . .., ay,r. Hence, we pro- can state that the algorithm yields the expected solutioanwh
pose to improve iteratively the mode estimates. The folt@wi the SNR is sufficiently high. We want now to prove that
procedure is executed to update estimates at each iterafig® second stage (next iterations), in addition to estimgati
i=0,....K the parameters from the single tones, is also improving the
1) apply STSM to estimatay,...,azr, f=1,...,F estimation accuracy. The general idea is inspired fromdyee
R R < ($) forward/backward sparse approximation, where the salugo
{ag2, . apry = STSMY§ 0 Nas 7 =2, R)  ofineg by adding/removing atoms to/from the set of activate
(34) atoms. The improvement of the estimates is stated by the
2) estimatecrays 1, f = 1,..., F by least squares using thefollowing theorem.
already estimatedys,...,a¢r, f=1,..., F Theorem 3:Assuming that the nois€ is sufficiently small
) (o N such that the ordering of the singular values3inin (30) is
craf1 = Yf(]) ((af,R X---Kafs) ) (35)  the same as the ordering of the corresponding singular s¥alue
whené& = 0. Using the procedure expressed by (34), (35) and

<, (1)
3) computey ; (36) to estimatey; at iterationi = 0, ..., K
< (Z) — A~ A~ ~ (2 — (7
Y, =Craji®ar® - @apg (36) = arg min 1y - x| 37)
N el(ie ; : : C(im <
where p\/) — y.(f Vg R, R =RY, + y(f V_ whereH = {Xx e CMx Mr|x = bi®b;®: ®bpg,
(4) . (3) .d_cf (i—1) o _ < b, € Pforr # 1} with P = {V e CY|v =
yfFafAz))l,..l.,.F, TT"O = Ry o and R — Yy - [1,0,...,vM 1T v = exp(8 + jw), B € R™,w € [0,2m)}.
Zle Y; . This iterative scheme will be analyzed in the nexthen, at each iteration,: = 1,...,K the residual is de-
section. creased:
Finally, the algorithm we proposéATSM: Multiple Tones < o) < o (i)
Sparse Methadis summarized in Algorithm 3. Note that no Hy -y H < Hy -y H (38)

association step oR-D modes is required. The initialization NG NG
step consists in initializing: HA; and 8 using (32), (33) Wherey :Zf:l_yf -
and (28), ii) the estimated single tonQ—é»O),f =1,...,F. Proof See Appendix B. u

Note that the columns oA, are iteratively updated without Figure 3 depicts a comparison between results obtainedey th

. TSM algorithm with two different values ok € {0, 2}. The
extracting the related modes, whereas the modes of the other . . . :

. . . . : results show that MTSM with the improving step yields accu-
dimensions are extracted at each iteration using (34).5ole

after the last iterationi(= K), the parameters of the first;?; estimates as compared to MTSM without the improving



fori=1,..., M, where

It '* MTS;\/I (K=2) || i—1

- i °  MTSM (K=0) tig = | =—p—— mod M, (42)
i’ . ~ T CLRB [To— 1 Me

2107 9 _ and |-] is the floor function. In the following, we derive the
% TR ; ol expressions of the CRLB in the general caBex 1) and then
e 107 i P . | we deduce the result corresponding to a singkd modal

Thee e signal F = 1).
-10 -5 0 5 10 15 20 A. Derivation of the CRLB
SNR (dB)

Given the joint pdf in (39), thek,!) entry of the Fisher

Fig. 3. Frequency total root-mean square error for a 3-Dasigontaining information matrix is [34], [35]:
3 modes with identical modes in two dimensions and close madehe

first dimension (Signal #4 in Table )N (0) = 20,7, = 21,mg = [F(H)]kl _ lRe { [au(g)y‘ 6;;(0)} . (43)

11, (M1, M2, M3) = (10, 10, 10). 100 Monte-Carlo. 0% a0,

D. Identifiability We now express the derivativég.(6);/06; fori=1,..., M
Based on the assumptions under which Algorithm 3 ndk =1,...,2RF + 2F.

