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Abstract

In this paper, a two-dimensional (2-D) direction-of-arrival (DOA) estimation

method for a mixture of circular and strictly noncircular signals is present-

ed based on a uniform rectangular array (URA). We first formulate a new

2-D array model for such a mixture of signals, and then utilize the observed

data coupled with its conjugate counterparts to construct a new data vec-

tor and its associated covariance matrix for DOA estimation. By exploiting

the second-order non-circularity of incoming signals, a computationally ef-

fective ESPRIT-like method is adopted to estimate the 2-D DOAs of mixed

sources which are automatically paired by joint diagonalization of two direc-
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tion matrices. One particular advantage of the proposed method is that it

can solve the angle ambiguity problem when multiple incoming signals have

the same angle θ or β. Furthermore, the theoretical error performance of the

proposed method is analyzed and a closed-form expression for the determin-

istic Cramer-Rao bound (CRB) for the considered signal scenario is derived.

Simulation results are provided to verify the effectiveness of the proposed

method.

Keywords:

Two-dimensional (2-D), direction of arrival (DOA), noncircular signal,

uniform rectangular array (URA), joint diagonalization, angle ambiguity.

1. Introduction

Direction-of-arrival (DOA) plays a significant role in the area of array sig-

nal processing [1, 2]. Recently, the second-order non-circularity of incoming

signals has been exploited in both one dimensional (1-D ) [3–8] and two-

dimensional (2-D) or multi-dimensional [9–15] DOA estimation. However,

the algorithms developed thus far only consider strictly noncircular incom-

ing signals. In practice, a more realistic case is a mixture of circular (e.g.

quadrature phase shift keying, QPSK) and strictly non-circular (e.g. binary

phase shift keying, BPSK) signals.

There have been several approaches for joint estimation of circular and

strictly noncircular signals in 1-D direction finding. In [16], a new data vector

containing both the original data and the conjugate version was proposed to

form two estimators for strictly noncircular and circular signals, respective-

ly. Then in [17], an improved algorithm was developed for estimating the
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DOAs of strictly noncircular and circular signals separately by exploiting the

circularity difference between the two classes of signals. However, all these

algorithms require the computationally expensive peak search of the MUSIC

pseudo spectrum. Recently, an ESPRIT-based parameter estimation algo-

rithm was developed in [18] for the above case, where a closed-form expression

related to strictly noncircular and circular signals was derived for efficient 1-

D DOA estimation. In addition, in [19], a sparse representation algorithm for

mixed signals was proposed, where overcomplete dictionaries were exploited

subject to sparsity constraints to jointly represent the covariance and ellip-

tic covariance matrices of the array output. For the 2-D case, to our best

knowledge, the only work on joint direction estimation of circular and non-

circular signals was reported in [20] where four 1-D peak searching estimators

were constructed using two parallel uniform linear arrays (ULAs) along with

a computationally expensive MUSIC method. Besides, the method in [20]

can not solve the angle ambiguity problem when multiple incoming signals

have the same angle θ or β, and the theoretical performance analysis is not

mentioned in [20]. More recently, an ESPRIT based method was proposed

in [21] to estimate 2-D angle parameters for bistatic MIMO radar using a

joint diagonalization algorithm. However, no noncircularity information is

considered in the formulation. Yang [22] proposed an ESPRIT algorithm for

coexistence of noncircular and circular sources in bistatic MIMO radar, but

it can not solve the angle ambiguity problem when multiple incoming signals

have the same angle θ or β. In addition, it needs additional procedure to

pair the 2-D angle parameters.

Inspired by the simultaneous diagonalization idea in [21], we propose
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in this paper a method to deal with the 2-D DOA estimation problem in

the presence of a mixture of circular and strictly noncircular signals. Our

method utilizes a uniform rectangular array (URA) and an ESPRIT-like 2-D

DOA estimation algorithm to exploit the non-circularity information of the

impinging signals. By building a general 2-D array model with mixed circular

and strictly noncircular signals, we first construct a new data vector and its

associated covariance matrix by exploiting the observed array data coupled

with its conjugate counterpart. Then, an efficient ESPRIT-like method is

developed to estimate the 2-D DOA of the mixed sources, where the angle θ

or β are paired automatically, and meanwhile the angle ambiguity problem

of angle θ or β is settled, by joint diagonalization of two direction matrices.

