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Abstract—We consider the design of linear precoders and
receivers in a Multiple-Input Single-Output (MISO) Broadcast
Channel (BC). We aim at minimizing the transmit power while
fullfiling a set of per-user Quality-of-Service (QoS) constraints
expressed in terms of per-user average rate requirements. e
Channel State Information (CSl) is assumed to be perfectly known
at the receivers but only partially at the transmitter. To solve
the problem we transform the QoS constraints into Minimum
Mean Square Error (MMSE) constraints. We then leverage the
MSE duality between the BC and theMultiple Access Channel
(MAC), as well as standard interference functions in the duk
MAC, to perform power minimization by means of an Alternating
Optimization (AO) algorithm. Problem feasibility is also studied
to determine whether the QoS constraints can be fulfilled or ot.
Finally, we present an algorithm to balance the average ra®
and manage situations that may be unfeasible or lead to an
unacceptably high transmit power.

Index Terms—Broadcast Channels, imperfect CSIl, MSE dual-
ity, QoS constraints, rate balancing, interference functns.

|. INTRODUCTION

HE Multiple-Input Single-Output(MISO) Broadcast
Channel(BC) is an appropriate model for the downlin
of a cellular communication system whereBase Station

(BS) with NV antennas serves a set &f single-antenna non-
cooperative users. We assume signals are linearly filtered

transmission and reception to mitigate the inter-userfiete

ence. We also assume perf@tannel State Information at the
ReceiverdCSIR) but only imperfecChannel State Informa-
tion at the Transmitte(CSIT). This is a reasonable assumptio

in practical setups since receivers can accurately estimhat

CSl from the incoming signals whereas the transmitter abta
the CSI via a feedback channelknequency Division Duplex

(FDD) systems, or an estimate of the reciprocal uplink CSI
Time Division DupleXTDD) systems.
Several imperfect CSI models have been considered in

literature. Some authors employ bounded uncertainty nsod

such as ellipsoidal[1], sphericdll[2[+[5], or rectangul&l,

and formulate worst-case performance optimization proble

that can be solved usin§emi-Definite PrograniSDP) meth-

ods [6]. Other authors, as done in this work, model C
uncertainty as a stochastic error whose distribution isakmo

in single-user[]7],[[8] and multiple-user|[9]=[18] scera

Different performance metrics have been considered for t
BC optimization. Maximizing thé&ignal to Interference—plus—

Noise Ratio(SINR) [1]-[5], [1C], [19]-[25], is a common
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approach closely related to the maximization of the data
rate. Moreover, in[[3],[113],[119],[120],.126] imperfect CSI

is considered by handling approximations for the average
SINR where the expectation is separately applied to the
numerator and the denominator. The tightness of such an
approximation, however, is questionable and it is unclear
whether the approximation is an upper or a lower bound.
Other metrics are based on tivean Square Error(MSE).
Per-user MSE was considered [n [5], [27],[28] or recently
in [18], where an approximation of the average MSE based
on a Taylor expansion has been proposed. Sum MSE [9],
[17], [12], [29], [30], and MSE balancing 9] - 127].129] hav
also been often addressed. The sum MSE minimization in
the BC can be transformed into an equivalent one in the
dual Multiple Access ChanngMAC) to perform Alternate
Optimization(AO). Finally, weighted sum rate was studied in
[13], [15], [31], [32]. A common approach is to reformulate
the problem as a weighted sum MSE to find solutions based
on Geometric ProgramingGP), or on the algorithm proposed
in [32]. However, sum rate optimizations may lead to unfair
and non-desirable situations where some of the users get low
(or even zero) information rates.

Regarding the optimization in the BC, some authors search
for the best metric performance for given transmit power [2]
(6], (11, [12], [15], [20), [22), [22), [25), [29], [33]. Cantrary
to that, authors in[]1],[13]=[5], [20],123],[125],[128], 133
consider the minimization of the total transmit power under
a set ofQuality-of-Servicg QoS) constraints, as done in this

n ) . .
work. In particular, we ensure that users enjoy certainayer

irate values. Note that such restrictions make it possible to

avoid the unfair situations stated previously.

. To tackle this optimization problem, average rate constsai

in . : ,
are replaced by average MMSE requirements using Jensen’s
i gquality (see alsd [34]). Note that, contrary to otheusohs

-g. [18], [26]), no approximations are needed to thecadyi
Solve the MSE problem formulation. Hence, we determine the
MISO BC linear precoders and receivers by means of an AO

process in which we resort to the duality between the BC and

érpe MAC, as done in, e.g[, 2], [80], to design the transmit a

receive filters. More specifically, we employ the MSE duality
proposed in[[35] for the assumptions of perfect CSIR and
hnéperfect CSIT.

In the dual MAC, power minimization can be formulated as
a power allocation problem and solved using the standard in-
terference function framework proposed [in1[36] and extende
in [37].

This work also shows that the proposed power minimization
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transmit antennas and sends the data sigpal C to the user

51 k € {1,...,K}. The data signal vectas = [sy,...,sx]”
. is assumed to be zero-mean, unit-variance, uncorrelatet!, a
52 Gaussian, i.es ~ N¢(0,1x). The data signals are precoded

with the linear filtersp, € CV at the BS and propagate over

SK the vector channels;, € C". At the users-ends, the received
signals are linearly filtered witlfy, € C to produce an estimate
of the k-th user data signal

K

Fig. 1. Sytem model of the Gaussian MISO BC.
K
_ _ _ _ Sk = fEhY pisi+ fimes (1)
algorithm converges if the QoS constraints can be fulfilled. p—
Therefore, we provide a test for checking the feasibility of ) ) o
the average rate restrictions. This test is a generalizatfo Wherern. ~ Ne(0,0;, ) represents the thermal noise which is

that presented i [38] for the vector BC and perfect CSIT arfgdependent of the data signals. Note that, according ® thi
CSIR. signal model the transmit power s, ||px|”.

