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 

Abstract — The well-known bin-normalized frequency domain block LMS (NFBLMS) algorithm, although 

theoretically having very fast convergence speed, suffers from convergence to a biased steady state solution when the 

reference signal lags behind the desired signal or the adaptive filter is of deficient length. A modified FBLMS 

(MFBLMS) algorithm has been proposed with guaranteed optimal steady state performance at the cost of only one 

more FFT/IFFT pair. In this paper, the convergence behavior of the MFBLMS algorithm is analyzed using the theory 

of asymptotical equivalent matrices, and a theoretical eigenvalue spread is provided based on the first-order 

autoregressive (AR) model. It is found that the eigenvalues of the matrix controlling the convergence behavior have 

the tendency to be equally distributed, therefore the convergence speed of the MFBLMS is significantly higher than 

that of the time domain LMS algorithm for colored reference signal. Simulations are carried out to validate the 

convergence behavior predicted from the theoretical analysis. 

 

Index Terms—Adaptive filters, Frequency-domain implementation, Eigenvalue distribution, Convergence behavior 

 

I. INTRODUCTION 

The frequency domain block least mean square (FBLMS) algorithm is a computational efficient implementation of 

the block LMS (BLMS) algorithm [1,2]. The computational complexity of the FBLMS algorithm is significantly less 

than that of the time domain LMS algorithm because the fast Fourier transform (FFT) is used to calculate both the 

block filtering output and the update terms in frequency domain. Furthermore, when the step size of the adaptive filter 
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is normalized by the reference signal power in each frequency bin, the convergence speed of the normalized FBLMS 

(NFBLMS) algorithm can be significantly increased for reference signals with large power spectra disparity. 

Theoretically it has been proven that the NFBLMS algorithm is capable of equalizing all modes of convergence [1]. 

Optimization of the stepsize in each frequency bin has also been further discussed by several researchers [3-5]. Due to 

the above advantages, the NFBLMS algorithm is widely used in many applications that require both large filter length 

and fast convergence speed, e.g, acoustic echo cancellation, active noise control, channel estimation and equalizations 

[6-8].  

Although the NFBLMS algorithm has the significant merits of low computational complexity and fast convergence 

speed, its steady state value of the mean square error has been found to be increased in non-causal circumstances [9] 

and/or with deficient filter length [10]. An efficient modification of the NFBLMS algorithm, named as the MFBLMS 

algorithm has been proposed, which can guarantee the optimal steady state behavior with limited extra computational 

burden of one more FFT/IFFT pair [11]. The optimal steady state behavior of the MFBLMS algorithm has been 

demonstrated in the simulations in the reference, but its convergence behavior has not analyzed.  

This paper investigates the convergence property of the MFBLMS algorithm by using the theory of asymptotical 

equivalent matrices [12]. The first-order AR models are utilized to establish a theoretical eigenvalue spread of the 

algorithm, and the eigenvalues of the matrix controlling the convergence behavior are found to have the tendency to 

be equally distributed as that of an identity matrix, an indication of a good convergence behavior. Please claim the 

significance and potential impact of the new contribution? The method for understanding the convergence behavior 

can be used in broader areas? Better performance is obtained with the method and understanding?  

Throughout this paper, lower case letters are used for scalar quantities, bold lowercase for vectors and bold uppercase 

for matrices. Subscript “f” denotes frequency domain representation of each signal and “k” is reserved for the block 

index. 