operating, the identifiability condition can be statedfas< « Fork=1,...,RF, we have

M; and min{Ms, ..., Mr} > 2. In [33], the condition is ou(0)

M,>4,r=1,...,R, andF < [ 2| [T [Ae]. pO)i _ . a 44
We note that, whenV/,, > 4,r = 1,..., R, the number 00k It H f(k)r (44)

of identifiable mlodes. is slightly smaller than in [33], bugth with #(k) = [(k — 1) mod R] + 1 and Fk) = |(k -

proposed algorithm is able to outperform the conventional 1)/R| +1

methods in terms of computational complexity and accuracy. Fork—= RF +1.... 2RF"

In addition, another advantage of the proposed algorithm is Y '

clear when the number of samples in one or more dimensions on(0); —¢ (45)
is less than 4 (i.eM, < 4), where identifiability in [33] is not o6, e H @ (h).r

satisfied. This latter case (i.8r, M,. < 4) can be encountered

in signal processing applications when the size of one oemor
diversities (dimensions in our formulation problem) issles
than 4. ¢

with r(k) = [(k — RF — 1) mod R] + 1 andf(k) =
|(k— RF — 1)/RJ + 1.
Fork =2RF +1,. 2RF+F'

, op(9) i
VI. CRAMER-RAO LOWERBOUNDS FORR-D CISOIDS IN 6—9k el?r® H O k), (46)

NOISE

In this section, we derive the expressions of the CRLB for where f(k) =k — 2RF.
the parameters dk-D damped exponentials in Gaussian white * Fork=2RF+F+1,...,2RF +2F.
noise. We then give the CRLB in the cases of single damped 3#( tin
and undampedz-D cisoids. We consider th&-D sinusoidal o0, W H @f k) (47)
model given in (3). Let
where f(k) =k — 2RF — F.
O=lwii.wir Wi WRR QL10LR Hence, theM x (2RF + 2F) matrix du(6)/00 expresses as
a21...QF R )\1...)\]:‘ (]51(]5F]T 6u(0)

=[jZ® Z'® Z¢ jZa| blkdiagA, A, Ix,N)

be the unknown parameter vector. The aim here is to derive 00
the CRLB of the parameters if. v S (48)
The joint probability density function (pdf) of is

) ) where
p(y; 0 —76Xp{——5'— 0)"(y — (6 _ LA
( ) (0’27T)M 0,2( iu’( )) ( iu’( )) 39) 7/ — [Z/17 Z/F] c (CIMXRF,Wlth Z}(Z, Z) — ti,l H a?;’
r=1
wherepn(0) is the noise-free part of and (49)
y=[(1,...,1,1),...,9(1,...,1, Mg), A = blkdiag(\ IR, ..., A\pIg) € REFXEE (50)
g(1,...,2,1),.. g(1 .., 2, Mg), ® = blkdiag(e’*1 1, ..., e/ 1) € CRIXEE (51)
,Y(My, ..., MR)|". (40)

(4 _)] Z=z1,...,2r) € CM*F with z(i Ha‘; (52)

Theith entry of u(6) can be written as: '
X = diag([\y, ..., Ap]) € RFXE (53)

ti,T . .
= fZ er [T g (D) = diag([e/?, ..., %)) € CFXF. (54)
-1 =



Finally, the inverse of the Fisher information matrix is

2 2
F1(0) = %S* 1= 7 g-lws-!
(55)

where R¢-} stands for the real part. The CRLB &f is given

L[Re{V"V}] 'S

by [F~1(0)]xx. More explicitly, for f = 1,...,F andr =
1,... ,R:
2 2W — T — i
CRLB(wy,) = ——— D (56)
f
2 2W — T — X
CRLB(O&LT) _ o RF+R(f /1\)2+ ,RF+R(f—1)+ (57)
f
CRLB()\j) = 20’2W2RF+‘)"72RF+‘)" (58)
2 . .
CRLB(;) 20 WQRFJr/I‘\’;rj,QRFJrFJrj (59)
f
Theorem 4:For the generalR-D exponential process, the
CRLB's for f =1,...,Fandr =1,..., R satisfy
CRLB(wy,) = CRLB(«y,,) (60)
CRLB(\;) = A2CRLB(¢y) (61)

Proof It is based on the special block structure of matri

Re{VHV} (see for instance [34]).