Finally, the theoretical error performance of the proposed method is analyzed

and a closed-form expression for the deterministic Cramer-Rao bound (CRB)

for the mixed signals scenario is derived.

Throughout the paper, the notations (·)∗, (·)T , (·)−1, (·)+, and (·)H rep-

resent conjugation, transpose, inverse, pseudo-inverse, and conjugate trans-

pose, respectively. E(·) is the expectation operation; diag(·) stands for

the diagonalization operation; Ip denotes the p-dimensional identity matrix;

blkdiag(Z1,Z2) represents a block diagonal matrix with diagonal entries Z1

and Z2; the p × p matrix Υp denotes an exchange matrix with ones on its

anti-diagonal and zeros elsewhere; ⊗ is the kronecker matrix product opera-

tion; arg(·) is the phase; Re(·) and Im(·) denote the real and imaginary part;

ei denotes the ith column of the identity matrix; tr(·) denotes the trace of a

matrix.
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Fig. 1: Geometry of a URA

2. Array model

Consider K = Kn +Kc (assume the number of mixed signals is known)

uncorrelated far-field sources that are a mixture of Kn strictly noncircular

sources sn,k(t) and Kc circular sources sc,k(t) with identical wavelength λ.

They impinge on to an URA of M ×N omnidirectional sensors spaced by dx

in each row and dy in each column, as shown in Fig.1.

The direction of the kth signal is denoted as (θk, βk), k = 1, 2, . . . , K.

Thus, the output of the array at time t can be modeled as

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), · · · , xN(t), xN+1(t), · · · , x2N(t), · · · , xMN(t)]
T is com-

posed of theMN received array signals,A = [a(θ1, β1), a(θ2, β2), · · · , a(θK , βK)]
T

is the array manifold matrix, s(t) = [s1(t), s2(t), · · · , sK(t)]
T is the source sig-

nal vector and n(t) = [n1(t), · · · , nN(t), nN+1(t), · · · , n2N(t), · · · , nMN(t)]
T is

the additive white Gaussian complex circular noise vector with its elements

being of zero mean and variance σ2. The steering vector a (θk, βk) is given

by

a (θk, βk) = ay (βk)⊗ ax (θk) (2)
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where

ay (βk) = [1, ϕy (βk) , · · ·ϕy
M−1 (βk)]

T (3)

ax (θk) = [1, ϕx (θk) , · · ·ϕx
N−1 (θk)]

T (4)

with

ϕy (βk) = exp{j2πλ−1dy cos (βk)} (5)

ϕx (θk) = exp{j2πλ−1dx cos (θk)} (6)

As in [18], we decompose each of the circular sources into two uncorrelated

strictly non-circular sources with the same DOA. Without loss of generality,

let the first Kn elements in s(t) represent the strictly non-circular signals.

Thus, s(t) can be represented as

s(t)=





Ψ 0 0

0 IKc
jIKc















sn(t)

src(t)

sqc(t)











= Ψ1s̃(t) (7)

whereΨ = diag(ejφ1 , . . . , ejφKn ) represents the rotation phases corresponding

to the strictly non-circular sources. Furthermore, Ψ1 is of size K ×K ′ with

K ′ = Kn + 2Kc and the real-valued K ′ × 1 vector s̃(t) contains the symbols

of the Kn strictly non-circular sources sn(t) as well as the Kc real parts s
r
c(t)

and Kc imaginary parts sqc(t) of the circular signals sc(t). The array manifold

matrix A can be rewritten as

A = [An Ac ] (8)

where An and Ac denote the array manifold matrix related to strictly non-

cirular and circular signals, respectively. Using (7), the observed data model
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in (1) can be expressed as

x(t) = AΨ1s̃(t) + n(t) = Ãs̃(t) + n(t) (9)

where Ã = AΨ1 denotes the modified array manifold matrix.

For notional convenience, the indices of θ, β and t will be omitted in the

following discussion while not causing confusion.

