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Abstract

Modelling signals as being periodic is common in many applications. Such periodic

signals can be represented by a weighted sum of sinusoids with frequencies being an

integer multiple of the fundamental frequency. Due to its widespread use, numerous

methods have been proposed to estimate the fundamental frequency, and the maximum

likelihood (ML) estimator is the most accurate estimator in statistical terms. When

the noise is assumed to be white and Gaussian, the ML estimator is identical to the

non-linear least squares (NLS) estimator. Despite being optimal in a statistical sense,

the NLS estimator has a high computational complexity. In this paper, we propose an

algorithm for lowering this complexity significantly by showing that the NLS estimator

can be computed efficiently by solving two Toeplitz-plus-Hankel systems of equations and

by exploiting the recursive-in-order matrix structures of these systems. Specifically, the

proposed algorithm reduces the time complexity to the same order as that of the popular

harmonic summation method which is an approximate NLS estimator. The performance

of the proposed algorithm is assessed via Monte Carlo and timing studies. These show

that the proposed algorithm speeds up the evaluation of the NLS estimator by a factor

of 50-100 for typical scenarios.

Keywords: Fundamental frequency estimation, Toeplitz, Hankel, Fast algorithms,

pitch.
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1. Introduction

Periodic signals are encountered in many real-world applications such as music pro-

cessing [1, 2], speech processing [3, 4], sonar [5], order analysis [6], and electrocardiog-

raphy (ECG) [7]. Such signals can be modelled as a weighted sum of sinusoids whose

frequencies are integer multiples of a common fundamental frequency which in audio and5

speech applications is often referred to as the pitch [2]. Therefore, an important and fun-

damental problem in the above mentioned applications is to estimate this fundamental

frequency from an observed data set. Multiple estimation methods have been proposed in

the scientific literature ranging from simple correlation-based methods [8] to parametric

methods [2]. Although the parametric methods in general are much more accurate than10

the correlation-based methods, they suffer from a high computational complexity. Conse-

quently, the correlation-based methods remain very popular despite that they require all

sorts of heuristic post-processing to give a satisfactory performance [9–13]. Since many

applications require real-time processing, the computational complexity of the paramet-

ric methods must be reduced to make them a viable alternative to the correlation-based15

methods, and the contribution presented in this paper should be seen in this context.

The main difficulty in estimating the fundamental frequency is that a non-linear

optimisation problem has to be solved. No closed-form solution is available, and we,

therefore, have to search for the global optimiser of an often very oscillatory cost function

such as the two examples shown in Fig. 1. This search for the optimiser is often performed20

using the following steps.

1. The cost function is evaluated on a grid and one or several candidate optimisers

are selected on this grid. Often, the grid is uniform since a part of the cost function

can then be evaluated efficiently using an FFT algorithm.

2. The candidate optimisers are refined using, e.g., interpolation methods, line searches,25

or derivative-based methods.
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3. For the parametric methods, model order estimation has to be performed when the

model is unknown to reduce the risk of estimating an integer multiple or division

of the true fundamental frequency. Often, this problem is also referred to as pitch

halving/doubling or as octave errors. Estimating an unknown model often means30

that we have to repeat the first two steps above for every candidate model, thus

increasing the computational complexity significantly.

In the correlation-based methods, the cost function is the autocorrelation function (or

some variation thereof) which can typically be computed very efficiently. Adding to this,

the correlation-based methods are not model based so it is not necessary to do model35

comparison to determine the number of harmonic components in the signal. From a

computational perspective, the correlation-based methods are, therefore, very attractive.

Unfortunately, they have a suboptimal estimation performance, are not very robust to

noise (see, e.g., Fig. 3), and do not work for low fundamental frequencies [14]. Here, a

low frequency means the number of cycles in a segment of data rather than the frequency40

measured in, e.g., Hz or radians/s, and this also explains the somewhat non-standard

value on the x-axis in Fig. 1. The poor performance for low fundamental frequencies is

hardly surprising since fewer and fewer data points are used in the computation of the

autocorrelation function as the candidate fundamental frequency decreases. As exempli-

fied by the very popular YIN method [11], this is often solved by using data from the45

previous data segment, but this trick corresponds to doubling the segment length and

using a 50% overlap. Thus, the correlation-based methods cannot provide the same time-

frequency resolution as those parametric methods which also work for a low fundamental

frequency.

The poor noise robustness and time-frequency resolution seem to be fundamental50

flaws of the correlation-based methods and the main reason for considering alternative

estimators based on a parametric model. Unfortunately, the evaluation of the cost func-

tion in the parametric methods is often quite numerically costly since they can involve

eigenvalue decompositions of covariance matrices [15, 16] or matrix inversions [17, 18].

A notable exception, though, is the harmonic summation method (HS) [19, 20] which is55

an approximate non-linear least-squares (NLS) estimator and can be implemented effi-

ciently using a single FFT [2]. The HS summation estimator is statistically efficient and

3



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

ω0

2πN [cycles/segment]

C
os

t
fu

nc
ti

on
[·]

NLS cost function
Harmonic summation cost function

Figure 1: Example of the exact NLS and harmonic summation cost functions. N = 100, L = 10,

ω0 = 2π/N , and constant amplitude
√
a2i + b2i = 1, i = 1, . . . , L.

robust to noise and is, therefore, a very attractive alternative to the correlation-based

methods. Unfortunately, the HS method also fails for low fundamental frequencies and,

therefore, suffers from a suboptimal time-frequency resolution. This is in contrast to60

the NLS estimator [17] which has a much better performance for low fundamental fre-

quencies and, consequently, a better time-frequency resolution [21], although at a much

higher computational complexity. In Fig. 1, the differences and similarities between the

HS and NLS cost functions are illustrated. When more than approximately two periods

or more are assumed to be in a segment, the two cost functions are nearly the same65

whereas they become more and more distinct for a decreasing fundamental frequency.