Additionally, we consider the rate balancing problem: the W& assume that the receivérhas perfect knowledge of
minimum of the average rates is maximized under a tothf OWn channelh;. Contrarily, the BS has only imperfect
transmit power constraint. Again, this problem is reformnowledge of the CSI which is modeled through the random
lated bounding the average rates by average MMSEs. S@iablev. The random nature afis due to numerous sources
a reformulation leads to the minimization of the maximurRf €rror (i.e., channel estimation, quantization, delay) that
weighted average MSE under a total power constraint, aRect the process of acquiring the CSIT in both TDD and
can be solved combining a bisection search with the propodgdP Systems. The imperfect channel knowledge is expressed
power minimization algorithm. through the conditionaProbability Density FunctiongPDF)

In recent communication systems, users are equipped with[v (7 [v), assumed to be known at the transmitter.
more than one antenna. When we extend the system modéRecalling [1),5,. is a noisy version of the data signal.
to the MIMO scenario two directions arise: considering HngThe achievable instantaneous data rate in such situation is
and multiple per-user streams. Considering more than one pe H H. -1
user stream adds more complexity to the problem, since the Ry, = logy (1 + py hichy prvy ), (2)
per-user average rate constraints have to be divided bBtWWﬁeremk _ hIk{(Zi;ék pip?)hk-FU%k- In this work we search

all the streams gllocated to the user. Such discussion isfout,, the precoders;, that minimize the transmit power fulfilling
the scope of this work. However, the methods proposed fgy, Quality of Service (Qo0S) constraiRy,(v)] > pr, k €
the MISO BC directly apply in the single-stream MIMO BC’{L ..., K}, where{p, }X_| is the set of per-user a_verage rates
as shown in[[39]. _ to be fulfilled by the system. Note that the notatié(v)
The paper is organized as follows. Secfidn Il describes thgypjights that the transmitter has access to the partisl GS
MISO BC system model and the BC/MAC MSE duality. Secgy any channel realizatioh, Vk. Based on partial CSIT,

tion [ addresses the power minimization problem using thge g precoders are determined according to the varidtiona
standard interference function framework and an AO apﬂmoa%romem

Section[IV considers the feasibility of the QoS constraints

while Sectiorl Y considers the rate balancing problem. Binal K )

the results of simulation experiments are given in Sedfiin vV min E [Z ||pk(v)|2] st. E[Rk(v)] > px, Vk.
and the conclusions in Sectibn VIl R S R 3)

The following notation is employed. Matrices and column Note that the optimization is over the maps(v), i.e., the

vectors_are written using upper an lower boldfgce C,ham’(:tepr)recoders depending on the partial CSITThe constrained
respectively. By[X], », we denote the element in royvand

column & of the matrix X; diag(x;) represents a diagonalm(')w:\'lze?tliznthgrgglseu?]mi)ublzegggﬁu\lltvgzxsﬂ\{tethgrgz:&;al'
matrix whoseith diagonal element is:;; Iy stands for the ! 9 ’ P

N x N identity matrix, andl represents the all ones Vectorbetween the average rate and the average MMSE to reformu-

The superscripts-)*, ()T, and (-) denote the complex late [3) in a more manageable way.
conjugate, transpose, and Hermitid¥-} represents the real
part operator. FinallyE[-] stands for statistical expectationa \MSE Constrained Optimization

tr(-) denotes the trace operation, and, || - ||2, || - ||r Stand c o _
for the absolute value, the Euclidean norm, and the Frolseniu -t MSE; = E[[sx — 5[] be the instantaneous MSE of
norm, respectively. the k-th user in the BC. For given channk],,

* 2
Il. SYSTEM MODEL MSER =1 — 2 {fihi'pe} + | ful” (‘hgpk’ +x’“) (4

Let us consider the system model of a Gaussian MISO Béherex,, is that defined below{2). Note that, is assumed to
depicted in Fig[ll. We assume the BS is equipped with be fixed in [#). Therefore, also the partial CSiTs fixed and



we drop the dependence pf, on v for the sake of brevity. B. BC/MAC MSE Duality

Correspondingly, the minimum MSE receive filter is given by —__BC . .
It is important to note thaMSE, ~ is independent of the

K -1 receive filterf; for j # k but depends on all precodeps for
FMMSE(p, ) — (h? Zpip?hk + 072%) hilp, (5) Jj # k. This means thap, cannot be individually optimized
i=1 when solving [(ID) but all precoders should be optimized
jointly. Nevertheless, it is possible to avoid such depeicde
by exploiting the MAC/BC MSE duality described in [35].
BC _ 1 _ ¢MMSEx H In the Single-Input Multiple-Outpu{SIMO) MAC dual to
MMSE," =1/ (i) .. © the MISO BC, the receive and transmit filters are represented
Finally, by applying the equalitg — ¢ = (1 + ;2)~1 to bY gx € C" andt, € C, respectively, whiled), = hyo,' €
() it is possible to express theth user rate[([?) afi, = (CA_[ ar_1dn ~ Nc(0,Iy) represent the channel response and
_ logQ(MMSEEC) (cf. [34]). noise in the dual MAC, respectively. The average MSE is then
Equations[(#)[(5) and[{6) are suitable for the BC design with
perfect CSI at both ends of the communication system. Notice MSE‘/ZIAC (v)=1-2E [% {gEOktk} M + Hgkllg
however, that imperfect CSIT is assumed in this work. Fas thi K ) 9
reason, consider the average MSE at the BBISEEC(v)]. +E > [t |gi'6i] U] ; (11)
Correspondingly, the average MMSE at the BC is given by i=1
where the expectations are taken w.r.t. all channels fogrgiv
partial CSlv as inM—SEiC(v) from (20).

