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Abstract—Quadrature compressive sampling (QuadCS) is a sub-Nyquist sampling scheme for 

acquiring in-phase and quadrature (I/Q) components in radar. In this scheme, the received intermediate 

frequency (IF) signals are expressed as a linear combination of time-delayed and scaled replicas of the 

transmitted waveforms. For sparse IF signals on discrete grids of time-delay space, the QuadCS can 

efficiently reconstruct the I/Q components from sub-Nyquist samples. In practice, the signals are 

characterized by a set of unknown time-delay parameters in a continuous space. Then conventional 

sparse signal reconstruction will deteriorate the QuadCS reconstruction performance. This paper 

focuses on the reconstruction of the I/Q components with continuous delay parameters. A parametric 

spectrum-matched dictionary is defined, which sparsely describes the IF signals in the frequency 

domain by delay parameters and gain coefficients, and the QuadCS system is reexamined under the new 

dictionary. With the inherent structure of the QuadCS system, it is found that the estimation of delay 

parameters can be decoupled from that of sparse gain coefficients, yielding a beamspace 

direction-of-arrival (DOA) estimation formulation with a time-varying beamforming matrix. Then an 

interpolated beamspace DOA method is developed to perform the DOA estimation. An optimal 

interpolated array is established and sufficient conditions to guarantee the successful estimation of the 

delay parameters are derived. With the estimated delays, the gain coefficients can be conveniently 

determined by solving a linear least-squares problem. Extensive simulations demonstrate the superior 

performance of the proposed algorithm in reconstructing the sparse signals with continuous delay 

parameters.  
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I. INTRODUCTION 

Quadrature sampling [1,2] is a commonly used processing scheme in radar systems to obtain the 

baseband in-phase and quadrature (respectively denoted as I and Q) components. For the intermediate 

frequency (IF) signals with center frequency cf  and bandwidth B , the quadrature sampling theorem 

[1] states that digital I and Q components can be acquired with a sampling frequency 
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where d  is a positive integer satisfying (2 )Ld f B     and / 2L cf f B  , where    denotes a 

floor function resulting in the largest integer not exceeding the argument. With appropriate setting of 

cf , the minimum sampling rate 2B  can be allocated. The requirement (1) has become a serious 

bottleneck in the development of wideband/ultrawideband systems. Inspired by the compressive 

sampling (CS) [3-5] and analog-to-information (A2I) conversion [6-11], we recently developed a 

quadrature compressive sampling (QuadCS) system [12,13] for the radar echo signals consisting of a 

linear combination of the time-delayed and scaled replicas of the transmitted waveforms. The QuadCS 

scheme collects compressive I and Q components at a sub-Nyquist rate and permits perfect 

reconstruction of these components at the Nyquist rate. Its advantages have been shown in performance 

analyses [14] and application in pulse-Doppler processing [15]. The QuadCS system is also applicable 

to channel estimation in communication [16] and navigation [17] systems in which the received signal 

is characterized by a multipath environment. In this paper, we focus our description on radar 

applications.  

The accurate reconstruction capability of the QuadCS system relies on the knowledge of the 

sparsifying dictionary. For applications to radar [13-15], the waveform-matched dictionary [18] is often 

assumed, i.e., the dictionary consists of a finite set of time-delayed versions of the known transmitting 

waveform at the Nyquist-sampling grids along the time delay axis. When the delays of the targets are 
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exactly on the discrete grids, the dictionary well represents the radar echo signal. However, in many 

practical scenarios, the delays of the targets, or other parameters that characterize the sparse signals, are 

continuous and, in general, do not lie exactly on the pre-defined discrete grids. In this case, the 

reconstruction performance degrades significantly because of the mismatch between the assumed 

dictionary and the practical signals [13]. This problem is referred to as the off-grid problem in CS 

theory [19]. 

The off-grid problem has attracted significant attention over the past few years and some solutions 

have been reported, e.g., [20-30]. These techniques can be classified into four categories. The first one 

[20, 21] is to discretize the delay axis or parameter space with finer grids when applying CS techniques. 

The finer grids will result in highly coherent dictionaries. The second one [22, 23] is to model the 

perturbation caused by the grid mismatch as Gaussian or uniformly distributed noise and the sparse 

Bayesian interference [31,32] is then used to solve the off-grid problem. Instead of discretizing the 

parameter space, methods in the third category [24-27] jointly optimize the recovered signals and the 

dictionary to alleviate the effect of the basis mismatch. Although these methods may reduce the 

reconstruction error to some extent, they require a high computation complexity and often lead to 

numerical instability. The last category [28-30] is to use the atom-norm proposed in [33] to handle the 

infinite dictionary defined on the continuous parameter. Although the atom-norm based technique is 

promising, a big challenge is to effectively solve the atom-norm minimization problem. Currently, its 

application is limited to the line spectral estimation in Fourier basis [28-30], where the minimization is 

cast into a convex semidefinite programing problem. It remains unclear how to generalize it to other 

scenarios. 

In this paper, we focus on the signal reconstruction for the QuadCS system with sparse parameters 

defined in a continuous parameter space. We first define a parametric spectrum-matched dictionary, 
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which well describes the received radar signals in frequency domain by delay parameters and gain 

coefficients. Then, by exploiting the inherent structure of the QuadCS system and realigning the 

QuadCS compressive measurements, we find that the estimation of the delay parameters can be 

equivalently formulated as the direction-of-arrival (DOA) estimation problem in array processing 

[34,35]. The DOA estimation techniques can then be utilized to estimate the delay parameters. With the 

estimated delay parameters, the estimation of the gain coefficients is performed by conventional 

least-squares technique. Under the proposed reconstruction scheme, discretization of the continuous 

parameter space is no longer necessary. We decompose the joint estimation of the delay parameters and 

the gain coefficients into two separate estimation problems. As such, both computational complexity 

and numerical stability are greatly improved. 