B. Single Mode Case

In this section, the CRLB’s will be simplified in the case
of a single R-D modal signal {f = 1) to obtain more
precise details on their parameter dependency. For the sake

of simplicity, the subscripts denoting the modge= 1 will
be omitted. First, assume th&i.| = exp(a,) < 1. We

shall express the produc#&tz’, ZHZ andZ'MZ. After some

calculations, we get:

R
1 — |a,|*M-
Z/Hz/ nk = -
r;éz,k
M,—1 My—1
Z m|an|*™ Z mlag|*™, ifn#k
s,
Z m?|a,|*™, if n==F
m=0
(62)
R
1—|a,|?Mr
VAVAS - 63
1l (T ©3
R

H 1 — |a, > Ea 2m
Zz™M1Z]), = | | T X E mla, [, (64)
r m=0

Denoting M (®) i (4 =

= JarPM /A = arf?),
a(n) = Yo mlanlm/z =

o lan*™ and gz(n)

Smo mPlanl*"/ ! |an|2m we then obtain:
(Pl = M@ x JOak), ezl 0
g2(n), if n==~k
G =M (66)
Q= M1 (n), (67)

and

P Q
0 0
0 0

Re{V"V} = (68)

QT

Q" o0
The inversion ofRe{V"V} yields the following expressions
of the CRLB’s:

o
oL o

G

2

g
X (1 —lar*)*(A = |a,[*Mr)?
[=M2|ar [P (1 = Jar?)? + |ar*(1 = |ar[*7)?]”
69)
CRLB()\) o2
e OREB) = Sy

><<1+Z

R 2
qi(r)
) - q%m) - (79

Finally, for a smgIeR D purely harmonic signakg, = 0, Vr),
we haveM (@) = H 1 M, = M and taking the limit of the
£RLB’s whena, — 0 eads to:

602

. CRLB(\) o2 M,
v R VR SV S Vs <1+3Z MT+1>' (72)

Hence, for the undamped case, our result in (71) is consisten
with [11].

VII. SIMULATION RESULTS

Numerical simulations have been carried out to assess
the performances of the proposed method for 2-D and 3-
D modal signals in the presence of white Gaussian noise.
The performances are measured by the total root-mean square
error (RMSE) on estimated parameters and the computa-
tional time. The total RMSE is defined &8MSE o1 =

R F £ > . .
\/ﬁEZ, {Zr:l o1 — §f,r)2} where¢; . is an esti-
mate of¢; ., andE, is the average op Monte-Carlo trials. In

our simulations¢y . can be either a frequency or a damping
factor.

A. RMSE for 2-D and 3-D Signals

Experiment 110 show the interest of the multigrid scheme,
this experiment presents the results obtained on Signalittl w
different multigrid levels and different initial grids. @ial #1
is a single tone 2-D modal signal of siZ& x 10 whose
parameters are presented in Table I. The number of multigrid
levels is fixed toL = 2, i.e., ¢ = 0,1, 2. Then the results are
presented as a function of the number of atoms in the initial
dictionariesN (0) and the number of atoms, or n, added
at each levek. The results we obtain for the first step, i.e.,
for the harmonic estimation, are presented in Figure 4. We
can observe that the frequency RMSE obtained withRhB
sparse algorithm can reach the CRLB using a uniform initial



TABLE |
2-D PARAMETERS OFSIGNAL #1

via | apn [Tvra | aps [ cf ]
0.22 [ —0.011 ]| 0.34 | —0.015 || 1 ]