3. The Proposed Method

In order to take advantage of the strict non-circularity of the strictly non-

circular sources and the virtual strict non-circularity of the circular sources,

a new data vector is defined by stacking the original data and its conjugate

counterpart as

x̃ =





x

ΥMNx
∗



 =





Ãs̃

ΥMNÃ
∗
s̃∗



+





n

ΥMNn
∗



 = Ăs̃+ n̆ (10)

where

Ă =





Ã

ΥMNÃ
∗





=





AnΨ Ac

[

IKc
jIKc

]

ΥMNA
∗
nΨ

∗ ΥMNA
∗
c

[

IKc
−jIKc

]





(11)

is the extended array manifold matrix of size 2MN ×K ′, n̆ =





n

ΥMNn
∗





is the 2MN × 1 noise vector, and s̃ = s̃∗. Then, the covariance matrix of x̃

is given by

R = E[x̃x̃H ] = ĂRsĂ
H
+ σ2I2MN (12)

where Rs = E[s̃s̃H ] is the covariance matrix of s̃.
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Remark 1: In practice, only a finite number of observed data is available.

Thus, R has to be estimated by

R̂ ≈
1

L

L
∑

l=1

ˆ̃x(l)ˆ̃xH(l). (13)

where L denotes the number of snapshots.

Since the mixed signals are not correlated with each other, we perform

eigenvalue decomposition (EVD) of R as follows

R = UsΛsU
H
s +UnΛnU

H
n (14)

where the 2MN ×K ′ matrix Us and the 2MN × (2MN −K ′) matrix Un

are the signal subspace and noise subspace, respectively. The K ′×K ′ matrix

Λs = diag(λ1,λ2 · · · ,λK′) and the (2MN −K ′)× (2MN −K ′) matrix Λn =

diag(λK′+1,λK′+2 · · · ,λ2MN) are corresponding diagonal matrices. λ1 ≥ λ2 ≥

· · · ≥ λK′ > λK′+1 = · · · = λ2MN = σ2 are eigenvalues of R. As Ă and Us

span the same column space, there is a non-singular matrix T that satisfies

Ă = UsT.

Define a new matrix Es as

Es = UsΛ
1

2

s , (15)

and four selection matrices as

J1a = [IN−1 0(N−1)×1 ] (16)

J1b = [0(N−1)×1 IN−1 ] (17)

J2a = [IM−1 0(M−1)×1 ] (18)

J2b = [0(M−1)×1 IM−1 ] (19)
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Then, the selection matrices of 1-D DOA θ of the mixed strictly noncir-

cular and circular sources can be expressed as

J1 = blkdiag(J′
1a , ΥM(N−1)J

′
1bΥMN) (20)

J2 = blkdiag(J′
1b , ΥM(N−1)J

′
1aΥMN) (21)

where J′
1a = IM ⊗ J1a and J′

1b = IM ⊗ J1b.

As for the selection matrices of 1-D DOA β, we have

J′
1 = blkdiag(J′

2a , ΥN(M−1)J
′
2bΥMN) (22)

J′
2 = blkdiag(J′

2b , ΥN(M−1)J
′
2aΥMN) (23)

where J′
2a = J2a ⊗ IN and J′

2b = J2b ⊗ IN .

Next, we define two direction matrices related to θ and β as follows

Ωθ = (J1Es)
+(J2Es) (24)

Ωβ = (J′
1Es)

+(J′
2Es) (25)

It is noticed that in [22], the EVD of Ωθ and Ωβ is performed indepen-

dently as

Ωθ = UθΘθU
H
θ (26)

Ωβ = UβΘβU
H
β (27)

where Uθ and Uβ are the K ′ × K ′ unitary matrices, Θθ and Θβ are the

eigenvalue matrices that correspond to θ and β, respectively. It should be

pointed out that performing EVD of (26) and (27) separately, would lead to

the pairing problem between θ and β. Also, there are two identical eigenval-

ues for the same circular source both in (26) and (27) since we have virtually
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decomposed each circular source into two uncorrelated strictly non-circular

sources with the same DOA. This may cause rank-loss problem in (26) and

(27). Moreover, if the same θ or β exists in the incoming mixed signals, the

eigenvalue spectrum in (26) and (27) may degenerate.

In order to solve the above three problems, we now apply the joint diago-

nalization method as used in blind signal separation [23] to the two direction

matrices Ωθ and Ωβ rather than perform EVD of Ωθ and Ωβ. Analogous to

[21], it can be easily deduced that

Ωθ = (J1Es)
+(J2Es) = UΘθU

H (28)

Ωβ = (J′
1Es)

+(J′
2Es) = UΘβU

H (29)