Different from conventional DOA estimation formulations, the proposed approach estimates DOAs 

(which represents delay parameters) in the beamspace with a time-varying beamforming matrix, i.e., the 

equivalent beamspace array data are generated by a set of time-varying beamformers operating on the 

array outputs. Therefore, while a number of beamspace DOA estimation methods [36-38] exist, the 

time-varying beamforming matrix prevents their direct application to the underlying problem. To solve 

this problem, we develop an interpolated beamspace DOA method, which stems from the interpolated 

array techniques [39-41], for the estimation of delay parameters. Optimal array interpolations are 

established and the sufficient conditions are derived to guarantee the successful estimation of the delay 

parameters. Extensive simulations demonstrate that the proposed algorithm can achieve super-resolution 

time-delay estimation and high-accuracy sparse signal reconstruction. 

Note that the idea of using DOA estimation for sparse time-delay estimation was used in [42], 

where a sub-Nyquist sampling system was proposed under the framework of the union of subspace 

(UoS) [43]. Through multi-channel sampling, the time-delay estimation is directly transformed into 
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DOA estimation with a uniform linear array. Our works differ from [42] in the research scope and the 

developed DOA estimation model. As to be discussed in Section IV, the DOA estimation model is 

defined by realigning single-channel samples and is established in beamspace with time-varying 

beamformers. The lack of existing beamspace DOA estimation techniques for such situations motivated 

us to develop an interpolated array based approach to successfully solve the underlying problem. 

The rest of the paper is organized as follows. The signal model and problem formulation are given 

in Section II. The QuadCS system is reexamined from the frequency-domain point of view in Section 

III. The DOA-based time-delay estimation is developed in Section IV. The scheme of the gridless signal 

reconstruction is given in Section V. In section VI, optimal design on interpolated array and 

beamforming matrix is established. Section VII shows simulation results and Section VII concludes the 

paper.  

Notations: Bold-face letters are reserved for vectors and matrices.   ,  T  and  H  denote 

complex conjugation, transposition, and conjugate transposition, respectively. 
1

  and 
2

  denote 

the 1l -norm and 2l -norm, respectively.  Re   and  Im   respectively represent the real part and 

imaginary part of a complex argument. To avoid confusion, a real-valued signal, a complex signal, and 

the Fourier transform of a signal are represented as  s t ,  s t  and  Ŝ f , respectively.     and .    

respectively denotes the floor and the ceiling functions, and  diag x  represents a diagonal matrix with 

the elements of vector x  as its diagonal elements. In addition,  tr   denotes a matrix trace.  
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Fig.1 The structure of the QuadCS system. 
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II. SIGNAL MODEL AND PROBLEM FORMULATION 

We consider an IF system in which the received signal  x t  is expressed as 

        0
1

cos 2
K

k k k k k
k

x t a t f t t      


        , (2) 

where  a t  and  t  are the envelope and phase of a priori known waveform, respectively, 0f  is 

the IF frequency, and k , k  and k  are the unknown parameters of the time delay, gain coefficient 

and phase offset of the k -th target, respectively, for 1, ,k K  . The signal model (2) is generic and is 

widely used in radar systems.  

Denote      
0 = j ts t a t e   as the complex baseband signal and kj

k ke
    as the complex gain 

coefficient with 02k k kf      . The complex envelope  s t
 
of the IF signal  x t

 
is given by  

    0
1

K

k k
k
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The I and Q components of the IF signal  x t  are respectively the real and imaginary parts of the 

complex envelope  s t , expressed as  

        
1

Re ( ) cos ( )
K

k k k k
k

I t s t a t t    
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     , (4) 

        
1

Im ( ) sin ( )
K

k k k k
k

Q t s t a t t    


     . (5) 

We assumes that the IF signal  x t  has a bandpass spectrum with bandwidth B  centered at 

frequency 0f  ( 0 2f B ). Let  0Ŝ f  be the Fourier transform of  0s t . Then, the Fourier 

transform  Ŝ f  of  s t , expressed below, is bandlimited to  2, 2B B , 

       22
0

1

ˆ ˆd .k
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j fj ft
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With the known IF frequency 0f , the useful information of the IF signal  x t  is completely 

characterized by the complex envelope  s t
 
or, equivalently, the I and Q components  I t

 
and 

 Q t . The aim of the digital quadrature demodulation is to acquire the digital I and Q components from 
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the IF signal  x t . Note that both  s t  as well as or  I t
 
and  Q t  are uniquely defined by the 

delays k  and the complex gains k , 1, ,k K  . As such, the problem is equivalent to determining 

these parameters from the samples of  x t .  

In [13], we developed a QuadCS system to acquire the complex envelope  s t , in which the 

delays k  are assumed to lie in the discrete grids of the delay space  max0,  and the  s t  is 

sparsely represented by the waveform-matched dictionary. In this paper, we assume that the delays k  

are continuous in the delay space  max0, . To efficiently represent the signal  s t , we define a 

parametric dictionary in the frequency domain,       2
0 max

ˆˆ ˆ, , ,0j ff f S f e          . It is 

seen that, for a continuous parameter  , the dictionary consists of infinite number of atoms  ˆ ,f  , 

which are the phase-modulated replicas of the spectrum  0Ŝ f . For convenience, we refer to the 

dictionary as parametric spectrum-matched dictionary. With this dictionary, the spectrum of  s t  in (6) 

can be represented as 

      
1

ˆ ˆ ˆ, = ,
K

k k
k

S f f f  


  ψ τ ν  , (7) 

where  1 2, , , K  τ  ,  1 2, , ,
T

K  ν    , and 

        1 2ˆ ˆ ˆ ˆ, , , , , , , .Kf f f f        ψ τ   (8) 

For any given parameter set τ ,  ˆ ,fψ τ  determines a K -dimensional subspace. Then the acquisition 

of  Ŝ f , or equivalently  s t , is to optimize the delay parameter set τ  along with the complex gain 

vector ν  such that the parametric dictionary approaches the true subspace in which  Ŝ f  lies. In CS 

theory, the problem is called as joint dictionary learning and signal recovery. 

