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Abstract

We assume the direct sum 〈A〉 ⊕ 〈B〉 for the signal subspace. As a result of post-
measurement, a number of operational contexts presuppose the a priori knowledge
of the LB-dimensional "interfering" subspace 〈B〉 and the goal is to estimate the
LA amplitudes corresponding to subspace 〈A〉. Taking into account the knowledge
of the orthogonal "interfering" subspace 〈B〉 ⊥, the Bayesian estimation lower
bound is derived for the LA-sparse vector in the doubly asymptotic scenario, i.e.
N,LA, LB → ∞ with a finite asymptotic ratio. By jointly exploiting the Com-
pressed Sensing (CS) and the Random Matrix Theory (RMT) frameworks, closed-
form expressions for the lower bound on the estimation of the non-zero entries of a
sparse vector of interest are derived and studied. The derived closed-form expres-
sions enjoy several interesting features: (i) a simple interpretable expression, (ii)
a very low computational cost especially in the doubly asymptotic scenario, (iii)
an accurate prediction of the mean-square-error (MSE) of popular sparse-based
estimators and (iv) the lower bound remains true for any amplitudes vector pri-
ors. Finally, several idealized scenarios are compared to the derived bound for a
common output signal-to-noise-ratio (SNR) which shows the interest of the joint
estimation/rejection methodology derived herein.
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1. Introduction

The Compressive Sampling or Compressed Sensing (CS) is an attractive do-
main which gives new trends for people interested in sampling theory of sparse
signals [1, 2, 3]. The CS theory states that a sparse signal, i.e., a signal that can
be decomposed as few non-zero values in a given basis (Fourier, wavelets, etc.)
can be sampled at a rate TS lower than the one predicted by the Shannon’s the-
ory. This paradigm has been successfully exploited for solving ill-posed problems
arising for instance in bio-medical analysis, RADAR detection, array processing,
wireless communications and radioastronomy imaging. In the CS framework, it
is well known that any matrix H of size N × L generated from an i.i.d. centered
sub-Gaussian distribution with a variance of 1/N verifies the Restricted Isome-
try Property (RIP) [2] with a high probability [1]. On the other hand, the doubly
asymptotic spectrum and the empirical moments of the product HTH have been
extensively studied in the context of the Random Matrix Theory (RMT) [4].

In the literature, CS and RMT techniques are usually applied to the noisy linear
model where there is no interfering signals. However, in a wide range of real life
applications, the signal of interest is often corrupted by a partially known inter-
fering signal and an additive noise (see [5, 6, 7, 8, 9] for instance). This context
motivates this work. More specifically, the CS and the RMT frameworks will be
associated to derive new analytical closed-form expressions for the Bayesian lower
bound [10] on the estimation of a sparse amplitude vector [11] for the noisy linear
model corrupted by a partially known interfering signal.

2. Compressed Sensing (CS) integrating an a priori knowledge

2.1. Definition of the CS model

Let y an observed vector of N measurements corrupted by an additive white
centered zero-mean, Gaussian circular noise vector of variance σ2. The standard
CS model [2, 1, 3] is defined according to

y = Ψs + n = ΨΦx + n (1)

where Ψ is the known measurement matrix of sizeN×K withN < K, the vector
s = Φx of size K × 1 admits an L-sparse representation, denoted by x, in the
basis Φ (which could be Fourier basis, Wavelets basis, canonical basis, etc.) with
L < N and where H

def.
= ΨΦ is often called the overcomplete dictionary.

One of the main problems risen up by the theory of the Compressed Sensing re-
lates to the minimum number of measurements N needed for retrieving the L-
sparse vector x. To address this problem, the authors of [2, 1, 3] have defined the
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Restricted Isometry Property (RIP). A standard strategy, called universal design
strategy to ensure that dictionary H satisfies the RIP condition with high probabil-
ity, is to generate the i.i.d. entries of dictionary matrix H following a sub-Gaussian
distribution with zero mean and variance 1/N [1].

2.2. Exploiting the "interfering" subspace knowledge

Figure 1: (a) Schematic construction of subspace 〈Bψ〉, (b) Information processing scheme.