When the fundamental frequency is low and the data are real-valued, an error is also

made if estimators based on the complex-valued harmonic model are used instead of

estimators based on the real-valued harmonic model. The error is introduced when the

real-valued signal is converted into an analytic signal (complex-valued) by use of the70

Hilbert transform which ignores the interaction effects that occur between positive and

negative frequency components when the fundamental frequency is low. As demonstrated

in [21], a much better estimation accuracy is obtained for low fundamental frequencies if

the NLS estimators for the real-valued signal model is used instead of the NLS estimator

for the complex-valued one.75

Although the NLS estimator has been known for at least 25 years and has some very
4



attractive properties, which have been investigated thoroughly in, e.g., [2, 17, 21–24],

we are not aware of any fast implementations of it. In fact, we believe that one of

the main reasons for the popularity of the HS method is that it shares many desirable

properties with the NLS method, but is much more computationally efficient. In this80

paper, however, we show that the evaluation of the NLS cost function can be reduced to

the same order of time complexity as that of the HS method. More precisely, we show

that we can reduce the cost of evaluating the NLS cost function on an F -point grid for all

candidate model orders l = 1, . . . , L from O(F logF ) +O(FL3) to O(F logF ) +O(FL)

which is the same as that for the HS method. In addition to making each cost function85

evaluation as cheap as possible, we also derive how the number of grid points F depends

on the segment length N and the maximum candidate model order L. This result is

important to ensure that we neither over- nor undersample the cost function and can

also be used to make the HS method faster.

The rest of this paper is organised as follows. In Sec. 2, we first introduce the signal90

model, the ML estimator, the NLS cost function, and the HS method. We also show

how they are related to each other. Then, the standard way of computing the NLS and

HS cost functions are described in Sec. 3. To speed up the computation of the NLS

cost function, we describe how the number of cost function evaluations are minimised in

Sec. 4 and how each cost function evaluation can be made efficiently in Sec. 5. Finally,95

we investigate how fine the cost function grid should be and quantify the computational

savings using Monte Carlo simulations in Sec. 6.

2. Signal Model and NLS Cost Function

The real-valued signal model for a uniformly sampled and periodic signal in additive

noise e(n) is given by100

x(n) =

l∑
i=1

[ai cos(iω0n)− bi sin(iω0n)] + e(n) (1)

where ai and bi are the linear weights of the i’th harmonic component and ω0 is the fun-

damental frequency in radians per sample. If an N -dimensional data set {x(n)}n0+N−1
n=n0

is observed, the signal model can be written in vector form as

x = Zl(ω0)αl + e (2)
5



where we have defined

x =
[
x(n0) · · · x(n0 +N − 1)

]T
(3)

e =
[
e(n0) · · · e(n0 +N − 1)

]T
(4)

Zl(ω) =
[
Cl(ω) Sl(ω)

]
(5)

Cl(ω) =
[
c(ω) c(2ω) · · · c(lω)

]
(6)

Sl(ω) =
[
s(ω) s(2ω) · · · s(lω)

]
(7)

c(ω) =
[
cos(ωn0) · · · cos(ω(n0 +N − 1))

]T
(8)

s(ω) =
[
sin(ωn0) · · · sin(ω(n0 +N − 1))

]T
(9)

αl =
[
aTl −bTl

]T
(10)

al =
[
a1 · · · al

]T
(11)

bl =
[
b1 · · · bl

]T
. (12)

Unless we are interested in estimating the phases of the sinusoidal components, the start

index n0 can be selected arbitrarily. Often, however, it is set to n0 = 0 for notational105

convenience, but, as we demonstrate in this paper, it is advantageous to set it to n0 =

−(N − 1)/2 to lower the computational complexity of computing the NLS cost function.

The maximum likelihood (ML) estimator of the fundamental frequency is statistically

efficient asymptotically. That is, it has the optimal estimation accuracy when enough

data are available. When the noise e in (2) is assumed to be white and Gaussian, the110

ML estimator of αl and ω0 are given by

(α̂l, ω̂0) = argmin
ω0∈Ωl,αl∈R2l

‖x−Zl(ω0)αl‖22 (13)

where Ωl and R are a finite interval on (0, π) and the set of real numbers, respectively.

By substituting the ML estimate

α̂l(ω0) =
[
ZTl (ω0)Zl(ω0)

]−1

ZTl (ω0)x (14)

back into the above optimisation problem, we obtain the ML estimator for the funda-

mental frequency as115

ω̂0 = argmax
ω0∈Ωl

JNLS(ω0, l) (15)

6



where

JNLS(ω0, l) = xTZl(ω0)
[
ZTl (ω0)Zl(ω0)

]−1

ZTl (ω0)x (16)

is the non-linear least squares (NLS) cost function. We term the cost function the NLS

cost function since the ML estimator above produces the same estimates as the NLS

estimator, and the main contribution of this paper is an algorithm that can produce

these NLS estimates in a computationally efficient manner. In the HS method [19, 20],120

the matrix inversion in the NLS cost function is avoided by replacing ZTl (ω0)Zl(ω0) by a

scaled identity matrix. This approximation is based on that sinusoids are asymptotically

orthogonal in N , i.e., that

lim
N→∞

2N−1ZTl (ω0)Zl(ω0) = I2l (17)

where I2l is the 2l × 2l identity matrix. Thus, the HS cost function is given by

JHS(ω0, l) = ‖ZTl (ω0)x‖22 . (18)