Suppose now that the filters in the MAC, i.6,,andgy, are
given. Introducing the sefa;} , € RT, and the following
relationships between the MAC and the BC filters

and the MMSE is obtained substitutirid (5) infd (4), i.e.,

EIMMSEEC(v)] = B [1 - ™ (hi) hipi(v)|

where we highlight the perfect CSIR assumption fayhy).
Taking advantage of the concavity of theg,(-) function
and employing Jensen’s inequality, we arrive at the foliayvi
lower bound for the average rate o
pr(v) = argr(v),
E [Ri(v)] > —logy E [MMSEC(v)] > —log, E [MSEC(v)] fr=a;lo, (01,02, .., 0k), (12)
(7
An examp|e of the gap between the average rate and th@ pOSSible to achieve idenéical MSI'\EAECI‘M all the usershim t
average MMSE lower bound is examined in Apperidix A. BC as in the MAC, i.e.[\/ISEi = MSE, ~ Vk. Moreover, the
The constraints in({3) hold for log, E[MSEEC(U)] > pp, average transmit power is preserved| [35]. Note that even not

and they are conservatively rewritten accordingly as always explicitly remarked in the notation, the MAC receive
filters and precoders are functions of the partial C8land
E [MSE%C(’U)] < 27Pk, (8) the channel, respectively, as the corresponding BC presode

and receive filters.
Hence, the optimization problerml (3) can be reformulated as |n summary, a problem in the BC based Wgﬁc can be
x equivalently reformulated in the dual MAC WiWE',\:AC, and
Z P (U)|§] viceTversa. This du_ality result will be exploited in the amg
1 sections to determine the BC precodgys

min E
{pr (), fr(hi) Y,

st. E[MSEC(v)] <277, Vk. (9)

Contrary to [B), the scalar receive filter(hy) are now 1. POWERMINIMIZATION

invt_)Ived in the optimiz:?\tion process. Nevertheless, in theWe now focus on solving the power minimization problem
optimum of [9), MMSE filters are employed [sdd (5)]', as formulated in[{1I0). First of all, for given BC precodgys
We now note that by means of Bayes' rtulge pmsE BC scalar receive filtef™SE are readily obtained
%SBEE ()] = E[E[MSE(v)|v]]. Then, introducing (@) considering perfect CSIR. Next, we transform the BC
MSE, (v) = E[MSE“(v)|v], the variational problem19) receive filters ; into the MAC precoding weights;, using
can be solved pointwise for givenas follows the MSE duality. Recall that, is a function ofh.
Let us now define the average transmit powgr =

K
min > Ipe()]; st MSE.* (v) < 2-7+, vk.  Elltx[*|v] and the normalized MAC precoders = t5./+/&;

{pr(v), fr (i)} such thafi2[|7.|?| v] = 1. Let us also introduce the conditional
(10) expectationsp, = E[r.0;|v] and ©; = E[|7:20,0% ).
Note that the average transmit power resulting frém (10) Einally, let us defing = [¢1,...,£x]T as the vector contain-

larger than that obtained frorl(3) since the MMSE constsainihg the average transmit powers for all users, i.e., the powe
in (I0) are more restrictive than the rate constraintgnir{3) allocation vector. Notice that, unlike the precodgrsé only

the following, we usepy, fr and M—SEiC for the sake of depends on the partial CSli¥, similar to the total transmit
notational brevity. poweerK: |lpk(v)||3 in the BC.



With these definitionsMSE, " from (1) reads as £(€) > 0 (positivity)
K af(&) > f(a&) Ya > 1 (scalability), and
R ! / e
MSE," =1 - 2/&R {gl'p, ) + gl <Z &6, + IN> gr. F(&) > f(§ ), E>¢€ ( monotgmmty). |
i=1 We now definel,(£) = &,X which can be interpreted as
(13) the interference for usek. Applying the equalityl — ¢ =

1+:%)'to ives
Therefore, the equalizers minimizing tMaSE'ZIAC are ( =2 (8 g

K —1
g,“!MSE=<Z@@i+IN> Ve (14)

i=1

1 i A
1€ = (& + latwl (n-a o) ) - @9

We next collect all these functions into the vectbig) =
By substituting [[T#) into[(13), we obtain the following eggr [I1(£), ..., Ik (£)]. As shown in AppendikBJ (¢) fulfills the
sion for the average MMSE conditioned on properties of a standard interference function.
% 1 Note that, due to the average MSE BC/MAC $§éity, the

MAC _ . H =y QoS constraints can equivalently be expressei@k, ~ <
MMSE, 1 — &ppy, (Z@@l—FIN) e (19) 2-rr. Furthermore, sinc&;, = I"—(f) we reformulate the
power minimization problem (10) in the dual MAC for a given
set of normalized precodefs; }X , as

i=1
We now show that a scaled versiong}f"'SE also minimizes
the MSE'\,:IAC given by [I38). This result will be exploited later

on to obtain a simple update of the equalizers in the itezativ

K
. L _..,
algorithm that minimizes the transmit power. Let us introglu i Zﬁi S.t. ¢ <27Pk VE. (20)

- : {&,an =1 k
the scalar MAC parameters. so thatg, = rrgx. With this
new notation, théViSE,"~ in (3) reads as As shown in [36], sinceI(¢) is a standard interference
c function, the iteratiore™ = 2¢+ I;,(¢"~") converges ta?™
MSE',\:I =1-2R {ngllq{uk\/ &c} for given {gx } ;.

K Moreover, the previously mentioned iteration can also be
+ e * git Zgi@iJrIN Gr. (16) used to jointly find the{¢&, g}, that solve the power
= minimization problem [(20). Indeed, lef (€, gr) = &Yk
be the same function as before, but explicitly highlighting
) the dependence ogy. Similarly, we rewrite the interfer-

- ence function ad (¢, G) = [ (&, G1), ..., Ik (€, gx)|T with
) §k> (17)

For givengy, the optimal scalar filters are

K
riMSE = gl /& <g£‘ (Z §0; + Iy

i=1

G =1[g1,...,gxk]. Sincel(§, G) is standard for anyx, so is
ming I(€, G') where the minimization is performed element-

Substitutingr"SE into (I8) yields the following minimum wise. As a consequence, the Alternating Optimization (AO)

average MAC MSE iteration
~(n) . n—1) ~
SRERETAP (18) 3" - anguin 1 (6. gu)
k
wherey, = g (3%, €0, +1x)gx. Note now that replacing ) o oer, (5(”*1)7gl(€")) VE, (21)
gr in (I8) by gMMSE given by [I#), leads td(15). Therefore,
(@3) is the minimizer of[{Z3) and(18). converges to the global optimum &f{20), as showr{in [19].