II. ANALYSIS OF CONVERGENCE BEHAVIOR 

A. Review of the NFBLMS and MFBLMS algorithms 

Let x(k) = [x(kN-N), x(kN-N+1), …, x(kN+N-1)]T be the reference signal vector, where the superscript T represents 

the transpose operation, w(k) = [w0(k), w1(k), …, wN-1(k)]T be the N-tap finite impulse response (FIR) filter, and d(k) = 
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[d(kN-N), d(kN-N+1), …, d(kN+N-1)]T be the desired signal vector, then the error vector in frequency domain can be 

described as 

1

0,( ) ( ) ( ) ( )f N f f fk k k k    e FG F d X w ,                                                            (1) 

where F represents a 2N2N discrete Fourier transform (DFT) matrix, df(k) = F[01N, dT(k)]T, Xf(k) = diag[xf(k)] = 

diag[Fx(k)], wf(k) = F[wT(k), 01N]T and 

 0,
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The commonly used constrained filter update equation in frequency domain is given by [2] 

1 H

,0( 1) ( ) ( ) ( )f f N f f fk k k k  w w FG F Μ X e                                                             (3) 

where the superscript H represents the conjugate transpose operation, μ is a constant step size, Mf = diag[ξ] is a diagonal 

matrix with ξ representing the vector containing the normalizing factors for each frequency bin, and 
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To accelerate the convergence speed, the normalizing factors in Mf can be set as the reciprocal of the reference signal 

power spectrum as  

T

0 1 2 1

1 1 1
diag , , ,f

NP P P 

   
   

   

M ,                                                               (5)  

where Pi represents the power spectrum of the ith frequency bin, resulting in the normalized FBLMS (NFBLMS) 

algorithm. Although the NFBLMS algorithm has been proven to be capable of equalizing all modes of convergence 

modes [1], a deterioration of the steady state behavior has been found for colored reference signal in non-causal 

circumstances and/or with deficient filter length [9-10]. To solve this problem, the MFBLMS algorithm updates the 

filter with [11] 

1 H

,0( 1) ( ) ( ) ( )f f f N f fk k k k   w w Μ FG F X e .                                                     (6) 

where the difference between Eqs. (3) and (6) is the position of the matrix Mf. The MFBLMS algorithm can guarantee 

optimal steady state performance at the cost one more FFT/IFFT pair [11].  

Applying inverse Fourier transformation on both sides of (6) leads to 
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where e(k) = [e(kN), e(kN+1), …, e(kN+N-1)]T, wnc(k) represents the non-causal part of the adaptive filter which does 

not influence the filtered output. 

1 21 H
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 
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X F X F
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                                                                    (8) 

is a circulant matrix whose first row is x(k), and 
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                                                                         (9) 

is also a circulant matrix. The updating of the causal part of the filter can then be described as  

1 2( 1) ( ) ( )k k k  w w Μ X e .                                                                      (10) 

Taking expectation on both sides of (10) yields 

     1 1( 1) ( )N NE k E k    w I Μ R w Μ r .                                                         (11) 

The steady state solution is E[w∞(k)] = R-1r, and obviously, the MFBLMS results in an unconditional convergence to 

the Wiener solution. From Eq. (11) it can also be seen that the convergence behavior depends on the matrix M1R, 

hence the convergence behavior can be analyzed by investigating the eigenvalue spread of this matrix. 

B. General analysis of an ARMA process 

This section proves ……… for systems that can be described by minimum phase stable autoregressive moving 

average (ARMA) models. The signals can be generated by passing a unit-variance white noise through a pole-zero 

transfer function  
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where σ2 represents the variance of the signal, pi and qi denote the pole and zero of the transfer function respectively. 

Note that the modulus of both pi and qi are smaller than 1. The autocorrelation sequence of this ARMA process is 

dominated by damped exponentials (from the real poles) and/or damped sine waves (from the conjugate complex poles) 

[13], thus it is reasonable to assume that the autocorrelation of the reference signal is a sequence of 
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  , 1 1 0 1 2, , , , , , ,x m m mr r r r r r rr ,                                                                (13) 

and ri = 0 for |i| > m, so that for a sufficiently large N > m, the autocorrelation matrix is banded as [12] 

  T

0 1 1 ( 1)toeplitz , , , ,x m N mr r r   
   R 0

                                                           
 (14) 

where toeplitz{r} stands for a symmetric Toeplitz matrix having r as its first column. 