L
(N

harmonic dictionary of 10 atoms ang, = 31 (Figure 4.a).
Figure 4.b shows that the frequency RMSE is improved at low
SNR if the initial dictionary contains 20 atoms, and reaches
optimal estimates withy, = 21. Figure 5 shows the damping
factor RMSE obtained byg-D sparse algorithm using different
settings of the initial damping factor dictionary and. We

can observe that the damping factor RMSE depends on the
number of atoms in the dictionary, the more atoms the better.
At low SNR, the RMSE also depends,;,. Therefore, it is
better to chooses,,;, with small absolute value if we have

a prior knowledge of the interval of damping factors in the
signal. In general, the estimation error is of orq@ré)?. For
instance, in the frequency step estimation, we recommend to
choseN(0) to be greater than or equal §M, if we want

a good accuracy at lower SNR levels. Otherwise, we can set
N(0) = M,. OnceN(0) is set,n can be chosen with respect
to the desired accuracy. Letbe the desired estimation error,
thene = 1

~= and we can sef = AT

N(0)n
In the rest of this section, the proposed algorithms are com-
pared with 2-D ESPRIT [6], Tensor-ESPRIT [10], PUMA [12]
and TPUMA [11]. If the R-D signal contains one tone then
Algorithm 2 (STSM) is used, otherwise Algorithm 3 (MTSM)
is used. Thus, to facilitate notation, both proposed athors,
Algorithm 2 and Algorithm 3, will be calledR-D sparse.
For the proposed method, the initial grid used to build t
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ig. 4. Frequency RMSE using-D sparse algorithm with differeny, . 2-
signal containing a single tone (Signal #{1, M2) = (10, 10). 1000

harmonic dictionary is the same for all dimensions; it cor#a Monte-Carlo trials. (a) The initial harmonic dictionaryntains N (0) = 10
50 frequency points uniformly distributed over the intervadtoms, (0)N(0) = 20 atoms.

[0,1) and 10 damping factor§ € [—0.05,0]. To simulate a
random dictionary, at each run, the frequency grid is pbedr

TABLE Il

by a small random quantity. As a consequence of experiment 1' DIFFERENT CONFIGURATIONS FOR EXPERIMENTS THROUGH5

we use the following settingéL, ., 75) = (2,21,11). The L [ I; | DA'me”Sz” 1] DA'me”Sz” 2_| DA'me”Sz” 3 ]
H H H H H _ Xp. v > Fr vV > Apr V> Apr

nur_nber of iterations in Algorithm 3 is set thf = 2 because Exp 41 3 | AvS Ap | Jidentical modes| 3 identical modes

no improvement was observed fér > 2. Exp.5 || 3 | Av < A, | Jidentical modes| 3 identical modes

Since the proposed method is applied directly on data

without using spatial smoothing, i.e., it does not requite t cRLB and outperform 2-D ESPRIT, ii§-D sparse outperform
construction of a large matrix or an augmented order tenspiymA in SNR less than 3 dB.
then a relevant comparison will be with algorithms that do 2) Multiple tones R-D modal signalsSeveral configu-
not use spatial smoothing. Thereby, in the next experimentgiions are studied in the case of multiple tones to com-
the proposed algorithm is compared to PUMA [12] andare the proposed algorithm with Tensor-ESPRIT [10] and
TPUMA [11], which are algorithms that do not require spatiapyma [11]. These configurations (Experiments 3, 4, 5)
smoothing. We also report comparisons with 2-D ESPRIT [@fe summarized in Table II, in which the number of modes
and Tensor-ESPRIT [10], which need spatial smoothing. and the distance between frequencies in different dimessio
1) Single toneR-D modal signal: are varied.Ar, denotes the Rayleigh frequency resolution
Experiment 2This experiment tends to show the efficiencyimit, which has the same value in all dimensions because
of the proposed algorithm in estimating parameters of singh/; = M; = M;. In Experiment 6 we examine the case
tone R-D modal signals. We simulate a 2-D signal of siz&vhen the size of only one dimension is larger than 4, i.e., the
10x 10 (Signal #1) whose parameters are presented in Tablédentifiability condition of [33] is not satisfied. The paratars
Our R-D sparse algorithm is compared to 2-D ESPRIT [6] andf the used signals are given in Table III.
PUMA [12]. For each level of noise, 1000 Monte-Carlo trials Experiment 31n this experiment, we simulate a 3-D signal
are performed. Figure 6 shows the obtained results. We d&ignal #2) of size8 x 8 x 8 and containing two modes whose
observe that: i) the proposed algorithm and PUMA reach tlfiquencies in each dimension are well separated. Paresmete