An example of the two cost functions are given in Fig. 1, and we see that they are very125

similar, unless the fundamental frequency is low. Note that the equality in (17) holds

for a finite N if ω0 corresponds to an integer number of cycles in the segment of data,

i.e., that ω0 = 2πk/N where k is an integer or, equivalently, that Zl(ω0) has orthogonal

columns. This can also be observed in Fig. 1 where the two cost functions intersect at

integer numbers of cycles per segment.130

3. Standard Algorithm

As alluded to in the introduction, we focus on computing the NLS cost function in (16)

efficiently over a uniform grid3 Ql = {2π(f − 1)/F}dF/(2l)ef=2 consisting of dF/(2l)e − 1

points for all model orders l ∈ {1, . . . , L}. That is, the first step (for all candidate model

orders) of the three step procedure described in the introduction. The typical way of135

doing this is outlined in Algorithm 1. Depending on the size of F and L, the main

contributions to the computational complexity are either the FFT computation in line 1

3The grid point corresponding to f = 1 is not included since the NLS cost function is not defined for

ω0 = 0.
7



Algorithm 1 The standard algorithm for computing the NLS cost function matrix

[J ]l,f = JNLS(ω0, l) where the row indices are the L model orders and the column indices

are the F fundamental frequencies on a uniform grid on [0, 2π). The scalars f and ω0

are related as in line 5. The notation � and [·]i,k denotes element-wise multiplication

and element (i, k), respectively. Note that the vector function ml(ω0,f) is a selection

function that forms the vector wl(ω0) as described in Sec. 5.1.
1: f = fft(x) . O(F logF )

2: [J ]1,1:F = 2N−1(f∗ � f)T . O(F )

3: for l ∈ {2, 3, . . . , L} do

4: for f ∈ {2, 3, . . . , dF/(2l)e} do

5: ω0 = 2π(f − 1)/F . O(1)

6: wl(ω0) = ml(ω0,f) . O(1)

7: Solve ZTl (ω0)Zl(ω0)αl = wl(ω0) for αl . O(l3)

8: [J ]l,f = wT
l (ω0)αl . O(l)

9: end for

10: end for

or the computation of the solution to the linear system in line 7 which for all frequencies

in Ql and all model orders in {1, . . . , L} has time complexity in the order of

L∑
l=1

dF/(2l)e∑
f=2

O(l3) = O(FL3) . (19)

Thus, the time complexity of the standard algorithm is O(F logF )+O(FL3). Typically,140

however, the cost of solving the system in line 7 dominates the total cost, and this is

precisely the reason why the HS method is so popular. Due to the approximation based

on the limit in (17), line 7 in Algorithm 1 can be replaced by the much simpler problem

(N/2)αl = wl (20)

which can be solved in linear time complexity. In all other aspects, the HS method is

identical to the standard algorithm. The time complexity of the harmonic summation145

method is O(F logF ) +O(FL). Later in this paper, we show how the linear problem in

line 7 of algorithm 1 can be solved exactly in linear time complexity by exploiting matrix
8



structures and by using recursive updates. First, however, we establish how the number

of grid points F should be selected.

4. Selecting the Grid Size150

Selecting the grid size is important so that we neither make the grid so fine that we

make too many unnecessary cost function evaluations nor so coarse that we undersample

and miss the global maximum. For a given data set, one can always experiment with the

grid size to find a good value for F , but we would like to be able to say something about

the grid size before seeing the data. In this section, we do exactly that.155

Suppose we wish to set the grid size ∆ω0 so that the cost function has decreased by

a factor of g > 1 when we move ±∆ω0 away from the maximiser ω̂0. That is,

JNLS(ω̂0 ±∆ω0, l) =
JNLS(ω̂0, l)

g
. (21)

Unfortunately, this equation cannot be solved for ∆ω0. However, by replacing JNLS(ω̂0±
∆ω0, l) with its second order Taylor approximation around the maximiser ω̂0, we obtain

JNLS(ω̂0, l) +
∆ω2

0

2
H(ω̂0, l) ≈

JNLS(ω̂0, l)

g
(22)

where H(ω0, l) is the second order derivative of JNLS(ω0, l) w.r.t. ω0. This equation can160

easily be solved for ∆ω0 giving the approximate solution

∆ω0 ≈
√

2
1− g
g

JNLS(ω̂0, l)

H(ω̂0, l)
. (23)

The expression for H(ω̂0, l) is very complicated [25], but if we make the same approx-

imation as in the HS method (see (17)) and assume a noise free signal, we can find a

much simpler expression for the grid size. Specifically, we obtain that [24]

JNLS(ω̂0, l) ≈
N

2

l∑
i=1

Â2
i (ω̂0) (24)

H(ω̂0, l) ≈ −
N3

12

l∑
i=1

Â2
i (ω̂0)i2 (25)

9



where the squared amplitudes are given by Â2
i (ω̂0) = â2

i (ω̂0) + b̂2i (ω̂0). Inserting these

into (23) give

∆ω0 ≈

√√√√12
g − 1

g

∑l
i=1 Â

2
i (ω̂0)

N2
∑l
i=1 Â

2
i (ω̂0)i2

. (26)

To avoid that the grid size depends on the estimated amplitudes, we compute a lower

bound on the grid size by selecting {Âi(ω̂0)}li=1 so that

{Ã1(ω̂0), · · · , Ãl(ω̂0)} = argmax
∑l
i=1 Â

2
i (ω̂0)i2

subject to
∑l
i=1 Â

2
i (ω̂0) = γ2

Âi(ω̂0) ≥ 0

. (27)

By differentiating the Lagrangian of the problem w.r.t. α̂(ω̂0), we see that α̃(ω̂0) is re-

lated to the eigenvector pertaining to the maximum eigenvalue of the matrix diag(1, . . . , l)2
165

by any real-valued factor γ. Thus, we get that

Ãi(ω̂0) =

|γ| for i = l

0 otherwise
. (28)

Inserting these values for {Âi(ω̂0)}li=1 in (26) now readily gives

∆ω0 >

√
12
g − 1

g

1

Nl
. (29)

Thus, the grid size depends on both the number of data points N and the model order

l. Please also note the following:

• Since the model order l is usually unknown, we just set it to the maximum candidate170

model order L when finding a value for ∆ω0.