Finally, the obtained dual MAC equalizers can be trans-
formed into the BC precoders by applying the average MSE
BC/MAC duality [see [[(IR)]. Afterwards, the BC MMSE
So far, we have found the MMSE vector receivers ifeceive filters can be updated for these BC precoders. The

the MAC, {g}®F};*,, corresponding to the BC precodersierative process that alternates between the optimizatio
{pi}_,. We now search for the optimal MAC receiversgyoth filters is referred to as AO.

{gx}¥_, and power allocatiorg that minimize the transmit

power (subject to the QoS constrairM;I\/ISEiC < 27Pk)

for given normalized precoders;,} X ;. Due to the mutual . o
dependence ofg;.} X, and &, we have to jointly optimize Algorithm [ presents the steps to solve the optimization
both of them. problem [ID) according to the ideas presented so far.

To that end, we rely on standard interference functibns,[19] Recall that we assume and fy, |, (hi|v) are known at
[@]_ Interference functions Concise]y describe the frammk the transmitter according to th imperfect CSIT model. Since
of the system requirements depending on the power allatatfdosed-form expressions of the expectations[in (20) are not
as the vector inequalit¢ > f(£). To ensure that the fixed known for general channel models, we evaluate them by
point iteration¢ "+ = £(¢)) converges to the optimal so-Using a Monte Carlo method. To that end, we generdte

lution for &, the functionf(-) must be a standard interferenc&hannel realizationa ™ ~ fp, |, (Ri|v), m =1,...,M, and
function, i.e., it satisfies introduce the matrid}, = o, ! [h,(gl), e h,(cM)] to collect the

A. Power Allocation

B. Power Minimization Algorithm



M dual MAC channel realizations. We also defif}8’ as the Algorithm 1 Power Minimization by AO
k-th user scalar MAC precoder for given channel realization;; ¢ ., initialize p'*, Vi
h{™. Collecting thet!™ we get the normalized precoding ». repeat

diagonal matrix 3. (< (+1, execute commands for alle {1,..., K}
I (1) (M) for m=1to M do
T, = ﬁ diag (tk NN ) , (22) flgz,m)<_ kl\/IMSE,(E,m) [see [5)]
end for

1M (m)2 .
whereg, = 57 32,1 [t |? is thek-th user average transmit . ,(tm) . BC_to-MAC conversion [see S T1B]
power for givenw. Therefore, we calculate the expectations as t=1) 1 ZM |t(e,m)|2

. k M m=1 1"k

=L1LH,T.1andO®, = L H,T,TIH.
py = 37 HiTk k= 37 HTeT, Hy, T,(f)<— 1 diag(t,g’l),...7tg’M))
13

S A

We start with an initial set of BC random precoderSQ: =)
{{)A'(Kj)sé%}) (line 1). Wg next calculate thé/ BC_: re_ceivs)rs 10 fz(f) - 2pk';k(€(e—1))
fe corresponding to the channel reallzatlohé
(line 5). Applying the BC/MAC duality we determine the
dual MAC precoders (line 7). The normalized matrix of MAC _
precoders is obtained after the execution of lines 8 and 9. 13:

[power update]

11: g,‘f’ + update MAC receiver [se€(114)]
for m=1to M do

tl(f-,m) - /&(f) [T](f)]m,m [include power allocation]

. . - 14:  end for
The following two steps (lines 10 and 11) perform it- = 0 .
eration [21) to update the power allocation and the dudP Pr MAC to BC conversion [see Sec. THB]

. ; (&) _ ¢(e-1)
MAC receivers. Observe, however, that we do not include tHe" until [|€ 3 h <9

loop arising from the optimization i (21). The reason is to
avoid convergence problems, which may occur even when the
problem constraints are feasible, caused by the non-iéigsib where 8, = E[0xt;|v] and o2 is the thermal noise vari-
of the power minimization problem for given MAC precodergance in the dual MAC. We now introduce the matiix =
Tk(g) at the ¢-th iteration (cf. [2D)). Therefore, considering61,...,0x]diag(t1,...,tx) and rewrite[(ZB) as follows

a single loop we avoid this undesirable effect, as can be

MAC

appreciated from our simulation experiments (cf. [39]41 MMSE,~ =1 — [E[Y"|v] (24)
After the power allocation and the receive filters update (E[TTH|U] +GQIN)—1E[T|U]} .

(lines 10 and 11), the new MAC transmit filters are determined kK

in Iine_13. Finally, we_switch_b_ack to the BC in line 15. Due t%ence, the sum average MMSE is
the existence of a unique minimum [0{10), and to the fact that
every step in the algorithm either reduces the average MMSEs K MAC
or the total transmit power, the convergence of the algorith > MMSE; = K- (25)
guaranteed when the QoS constraints are feasible (se®isecti i=1
V). To check whether we have reached the desired accuracy — tr (E[TH|U] (ErT" ) + 0Ty) " E[T|v]) :
or not, we set a threshold (line 16).

Note that the algorithm computational complexity is approiWVhen K > N and the channel knowledge is perfect at both
imately linear in the number of channel realizatiod¥,\7), ~sides, [2b) can be made arbitrarily smalll[38]. However, due
since the sizes of the matrices to be inverted in lines 7, 15 &i® the imperfect CSI at the MAC receiver we cannot reduce

11 are small compared t/, i.e. K < M and N < M. the average MMSE as much as desired.
Expression[(25) allows to determine the region where the
IV. PROBLEM FEASIBILITY feasible average MMSEs lie. Indeed, setting the MAC thermal