III. QUADRATURE COMPRESSIVE SAMPLING IN FREQUENCY DOMAIN 

Now we introduce the QuadCS system that performs sub-Nyquist sampling of the received IF 

signals as expressed in (2). Specifically, we examine the QuadCS system shown in Fig. 1 from the 
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frequency-domain point of view and formulate the signal reconstruction problem under the framework 

of parametric spectrum-matched dictionary. 

A. Sampling Scheme 

The QuadCS system in Fig. 1 consists of two parts: the low-rate sampling subsystem and the 

quadrature demodulation subsystem. The former performs the mixing, bandpass filtering, and the 

bandpass sampling to yield low-rate output sampling sequence, whereas the latter implements the 

digital quadrature demodulation [1] to generate the compressive I and Q components. 

More specifically, in the low-rate sampling subsystem, the IF signal  x t  is first modulated by a 

random spectrum-spreading signal  p t , which is pT -periodic, i.e., 

   2 ,
p

p

p

L
j f lt

l
l L

p t e 


    (9) 

where 1p pf T , l  is the Fourier series of  p t , and p pL BT  is a positive integer. It is implicitly 

implied that the highest frequency of  p t  is no less than B . The mixing operation spreads the 

frequency spectrum of the resulting baseband signal to span the entire full spectrum of  p t . The 

spectrum of the mixed output is given as 

    ˆ ˆ .
p

p

L

p l p
l L

X f X f f l


   �  (10) 

After mixing, the signal spectrum  ˆ
pX f  is truncated by a bandpass filter  bph t  with the bandwidth 

csB B  centered at 0f . Assume that the bandpass filter is ideal and has the frequency response as 

  
,     ,ˆ

0,  elsewhere,
cs cs

bp

B B f
H f


 



 (11) 

where    0 0 0 02 , 2 2, 2cs cs cs cs csf B f B f B f B        . Then, the spectrum of the bandpass 

filter output  y t  is 
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where 0L  is determined by 

 0 1.
2
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B B
L

f

 
  
  

 (13) 

Let the output  y t  be sampled according to the bandpass sampling theorem with the sampling 

frequency    = 4 2 4 1L
s cs csf f B d   in which 0 2L

cs csf f B   and d  is a positive integer 

satisfying 2L
cs csd f B    . To simplify the analysis, we assume that the minimum bandpass sampling 

rate 2s csf B  is achieved. Then, the spectrum of discretely sampled  y t  can be expressed as 
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      (14) 

The quadrature demodulation subsystem performs similarly as in the classic digital quadrature 

demodulation [1] to extract compressive I and Q components (  csI m  and  csQ m ) from the output of 

the bandpass sampling. With the operations of the quadrature demodulation, the spectra of  csI m  and 

 csQ m  can be derived as 

       
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Let      cs cs csS m I m jQ m  . Then the spectrum of  csS m  is given by 
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Since  2ˆ csj f B
csS e   is csB -periodic, we can confine our analysis in one period  2, 2cs csB B , i.e., 
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      
0

0

2ˆ ˆ , 2, 2 .cs

L
j f B

cs l p cs cs
l L

S e B S f f l f B B 
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It is shown that the spectrum  2ˆ csj f B
csS e   is the lowpass-filtered output of a linear combination of 

02 1L   frequency-shifted versions of  Ŝ f . 

B. Signal Reconstruction under Parametric Spectrum-Matched Dictionary 

The signal reconstruction is equivalent to reconstructing the spectrum  Ŝ f  of the complex 

envelope  s t  from the output CS spectrum  2ˆ csj f B
csS e  . Referring to (7), we can re-express 

 2ˆ csj f B
csS e   in (18) as 

      
0

0

2

1 1

ˆˆ ˆ , = ,cs

L K K
j f B

cs l k p k k k
l L k k
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      f , (19) 

where 

    
0

0

ˆ ˆ, , .
L

l p
l L

f B f f l  


  f  (20) 

We show in (19) that the output spectrum  2ˆ csj f B
csS e   can also be represented by a set of K  atoms 

 ˆ ,f f  defined by the parameter set  1 2, , , K   . 

In practice, we can only obtain a finite-length discrete spectrum of  2ˆ csj f B
csS e  . Let csf B L   

be the Nyquist sampling interval in frequency-domain, where 0L   is the length of the sampling 

sequence1. The discrete sampling  ˆ
csS l  of the  2ˆ csj f B

csS e   is given as  

     2ˆ ˆ cslj f B

cs csS l S e


    (21) 

with    2 1cslf B l f     ( 1,2, ,l L  ). Then we can rewrite (19) in the following matrix form, 

  ˆˆcs s Φ τ ν , (22) 

where  

      ˆ ˆ ˆˆ 1 , 2 , , ,
T

L
cs cs cs csS S S L   s    (23) 

                                                 
1 With this setting, we implicitly assume that the signal  x t  has finite support with length csL B . 
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In this sense, the signal reconstruction problem is a joint estimation of the delay parameter set τ  and 

the gain parameter vector ν  from the frequency-domain sampling vector ˆcss  such that the vector ˆcss  

can be represented by atoms as few as possible. In the LASSO formulation [44], it is equivalent to solve 

  
2

1, 2

1 ˆˆmin  
2 cs  

τ ν
s Φ τ ν ν


  , (25) 

where 0   is the regularization parameter balancing the least-square constraint and the sparsity 

constraint. Different from traditional sparse reconstruction problems, the formulation in (25) is a joint 

optimization of the dictionary and the sparse signal. Several methods [24-27] have been developed to 

solve such a joint optimization problem. However, they are computationally expensive and are very 

likely to be trapped in the undesirable local minima. 