In many real life applications, we do have the knowledge of information given
by the physics of the context. Those useful information help in tailoring mod-
els that precisely take into account the knowledge of particular frequencies [12]
for spectral analysis purpose, spatial angles for array processing [5] or RADAR
processing, and have demonstrated their power through biomedical analysis or ra-
dioastronomy imaging. So, we adopt the following "signal+interference" model
s = Aα + i with i = Bβ where [A]k,` = g(kTS − τ`) with 1 ≤ ` ≤ LA,
[B]k,`′ = g(kTS − τ̃`′) with 1 ≤′ ` ≤ LB are the "steering matrices" parametrized
by the regular discretization at rate TS of a known waveform g(t) along the time
space. More precisely, T = {τ`, 1 ≤ ` ≤ LA} stands for the time-delays of the
LA sources of interest α and T̃ = {τ̃`, 1 ≤ ` ≤ LB} is associated to the LB
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interfering sources β. In the sequel, it is assumed that (i) 〈A〉 and 〈B〉 are two
disjoint subspaces, meaning that there is no time overlapping between the sources
of interest and of the interfering sources and (ii) 〈B〉 is known or previously es-
timated (matrix A and 〈A〉 are unknown). For instance, the learning of 〈B〉 is
based on pre-estimation of the clutter echo time-delays in RADAR processing
or by known strongly shining "calibrator stars" in radioastronomy imaging. The
problem of interest is to estimate vector α based on a measurement vector where
the contribution of i has been removed using the knowledge of 〈B〉. The stan-
dard "signal+interference" model described by signal s can be extended in the CS
framework of model (1) following a straightforward strategy. Let Φ be a basis ma-
trix such as [Φ]k,k′ = g((k − k′)TS) where 1 ≤ k, k′ ≤ K. For a sufficiently fine
partition, i.e., for K > N > L = LA +LB , we have 〈A〉 ⊕ 〈B〉 ⊂ 〈Φ〉. Let UBψ

be a N × (N − LB) orthonormal basis matrix such as 〈UBψ〉 = 〈Bψ〉⊥. We have
finally the deflated observation, defined according to

ȳ = UT
Bψy = UT

BψHx + n̄ (2)

where n̄ = UT
Bψn and x is a (K − LA)-sparse such as xT = α. The reader will

find an illustration of the procedure in Fig. 1.

3. ECRB for projected measurements and a large random dictionary

3.1. Dealing with projected measurements

Let MSE = 1
LA

Eȳ,α

[
‖α̂(ȳ)−α‖2

]
be the normalized Bayesian Mean Squared

Error for an estimate α̂(ȳ) of α. The Expected Cramér-Rao Bound (ECRB) [10],
denoted by CUT

Bψ
Aψ for the random amplitude vector α, of unspecified distribu-

tion p(α) given the observation model (2) fulfills relation MSE ≥ CUT
Bψ

Aψ =

σ2

LA
Tr
{(

AψTP⊥
BψAψ

)−1
}

where Aψ = ΨA. Introduce model (M): ȳ|α ∼
N (µ,Σ), where µ = UT

BψAψα and Σ = σ2IN−LB which is the covariance ma-
trix of noise n̄. After some calculus, the ECRB admits the following expression:

CUT
Bψ

Aψ =
σ2
α

SNR(na)

Tr{AψTP⊥
BψAψ}

N − LB

Tr
{(

AψTP⊥
BψAψ

)−1
}

LA
, (3)

where SNR(na) = E||µ||2
Tr{Σ} =

σ2
αTr{AψTP⊥

Bψ
Aψ}

σ2(N−LB)
is the output and non-asymptotic

SNR.
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3.2. Doubly asymptotic regime

The practical interest of CRB-type expressions have been exposed in [13, 14]
but we show in this work that expression (3) can be reduced to a very simple closed
form expression with the advantage of remaining valid even for the low sample
regime, using some powerful results extracted from the RMT [4] where it is as-
sumed N,LA, LB → ∞ with N/LA → ρ and LB/LA → c. Towards this goal,
the following Lemma is provided.

Lemma 1. Let F = UT
BψAψ ∈ R(N−LB)×LA whose elements {Fij}i,j=1...N−LB ,LA

are zero mean and i.i.d. with variance 1
N . Now, for N,LA, LB → ∞, and

N/LA → ρ > 1, (N − LB)/LA → ρ̃ = ρ− c > 1, then

1

LA
Tr
{(

FTF
)−1
}

a.s.−→ ρ

ρ̃− 1
=

ρ

ρ− c− 1
, (4)

1

N − LB
Tr
{
FTF

} a.s.−→ 1

ρ
, (5)

where a.s. stands for the almost sure convergence.

Proof. See the appendix.

Under the assumptions of Lemma 1 and using (3), a very compact expression
of C∞

UT
Bψ

Aψ is enunciated by the following.

Result 1. Assume that N,LA, LB →∞ and N/LA → ρ > 1, (N − LB)/LA →
ρ̃ > 1, then, we have CUT

Bψ
Aψ

a.s.−→ C∞
UT

Bψ
Aψ = σ2

α
SNR

1
ρ̃−1 where SNR = σ2

α
σ2ρ

is

the almost sure doubly asymptotic equivalent of SNR(na).