In this Section we analyze the feasibility of the powenoise variance to zero (i.ez> = 0) we obtain the following
minimization problem [(10). Due to the imperfect CSI adower bound for the sum average MMSE for any finite total
sumption, interferences cannot be completely removeden taverage power allocation
BC. Consequently, increasing the total transmit power does x
not necessarily lead to a.re.zducnon of the MMSES for all .the MMSE;VIAC > K — tr{ X}, (26)
users because, although it increases the received powtsoit
increases the power of the interferences. In certain swenar
the QoS constraints may require that some users achieve Mfere X = E[XH0](E[YTH|v])~* E[Y|v]. The bound is
MMSE values that may be unfeasible even though the transi@éstymptotically achieved when the powers for all users reach
power is increased unlimitedly. In the following we presant infinity. Therefore, we can formulate a necessary condition
feasibility test to determine whether it is possible or rmt tthe feasibility of QoS targets: any power allocation withitén

. . —————MAC : e vAC P
accomplish the QoS constraiM&VSE, ~ = 277+, sum power achieves an MMSE tup{®MSE,” } X, inside

Let us start considering the average MMSE in the MAC the polytope

=1

K -1 K
MMSE, "~ =1 — 6} <021N + Y Elltl* 0,61 v]> 0., P= {{MMSE;VIAC KLY MMSE™ > K — tr {X}
1=1 1=1

(23) 27)



We now show that for each MMSE tuple A there exists V. RATE BALANCING

a power allocation vectog. To do so, we leverage on the g, tar we have considered the design of the precoders
uniqueness property of the fixed point in the interferencg,y receivers in a MISO BC to minimize the transmit power
functions, meaning that if the fixed point exists it is uniqugie fulfilling certain QoS constraints. However, when the
and, as a consequence, there is a bijective mapping betwegyk constraints are rather stringent, the problem may be

the power.allocatioq and the average MMSE targets. unfeasible. We now address a different problem referred to
Let f(a;c) be a multivariate function that depends on gg 56 balancing in the literature, in which the per-user

vector of independent variablasand a vector of parameters{,}wer(,jlge rate constraintg;}X , are scaled by a common
. . . o . - . g =1
c. Such function has a fixed point = f(a; c) if it satisfies 5.tor < R+, and a power restrictioRy is imposed. Observe
the following set of sufficient conditions [42] that, unlike the power minimization formulation, we canael
f(0;¢) >0, (28) the per-user requirement so that the problem is alwaystfigasi
Ja >0 suchthat f(a;c)> a, (29) For such a formulation, we propose to jointly optm_nze the
balance levek together with the precoders and receivers for

3b>a suchthat f(b;c) <b. (30) given transmit powery.
We now defines;, = 277+ as the MMSE targets in the Using the lower bound[{7), the rate balancing problem
MMSE QoS constraints[18) and = [e1,...,ex|" as the formulation reads as
vector that collects all such targets. We also introduce the K
following definitions max Elc(v)] s.t. E pi()|12| < P,
1 - {s(),pr (v), fir(hi) } 5, [ ( )] ;H ( )H2 -
Pk ﬁek’ (31) and E [MSEEC} <9~ E[c(v)]Pk7 k. (38)
1 - - . . . .
P, = — E[(Ortr — 01)(Oxty — Ok)H|v], (32) Following an argumentation similar to the one presented in
5}’; Sectiongdl andTll, the probleni_(B8) can be solved pointwise
for eachwv using the MSE duality and the interference func-
— B, aSH 2
Aj = 2&451 + ;@%% +oly, (33) tions. Hence, we rewritd (88) as
1= J
I
Whlc_h, applying the matrix inversion lemma, enable us to max ¢ st (&) < 9o, anngi < Py
rewrite (23) as (g}, & P
————MAC _ —1 39)
MMSE, = (1+ &ALl : 34 . , (
_ F ( _gk(’ok k #r) (34) where¢ = [&1,...,&k]T is the power allocation vectoy;,
and hence define the following functions are the dual MAC receivers anf, (¢) are the interference

Do) e (=1 Hp—1,_\~1 functions as given by (19). Similarly t6 (20), this formudat
Iu(&;e) = (5’“ 1) ((’ok Ay (pk) k- (35) considers given MAC precoders. AlgoritHth 1 can be used to
We next show that the fixed pointg = fk(§;€) corre- - determine optimum filters for givea but it does not provide
spond to the optimal power allocation vect@¥" for which  the optimums. Our proposal is to combine it with a bisection
MMSE," ~ = &, Vk. To do so, we show in the following thatsearch to solvd (39).
the functionf(&;e) = [f1(&;€),. .., fx (& ¢e)]T satisfies the  Indeed, let us start setting two feasible rate balancingesl
fixed point conditions[{28)[(29)[ (B0). ¢t and <M such thatst < ¢t < (M. Let ¢- and £ be the
The first requiremen{(28) is easy to show because whegptimum power allocation vectors corresponding't@andc™,
the transmit power ig = 0, the inter-user interference dropsespectively. Such optimal power allocation vectors §ats

out and 2 the one handl—’“éLEL) — 2757 and —I’“éﬁH) — 27<"7%, and on

1-— Ek g Sk >k
Ju(0:€) = — ol 36) " the otheryolt, eb < 301, ™ < 01 ¢, as we will show
in the following.
Note thatf,(0;¢) > 0 as long ad) < ¢, < 1. Moreover,[(36)  Now, we introduce the average MMSE balancing factors
also provides a lower bound fgf.(&; €), i.e., for any€ > 0 ¢ — 2;:: — 2-7(-1)_ Note that increasing the balance
1—¢,p o2 level ¢, decreases the scaling factoeg, Vk. Let ek and
fu(&e) 2 er el (37) et be the MSE scaling factors correspodingdto and <M,

i opt - _H
The second conditiofi(29) is also easy to show. Indeed, [ESPectively. Note thaty > ¢;” > ¢’
a be the minimum element of (0; &). Hence, f(¢&; ) > al To proof that a bisection search can be performed, we

i L _ opt . . .
for any ¢ > 0. Note from [3Y) that > 0 as long as, < 1. con5|de_rek = aey, leh a > 1. The é:p(t)nstralnts mI%(gg)
Observe now that the power allocatign= a1 with o < g '€ fulfiled with equality whene, = ¢~ and & = £

opt . . .
gives f(al;e) > al > al thus satisfying[{29). Hence, ae;r 277+ = le—gm—) meaning that increasing the
The proof for the last conditioh (80) is more involved and/SE targets results in a decrease in the transmit power (i.e.
can be found in Appendix]C. & = a1, k) when we keep the interference constant.