11

10° ‘ , TABLE llI

*‘ N(0) = 04‘, na = 05, émin = -2 3-D PARAMETERS OFSIGNAL #2 THROUGH#5
0 N(0) =20, no = 21, Bpyip = —2
& -
é A5 EB\@ ol O N(0) = 10,1 = 11, i = —0.05 [ Signal [[ vy1 [ apa [ vi2 | of0 [ vis [ ars e |
g1 S - -~ crs #2 040 [ 0.0 [ 01 | —00L [[0.1 | —0.0I 1
2 R ~ 020 | —0.01 || 0.3 | —0.15 || 0.25 | —0.01 |[ L
=3 Do o oopg ¥
£ ER N S #3 0.30 | —0.01 ]| 0.31 | —0.01 || 0.22 | —0.01 || L
3 2 =) * ok ok ox k% ¥
c 10 B ] 0.10 | —0.01 || 0.45 | —0.015 || 0.11 | —0.01 || L
2 Gy 020 | —0.01 || 0.31 | —0.01 || 0.11 | —0.01 |[ L
2 ‘ Tl #4 [ 028 | —0.01 [ 0.31 ] —0.01 [ 022 ] —0.01] 1
% 109l L 0.12 | —0.0I || 0.45 | —0.015 || 0.11 | —0.0L || 1
s 3 020 | —0.01 || 0.31 | —0.01 || 0.11 | —0.01 |[ L
#5 030 | —0.01 ]| 0.1 | —0.01 || 0.1 | —0.01 || L
B 0.13 | —0.01 || 0.45 | —0.015 || 0.4 | —0.01 || L
10 5 210 0 10 0 20 020 | —0.01 || 031 | —0.01 | 0.1 | —0.01 | 1
SNR (dB) 0.42 | —0.012 || 0.22 | —0.01 || 0.32 | —0.01 || L

Fig. 5. Damping factor RMSE using-D sparse algorithm with differenj,,, ; ;
Bmin andN (0). 2-D signal containing a single tone (Signal #W/1, M2) = B. Numerical Complexny

(10, 10). 1000 Monte-Carlo trials. It is known that in the case of 1-D signals of siad,
OMP costsO(NFM) in terms of multiplications [36];F
is the sparsity (number of components) aNdis the num-

2. ‘ ‘ ~ R-D Sparse ber of atoms in the dictionary. For &/-measurementsz-
107 Y B RSPRITY D signal, the complexity of the STSM algorithm over a
8 -~ —CRB set of L multigrid levels isO(M NLR), assuming that the
5 S number of dictionary atoms is maintained constant (equal
w 10 RIS ] to N) over all levels. Regarding the approach proposed in
& e g Algorithm 3, the main operations are the call of STSM and the
g el update oftras; :Ygf()l) (g r®---Ras,)T)" which has a
v fi “ complexity ofO(M) since((asz K- -- X é.lﬂg)T)T is a row of
o length[];, M, and ¥ is a matrix of sizedy x [[[%, M,.
10 ‘ i i - Therefore, the whole complexity of the proposed algoritem i
o ° sREm % O ((NL(F(R —1)K 4 1) + FK)M), which is linear in the

number of measuremenfd. The complexity of the Tensor-
Fig. 6. Frequency total root-mean square error for a 2-Dadigontaining a ESPRIT algorithm with spatial smoothing is mainly related t
single tone (Signal #1).M1, M2) = (10, 10). 1000 Monte-Carlo trials. that of the SVD which is at leasd (k, (R + 1)P]V[) where

k. is a constant depending on the implementation of the SVD

of the signal are given in Table IIl. Figure 7 shows the oletelin algorithm. HereP = T[;", P, where {P,}/, are design

results. Here, the proposed method performs as TPUMParameters used to get smoothed measurements (see [10]).
Tensor-ESPRIT vyields slightly worse RMSE. The accuracy of the estimates provided by ESPRIT depends on