• From a computational perspective, it is much more efficient to evaluate the cost

function on a coarse grid followed by a refinement step than to evaluate the cost

function on only a fine grid [26, 27]. The coarseness of the grid is controlled with

the scalar g, and we will find a suitable value for it in the Sec 6.175

• In the above derivation, we made the approximation based on (17). Despite this,

we have found through simulations that the result in (29) is also useful for a low

fundamental frequency. This is also demonstrated in the simulation section.
10



5. Fast Algorithm

In the previous section, we explained how the minimum number of cost function180

evaluations can be predicted by selecting an appropriate grid size. In this section, we

reduce the cost associated with each cost function evaluation of the NLS method so

that the total time complexity is reduced to the same order as that of the HS method.

We have previously outlined these ideas in [14], but we here give a much more detailed

description of how the time complexity is reduced. This reduction is based on five key185

facts which are described in the following five sections.

5.1. Solving the linear system efficiently

To make an efficient implementation of the NLS cost function, we have to solve line 7

of Algorithm 1 efficiently. That is, we have to solve

Al(ω0)αl = wl(ω0) (30)

for αl in an efficient way where

Al(ω0) = ZTl (ω0)Zl(ω0) (31)

wl(ω0) = ZTl (ω0)x . (32)

By using the definitions in (5)–(9), we see that the right-hand side of the linear system190

involves terms of the form

cT (ω0l)x = <
[

exp (−jω0ln0)

N−1∑
n=0

x(n+ n0) exp (−jω0ln)
]

(33)

sT (ω0l)x = −=
[

exp (−jω0ln0)

N−1∑
n=0

x(n+ n0) exp (−jω0ln)
]
. (34)

These can be computed efficiently using a standard FFT algorithm since ω0 ∈ Ql.

11



5.2. The structure of Al(ω0)

From the definitions in (5)–(9), we see that the matrix Al(ω0) consists of four terms

given by

cT (iω0)c(kω0) = ti−k(ω0) + hi+k(ω0) (35)

sT (iω0)s(kω0) = ti−k(ω0)− hi+k(ω0) (36)

sT (iω0)c(kω0) = t̃i−k(ω0) + h̃i+k(ω0) (37)

cT (iω0)s(kω0) = −t̃i−k(ω0) + h̃i+k(ω0) . (38)

The terms on the right hand sides of these equations are defined for i, k ∈ {1, 2, . . . , l} as

ti−k(ω0) = tk−i(ω0) =


1
2 cos

(
ω0(i− k)

[
n0 + N−1

2

])
× sin(ω0(i−k)N/2)

sin(ω0(i−k)/2) i 6= k

N/2 i = k

(39)

hi+k(ω0) =
1

2
cos

(
ω0(i+ k)

[
n0 +

N − 1

2

])
sin(ω0(i+ k)N/2)

sin(ω0(i+ k)/2)
(40)

t̃i−k(ω0) = − t̃k−i(ω0) =


1
2 sin

(
ω0(i− k)

[
n0 + N−1

2

])
× sin(ω0(i−k)N/2)

sin(ω0(i−k)/2) i 6= k

0 i = k

(41)

h̃i+k(ω0) =
1

2
sin

(
ω0(i+ k)

[
n0 +

N − 1

2

])
sin(ω0(i+ k)N/2)

sin(ω0(i+ k)/2)
. (42)

Using these definitions, the matrix Al(ω0) can be partitioned as195

Al(ω0) =

T l(ω0) −T̃ l(ω0)

T̃ l(ω0) T l(ω0)

+

H l(ω0) H̃ l(ω0)

H̃ l(ω0) −H l(ω0)

 (43)

12



where

T l(ω0) =


t0(ω0) t1(ω0) · · · tl−1(ω0)

t1(ω0) t0(ω0) · · · tl−2(ω0)
...

...
. . .

...

tl−1(ω0) tl−2(ω0) · · · t0(ω0)

 (44)

H l(ω0) =


h2(ω0) h3(ω0) · · · hl+1(ω0)

h3(ω0) h4(ω0)
... hl+2(ω0)

...
... ...

...

hl+1(ω0) hl+2(ω0) · · · h2l(ω0)

 (45)

and T̃ l(ω0) and H̃ l(ω0) are defined similarly to T l(ω0) and H l(ω0), respectively. Note

that T l(ω0) and T̃ l(ω0) are Toeplitz matrices while H l(ω0) and H̃ l(ω0) are Hankel

matrices.

5.3. Selection of the start index n0

The value of JNLS(ω0, l) does not depend on the value of n0. A convenient choice is

then n0 = −N−1
2 since this makes t̃i−k(ω0) = h̃i+k(ω0) = 0 for i, k = 1, . . . , l and any

ω0 ∈ Ωl. The linear system in (30) is then separable so that it can be written as the two

systems

(T l(ω0) +H l(ω0))al(ω0) = w̄l(ω0) (46)

(T l(ω0)−H l(ω0))bl(ω0) = −w̃l(ω0) (47)

where wl(ω0) =
[
w̄T
l (ω0) w̃T

l (ω0)
]T

is partitioned as in (43).200

5.4. Solving the two linear systems for a given model order

The two linear systems in (46) and (47) both have a Toeplitz-plus-Hankel structure

which can be solved efficiently with time complexity O(l2) using algorithms such as those

suggested in [28, 29]. Problems involving a Toeplitz-plus-Hankel structure are commonly

seen as a special case of a larger class of problems having displacement structure (see,205

e.g., the overview work in [30]).
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5.5. Solving the two linear systems for all model orders