In summary, the power minimization problefn{10) has ®loreover, notice that keeping the interference constatst se
solution, i.e., the MMSE QoS targets= [2771,...,277x|T an upper bound for the interference with the reduced transmi
are feasible, if and only it € P, with P defined in [2F). powersI,(a~'€%) < I;(¢°PY). Therefore, the power needed



to fulfill the constraint with equality is lower than—1¢°" ~Algorithm 2 Rate Balancing

and1%¢t < a~117¢% < P, holds. 1: ¢« 0, initialize ¢&(©), ¢H:(©0)
We now prove the relationship in the reverse direction, that: find £¢™(® < ¢-©) via Alg. [ [power min.]
is, a power reduction translates into larger scaling factors: repeat
er. Let us consider the power reductio¢®™ with A = 4 /(+« ¢+ 1
diag(ai, - ,ax) < I, that leads to certain average MSE scal-5:  ¢(9) « /¢L.(¢=1)¢H.(¢=1) [new candidate]
ing factoré, for some usek, i.e., 6,27 P = Tlfoptjk(Ag"pt), 6. find ¢ for ¢ via Alg.[D [power min.]
Since no assumption about userhas been made, we can 7: if Zfilgl@ < Py then
focus on usek’ such thata;, < aj Vk. Consequently, 8: PO @ L) ¢ LD [weights update]
9. else
2P — Iy (Afstpt) > Iy (ak’i(:pt) S 10: <'-’.(f) — O, MO  H.(=1) [weights update]
Q& Ak & 11:  end if
L (£ 12: until |Zfi1 51.“) — Py <9

o = w2 . (40)
k/

~ t t t H . . . .
Therefore,é, > ¢y, for £ > A£°. We have previously proposed algorithms. First, let us introduce the followémgpr

shown that relaxing the balancing Ievéj” implies a power model corresponding to the imperfect CSIT
reduction with respect t&°. Hence, we conclude that a

power reduction entails a lower balancing leveland vice- hy, = hy + hy, (41)
versa, when the precoders, receive filters, and power éilboca
vectors are optimum for every balancing level.

Finally, reducing the gap betweeh and¢" results in the
optimum balancing levet® for the total average transmit
power1T¢%P = p,.

where h;, = E[h;|v] and hy is the error. This flexible
model can represent, for example, the errors due to cali-
bration in TDD systems or the quantization and estimation
errors in FDD systems. We assume that the imperfect CSI
error is zero-mean Gaussian, iR, ~ Nc(0,Cy) where
Cy. = E[(hi, — hy)(hy, — hy)®|v] is the k-th user CSI error
A. Rate Balancing Algorithm covariance matrix. Recall that and f,,|,(hx|v) are known

Algorithm [2 presents the steps to solve the optimizatio"]lnt the transmitter, although the specific realizationshgf

problem [[39). The algorithm is initialized with two balangi :;md . ar? nt(:' Atr:]cordlrrg tollth?i.;gs)unlpt’éon, |tﬁ|(§n)p(f)55|ble
levels ¢-(© and <M (line 1). Next, their corresponding > J€nerate e channel realizat = I+ Ry, 0T

vector power allocation vectorg™(® and ¢~ are com- k :Q{(},;)' -, K} andm = {1,.. "M}_' with hy, = Elh[v]
puted via Algorithm[L (line 2). Observe that the optimunff‘ndhk NNC(O’Ck)' In our scenario, the number O_f USers
lies in between the initial balance levels. Next, the algoni 21d transmit antennas wefé = 4 and V = 4, respectively.
enters a loop that first computes a new balancing level A& 9eneratedV/ = 1000 channel realizations considering
the geometric mean of the balancing levels obtained in t = Iy, and hy ~ Nc(0,1y),Vk. We also considered
previous iteration (line 5). Then, the power allocationteec “n. — 1, Vk.

for this new balancing level is computed via Algorithin 1 din

6). Next, we check whether the power obtained is lower thaq power Minimization

the power constraint or not (line 7) and update the balancing

levels accordingly (lines 8 and 10). Finally, we test if th? ; : o
. . ion problem[(B) is considered. We choose users with differe
current power has the desired accuracy (line 12). rate requirements, vizg, — 05146, ps — 0.737, ps = 1

The proof for the convergence of Algorithoh 2 depends on - : .
the feasibility of the initial average MSE targéIs<H'(°)Pk k. and p, = 0.2345 bits per channel use, respectively. These

Indeed, recall that the feasibility region is described éttiHn (rjeoﬂgienr.n;nt:s %o;rengp(;n((j)tGO t?seZ)Igo;vggéagige:tsolr;;he_rl;lﬂé\/ls
IVl as a bounded polytope and that the initial balancing & % Aléo’rithnﬂl is set t6 — 10-2. Initial p.rec.oders

L,(0) H,(0) (0) < gopt <
levels ¢ and ¢ are chosen such ag S ST S gre random.

H.(0 e H(0) L
C_';lj(f!;'peknce' 27 o vk lies |nS|de_ thg polytope so does Fig.[@ shows how the MMSE for all users converges to
2 vk for any O.S “ <11' Tak(lgr;g _mto accouqt that the desired targets;. Since the problem is feasible, the
the average MMSE given bygTI’“(s ) Is monotonically minimum total average power will be reached when the
decreasing int”), the bisection procedure reduces the gagenstraints in[{20) are fulfilled with equality. As can be see
(O — L) and [1T¢® — P,| at every iteration until a in Fig. [, the first steps go in the direction of fulfilling the
desired accuracy is achieved. requirements and the MMSEs are reduced. Nevertheless, the
subsequent iterations increase the MMSEs until the targets
er are reached for all users. Correspondingly, as shown in
Fig. [3, the total average power is initially abové dB and

In this section we present the results of several simulatidrgradually reduces throughout the subsequent iteratioris
experiments carried out to show the performance of tlenvergence is reached atdB. The total average power is