Experiment 4:3-D signal of sizel0 x 10 x 10 containing these parameters. Since the opt_imal valueHots afra_ctic_Jn of
M (e.0.[37]-[39]), the complexity of the SVD step is, in fact,

three 3-D modes (Signal #3). Note that there exists idéenti 2 Th lexiti ¢ PUMA and TPUMA algorith
modes in two dimensions and frequencies in the first dime (M?). The complexities o an algorithms

3 R 3
sion are separated bly/M;. Figure 8 shows the results. mareO(M ) andO(k M (R+F—-1))+3_,_, O(K(F+1)M;),
this configuration, TPUMA and Tensor-ESPRIT give similafespectively. Compared to PUMA and TPUMA, the proposed

results and the proposed method performs better for all SN#IOrthm has an attractive computational complexity &g
levels. size signals. Figure 11 shows the CPU time results of the

. ) . . - proposed, Tensor-ESPRIT and TPUMA algorithms versus
Experiment 5:3-D s_lgnal of sizel0 x 10 x 10 Cont?"”'”g M, for a 3-D damped signal containing two modes with
three 3-D modes (Signal #4). Note that there exists ide 7, — Ms — 4. We observe that the proposed method has low

tical modes in two dimensions and frequencies in the ﬁrébmputational complexity compared to TPUMA and Tensor-
dimension are separated by less thai/;. The results are ESPRIT whenl, is large

shown on Figure 9. Here again the proposkeD sparse
approach performs better than TPUMA and Tensor-ESPRIT.
Observe also that Tensor-ESPRIT outperforms TPUMA in VIIl. CONCLUSION

thIS Conﬁguration (C|Ose fl‘equencies and identical mO(dES | We presented an efﬁcient Sparse estimation approach for

dimensions 2-3). the analysis of multidimensionaR(D) damped or undamped
Experiment 6:Results on Signal #5 of sizé0 x 3 x 3 modal signals. The idea consists in exploiting the simeitars

containing 4 modes are given in Figure 10. We observe thedarse approximation principle to separate this jointrestion

the proposed method outperforms TPUMA algorithm mainlgroblem intoR multiple measurements problems. To be able

in low SNR levels. to handle large size signals and yield accurate estimates, a
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multigrid dictionary refinement scheme is associated with t~Algorithm 4: SOMP
simultaneous orthogonal matching pursuit (SOMP) algorith nput - A matrix Y € CM1 Mz g matrixQ € CMi <N (with
We gave the convergence proof of the the refinement procedure normalized columns)
in the single tone case. Then, for the general multiple tonesoeutput: An indjs);ﬁjem of activated atoms. A matrix of sparse vectors
R-D case, the signal tensor model is decomposed in order XeC ’
to handle each tone separately in an iterative scheme so thafitialization - k =0, =2, X =0, Ro =Y
. . . _ Wwhile halting criterion falsedo
the pairing of theR-D parameters is automatically achieved. k=k+1
Also, the CRLB of theR-D modal signal parameters were ng € arg max, Yom?_y |[(Rp—1jms, an)|
derived. The tests performed on simulated signals showad th Qg = Qg1 U {ng}
the proposed algorithm attains the CRLB and outperforms | X+ = (Qf, Qa,)7'Qq, Y
state-of-the-art subspace algorithms. We also have shioan t 4 Ri =Y = Qa, Xy
the complexity of the algorithm is linear with respect to the return © = Q;, X = X,
number of measurements, which allows the processing of larg
size signals. Finally, it is worth mentioning that this apgch
can be straightforwardly applied to other multidimensiona
array processing problems.

APPENDIXB
PROOF OFTHEOREM 3

We begin the proof by introducing the following lemma.