The Fourier transform of the autocorrelation sequence rx is the power spectrum of the reference signal  

   ( )
m

jk

x x

k m

P r k e  



                                                                         (15) 

while the reciprocal of Px(ω) is the power spectrum of the ARMA process with the transfer function of 1/H(z). The 

transfer function of this inverse ARMA process is also minimum-phase stable, and its autocorrelation sequence can 

also be assumed as 

 , 1 1 0 1 2, , , , , , ,m m mr r r r r r rr ,                                                                 (16) 

and 0ir  for i m , so that for a sufficiently large N m , the autocorrelation matrix of this ARMA process is also 

banded as 

  T

0 1 1 ( 1)toeplitz , , , ,x m N mr r r   
   R 0 .                                                          (17) 

When the normalizing factor is set proportional to the reciprocal of Px(ω) as shown in (5), from the definition of (9), 

the matrix M can be described as 

  T

0 1 1 (2 2 ) 1 1circulant , , , , , , , ,m N m m mr r r r r r  
   M 0

                                           
 (18) 

where circulant{r} stands for a circulant matrix having r as its first column. From (9), (17) and (18) it can be found  

that  

 1 xM R .                                                                                   (19) 

It has been proven that the Toeplitz matrix of (14) is asymptotically equivalent to a circulant matrix as [12] 

  T

0 1 1 ( 2 ) 1 1circulant , , , , , , , ,m N m m mr r r r r r  
   C 0 .                                                    (20) 

As described in [12], this asymptotic equivalence is abbreviated as Rx ~ C. Moreover, from the properties of the 

asymptotic equivalence matrices as shown in [12], 
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 1 1~x

 
R C                                                                                   (21) 

if the norm of 1

x


R  and C-1 are both bounded for any N.  

The matrix C can be decomposed as 

 1

N N N

C F P F                                                                             (22) 

where FN represents a NN DFT matrix and  

  T

0 1 1 ( 2 ) 1 1diag , , , , , , , ,N m N m m mr r r r r r  
   P F 0                                                (23) 

is a diagonal matrix whose diagonal elements are the power spectra of the reference signal. It is straightforward to find 

out that 

 

 
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T
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.                                      (24) 

Comparing (17) with (24), it can be found that 

 1 ~ x


C R .                                                                                (25) 

Then from (19), (21) and (25), it can be found that 

 1

1 ~ x


M R .                                                                             (26) 

Note that xNR R , so that 

 1 ~ N NN ΜR I .                                                                         (27) 

Eq. (27) shows clearly that the eigenvalues of the matrix M1R has the tendency to be equally distributed as that of 

an identity matrix, and this is the reason for the good convergence behavior of the proposed algorithm. However, as 

pointed out in [12], the result is rather general and does not indicate anything about the convergence of the individual 

eigenvalues. It is possible that although most of the eigenvalues converge to N, some higher or lower eigenvalues still 

exist. Thus further assumption about the reference signal is needed to obtain stronger results. 

C. Theoretical eigenvalue spread with the first-order AR models 

The first-order AR (AR-1) signals are equivalent to the first-order Markov signals, and they are general and practical 

signals that have often been used in the analysis of adaptive algorithms. The normally used autocorrelation matrix of 

the AR-1 signals is  
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where |ρ| < 1 is the pole of the system. The Z-transform of this autocorrelation sequence is 
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and the power spectrum of the corresponding signal is  
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where  is the … The eigenvalues of Rx can be analytically expressed as [14] 
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where 0 < γ0 < π/(N+1) < γ1 < 2π/(N+1) < γ2
 < … < γN-1 < Nπ/(N+1), and N is  a large number for highly correlated 

signals. The eigenvalue spread of the matrix Rx controls the convergence behaviour of the time domain LMS algorithm, 

and it approaches (1+|ρ|)2/(1-|ρ|)2 when N is sufficiently large. 