From (28) and (29), it can been seen that the requirement of joint diag-

onalization is satisfied according to Theorem 3 of [23]. By defining a set

Ω = {Ωθ,Ωβ}, we know that there is a unitary matrix V that is essentially

equivalent to U, which minimizes the following nonnegative function

f(Ω,V) =
∑

i=θ,β

off(VHΩiV) (30)

where off(Mn×n) =
∑

1≤i ̸=j≤n

|Mij|
2, and matrix U is called a joint diagonal-

izer [23]. Since U is the eigenvector of both Ωθ and Ωβ, there is no need

for pairing between θ and β since the one-to-one correspondence is preserved

on the diagonals between eigenvalue matrices Θθ and Θβ. The same joint

diagonalization procedure can be implemented by a series of Givens rotations

in [23, 24] to obtain the unitary matrix U. The key idea of joint diagonaliza-

tion procedure is to achieve simultaneous diagonalization via exploiting the
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Jacobi-like algorithm with plane rotations, and the detailed pseudo code of

joint diagonalization procedure can be seen in [24].

Then we have eigenvalues of Ωθ and Ωβ computed as

ηθk = uH
k Ωθuk (31)

ηβk
= uH

k Ωβuk (32)

where uk (k = 1, . . . , K ′) is the kth column of U. From (31) and (32), it can

be easily obtained that

θk = arccos
(

λ arg(ηθk )

2πdx

)

(33)

βk = arccos
(

λ arg(ηβk )

2πdy

)

(34)

It should be noted that due to the decomposition of each circular source

into two strictly non-circular sources, we have obtained K ′ angle estimates

for either θk or βk, while only K actual 2-D DOAs are present. Thus, we

need to correctly pair the two estimates obtained for each circular source in

a suitable manner. Actually, this can be easily done by finding the same

estimates for each θk or βk and then calculating the average of two identical

estimates for 2-D DOA θc,k and βc,k(k = 1, . . . , Kc) respectively as

θc,k =
(θ1

c,k
+θ2

c,k
)

2
(35)

βc,k =
(β1

c,k
+β2

c,k
)

2
(36)

Clearly, due to the automatically paired relationship between θk and βk,

all the circular sources have been separated provided that either θk or βk

is different between any two sources. The proposed method for 2-D DOA
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Table 1: Summary of the proposed method.

Input: {ˆ̃x(l)}Ll=1: L snapshots of the new constructed array output vector.

Output: θ̂k and β̂k: pair-free 2-D estimated angles of K mixed signals.

Step 1 Estimate the covariance matrix R̂ ≈ 1
L

L
∑

l=1

ˆ̃x(l)ˆ̃xH(l).

Step 2 Perform subspace decomposition R̂ = ÛsΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n to

get Ûs, and then compute Ês = ÛsΛ̂
1

2

s .

Step 3 Construct two direction matrices Ω̂θ = (J1Ês)
+(J2Ês) and

Ω̂β = (J′
1Ês)

+(J′
2Ês).

Step 4 Implement the joint diagonalization to the set Ω̂ = {Ω̂θ, Ω̂β} to

obtain the unitary matrix Û by a series of Givens rotations.

Step 5 Compute the eigenvalues η̂θk = ûH
k Ω̂θûk and η̂βk

= ûH
k Ω̂βûk

Step 6 Compute the 2-D DOAs as θ̂k = arccos
(

λ arg(η̂θk )

2πdx

)

and

β̂k = arccos
(

λ arg(η̂βk )

2πdy

)

(k = 1, . . . , K ′)

Step 7 Compute the 2-D DOAs of circular signals as θ̂c,k =
(θ̂1

c,k
+θ̂2

c,k
)

2

and β̂c,k =
(β̂1

c,k
+β̂2

c,k
)

2
(k = 1, . . . , Kc)
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estimation under the mixed circular and strictly noncircular sources is sum-

marized in Table 1.

Remark 2: Since the noncircularity information is used in the proposed

method, the equivalent number of degrees of freedom of the array is increased

compared to the method in [21]. The maximum number of identifiable targets

by the proposed method is Kn+2Kc = min{2M(N − 1), 2N(M − 1)}, while

that of the method in [21] must satisfyKn+Kc = min{M(N − 1), N(M − 1)}.

Therefore, our method can distinguish more signals than the method in [21],

when at least two strictly non-circular sources are present in the mixed sig-

nals.