Not only are the systems Toeplitz-plus-Hankel, but any upper-left subsystem is a

solution to the linear system with a lower order. Specifically, if we define

Rl(ω0) = T l(ω0) +H l(ω0) (48)

rl(ω0) =


tl(ω0) + hl+2(ω0)

tl−1(ω0) + hl+3(ω0)
...

t1(ω0) + h2l+1(ω0)

 (49)

rl(ω0) = t0(ω0) + h2l+2(ω0) , (50)

the system matrix and the data vector in (46) of order l + 1 are given by

Rl+1(ω0) =

Rl(ω0) rl(ω0)

rTl (ω0) rl(ω0)

 (51)

w̄l+1(ω0) =

 w̄l(ω0)

cT ((l + 1)ω0)x

 . (52)

This implies that it is possible to calculate the solution to

RL(ω0)aL(ω0) = w̄L(ω0) (53)

recursive-in-order using the systems formed by Rl(ω0), w̄l(ω0) for l = 1, . . . , L−1. More-

over, we obtain the solutions al(ω0), l = 1, . . . , L − 1 as well in the process. The same210

idea can be exploited for solving the linear system in (47).

5.6. Solving a Toeplitz-plus-Hankel system

By using these five key facts, we find that the time complexity for solving the linear

system in line 7 of Algorithm 1 for all frequencies and model orders is

L∑
l=1

dF/(2l)e∑
f=2

O(l) = O(FL) . (54)

Thus, the total time complexity of the proposed algorithm is O(F logF )+O(FL) for215

computing the exact NLS cost function over a uniform grid for all candidate model orders

14



up to L. The reduction is obtained by exploiting the two Toeplitz-plus-Hankel systems in

(46) and (47). Since these systems have the same structure, they can be solved using the

same method. In the rest of this section, we therefore only focus on presenting an efficient

algorithm for solving (46) recursive-in-order. The presented algorithm is the recursive220

algorithm in [28] of which we here outline the main ideas behind for completeness and

since the algorithm is rather involved. Note that there exist Toeplitz-plus-Hankel solvers

which do not solve (46) recursive-in-order due to a reformulation of the original problem

[31]. To simplify the notation, we omit the ω0 dependency in the following.

5.6.1. The data dependent step225

The presented algorithm for solving a Toeplitz-plus-Hankel system can be divided in

a data dependent and a data independent step. In the data dependent step, we assume

that we have computed the solution to

Rlγl = el, l = 1, . . . , L (55)

for the data independent step where el =
[
0 0 · · · 1

]T
∈ Rl×1 and γl ∈ Rl×1. The

algorithm then computes the solution to Rlal = w̄l using the recursive updates

λl = [w̄L]l − rTl al−1 (56)

al =

al−1

0

+ λlγl . (57)

5.6.2. The data independent step

In the data independent step, we focus on solving230

Rl+1γl+1 = el+1 (58)

efficiently given the solution γl to Rlγl = el. Due to the Toeplitz-plus-Hankel structure

of Rl, we have that [28]

(Ll +LTl )Rl −Rl(Ll +LTl ) = qle
T
1 − e1q

T
l + rle

T
l − elrTl (59)

15



where Ll is a lower triangular shift matrix of size l × l

Ll =


0 0 · · · 0

1 0
. . .

...
...

. . . . . . 0

0 · · · 1 0

 . (60)

Moreover, Rl and rl can be found from (48) and (49), respectively, and

e1 =
[
1 0 · · · 0

]T
∈ Rl×1 (61)

ql =
[
t1 t2 + h2 · · · tl + hl

]T
∈ Rl×1 (62)

for l = 1, . . . , L− 1. Multiplying (59) with R−1
l from both the left and the right gives

R−1
l (Ll +LTl )− (Ll +LTl )R−1

l = φlψ
T
l −ψlφTl − ρlγTl + γlρ

T
l (63)

where φl, ψl, and ρl are the solutions to

Rlφl = ql, (64)

Rlψl = e1, (65)

Rlρl = −rl, (66)

respectively for l = 1, . . . , L−1. If we now multiply (63) from the right with el and solve235

for the second last term on the right hand side, we obtain that

[γl]lρl = (Ll +LTl )γl −R−1
l

el−1

0

+ [ρl]lγl + [ψl]lφl − [φl]lψl , βl . (67)

The vector ρl can be expressed in terms of the elements of γl+1. To derive this relation-

ship, we write (58) using (51) asRl rl

rTl rl

 [γl+1]1:l

[γl+1]l+1

 =

0
1

 = el+1 . (68)

These equations can also be written as

R−1
l rl = −ρl = − [γl+1]1:l

[γl+1]l+1
(69)

[γl+1]l+1 =
(
rl + rTl ρl

)−1
. (70)
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By combining (67), (69), and (70), we now get linear complexity updates of [γl+1]1:l and

[γl+1]l+1 given by

[γl+1]l+1 =

(
rl +

rTl βl
[γl]l

)−1

(71)

[γl+1]1:l =
[γl+1]l+1

[γl]l
βl . (72)

Both of these equations depend on βl which according to (67) consists of five terms, and

these can all be computed efficiently. Below, we outline how the second, fourth, and fifth240

term can be computed with a linear time complexity.

2. Since

Rl

γl−1

0

 =

Rl−1 rl−1

rTl−1 rl−1

γl−1

0

 (73)

=

el−1

0

+ rTl−1γl−1el , (74)

it follows that

R−1
l

el−1

0

 =

γl−1

0

− rTl−1γl−1γl . (75)

Note that the scalar factor in the last term is

rTl−1γl−1 = rTl−1R
−1
l−1el−1 = −ρTl−1el−1 = −[ρl−1]l−1 . (76)

This proves to be useful later.