The reciprocal of the power spectrum of (30) corresponds to an autocorrelation sequence whose Z-transform is (1-

ρz-1)(1-ρz)/(1-ρ2). Accordingly, the autocorrelation sequence is 
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Thus when the normalizing factor is set as (5),  
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Note that (33) is the same as the analytical inverse of the autocorrelation matrix (28) as depicted in [15] except the first 

element of the first row and the last element of the last row.  

Multiplying (28) and (33) yields 
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M R  .                                                     (34) 

Applying the Girschgorin Circle theorem [16] to the middle N-2 rows of the matrix in (34), it can be deduced that N-2 

eigenvalues of M1Rx are equal to 1. Denote the rest 2 eigenvalues as λ0 and λ1, then from the definition of the trace of 

the matrix in (34), it can be found that 

 0 1 2

2

1
 


 


.                                                                       (35) 

On the other hand, the matrix (34) can be transformed to an upper triangular matrix by adding scalar multiples of the 

last column to the first N-1 columns, so that the determinant is  

  
2( 1)

1 0 1 2

1
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 


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
M R .                                                           (36) 

From  (35) and (36), the rest 2 eigenvalues of the matrix (34) can be calculated out as λ0 = (1+ρN+1)/(1-ρ2) and λ1 = (1-

ρN+1)/(1-ρ2). Both of these two eigenvalues approach 1/(1-ρ2) for sufficiently large N, leading to a eigenvalue spread of 

1/(1-ρ2) significantly smaller than that of Rx especially when the signal is highly correlated. Note that R = NRx, so that 

the eigenvalue spread of M1R is the same as that of M1Rx. Interestingly, this eigenvalue spread happens to be the same 

as that of the transform domain LMS algorithm using the … (DST), which is proven to be the best among all the 

transform domain algorithms for AR-1 signals [17]. Considering the computational efficiency, the MFBLMS algorithm 

is a better option for steady state performance critical implementations. 

 Few general comments based on theoretical analyses, comparisons and discussion with the existing algorithms such 

as NFBLMS and TDLMS … ….   advantages and disadvantages  
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III. SIMULATIONS 

The eigenvalues of the matrix controlling the convergence of the NFBLMS algorithm has been proven to be equally 

distribution in [1]. From the above analysis, although the eigenvalue distribution of the matrix controlling the 

convergence of the MFBLMS algorithm is not as ideal as that of the NFBLMS algorithm, it is significantly better than 

that of the time domain LMS algorithm (abbreviated as TDLMS hereafter) for colored reference signals. Several 

simulations are given in this section to validate the theoretical analysis. The step sizes for all the following simulations 

are carefully chosen close to the upper limits to guarantee both the fastest convergence speed and stable steady state 

behaviors, and all the results are averaged over 200 independent trials. 

A. Deficient filer-length case for AR-1 reference signals 

In this simulations, the reference signals were generated by passing Gaussian white noise with unit variance through 

two transfer functions H1(z) = 1/(1-0.9z-1) and H2(z) = 1/(1-0.99z-1), leading to AR-1 models with the correlation 

parameter ρ = 0.9 and ρ = 0.99 respectively. The desired signal was generated by passing the reference signal through 

a 128-tap bandpass filter with passband of [0.2π, 0.5π]. A 100-tap FIR filter was utilized, resulting in a typical deficient 

filter length case. The eigenvalue spread of these two AR-1 models for different algorithms are shown in Table 1. It 

can be found that the eigenvalue spread of both the NFBLMS algorithm and the MFBLMS algorithm are much lower 

than that of the TDLMS algorithm, and the difference increases with the growth of the correlation parameter of the 

model. This coincides with the analysis in Sec. II.C. The filter length 100 is sufficiently large for the AR-1 signal with 

ρ = 0.9, and the eigenvalue spread shown in Table 1 is exactly the same as the analytical result 1/(1-ρ2) = 5.3. For the 

AR-1 signal with ρ = 0.99, the eigenvalue shown in Table 1 is smaller than the analytical result 1/(1-ρ2) = 50.2 since 

the filter length 100 is not sufficiently large in this case. However, it is found that with the increase of the filter length, 

the eigenvalue spread approaches the analytical result. 