Remark 3: The major part of the computational effort of the proposed

method includes the construction of R̂, performing EVD of R̂, and joint

diagonalization of the set Ω. To calculate R̂, we need O
(

(2MN)2L
)

complex

multiplications; the EVD operation of R̂ requires the amount of complex

multiplications of O
(

(2MN)3
)

; and jointly diagonalizing the set Ω (two

K ′×K ′ direction matrices), is of O
(

2(K ′)3
)

. Then, the total computational

complexity of the proposed method in terms of complex multiplications is

about O
(

(2MN)2L+ (2MN)3 + 2(K ′)3
)

.

Remark 4: The proposed method is also applicable to the case where

all the incoming signals are noncircular signals (Case 4) since the uniqueness

of joint diagonalization is still satisfied for this case. The simulation results

in section IV will demonstrate the correctness of Case 4. And the 2-D angle

estimation of Case 4 is more accurate than that of the mixed cases.
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4. Theoretical error performance analysis

In this section, the theoretical error performance analysis of the proposed

method is conducted. The derivation in this paper is along the lines of

the first-order analysis done by Rao [25] and the backward error analysis

by Li [26]. To analyze the proposed subspace algorithm, it is important to

analyze the subspace perturbation. First, subspace decomposition can also

be performed using singular value decomposition (SVD) of x̃ as follows:

x̃ =
(

Us Un

)





Σs 0

0 0









VH
s

VH
n



 (37)

Following the first-order approximation principles [25, 26] for eigenvalues

in (31) and (32), we have

δηθk ≈ uH
k δΩθuk = uH

k (J1Ux)
+ (δUx2 − δUx1Ωθ)uk (38)

δηβk
≈ uH

k δΩβuk = uH
k (J

′
1Ux)

+
(δUx2 − δUx1Ωβ)uk (39)

where

Ux = UsΣs (40)

δUx = δUsΣs (41)

δUs = UnU
H
n n̆VsΣ

−1

s
(42)

According to (41) and (42), we obtain

δUx1 = J1δUx = (J1Un)U
H
n n̆Vs (43)

δUx2 = J2δUx = (J2Un)U
H
n n̆Vs (44)

δU′
x1 = J′

1δUx = (J′
1Un)U

H
n n̆Vs (45)
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δU′
x2 = J′

2δUx = (J′
2Un)U

H
n n̆Vs (46)

Then, by substituting (43) and (44) into (38), (45) and (46) into (39),

(38) and (39) can be rewritten as

δηθk ≈ uH
k (J1Ux)

+ (J2Un − ηθkJ1Un)U
H
n n̆Vsuk (47)

δηβk
≈ uH

k (J
′
1Ux)

+
(J′

2Un − ηβk
J′
1Un)U

H
n n̆Vsuk (48)

Using the first-order Taylor series expansion [25, 26], the perturbation of

the kth (k = 1, . . . , K ′) θ and β can be expressed as

δθk = νθkIm

(

δηθk
ηθk

)

(49)

δβk = νβk
Im

(

δηβk

ηβk

)

(50)

where νθk=λ/(2πdx sin θk) and νβk
=λ/(2πdy sin βk). The error-variance of

the estimated 2-D DOAs are

var (δθk) =
1

2
ν2
θk
var

(

ξHθk n̆ϑk

ηθk

)

=
ν2
θk
σ2

2

ξHθkξθkϑ
H
k ϑk

|ηθk |
2 (51)

var (δβk) =
1

2
ν2
βk
var

(

ξHβk
n̆ϑk

ηβk

)

=
ν2
βk
σ2

2

ξHβk
ξβk

ϑH
k ϑk

|ηβk
|2

(52)

where

ξHθk = uH
k (J1Ux)

+ (J2Un − ηθkJ1Un)U
H
n (53)

ξHβk
= uH

k (J
′
1Ux)

+
(J′

2Un − ηβk
J′
1Un)U

H
n (54)

ϑk = Vsuk (55)

|ηθk | = |ηβk
| = 1 (56)
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For the kth (k = 1, . . . , Kc) circular signals, the variances of the two

estimated angles are given by

var (δθc,k) =
[

var
(

δθ1c,k
)

+ var
(

δθ2c,k
)]/

2 (57)

var (δβc,k) =
[

var
(

δβ1
c,k

)

+ var
(

δβ2
c,k

)]/

2 (58)

5. Cramer-Rao bound (CRB) analysis

In this section, we derive the closed-form expression of the deterministic

CRB of 2-D DOAs for the mixed signals scenario. With (8), the model in

(1) can be rewritten as

x = AnΨsn +Acsc + n (59)

The desired CRB matrix is usually computed by taking the inverse of the

Fisher information matrix (FIM) F for the interest parameter θ = [θn,1, θn,2, . . . ,