4.-5. The solution for Equation (64) and (65) can be updated in a similar way to al in

(56)–(57)

φl =

φl−1

0

+ ([ql]l − rTl−1φl−1)γl (77)

ψl =

ψl−1

0

− rTl−1ψl−1γl . (78)

The vector βl can now be written as245

βl =
(

([ρl]l − [ρl−1]l−1)I l +Ll +LTl

)
γl −

γl−1

0

+ [ψl]lφl − [φl]lψl . (79)
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Thus, given γl, Rl, rl, rl, ql, and [ρl−1]l−1, we can compute the solution to (58) with

linear time complexity using the following steps.

1. Compute φl and ψl using (77) and (78).

2. Compute [ρl]l using (76).

3. Compute βl using (79).250

4. Compute γl+1 using (71) and (72).

This algorithm is detailed in Algorithm 2. Note the following about the algorithm.

• The outer for-loop in Algorithm 2 is only there to keep the notation simpler. In

practice, the outer loop can be vectorised and this is also done in our MATLAB

implementation to speed-up execution. The index k is also only introduced to keep255

the indexing simpler.

• In the algorithm, the range of candidate fundamental frequencies is the maximum

one. In our MATLAB implementations both a lower and an upper bound can be

specified for the fundamental frequency. Note that including prior knowledge on

the fundamental frequency implies that the ML estimator should be referred to as260

a (maximum aposteriori) MAP estimator instead.

• The algorithm for solving (47) instead of (46) is nearly identical to Algorithm 2.

One obvious difference is that the data vector w̃l should be used instead of w̄l.

Another difference is that the vector qL in (62) now is given by

qL =
[
t1 0 · · · 0

]T
∈ RL×1 (80)

since tl − hl = 0. From (64) and (65), it therefore follows that φl = t1ψl so265

0 = [ψl]lφl − [φl]lψl . (81)

Thus, neither φl nor ψl has to be computed.

• Since the data independent step of the algorithm does not depend on the data, the

value of γl(ω0) for all pairs of candidate fundamental frequencies and model orders

can be computed offline and stored in memory. Only the data dependent step

then has to be computed which may be of interest in, e.g., real-time applications.270
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The lines pertaining to the data dependent step have been marked by a star in the

margin of Algorithm 2. If Algorithm 3 is implemented with recursive calls of 16–27,

then the space complexity of our vectorised version of the algorithm is dominated

by holding the cost function
∑dF/le
l=1 F/l = O(F logL) and by holding intermediate

vectors no longer than F in memory. Thus, the total space complexity is275

O(F logL+ F ) . (82)

• Algorithm 2 can easily be modified to compute the value of the NLS cost function

for just a single and arbitrary frequency and model order. This is useful for speeding

up the second step of the three step procedure outlined in the introduction.

• The condition number of the matrix Al(ω0) follows a periodic pattern and is small-

est when ω0 = 2πk/N where k is an integer. In this case, the columns of Zl(ω0) are280

orthogonal and Al(ω0) is, therefore, a diagonal matrix with a condition number of

1. Between the grid points, we have emperically found that the condition number

seems to be in the interval

1 ≤ κ (Al(ω0)) ≤ d
ω0N
2π e
bω0N

2π c
(83)

where ω0N/(2π) is the number of cycles in the data segment, d·e is the ceiling

operator, and b·c is the flooring operator. Consequently, the problem of solving the285

Toeplitz-plus-Hankel systems in (46) and (47) are very well conditioned unless the

candidate fundamental frequency ω0 corresponds to less than one cycle in the data

segment. For such a low frequency, the condition number grows without a bound

since the columns of Zl(ω0) become more and more linearly dependent. Similar

problems occur when the fundamental frequency lω0 is so high that the frequency290

of the largest harmonic component is close to π [21]. To combat this, Al(ω0) can

easily be regularised by adding the scaled identity matrix εI2l to it where ε is a small

positive constant. Since such a regularisation matrix is Toeplitz and diagonal, the

regularisation can easily be included in Algorithm 2 by adding ε to t0. Moreover,

we recommend that the regularisation parameter is made frequency dependent so295

that it is only non-zero for very low fundamental frequencies and for frequencies

where the largest harmonic component is close to π. We note in passing that the
19



regularised algorithm can be viewed as an intermediate solution between the exact

NLS method (ε = 0) and the harmonic summation method (ε = ∞). Moreover,

(σ2/ε)I2l can also in a Bayesian framework be interpreted as the variance of a300

zero-mean Gaussian prior on αl where σ2 is the noise variance.

5.7. Computing the NLS cost function

Once (46) and (47) have been solved using Algorithm 2, the value of the cost function

can be computed as

JNLS(ω0, l) = w̄T
l (ω0)al(ω0)− w̃T

l (ω0)bl(ω0) . (84)

The algorithm for computing JNLS(ω0, l) for all candidate fundamental frequencies and305

model orders are summarised in Algorithm 3.

6. Simulations

In this section, we demonstrate two things. First of all, we evaluate how the grid

size should be selected so that we get a grid that is neither too fine nor too coarse.

We also see how well this predicted grid size works for a low fundamental frequency.310

Moreover, we compare the exact NLS estimator to the HS method to demonstrate how

much better the former is performing than the latter for a low fundamental frequency.

For comparison, we have also included the YIN estimator [11] in one of the simulations

since this is one of the most popular and most cited fundamental frequency estimators.

Since the contribution of this paper is a fast algorithm of a well-known estimator, we do315

not make a thorough evaluation of the accuracy of the estimator for different noise types

or an unknown model order. Instead, we refer the interested reader to [2, 17, 21–24] and

the references therein.