IV. THE GRIDLESS TIME-DELAY PARAMETERS ESTIMATION 

In this section, we show that the joint estimation of the delay parameter set τ  and the gain 

parameter vector ν  can be decomposed and the delay estimation can be performed by DOA estimation 

based techniques. Sufficient conditions to guarantee the successful estimation of the unknown delays 

are derived.  

A． Delay Parameter Estimation vs. Direction of Arrival Estimation  

To show the relation between delay estimation and DOA estimation, we first reformulate the 

frequency-domain sampling vector of the QuadCS system. Let cs pM B f  and N L M  be some 

positive integer. We extract N  down-sampling sequences  ˆ n
css  ( 1, 2, ,n N  ) with down-sampling 

rate N  from the sequence  ˆ
csS l , i.e.,  
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        ˆ ˆ ˆˆ , , 1 .
Tn M

cs cs cs csS n S N n S M N n        s   (26) 

Then we can decompose (22) as N  measurement equations in the frequency domain, 

      ˆˆ n n
cs s Φ τ ν , 1, 2, ,n N   (27) 

where  

    

     
     

     

1

1

1( 1) ( 1)

ˆ ˆ, ,

ˆ ˆ, ,ˆ .

ˆ ˆ, ,

Kn n

n Kn N n N M K

Kn M N n M N

f f

f f

f f

 

 

 

  

   

 
 
 
  
 
 
 
 

Φ τ






  



f f

f f

f f

 (28) 

By (20), the ( , )k m -th element of the matrix    ˆ nΦ τ  is given by 

 

      

    

  

0

0

0

0

0

0

( 1) 1

1

1
1

1 0

ˆ ˆ, ,

ˆ                         = 1 ,

ˆ                         = ,

ˆ                         =

L

k l P kn m N n m N
l L

L

l p P kn
l L

L m

l m p kn
l L m

l m

f B f lf

B f m f lf

B f l f

B S

  

 

  



   




 

 
  

 

 

  

















f

     0

0

1
2 -

1

,p kn

L m
j l f f

pn
l L m

f l f e
 

 


  



 (29) 

where the last equality follows the definition of the parametric spectrum-matched dictionary in Section 

II.  

With (29), we can factorize the matrix    ˆ nΦ τ . To simplify the derivation, assume 02M M  to 

be even and define  0 0 02 1 2 1J L M L M     . Inserting (29) into (28), we have the following 

factorization, 

      [ ] [ ] [ ]ˆˆ ,n n nΦ τ PS W τ D τ   (30) 

where the matrices M JP   and  W τ J K   are given as  
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0 0 0

0 0 0

0 0 0

1

1 2 1

1 1

,

L L L M

L L L M

L M L M L

B

  

  

  

   

     

     

 
 
    
 
  

P

  
  
   

  

  (31) 

  
1 2

1 2

2 2 2

2 ( 1) 2 ( 1) 2 ( 1)

1 1 1
p p p K

p p p K

j f j f j f

j J f j J f j J f

e e e

e e e

     

       

 
 
   
 
  

W τ




   



, (32) 

and [ ]ˆ n J JS   and  [ ]n K KD τ   are diagonal matrices defined as 

              [ ]
0 0 0 0 0 0

ˆ ˆ ˆ ˆdiag , + 1 , , ,n
p p pn n nS f L f S f L f S f L M f      S   (33) 

                  0 0 1 0 0 2 0 02 1 2 1 2 1[ ] diag , , , .p p p Kj f L M n N j f L M n N j f L M n Nn e e e                   D τ   (34) 

Note that the matrix M JP   is a partial Toeplitz matrix [45] and  W τ  is a Vandermonde matrix. 

Define    ˆn nB PS ,      n nν D τ ν  , and  1 2= , , , K  θ  , where 2k p kf    (1 k K  ). Then, 

(27) can be rewritten as 

        ˆ n n n
cs s B W θ ν , 1, 2, ,n N  , (35) 

where 

  
1 2

1 2( 1) ( 1) ( 1)

1 1 1

.
K

K

j j j

j J j J j J

e e e

e e e

  

    

 
 
 
 
 
 

W θ




   


 (36) 

The formulation (35) resembles exactly that of DOA estimation in beamspace [36-38]. Then the 

Array 
element 1

…

Array 
element 2

Array 
element 3

Array 
element J

…

Source 1 Source 2 Source K

…

Beamformer 1 Beamformer M

 
Fig.2 The array structure in beamspace DOA estimation. 
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delay parameters and gain coefficients can be estimated separately. In (35), the array is uniformly linear 

with J  array elements;  W θ  is the array manifold whose columns are the steering vectors towards 

the directions 1 2, , , K   , respectively;  nν  is the source signal vector with k -th signal from the 

direction k ;    nW θ ν  is the array data vector at the n -th snapshot; and  nB  is a beamforming 

matrix which formulates M  beamformers. Under the framework, we obtain N  beamspace data 

vectors  ˆ n
css  ( 1, 2, ,n N  ) which are used to extract the DOA information. The array structure of the 

formulated DOA problem is shown in Fig. 2. 

B． Delay Parameters Estimation 

The beamspace DOA estimation has received considerable attention in array signal processing and 

a variety of beamspace DOA estimation methods [36-38] have been developed. However, different 

from the conventional formulations in [36-38], the beamforming matrix in (35) is time-varying. Thus, 

conventional beamspace DOA estimation methods cannot be directly applied to solve this problem. 

In this section, we resort to the interpolated array techniques to develop a beamspace DOA 

estimation with time-varying beamforming matrix. The basic idea is to design a set of interpolated 

matrices for each snapshot and transform the time-varying beamforming matrix into a time-invariant 

one so that conventional beamspace DOA estimation methods can be applied. 