4. Benchmarking ECRBs and estimators

This section is devoted to give a relation of order between the ECRB given by
(3) with respect to two other ECRBs viewed as benchmarks and to analyze the be-
havior of sparse-based estimators. Let (M0) : y0|α,β ∼ N

(
Aψα + Bψβ, σ2

0IN
)

and (M1) : y1|α ∼ N
(
Aψα, σ2

1IN
)
. ModelM0 is associated with the scenario

where no ad-hoc strategy is developed to mitigate the corruption from the inter-
ference signals. In other words, the interference signals are wrongly interpreted
as signals of interest. So, this bound does not solve the problem of interest and is
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given by

C[AψBψ ] =
σ2

0

L
Tr

{(
[AψBψ]T [AψBψ]

)−1
}

(6)

=
σ2
α

SNR
(na)
0

Tr
{(

[AψBψ]T [AψBψ]
)−1
}

L

·
σ2
α Tr

{(
AψTAψ

)}
+ σ2

β Tr
{(

BψTBψ
)}

N
, (7)

where SNR
(na)
0 =

σ2
α Tr{(AψTAψ)} + σ2

β Tr{(BψTBψ)}
σ2
0N

and SIR = σ2
α/σ

2
β . The

second model M1 is associated with the ideal free-interference scenario. This
bound admits the following expression:

CAψ =
σ2

1

LA
Tr

{(
AψTAψ

)−1
}

=
σ2
α

SNR
(na)
1

Tr
{(

AψTAψ
)}

N

Tr
{(

AψTAψ
)−1
}

LA
,

(8)

where SNR
(na)
1 =

σ2
α Tr{(AψTAψ)}

σ2
1N

. Using a similar methodology as before, we
have the following result given in the doubly asymptotic regime context.

Result 2. Assume that N,LA → ∞ with N/LA → ρ > 1, N/L → ρ̄ > 1, then,
we have C[AψBψ ]

a.s.−→ C∞
[AψBψ ]

= σ2
α

SNR0

(
1−SIR−1

ρ + SIR−1

ρ̄

)
ρ̄
ρ̄−1 and CAψ

a.s.−→

C∞
Aψ = σ2

α
SNR1

1
ρ−1 where SNR0 =

(σ2
α−σ2

β)

σ2
0ρ

+
σ2
β

σ2
0 ρ̄

and SNR1 = σ2
α

σ2
1ρ

are the almost

sure doubly asymptotic equivalent of SNR
(na)
0 and SNR

(na)
1 , respectively.

4.1. Simulation Tests

We propose now different scenarios for (i) numerically showing the limit of
the doubly asymptotic approximation and (ii) for analyzing the behavior of popular
sparse-based estimators when they are tailored with the account of the interference
signal. We have plotted on Fig. 2 the Mean Square Error of the approximation be-
tween analytic expressions (3), (7), (8) of the ECRBs and their doubly asymptotic
expressions (Results 1 and 2) with respect to the number of samples. This figure
leaves no room for doubt about the speed at which the asymptotic expressions for
the ECRBs merge the theoretical ones. Finally, we have computed (Fig. 3) for sev-
erals growing dimensions of the LB-dimensional subspace 〈B〉 and six punctual
values of LA, selected from the range [0.01N : 0.3N ], the ECRBs. Like Fig. 2,
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Figure 2: MSE Vs. N for LA = LB = N/10, SNR=10 dB and σ2
α = 1, σ2

β = 10

we clearly see that both plots merge whatever the values for LA and LB .

We now turn the discussion to the behavior of the tailored estimators. To be suf-
ficiently general, we have not designed the observation model with specific wave-
forms or delays but directly implemented dictionary H as presented by section 2.1.
The Basis Pursuit DeNoise [15], the CoSaMP [16] and the Orthogonal Matching
Pursuit [17] sparse estimators have been computed with a deflated observation sig-
nal and a deflated dictionary for them to estimate the LA parameters of interest
only. We have run 500 Monte-Carlo trials for each scenario with a common output
SNR and confronted the Mean-Square-Error (MSE) with the ECRBs (3), (7), (8)
and their doubly asymptotic equivalents given in Results 1 and 2 for both scenar-
ios drawn through Fig. 4. When the observation signal is composed by as much
equally powered sources of interest as interfering ones (Fig. 4), we observe that
CU

BT
A is clearly next to CA. Then, a quick analysis on both plots, reveals that

none of the algorithms can perform well in a low SNR regime. The interfering sig-
nal has been almost rejected in that situation and only the OMP estimator seems to
be in capacity to do from a 20 dB SNR. The CoSaMP performs as well as the inter-
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Figure 3: MSE Vs. LB for different values of LA, SNR =10 dB and N = 100, σ2
α = σ2

β = 1

fering signal was of interest, it is so unable to reject the influence of the interfering
part and the BPDN does not reach any lower bounds. Curiously thereafter, when
the signal of interest is buried into many interfering and much powerful elements
(Fig. 5), we notice a significant gain (more than 15 dB) for each estimators when
they account for the knowledge of the interferences. In that difficult scenario, the
OMP still reaches from a 20 dB SNR the lower bound CU

BT
A which still remains

close to the ideal bound CA for which there is no interfering elements.