In this subsection the Algorithid 1 that solves the optimiza-

VI. SIMULATION RESULTS
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between the average rates obtained with AlgorifAm 1 and the
average rate targets corresponding to the QoS constraints ¢
be also observed from Figl 4. Moreover, we also include i thi
figure the rates obtained employing the SINR approximation
utilized in [26] and widely employed afterwards (e.@! [3],
[20], [13]). This approach determines the average rates as
log,(1 + SINRy) where SINR;, is obtained from applying
separately the expectation operator to both the numeratbr a
the denominator of the SINR, i.e.,

" 02+ PUE [k o] pi
N i#£k £ kTt Di

Fig.[ shows the resulting values farg, (1 4 SINR;,) along

the iterations in Algorithni]1. Note that the average rates fo
the SINR approximation are larger than the true averags rate
for users2 and 3, but smaller for userd and4. Hence, it

is not possible to guarantee the QoS restrictions. Contrary
this, fulfilling the MMSE-based targets, as proposed in our
approach, ensures average rates larger than the targets.

(42)

B. Rate Balancing

This subsection focuses on the performance of Algorithm
[2. This algorithm solves the optimization problefm](38) by
means of AlgorithnTIl and a bisection process for which it
is necessary to decide two starting poinfs(?) and ¢™(©),
such that the optimum balancing level lies in between, i.e.,
¢B(0) < cort < (H.(0) The rate targets employed in Subsection
[VI-Al are also used in this section. We scale them with a
common factor to obtain the rate targets. The threshold to
check convergence is set do= 10~2.

Taking into account the numerical results obtained in Sub-
sectior VI-A, we consider a total average transmit powes of
dB leading to an expected balancing level of approximately
one. Therefore, we pick™(® = 0.6 and ¢™(© = 1.3,
from which ¢°P' € (0.6, 1.3]. Fig.[d plots the average power
versus the balancing level for the different iterations foé t
bisection algorithm. The two initial values correspond he t
points located on the left and the right vertical axis in the
figure. Note that the searching interval reduces as theitigor
progresses until it converges after five iterations to thmtpo
¢OPt=0.99659 and Py = 3.0072 dB. This is in accordance to
the experimental results obtained in Subsediion VI-A.

We also performed a computer experiment to compare
our approach to that presented in][29], where a duality that
allows to solve several optimization problems considelng
scenario where the users and the BS share the same CSI. More
specifically (see Section V.B of [29]) the following weigHte
MSE Min-Max problem is addressed

———BC K
min max@ s.t. Z ||pJ||§ < Px (43)

K
{Pe,feli, ¢ W; =

dramatically reduced during the first five iterations whereavhere w; is the weight for theith user. Robust precoders

the improvement is marginal after iteratid.

and filters are designed via an AO process, and the power

Fig. [@ shows the evolution of the average rates over tAdocation is calculated solving an eigen-systeém| [27]. The
iterations. Recall from[{7) that the actual average rates a@ptimum of [43) is obtained after a few iterations and fufill

lower bounded by the MMSE-based targetsi.e.,E[Ry| v] >

K Ipill? = Py andMMSEL Jwy, = w®, Wk (see Fig[B).

—log,(cx), as discussed in Sectidnl Il [se€l [3]]. The gafhe error precision for the min max ratio® is 10~—*.
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This min max problem can be seen as a balancing proble | | L JRobust precoders %

with w; = ;. Thus, Fig[¥ represents the comparison betwe:
the solutions employing robust transceivers and the one p 0.7 1 7 I
posed in this work. As can be seen in the figure, the propos £ 0.6 | % -
Algorithm [2 performs better becaus® = 0.99659 is closer % 05 | 7
thanw®" = 1.1442 to 1. However, the robust filters from [29] =, |
are designed sharing imperfect CSI using a computationa
cheaper algorithm.

vel

<03t
02 |

VII. CONCLUSION 0.1t

We focused on the design of linear precoders and receiv O et User 2 User 3 User4

to minimize the transmit power in a MISO BC while fullfiling
a set of per-user QoS CO_nStramtS eXpresseq In terms FPf 7. Robust Transceiver: Average MMSEs for proposed Bigs. Average
per-user average rate requirements. We explained that Qﬁ%SES for Robust Transceivers.
constraints can be substituted by more manageable rastsct
based on the average MMSE. We next exploited the MSE
BC/MAC duality to jointly determine the optimum transmit We now approximate the MMSEumulative Distribution
and receive filters by means of an Alternating Optimizatiohunction (CDF) by a beta distribution. Fid.] 8 illustrates the
(AO) algorithm. Additionally, the optimum power allocatio tightness of such approximation showing the CDF of the
is found employing the so-called standard interferencefuntMMSE for [p|> = 1 and¢® = 10, and the CDF of a beta
tions framework. We also analyzed the problem feasibilifigndom variable withy = 6.54162 and 3 = 1.12133.
to ensure convergence of the proposed algorithm. MoreoverWe next introduce the PDF.(MMSE) and the auxiliary
we addressed the balancing problem combining the propog@diablec = MMSE. Now, the expectation of the logarithm
algorithm with a search. We carried out simulation exper@f € is 1
ments to show the performance of the proposed methods and E[ln(e)] = / fe(e)In(e)dz.
compare them with existing solutions in the literature. 0

Considerings has a beta PDF, the logarithm of the geometric

APPENDIX A mean reads as

AVERAGE-MMSE-BASED LOWER BOUND GAP Elln(e)] = ¢(a) — ¢ (a + A),

In this appendix, we study the gap betwe(_an the average r\?vﬁweerezp(x) is the digamma function. Such a function can be
and the average MMSE lower bound in the inequality (7). Far : 1
L approximated as)(x) ~ In(x + 5) for z > 1. Then, the
simplicity reasons, we focus on the case where- N = 1. In average MMSE lower bound is a2 roximated as follows
such case, the MISO BCI(1) reduces t8iagle-Input Single- g PP