Denote   M a   as the targeted steering vector towards the direction   which takes account 

of the effects of array structure and beamformers. The interpolation is to construct N  interpolated 

matrices  n M MT  , 1,2, ,n N  , such that  

        n n  T B w a  (37) 

for   , where  0,2  is a sector containing the set of unknown DOAs. In the design of 

interpolated array, we require that the array manifold after interpolation has the structure similar to that 

before interpolation to minimize the interpolation error [46, 47]. Toward this end, one of the possible 
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choices of the targeted steering vector is 

      0a B w , (38) 

where M J0B   is a time-invariant beamforming matrix. The design on the beamforming matrix is 

critical for high-performance DOA estimation and will be discussed in details in Section VI.  

With the N  interpolated matrices, we obtain output vectors  n
css  of the interpolated array 

          ˆ =n n n n
cs css T s A θ ν , 1,2, ,n N  , (39) 

where  

        1 2, , , .M K
K      A θ a a a   (40) 

The correlation matrix of the interpolated array csR  can be formed as 

         
1

1
=

N H
n n H

cs cs cs v
nN 

 R s s A θ R A θ , (41) 

where 

     
1

1
=

N H
n n

v
nN 
R ν ν   . (42) 

Then eigen decomposition techniques can be used to determine the unknown directions θ  of the 

source signals. Let us perform an eigen-decomposition of the matrix csR , 

  
0

,
0 0

H
s

cs H

        

Λ E
R E G

G
, (43) 

where  2 2 2
1 2diag , , ,s K  Λ   with the K  non-zero eigenvalues of csR , 2 2 2

1 2, , , K   , in 

non-increasing order; 
M KE   consists of the eigenvectors corresponding to the K  non-zero 

eigenvalues of csR  and  M M K G   consists of the eigenvectors corresponding to the remaining 

M K  eigenvalues of csR . The K  source signals belong to the signal subspace  span E , which is 

orthogonal to the noise subspace  span G . With the eigen-decomposition, various existing 

subspace-based algorithms DOA estimation methods can be applied. In this paper, we take the 

well-known beamspace MUSIC [36] as an example to perform the simulation analyses in Section VII. 
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The set of DOAs θ  is estimated by searching the K  peaks of the MUSIC pseudo-spectrum, 

expressed as 

  
   

1
.

H H
P 

 


a GG a
 (44) 

For the estimated set of DOAs,  1 2, , , K  θ  , the unknown delays can be calculated as 

 2 1,2, ,k k pf k K      (45) 

Remark 1: In (37), we assume that the sector  0,2  containing the set of unknown DOAs 

is known in advance. In interpolated array processing, the sector is often determined with the prior 

information of the signal arrivals or preliminary estimates by using other DOA estimation methods [46, 

47]. Moreover, while we have considered   as a consecutive sector, it can also be the union of several 

sub-sectors. As pointed in [13], the CS-based signal reconstruction with discrete time-delays can locate 

the actual time-delays in an interval with high hit-rate. For this reason, we may use the CS-based signal 

reconstruction [13] to form the interpolation sector  . Denoting the set of preliminary estimates of the 

DOAs as  1 2, , , K     , we can form the sector   as 1 2 K      , where each sub-sector 

 ,k k k k k        with k  as the predefined interval. 

Remark 2: Note that the DOA   is 2 -periodic. Then by (45), there exist ambiguous estimates 

of the delay parameters if 1 pf  , i.e., the largest unambiguous delay is 1 pf . For the input signals 

with the given delay space  max0, , we can set the parameter pf  to satisfy max1pf   to ensure 

unambiguous estimation.  

C．  Sufficient Condition for Time-Delay Parameters Estimation 

In the above development, we have implicitly assumed that the source correlation matrix vR  is of 

full rank, i.e.,  rank v KR , and the interpolated array can uniquely localize the K  sources. Here we 

give sufficient conditions for the unique estimation. 
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Proposition 1: For arbitrary K  distinct delays  max0,k  , 1,2, ,k K  , if maxpf N   and 

N K , the source correlation matrix vR  is positive definite, i.e., 0vR  . 

Proof: With (42), the source correlation matrix vR  can be rewritten as 

 
1 H

v N
R VV , (46) 

where      1 2, , , N K N   V ν ν ν    . Note that    rank rankv R V . Then, if  rank KV , 

 rank KV  follows. 

Following      n nν D τ ν  , we have 

   

 

 

 

1 1

2 2

2 2 1

2 2 1

1 2

2 2 1

1

1
=diag , , ,

1

p p

p p

p K p K

j f N j N f N

j f N j N f N

K

j f N j N f N

e e

e e

e e

   

   

   

  

  

  

  

 
 
     
 
  

V



  
   



, (47) 

where  0 02 p kj f L M

k ke
       , 1,2, ,k K  . Note that the diagonal matrix   1 2diag , , , K        in the 

above expression is of rank K . In addition, the K N -dimensional steering matrix at the right-hand 

side of (47) is the transpose of a Vandermonde matrix, whose rank is K  provided that max 1pf N   

and N K . This proves the result. ■ 

Proposition 2: For the steering vector given in (38), if  0rank MB , any set of the steering vectors 

 ia  associated with M  distinct DOAs  0, 2i   (1 i M  ) is linearly independent. 

Proof: Assume M  distinct DOAs  0, 2i   ( 1 i M  ). The M  steering vectors  ia  

(1 i M  ) form the following matrix: 

      
1 2

1 2

1 2 0

( 1) ( 1) ( 1)

1 1 1

, , , .
M

M

j j j

M

j J j J j J

e e e

e e e

  

  

  

  

 
 
     
 
 

a a a B





   



 (48) 

Note that the J M -dimension matrix at the right-hand side of (48) is a Vandermonde matrix. By 

applying (13) and cs pM B f , we can derive that 
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2 1 1
2

2 1 1

1,

cs

p

cs

p

B B
J M

f

B
M

f

M

  
         

  
         
 

 (49) 

which implies J M  for an integer J . Therefore, the rank of the J M -dimension Vandermonde 

matrix at the right-hand side of (48) is equal to M . If  0rank MB , 

      1 2rank , , , M M     a a a , i.e., the M  steering vectors  ia , 1 i M  , are linearly 

independent. ■ 

Proposition 3: Under Proposition 1 and Proposition 2, if M K , the DOA estimation problem (39) 

derives a unique DOA estimation of K  distinct DOAs  0,2k  , 1,2, ,k K  . 