Lemma 1Consider3~7 =Y+A)Y, where57 is the perturbed
version of the data tens@y and A)Y is the perturbation.
In this appendix we report the SOMP method (A|gOAssuming thatA) is sufficiently small such that the ordering

rithm 4) [23]. In this descriptionj,,, denotes then, vector ©f the F' singular values i3 in (30) is the same as the
of the canonical basis iz, ordering of the corresponding singular values whel = 0.

Then the perturbatiodY; contains a linear combination of

APPENDIXA
SOMP ALGORITHM
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allyf,le,...,F:
F
AY; =Dy + ZUf,iyi
i=1
Wherevf = [vp1,...,v5F| = AAl(f,)A; and Dy =

Ayoaf 1A (f,) —i—y&f:Aaf,l.

Proof From (33)S = y:AT, we differentiate and obtain
AS=AYe Al +YeAA]
Then,

AS; =AY eAl(f,:) + S AAL(f,)As

vT

:Ay;A{(f,;)JrS;vT

F
= Ay:AI(f, D)+ va,psp

p=1

Yy is estimated usingy; = Sf;af,l, we differentiate and
obtain

Ayf = ASf;afJ —|—Sf:Aaf71

F
=D vV + Spedasy + AV eariAl(f)

p=1

Using the previous lemma

V{ = Sy elara +vpsan +dag)+
F
Y. vra¥p+ AV eariAl(f)
p=1p#f

13

Therefore,ars,...,ar g, f = 1,...,F can be estimated

using STSM algorithm since

Y§()) = Craf (aﬁR XX af r41 X aﬁr_llE
- (afJ +vyrrary + Aaf_rl))
F
T .
| Do vreYe+ AVeariAl(f)
p=1,p#f

(r)
SinceY}?l)) has the following form

YS‘?1)> =cflag1 +vpraps +Aap)(apr™- - Rayo)

F
Yo vraYptAVeapAl(f) |
p=1,p#f (1)

ayp are

_|_

we estimatecyay; by least squares oncey o, . . .,
estimated using STSM

— . < (0 ~ ~
crazi = min ||V —aa,©- - @agm)

S A A T

¥ (- Baga))
So, we putjigco) = Cja; 1 QA ® -®asg and Ry =
5I§»O) - jigco). Therefore, the procedure to estimg)e; at
iterationi = 0,..., K can be summarized in (34), (35) and

(36). Note that this procedure is optimal because STSM and
the least squares are optimal when they are used to estimate
af_rg,...,afyR,f = L F and cfaf_rl,f = 1,...,F,
respectively.

Now we present the techmque fori |mFrovmg the estimation

of V. Let RY =R =Y — Zf . ¥; and

jif = arg min H)} —l—R(l - X (73)
X .
whereR y +'R.( ) f ,f =1,...,F, andjiif)

is an |mproved estlmate @‘7.,« We follow the same procedure

as described in equations (34), (35) and (36) to calcaiq(ie.
We can state that there is improvement in the estimation of

V; if
(74)

4 HO NENISNG
Z <|y->_¥;
= =1

We have||’R(()1)H = ||5710 - 5)1 0 + 2?22 R + V| where
V=Y-Yandy = Z?:l )_7}0). It can be verified that

1 1
H’R—Scl)” _ y(o) +Z (0 () Z R, +V y;)
p=f+1
= (1) (0)
3y (0 35(0
IR =[ [ Y7+ S8 - Z Ry +V | -V
p=1 p=f+1

However, from equation (73))7;1) is the minimizer with

respect toX” € H of

0 oo o0 a
X0 Y D Ry | - X

p=1

p=f+1



Therefore, ||’R§cl)|\ < ||R§cl_)1||,f ,F. As con- [i6]

sequenceH’R(1 I < HR(O I, which we are seeking in

expression (74). Similarly, we can prove thﬁxR )H [17]
|REV,4 > 1, using the general forms aR @ andR; l)
i (18]
,Rgci): y<0)+z $(0) ())+ Z (72,0)—37571))—&-\)
p=f+1 (19]
-y (75)
[20]
() ©) ©) _ 0 5 o0 5D
R, = | ¥, +Z P+ S @ -y +v ey
p=f+1
—&}“” (76)
[22]
which we are seeking in (38).
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