From the convergence behavior of different algorithms depicted in Fig. 1, it can be seen that the NFBLMS algorithm 

converges fastest but to a biased solution. The MFBLMS algorithm converges slower than the NFBLMS algorithm but 

significantly faster than the TDLMS algorithm. It can also be seen that when the correlation parameter increases from 

0.9 to 0.99, the convergence speed of all the algorithms reduces considerably (note the difference of the total samples 

in Fig. 1(a) and 1(b)), and the difference of the convergence behavior between the algorithms increases drastically, 

which can be well explained by the eigenvalue spread shown in Table 1. 
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Table 1. Eigenvalue spread of the AR-1 models with 100 filter taps 

 NFBLMS MFBLMS TDLMS 

ρ = 0.9 1.1 5.3 339.5 

ρ = 0.99 1.8 43.5 14678.9 

 

 

Fig 1. Convergence behavior of the AR-1 signals with (a) ρ = 0.9 and (b) ρ = 0.99 under deficient filter length 

conditions.   
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low pass filter with an ARMA transfer function H(z) = [(1-0.5z-1)/(1-0.6z-1)]16. The desired signal was generated by 

passing the reference signal through the same bandpass filter as that in Sec. III.A, and the filter length was still 100. 

The eigenvalue spread of this ARMA model for different algorithms are shown in Table 2. It can be found that the 

eigenvalue spread of the MFBLMS algorithm is still much lower than that of the TDLMS algorithm. Further 

investigation shows that except two large eigenvalues, nearly all the eigenvalues of the matrix M1Rx controlling the 

convergence behavior of the MFBLMS algorithm are very close to 100, which coincides with the analysis in Sec. II.B. 
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The convergence behavior of different algorithms for this ARMA signal is shown in Fig. 2. It can be seen that the 

NFBLMS algorithm converges very fast but to a biased solution. Although the MFBLMS algorithm converges slower 

than the MFBLMS algorithm, it has a much lower steady-state MSE, and its convergence speed is significantly faster 

than that of the TDLMS algorithm, which is consistent with the eigenvalue spread shown in Table 2. 

 

Table 2. Eigenvalue spread of an ARMA model with 100 filter taps 

NFBLMS MFBLMS TDLMS 

2.7 108.3 9932.9 

 

 

Fig. 2. Convergence behavior of the ARMA signals under deficient filter length conditions. 
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C. Non-causal case  

In this simulation, two reference signals were utilized. One is the same as that used in Sec. III.A with ρ = 0.99 and 

the other is the same as that used in Sec. III.B. The desired signal was one sample ahead of the reference signal, 

resulting in a typical non-causal linear prediction problem. The adaptive filter length N was still 100. The convergence 

behavior of different algorithms is shown in Fig. 3. As expected, the MFBLMS algorithm converges slower than the 

NFBLMS algorithm but to a much lower steady-state MSE. The TDLMS algorithm converges very fast initially, then 

the slow modes dominate, leading to a significantly slower convergence speed than that of the MFBLMS algorithm.  

 

Fig. 3. Convergence behavior under non-causal conditions with reference signals of (a) AR-1 model (b) ARMA 

model. 
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IV. CONCLUSION 

The convergence behavior of the MFBLMS algorithm is investigated by using the theory of asymptotical equivalent 
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matrices, and it shows that the eigenvalues of the proposed algorithm have the tendency to be equally distributed as 

that of an identity matrix. Further analysis of the eigenvalue spread based on the first-order AR model proves that the 

eigenvalue spread of the MFBLMS algorithm is significantly lower than that of the TDLMS one. The theoretical 

analysis results are supported by numerical simulations. With these analyses, it can now be safely concluded that the 

MFBLMS algorithm does have the benefits of both lower computational complexity and faster convergence speed than 

the time domain algorithm, while effectively overcome the problem of biased steady-state solution of the NFBLMS 

algorithm. 
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