The proof of the proposition directly follows that of Theorem 1 in [48] and is omitted here. 

The above three propositions assure that the array formulation in Subsection IV-A can obtain a 

unique estimation of DOA parameters  1 2, , , K  θ  . For length- L  frequency-domain sampling 

vector ˆcss , we have L MN , which implies that  1L K K   by Propositions 1 and 3. In practice, 

we have csL TB TB    ( csB B  ) for the signal with the bandwidth B  and the finite-length 

support T . We can derive the following facts about the gridless signal reconstruction: 

a) The largest number of delay parameters that can be estimated by the proposed method is 

1K TB     ; 

b) The minimum bandwidth csB  required to recover the sparse signal consisting of K  

components is  1csB K K T  . 

V. THE SCHEME OF GRIDLESS SIGNAL RECONSTRUCTION  

We are now in a position to summarize our gridless signal reconstruction (GLSR) algorithm, 

including the estimation of both the time delays and the complex gains. Algorithm 1 describes the 
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GLSR process in detail.  

In the implementation, with the estimated time-delay parameter set τ  in the previous section, the 

estimation of the gain coefficient vector ν  from (22) is equivalent to find the least-squares solution of  

  
2

2

1 ˆˆmin
2 cs ν

s Φ τ ν


 .  (50) 

Different from joint-optimization of delay parameters and gain coefficients in the LASSO formulation 

(25), the GLSR algorithm separately estimates the delay parameters and the gain coefficients. The gain 

estimation (50) is a standard least-squares solution and can be efficiently determined. In the time-delay 

estimation by DOA techniques, we assume that the number K  of the signal components is known in 

advance. In practice, the number of signals in array processing can be estimated by exploiting the 

Akaike information criterion or the minimum description length criterion [49]. 

Algorithm 1. GLSR Algorithm 

Input: ˆ
csS ,  0Ŝ f ,  p t , K , B , csB  

Output:  Ŝ f  

Steps: 

1) Generate the sub-sequence vectors       1 2ˆ ˆ ˆ, , , N
cs cs csS S S  from the 

frequency-domain sampling vector ˆ
csS  as (26); 

2) Construct the matrices P ,  ˆ nS ( 1,2, ,n N  ) as (31) and (33) to form the 

time-varying beamforming matrix  nB  and formulate the DOA estimation as 

(35); 

3) Design the time-invariant beamforming matrix 0B  and the set of interpolated 

matrices       1 2, , , NT T T  satisfying (37); 

4) Obtain the output vector  n
css ( 1,2, ,n N  ) of the interpolated array as (39) 

and compute the correlation matrix csR  as (41); 

5) Perform the SVD decomposition of csR  as (43) and determine the signal 

subspace E  and the noise subspace G ; 

6) Construct the spectrum function  P   as (44), search the K  largest peaks of 

 P   to find the set θ  and estimate the delay parameter set 2 pfτ θ ; 

7) Construct the matrix  Φ̂ τ  as (24) with the estimated τ  and recover the gain 

coefficient vector ν  by solving (50); 

8) Reconstruct the spectrum  Ŝ f  according to (7) by using the estimated values 

of τ  and ν . 
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VI. OPTIMAL TIME-INVARIANT BEAMFORMING MATRIX 

As discussed in Section IV, the estimation of delay parameters is formulated as a beamspace DOA 

problem. However, different from the conventional formulations in [36-38], the beamforming matrix in 

(35) is time-varying. Based on the interpolated array, this section examines the design of time-varying 

interpolated matrices  nT  such that the resulting beamformers    n nT B  are time-invariant, 

   
0

n n T B B , for all [1, ]n N . 

Theoretically, we can specify a time-invariant beamforming matrix 0B  for DOA estimation. 

However, for our problem, we can jointly design  nT  and 0B , resulting in an optimal time-invariant 

beamforming matrix 0B . With the requirement (37) and Proposition 2, the joint design is to minimize 

the interpolated error, i.e.,  

 
   

       
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s.t. rank .
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n n

n

d
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





0

0
T T

B

T B w B w

B

 
  (51) 

The joint optimization is such that the interpolated beamforming matrix    n nT B  optimally 

approximates the time-invariant beamforming matrix 0B  in the minimum least-squares sense. Note 

that  nT  is a function of 0B . Then we can first find  nT  for a given 0B  by solving 

 
   

       
1

2

2, , 1

min
N M M

N
n n

n

d


  
  

 0
T T

T B w B w
 

. (52) 

After simple mathematical manipulation, the solution to (52) is obtained as 

                1H Hn n n n n n


 0 ww wwT B C B B C B , (53) 

where 

    H d


  


 wwC w w . (54) 

Inserting (53) into (51), the problem (51) is transformed into 
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where  

           
1

1

N H Hn n n n H
N

n





 
  

 
 ww ww ww wwC C C B B C B B C . (56) 

To derive a closed-form solution of (55), we consider the special case of 0 0
H

MB B I , i.e., orthonormal 

beamforming matrix. In this case, (55) becomes 

 
 
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min tr
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M J
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N
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  (57) 

From (57), it is seen that the optimal time-invariant beamforming matrix 0B  is composed of the M  

eigenvectors of NC  associated with the M  smallest eigenvalues. Let us perform 

eigen-decomposition of NC  as, 

    
1

1 1, , , ,
0

0

H

N J J

J





 
 

  
 
 

C u u u u   , (58) 

where 1 2 J      are the eigenvalues of NC  and J
i u   is the eigenvector corresponding to 

i , 1,2, ,i J  . Then, the optimal time-invariant beamforming matrix 0B  is given as 

  0 1 2, , ,
H

J M J M J   B u u u . (59) 

With above development, the minimum interpolation error (51) is the sum of the M  smallest 

eigenvalues of NC . With the found optimal 0B , the interpolated matrices    1 , , NT T  can be 

computed by (53). 