Secondly, and most importantly, we evaluate the proposed algorithms computational

savings accessed by running benchmarks of various MATLAB implementations. The320

investigated algorithms are: The standard algorithm (Algorithm 1), the proposed fast

algorithm (Algorithm 3) in a vectorized version, and harmonic summation. All these

implementations and the code for generating the results presented here are available

from http://tinyurl.com/jknvbn.
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Algorithm 2 A fast algorithm for computing the solution to the Toeplitz-plus-Hankel

linear system of equations in (46) for L model orders and F fundamental frequencies on

the Fourier grid. The data dependent steps have been marked by a star in the margin.
1: f = fft(x) . O(F logF )∗

2: for f ∈ {2, 3, . . . , F} do

3: ω0 = 2π(f − 1)/F . O(1)

4: r0 = r0 = t0 + h2 . O(1)

5: γ1 = 1/r0 . O(1)

6: φ0 = [qL]1/r0 . O(1)

7: ψ0 = 1/r0 . O(1)

8: r1 = t1 + h3 . O(1)

9: ρ0 = −r1/r0 . O(1)

10: w̄1 = <{[f ]f exp(jω0
N−1

2 )} . O(1)∗

11: λ1 = w̄1 . O(1)∗

12: a1 = λ1γ1 . O(1)∗

13: for k ∈ 1, 2, . . . , L− 1 do

14: l = k + 1 . O(1)

15: if f < dF2le then . Ensure that ω0 ∈ (0, π/l)

16: φk =

φk−1

0

+([qk]k − rTk−1φk−1)γk . O(l)

17: ψk =

ψk−1

0

− rTk−1ψk−1γk . O(l)

18: rk =
[
tk + hk+2 · · · t1 + h2k+1

]T
. O(l)

19: [ρk]k = −rTk γk . O(l)

20: Compute βk using (79) . O(l)

21: rk+1 = t0 + h2k+2 . O(1)

22: [γk+1]k+1 =
(
rk+1 +

rTk βk

[γk]k

)−1

. O(l)

23: [γk+1]1:k =
[γk+1]k+1

[γk]k
βk . O(l)

24: µk = exp(jω0l
N−1

2 ) . O(1)

25: [w̄L]k+1 = <{µk[f ]l(f−1)+1} . O(1)∗

26: λk+1 = [w̄L]k+1 − rTk ak . O(l)∗

27: ak+1 =

ak
0

+ λk+1γk+1 . O(l)∗

28: end if

29: end for

30: end for
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Algorithm 3 The proposed fast algorithm for computing the NLS cost function for L

model orders and F fundamental frequencies on a uniform grid.
1: f = fft(x) . O(F logF )

2: for l ∈ 1, 2, 3, . . . , L do

3: for f ∈ {2, 3, . . . , dF/(rl)e} do

4: ω0 = 2π(f − 1)/F . O(1)

5: wl(ω0) = ml(ω0,f) . O(1)

6: Run Algorithm 2 line 16–27 recursively and obtain al(ω0) and bl(ω0)

that solve (46) and (47). . O(l)

7: [J ]l,f = w̄T
l (ω0)al(ω0)− w̃T

l (ω0)bl(ω0) . O(l)

8: end for

9: end for

6.1. Grid size selection325

The accuracy of the methods are assessed via Monte Carlo simulations with R repeti-

tions of three different experimental setups and compared with appropriate Cramér-Rao

lower bounds (CRLB). We measure the root-mean-squared (RMS) value of the estima-

tion accuracy. Some of the methods are possibly biased which motivates the use of the

root-mean-squared metric. The additive noise is drawn from an i.i.d. Gaussian distribu-330

tion e ∼ N (0, σ2IN ) so that the NLS estimator coincides with the ML estimator. The

methods comprise the first two steps presented in the introduction, and the model order

is assumed known. The refinement step is a Fibonacci line search and uses the exact

NLS cost function for both the exact NLS and harmonic summation methods. We also

evaluate the estimation accuracy for three different values of the number of grid points335

F , namely NL, 5NL, and 20NL where F is related to the grid size ∆ω0 derived in Sec. 4

via

F =

⌈
2π

∆ω0

⌉
. (85)

First, we investigate the behaviour at a low fundamental frequency ω0 uniformly

distributed on 2π · (0.75/N, 1.25/N). The amplitudes are constant
√
a2
i + b2i = 1, i =

1, . . . , L with the phase uniformly distributed on (0, 2π). We do not use the YIN algo-340

rithm for problems involving a low fundamental frequency since, as we have previously
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Figure 2: Estimator accuracy for different methods with N = 500, L = 10, ω0 ∈ 2π[0.75/N, 1.25/N),

R = 104 repetitions, constant amplitude
√
a2i + b2i = 1, i = 1, . . . , L and phase drawn from a uniform

distribution in the interval (0, 2π).

discussed in the introduction, the autocorrelation methods do not work for such prob-

lems. Since the fundamental frequency and the phases are randomised between the

Monte Carlo iterations, the exact CRLB also changes between the iterations. However,

the asymptotic CRLB345

var(ω̂0) ≥ 24σ2

N(N2 − 1)
∑L
l=1(a2

l + b2l )l
2

(86)

is constant, and we therefore use that here instead although it is too optimistic when the

fundamental frequency is low (see, e.g., [21]).

In Fig. 2, we observe the behaviour of the different methods as a function of the

signal-to-noise-ratio (SNR). We observe that using F = NL grid points is not dense

enough and that at-least F = 5NL grid points are needed for this setup. Furthermore,350

we note that the harmonic summation method is much worse than the other methods

and has an “error-floor”-like behaviour, even though the exact cost-function is used in

the refinement step (the second step described in the introduction). This indicates a

selection of a non-true local maximum on the cost-function computed on the grid.