Output (SISO) system model. Considerimg~ N (0, 1) and _ 1 5
n ~ Nc(0,0?), the average MMSE is Eflog, (¢)] ~ In(2) log, { 1+ o—3
o? Considering the expectation of the beta distribution
E[MMSE| = E hp2 + 02| (44) s Ele] = +45 the average MMSE lower bound is
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1) N > K: This is the case where the number of transmit

---;-MMSE ‘ / antennas is greater than or equal to the number of users. We
0.9 1 beta ] start searching for an upper bound §@ar&; €), or equivalently,
0.8 | 1 a lower bound for the inverse term ifi {35). To do so, we
1 . . .
07 | . : i introduce the following matrices
1
06 [ .I ] ch = [(Pi17 M) Soinl]'L.j#ky vj’ (45)
~ ‘l — .
205 | A Ey, = diag(&i)izk, (46)
= 7
°04 ¢ U ) which allow us to rewrite the second summand [in] (33) as
03 | , Fs ] S ik Sivipl = By Ep B If we also define
02 | 4 ] K
01 | y ] &= {Bi+0Ly, (47)
0 ‘ ™ l ‘ i=1
0 0.2 04 06 0.8 1 we can rewrite the matrixd,. as
A, =&+ B, 5B (48)

Fig. 8. MMSE Cumulative Distribution vs. Beta CumulativesBibution. ] o ] o ]
Applying now the matrix inversion lemma it is possible to

write the inverse ofd,, as

—log,(Ele]) = ﬁ In(1 + ﬁ). Hence, the gap between the A1 1 —_ Hoa1l 1 Hae_1

n a . =& " |Iy — B (E+ B;® "B; B;® .
average rat@&[R] and the lower bound is k { v =B (5 + By K k }
Defining ¢, = & /2, and D; = & '/?B; leads us,

E [R] — [~ log, (E[MMSE])] eventually, to the lower bound

) lné) - <1 Ta ? %> B lné) . <1 i g) PLAL e > Py (IN - D (D¥Dy) ! DE) Y, (49)

= ﬁ [ln (1 + f %) —1In (1 + g)} and the co;responding upper bound B
é fulese) < <22 (i (v = D1 (DFDY) " DF) 1)

T (1 ' m> . Notice that matrix D{' D;, is non-singular whenV > K.

Observe that the equality in the last expression holds for
& — oo, Vk. Since f(&;e) > al > al forany & > 0
sets a lower bound, we only have to fibdsuch thatb, >
APPENDIX B (£ — (¢} (I — DE(DED;) ' DH)yp,)~! to complete the
INTERFERENCEFUNCTION PROPERTIES proof for the third requiremeni(B0) whel > K .
. . . . 2) N < K: We now focus on the case in which the number
V_Ve_ show in thls_appendlx tha (5_) as given by IE_IQ) of transmit antennas is smaller than the number of users. The
satisfies the properties of a standard interference fumctio power allocation is set td — aby, whereb, belongs to the
Observe thayy, — & |gip, | with y,, from (I8) is positive simplexS = {a|Y, zx = 1 anday > 0 Vk}. Fora — oo
and increasing i§. Then, it is straightforward to see that(€) (or o2 — 0) and by k> 0, we can rewﬁte[(35) as
is positive. Moreover, since both terms inside the outeeiisg

A o 1
of (I9) are decreasing ig, the whole expression increases £ (bos€) i= Th—1
k ) -

with & and satisfies monotonicity. -1
¢ Y ¢I§(Zbo,i4*i + ;k bo,jsojsO?) by,
1 J

In our example this givekg, (1 + 0.0121) = 0.0174.

To prove scalability we consider the scatar- 1. Hence

1 a2 o\ The average MMSE targets collected énhave to satisfy
alg(§) =a <—+ |k 1| (yk — & | g ) ) > equality in [26) fora — oo, i.e., a tuplee that lies in
&k . . .
the region that separates feasible from unfeasible targets

-1
1 g8, oY) B = {e]1Te = K — tr(X)}. Note thatby = £ (bo;€) is a
ay R (Z’“ = & g1 pu| ) = Ix(af), fixed point of £°° but we need to verify the bijective mapping
in order to complete the proof, that is, for any average MMSE
where zj, = QE(Zfil &0, + %IN)gk- target tuples € 3 there is a unique power allocatidn= «aby.

First, we define the SINR as SINR 1/MMSE, "« — 1.
In the limit casea — oo, the expression for th&ignal to

APPENDIXC Interference RatiSIR) is

PROOF FOR THE CONDITION(30)

K —1
The proof for the condition{30) will be divided into two  SIR, — bo,k‘PE(ZbO,ifpi + Zbo,jsoj<p?) Pr
cases depending on the number of users and transmit antennas o i#k ' '
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from which we rewrite SIR = by ,(Qx(bo))~!. Thus, we [12] T. Bogale and L. Vandendorpe, “Robust Sum MSE Optinhirator
can use the properties of the functi@l(by) (see [37]) to

guarantee the existence and uniqueness of the optimal power

allocation for the balancing problem [13]
bo,
a st. —>— =rSlI Vke{l,...,K}. (50
I}«l,bfr Q. (bo) rSIRak { - ©0)

14
Since we established a relationship between the SIR and %he]z

MMSE""" when we let the power grow without restriction
(i.e. « — ), we use the bound fote to find the optimal [15]
balancing level for (50) via

K

1
3 TSR K —tr{X}. (51) [16]

i=1

The previous equation only has a single solution since the
functions(1 +r SIRy ;) ~* are monotonically decreasing with[17]
r > 0, e.g., if we obtain the SIR targets from MMSE targets
lying in the region of interesi3, (51) is fulfilled with » = 1.

Thus far we have shown that a unique power allocabiea

(18]

abg, with by € S anda — oo, always exists for any MMSE

tuple in the region that separates feasible and unfeasitgets

[19]

€’ € B such thatf(b;e’) = b. Note thatf(b; €) is decreasing
in € and we can prove that the third requireméni (30) is also

fulfilled for N < K due to the fact that for any target> &’

we have

(1]

(2]

(3]

(4

(5]

(6]
(7]

(8]

El

[10]

[11]

f(bie) <b. (52) [21]
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