VII. SIMULATION RESULTS 

In this section, we examine various aspects of our proposed GLSR algorithm through the extensive 

simulation experiments. As a comparison, the performance of the OMP-based signal reconstruction [50] 
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is also demonstrated. In the following, “OMP-1” denotes the signal reconstruction based on the discrete 

grids with the resolution 0    ( 0 1 B  ); “OMP-2” denotes the signal reconstruction based on the 

refined discrete grids with the resolution 00.5   ; and “GLSR-1” and “GLSR-2” denote the GLSR 

algorithm with two settings of the sector  . In GLSR-1, the sector is 1 2 K       with the 

sub-sector    0 02 , 2k p k p kf f           . In GLSR-2, the sub-sector is 

   0 02 2 ,2 2cs cs
k p k p kf f           , where cs

k  is the estimate of k  given by the OMP-1 

algorithm. Note that the sector   in GLSR-1 is accurate, but GLSR-2 is practical. 

In simulation experiments, the IF signal  x t  is a linear combination of K  time-delayed 

versions of the LFM pulsed signal with the bandwidth 50 MHz  and the pulse width 10.24 μs . The IF 

frequency 0f  is set between 200 MHz  and 300 MHz  to achieve the minimal sampling rate. 

Without special statements, the time-delay k  of the k -th components is randomly chosen from the 

interval  0,10.24  μs . The real gain coefficient k  and the phase offset k  are uniformly distributed 

between  0,1  and  0,2 , respectively. The observation length is twice of the maximum pulse width, 

i.e., 20.48 μs . Two bandpass filters with bandwidths 12.5 MHzcsB   and 10 MHzcsB   are 

selected, which result in one fourth and one fifth of the Nyquist sampling rates, respectively. With the 

minimum IF sampling rates, two beamspace DOA estimation arrays with 16M   and 12M   are 

formulated. The corresponding number of resolvable overlapped time-delay components is 15 and 11, 

respectively. 

A． Performance of the Time-Delay Estimation 

In this experiment, the phase k  is randomly chosen from a uniform distribution. To isolate the 

effect of other signal components, the time delay separation between any two components is set to at 

least 03 , and the gain coefficient k  is set to 1 for all components to avoid masking from strong 

signal components. Two performance indexes, namely, the probability of successful estimation and the 
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relative root-mean-square time-delay estimation error (RRMS-TDE), are used for performance 

evaluation. A set of estimate  1 2, , , K  τ   is declared to be successful if 0k k     holds for 

all k , 1, 2, ,k K  . When successful estimation is achieved, we compute the RRMS-TDE, which is 

defined as 

  2

10

1 1
RRMS-TDE

K

k k
kK

 
 

  . (60) 

The probability of successful estimation is shown in Fig. 3 with respect to the number of 

components K . It is clear that GLSR-1 demonstrates the best performance and OMP-2 is superior to 

OMP-1. GLSR-2 performs like OMP-2 for small K . As K  increases, the probability of successful 

estimation of the GLSR algorithms decreases much faster than that of the OMP-based algorithms. The 

rapid decrease of the probability for large values of K is due to the increase of the interpolated array 

errors. For the GLSR algorithms, the errors behave like array noise in the equivalent DOA estimation 

process. Fig. 4 shows the interpolated array errors (  0 0tr H
NB C B  in (57)) with respect to K . However, 

the GLSR algorithm achieves a high estimation accuracy of the delay parameters, as shown in Fig. 5. 

For example, when 5K  , both GLSR-1 and GLSR-2 yield a RRMS-TDE below 0.05, which is only 

about one-tenth of that obtained by OMP-1 and OMP-2. The RRMS-TDE of the GLSR algorithms 

increases as K  increases. On the other hand, the RRMS-TDE of the OMP-based algorithms maintains 

a high and nearly constant level, implying the modeling error between the assumed dictionary and the 

actual signals to be the dominant factor limiting the accuracy of time delay estimation. The proposed 

GLSR algorithm is more efficient to estimate the off-grid delays. 
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 (a)                                           (b) 

Fig.3 The probability of successful time-delay estimation versus the number of components K . (a) 12.5 MHzcsB  ; 

(b) 10 MHzcsB  . 
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Fig.4 The interpolated array errors versus the number of components K . (a) GLSR-1; (b) GLSR-2. 
 

B． Reconstruction Performance in the Noise-Free Case 

We define the relative root-mean-square signal reconstruction error (RRMS-SR), defined as 

 
    
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1 222
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





ψ τ ν
,  (61) 

to evaluate the accuracy of signal reconstruction. Fig. 6 shows RRMS-SR versus the number of 

components K . It is observed that GLSR algorithms achieve much lower RRMS-SR than OMP-based 
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algorithms when 11K  . For 12.5 MHzcsB  , as K  increases, the RRMS-SR of GLSR algorithms 

increases fast than that of OMP-based algorithms. This is again due to the increases of the interpolated 

array error. Fig. 7 depicts the RRMS-SR performance versus the bandwidth csB . For 5K   (Fig. 7(a)), 

the GLSR algorithm achieves much lower RRMS-SR than OMP-based recovery. For 10K   (Fig. 