5. Conclusion

In this work, the problem of interest is to derive the Bayesian performance
bound for the estimation of the LA non-zero amplitudes of a sparse signal of in-
terest based on the observation of a N × 1 compressed measurement vector y.
Vector y follows an overcomplete Bayesian linear model corrupted by a set of in-
terfering signals spanning an a priori known LB-dimensional subspace. Based
on this standard assumption, the measurement vector y is confined in a N − LB
subspace thanks to an orthogonal deflation technique. In addition, the proposed
analysis is done in the asymptotic framework, i.e., for N,LA, LB →∞ with finite
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Figure 4: MSE Vs. SNR in dB LA = LB = 10, N = 100 and σ2
α = σ2

β = 1

asymptotic ratios. Our methodology allows to obtain (i) an easily interpretable
expression of the bound, (ii) a cheap computational cost especially in the doubly
asymptotic scenario, (iii) an accurate prediction of the mean-square-error (MSE)
of popular sparse-based estimators and (iv) a lower bound for any amplitudes vec-
tor priors. Finally, several idealized scenarios are compared to the derived bound
for a common output signal-to-noise-ratio (SNR) which shows the interest of our
joint estimation/rejection methodology.

6. Appendix : Proof of Lemma 1

We first need to introduce the normalized trace of the resolvent for the ran-
dom form ρFTF by the complex function h(z) = 1

LA
Tr
{(
ρFTF− zI

)−1
}
.

Owing to the assumptions stated by Lemma 1 and due to [18], we know that
the empirical distribution of ρFTF defined by µ̂ρFTF = 1

LA

∑LA
i=1 δλi(ρFTF) with

δλi the Dirac measure for eigenvalue λi, that is the unique probability measure
satisfying f(x)δλ = f(λ) for any continuous function f ∈ R; converges al-
most surely in distribution towards a deterministic distribution function µmp, i.e.
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Figure 5: MSE Vs. SNR in dB LA = 10, LB = 50, N = 100 and σ2
α = 1 and σ2

β = 100

µ̂ρFTF
a.s.−→ µmp. The deterministic distribution µmp is supported on the com-

pact interval [λ−, λ+] possibly with a point mass at 0 [4] with generalized density
dµmp(x)

dx =

√
(λ+−x)(x−λ−)

2πρ̃x with λ± = (1±
√
ρ̃)2 and referred to as the Marchenko-

Pastur density [18]. For any distribution function µ, the Stieltjes Transform of µ
denoted by Sµ(z) : C \ Supp(µ) −→ C is defined as Sµ(z) =

∫ µ(dλ)
λ−z . It has been

already shown [19] that the Stieltjes Transform Sµmp(z) of dµmp(x)
dx respects the

following quadratic relation

Sµmp(z) =
−1

z
+
ρ̃

z

Sµmp(z)(
1 + Sµmp(z)

) (9)

and proved to converge [19], towards h(z). Notice now that the Stieltjes Trans-
form Sµmp(z) weighted by LA

N → ρ−1 and evaluated at z = 0 corresponds to
1
LA

Tr
{(

FTF
)−1
}

. With all these materials, (4) of lemma 1 is obtained by ex-
pressing the weighted Stieltjes Transform Sµmp(0) through the above expression.
To prove (5) we use the spectral theorem applied to empirical distribution µ̂ρFTF,

10



to obtain ∫
f(x) µ̂FTF(dx) =

1

LA

LA∑
i=1

f(λi) =
1

LA
Tr
{
f
(
FTF

)}
. (10)

Since this empirical distribution converges when weighted by ρ towards the
Marchenko-Pastur distribution, i.e. µ̂ρFTF

a.s.−→ µmp, we have consequently for f
a polynomial function the assertion

1

LA
Tr
{(
ρFTF

)k} a.s.−→
∫ λ+

λ−

xkµmp(dx) =

k∑
i=1

1

k

(
k
i

)(
k
i− 1

)
ρ̃ (11)

which reduces obviously to ρ̃ for k = 1. We have consequently 1
LA

Tr
{(

FTF
)k} a.s.−→

ρ−1ρ̃ and after obvious manipulations (5) is reached.
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