For higher frequencies, the methods can attain the asymptotic CRLB. To illustrate355
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Figure 3: Estimator accuracy for different methods with N = 500, L = 10, ω0 ∈ 2π[2/N, 4/N), R = 104

repetitions, constant amplitude
√
a2i + b2i = 1, i = 1, . . . , L and phase drawn from a uniform distribution

in the interval (0, 2π).

this, we run the same setup as for Fig. 2, but with ω0 ∈ 2π · [2/N, 4/N) instead, and

this produces the results shown in Fig. 3. Again, we see that the NLS method with a

resolution of F = NL is too low. We also see that both the NLS and the harmonic

summation methods are optimal estimators for SNRs above −5 dB since they attain the

asymptotic CRLB. The YIN algorithm, however, has a very bad estimation performance360

until around 12 dB. For SNRs above 12 dB, it still has suboptimal performance since it

does not attain the CRLB.

To demonstrate that the NLS method is an asymptotically efficient estimator for even

a low fundamental frequency, we also ran a simulation for fixed ai, bi, i = 1, . . . , L and

ω0. In Fig. 4, we show the results and the exact CRLB which has been calculated using365

the procedure described in [32, Sec. 3.9]. The results show that the NLS method attains

the bound whereas the harmonic summation method has a poor performance for low

fundamental frequencies. In this simulation, we get essentially the same performance for

all grid sizes. However, since the fundamental frequency is not randomised between each

run in this simulation, we cannot really draw any conclusions from this. Instead, we370

recommend that F = 5NL uniform grid points are used which corresponds to g ≈ 1.15
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Figure 4: Estimator accuracy for different methods with N = 500, L = 10, ω0 = 3
π

2π
N

, R = 104

repetitions for fixed ai, bi, i = 1, . . . , L.

or that the maximum cost function value on the grid is at most 15 % smaller than the

true maximum.

6.2. Computation time

To compare the computation speed of several different MATLAB implementations375

of the various algorithms, we ran a benchmark procedure. The timings were obtained

by executing the algorithms 10i times using the smallest i ∈ {0, 1, 2, · · · } such that the

execution time τ0 ≥ 0.2 s. For this i, three repetitions of 10i executions were then run

and timed, producing the three repetition times τ1, τ2 and τ3. The reported execution

times in Fig. 5 and Fig. 6 were then calculated as τ = min(τ1, τ2, τ3)/10i. All timings380

were executed on an Intel(R) Dual Core(TM) i5-2410M CPU at 2.3 GHz with Ubuntu

Linux kernel 3.13.0-24-generic and MATLAB 8.4.0. Note that the computation time of

MATLAB’s FFT implementation can be quite high when the FFT size F is prime or

has large prime factors. In an application where N and L are given, the FFT size and

algorithm should be selected carefully so that this problem is avoided. Here, however, we385

do not handpick an FFT size and just use the value F = 5NL, corresponding to g = 1.15

in (85).
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Figure 5: The computation time for four different ways of computing either the exact or the approximate

NLS cost function for N = 200 and F = 5NL. The dashed lines indicate the computation time with the

refinement step for all model orders.
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Figure 6: The computation time for four different ways of computing either the exact or the approximate

NLS cost function for L = 30 and F = 5NL. The dashed lines indicate the computation time with the

refinement step for all model orders.
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In Fig. 5, we show the timings for N = 200 data points and a variable model order

from L = 5 to L = 50. We see that the proposed algorithm is approximately 55–70 times

faster compared to Algorithm 1. On the other hand the base line version of Algorithm 3 is390

approximately 7-9 times slower than harmonic summation in this implementation. This

is to be expected since, even though harmonic summation and the proposed method

asymptotically have the same time complexity, the constant for the latter algorithm is

higher. It is also possible to pre-compute all data independent terms of Algorithm 3 and

hence introduce a faster, but more memory costly method. This method is approximately395

3–4 times slower than the harmonic summation method. In addition to showing the

computation times for calculating the cost functions over a uniform grid for all model

orders, the computation time with a refinement step for all model orders is also shown

as dashed lines. Specifically, we have used a Fibonacci line search to refine the grid

based estimate to within an accuracy of 10−7 rad/sample. For low model orders, the400

refinement step was more costly than the grid search for the fast NLS algorithms and

the HS method. For the standard NLS algorithm, however, the cost of the refinement

step was only a fraction of the total cost. In Fig. 6, the timings is reported for a

fixed L = 30 and a variable number of data points from N = 100 to N = 1000. We

observe a similar behaviour as in Fig. 5. However, the relative speed up of the proposed405

method in Algorithm 3 compared to Algorithm 1 increases with N and reaches a factor

of approximately 150 at N = 1000.

7. Conclusion

In this paper, a computationally efficient method has been proposed for fundamental

frequency estimation using the non-linear least-squares (NLS) method. The NLS method410

is statistically efficient if the noise is modelled as white and Gaussian and much more

accurate than the autocorrelation based methods. Unfortunately, the NLS cost function

has a very oscillating behaviour and hence the grid method is typically used as a reliable

method to find the global maximum. We have shown how the grid size should be se-

lected and that the evaluation of the cost function requires solving linear systems with a415

Toeplitz-plus-Hankel structure for the real-valued case. Moreover, we have analysed a re-

cursive solver for Toeplitz-plus-Hankel systems and exploited this for computing the NLS
27



cost function for all model orders up to a certain specified maximum model order. The

proposed algorithms have the same asymptotic time complexity as the harmonic sum-

mation method which is an approximate NLS method. The accuracy of the proposed420

method, the harmonic summation method and the YIN method was assessed in terms

of Monte-Carlo studies. As expected the proposed method can attain the Cramér-Rao

lower bound and is the most accurate method for low-fundamental frequencies. Timings

of the MATLAB implementation show that the proposed method is of the same com-

putational order as harmonic summation, although with a larger constant. This is in425

agreement with the conducted algorithmic analysis.
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