7(b)), the RRMS-SR of GLSR-1 still offers the lowest errors, and GLSR-2 outperforms both OMP-1 

and OMP-2 when the bandwidth csB  is larger than 13 MHz. As shown in Fig. 7, the increases of the 

bandwidth csB  will improve the RRMS-SR performance of GLSR algorithms. The reason is that, as 

the bandwidth csB  increases, we can collect more measurements and thus form a larger array in the 

proposed GLSR algorithm. 

In comparisons of two GLSR algorithms, the GLSR-1 performs better than the GLSR-2 because of 

the accurate assumption of the sector  , which leads to lower interpolated array error and better signal 

recovery performance.  

It is also noted that OMP -2 performs better than OMP-1. However, because of highly coherent 

dictionary in OMP-2, there may be the instability in the signal recovery and lead to a large recovery 

error in some cases as shown in Fig.8. We removed these outliers when generating Figs. 6 and 7. 
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Fig. 5 The RRMS-TDE of the successful time-delay estimation versus the number of components K . (a) 
12.5 MHzcsB  ; (b) 10 MHzcsB  . 
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Fig. 6 The RRMS-SR versus the number of components K . (a) 12.5csB MHz ; (b) 10csB MHz . 
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(a)                                           (b) 

Fig.7 The RRMS-SR versus the bandwidth csB . (a) 5K  ; (b) 10K  . 
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Fig.8 The RRMS-SR of OMP-2 algorithm in 500 Monte Carlo experiments with 15K  . (a) 12.5csB MHz ; (b) 

10csB MHz . 
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C． Reconstruction Performance in the Noisy Case 

In noisy scenarios, the IF signal is corrupted by a bandlimited additive white Gaussian noise with 

power spectral density 0 2N  spanning the bandwidth of B  centered at frequency 0f . The input SNR 

(ISNR) and the reconstructed SNR (RSNR), respectively defined as 
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,                   (63) 

are used to quantify the noise impact on the signal reconstruction.  

The RSNR performance versus the ISNR is shown in Fig. 9. In both Figs. 9(a) and 9(b), the RSNR 

of OMP-based signal reconstruction is almost constant at a low level (respectively 7dB and 10dB for 

OMP-1 and OMP-2) as the ISNR increases from 10dB to 30dB. It implies that the effect of the grid 

mismatch on the signal reconstruction performance is much larger than that of the input noise. The 

RSNR of GLSR-1 and GLSR-2 increases almost linearly as the ISNR increases. For 5K  , as shown 

in Fig. 9(a), GLSR-1 and GLSR-2 achieve about 8 to 10 dB SNR improvement as the ISNR varies from 

10 dB to 30 dB. For 10K  , as shown in Fig.9(b), the RSNR of GLSR algorithm does not improve as 

much due to a higher array interpolation error. However, at a high ISNR, both GLSR-1 and GLSR-2 

outperform OMP-1 and OMP-2. The results show that the proposed GLSR algorithm is more robust to 

the noise than the OMP-based algorithm for a small K  and/or a high ISNR. 
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Fig. 9 The RSNR versus the ISNR for 12.5 MHzcsB  . (a) 5K  ; (b) 10K  . 
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Fig. 10 The RRMS-TDE versus the delay separation for 12.5 MHzcsB  . 
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Fig. 11 The RRMS-SR versus the delay separation for 12.5 MHzcsB  . 
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D． Resolution Performance 

We now compare the resolution performance to separate two closely located components between 

the OMP-based algorithm and the GLSR algorithm. The delay of one component is randomly chosen 

from a uniform distribution, and the other one is set apart between 00.1  to 02  with a uniform 

distribution. The gain coefficient is set to be fixed so that weaker components will not be masked by 

stronger ones.  

In Fig. 10, we show the RRMS-TDE as delay separation between the two time-delay components. 

It is seen that the GLSR algorithm can achieve a much higher resolution when the delay separation is 

larger than 00.3 . When the delay separation is smaller than 00.3 , the GLSR algorithm identifies the 

two closely located components as a single component and thus leads to a large RRMS-TDE. In Fig. 11, 

the RRMS-SR versus the delay separation is shown. It is interesting to note that the GLSR algorithm 

maintains a low RRMS-SR even when the delay separation is smaller than 00.3  because, in this case, 

the combined waveform of the two components is similar to a single component with a combined gain 

coefficient. On the other hand, the RRMS-SR of the OMP-based algorithm changes dramatically as the 

delay separation increases. As such, it is demonstrated that the dictionary defined on the discretized 

grids cannot represent the two closely located components effectively.  

VIII. DISCUSSION AND CONCLUSION 

As a new RF receiver architecture that is capable of capturing sparse wideband signals, the 

QuadCS system has wide applications in radar, communication and navigation systems. This paper 

makes important improvements from our earlier work [13] for application in practical environments 

where the delays are generally defined in a continuous space and cannot be characterized by a 

pre-designed grid structure. An effective and efficient solution for the estimation of delay parameters 

and gain coefficients in such scenarios is developed. The main contributions are summarized as follows: 
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(1) A parametric spectrum-matched dictionary is defined which well describes the received signals 

in radar and communications. 

(2) An equivalent beamspace DOA formulation is developed for estimating delay parameters and 

gain coefficients. Sufficient conditions to guarantee the successful estimation of the delay parameters 

are theoretically derived. 

(3) An interpolated array equivalence is established to utilize beamspace DOA estimation 

formulation with time-varying beamforming matrices.  

(4) Extensive simulation results verify that the proposed GLSR algorithm achieves a 

super-resolution estimation with a high recovery accuracy. 

We maintain that the introduced DOA-based technique for solving the off-grid problems can be 

applied to other analog-to-information conversion problems provided that the sampling sequences can 

be decoupled as described in (27) and (30). The proposed GLSR algorithm works well when the signal 

components exhibit a low sparsity. The performance gradually degrades with the signal sparsity as it 

suffers from a higher interpolated array errors. Reducing the interpolated array error deserves further 

research.  
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