θn,Kn
, θc,1, θc,2, . . . , θc,Kc

] and β = [βn,1, βn,2, . . . , βn,Kn
, βc,1, βc,2, . . . , βc,Kc

]. F

can be written as

F =

















Fθnθn Fθnθc Fθnβn
Fθnβc

Fθcθn Fθcθc Fθcβn
Fθcβc

Fβnθn Fβnθc Fβnβn
Fβnβc

Fβcθn Fβcθc Fβcβn
Fβcβc

















(60)

Note that the (i, j)th element of Fθnθn [27, 28] is given by

F(θn,i, θn,j) = 2Re{tr[(Ȧθn,i
Ψsn)

Hγ−1(Ȧθn,j
Ψsn)]}

= 2Re{tr[(ȦθnΨeie
T
i sn)

Hγ−1(ȦθnΨeje
T
j sn)]}

= 2Re[(eTi Ψ
HȦ

H

θn
γ−1ȦθnΨej)(e

T
j sns

H
n ei)]

= 2LRe[(ΨHȦ
H

θn
γ−1ȦθnΨ)ij(R

T
snsn

)ij]

(61)
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Due to F = FT , we only need to calculate the upper triangular block matrices

of F. Similarly, we get the (i, j)th element of block matrix Fθnθc , Fθnβn
,

Fθnβc
, Fθcθc , Fθcβn

, Fθcβc
, Fβnβn

, Fβnβc
and Fβcβc

respectively, as follows

F(θn,i, θc,j) = 2Re{tr[(Ȧθn,i
Ψsn)

Hγ−1(Ȧθc,jsc)]}

= 2Re{tr[(ȦθnΨeie
T
i sn)

Hγ−1(Ȧθceje
T
j sc)]}

= 2Re[(eTi Ψ
HȦ

H

θn
γ−1Ȧθcej)(e

T
j scs

H
n ei)]

= 2LRe[(ΨHȦ
H

θn
γ−1Ȧθc)ij(R

T
scsn

)ij]

(62)

F(θn,i, βn,j) = 2Re{tr[(Ȧθn,i
Ψsn)

Hγ−1(Ȧβn,j
Ψsn)]}

= 2Re{tr[(ȦθnΨeie
T
i sn)

Hγ−1(Ȧβn
Ψeje

T
j sn)]}

= 2Re[(eTi Ψ
HȦ

H

θn
γ−1Ȧβn

Ψej)(e
T
j sns

H
n ei)]

= 2LRe[(ΨHȦ
H

θn
γ−1Ȧβn

Ψ)ij(R
T
snsn

)ij]

(63)

F(θn,i, βc,j) = 2Re{tr[(Ȧθn,i
Ψsn)

Hγ−1(Ȧβc,j
sc)]}

= 2Re{tr[(ȦθnΨeie
T
i sn)

Hγ−1(Ȧβc
eje

T
j sc)]}

= 2Re[(eTi Ψ
HȦ

H

θn
γ−1Ȧβc

ej)(e
T
j scs

H
n ei)]

= 2LRe[(ΨHȦ
H

θn
γ−1Ȧβc

)ij(R
T
scsn

)ij]

(64)

F(θc,i, θc,j) = 2Re{tr[(Ȧθc,isc)
Hγ−1(Ȧθc,jsc)]}

= 2Re{tr[(Ȧθceie
T
i sc)

Hγ−1(Ȧθceje
T
j sc)]}

= 2Re[(eTi Ȧ
H

θc
γ−1Ȧθcej)(e

T
j scs

H
c ei)]

= 2LRe[(Ȧ
H

θc
γ−1Ȧθc)ij(R

T
scsc

)ij]

(65)
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F(θc,i, βn,j) = 2Re{tr[(Ȧθc,isc)
Hγ−1(Ȧβn,j

Ψsn)]}

= 2Re{tr[(Ȧθceie
T
i sc)

Hγ−1(Ȧβn
Ψeje

T
j sn)]}

= 2Re[(eTi Ȧ
H

θc
γ−1Ȧβn

Ψej)(e
T
j sns

H
c ei)]

= 2LRe[(Ȧ
H

θc
γ−1Ȧβn

Ψ)ij(R
T
snsc

)ij]

(66)

F(θc,i, βc,j) = 2Re{tr[(Ȧθc,isc)
Hγ−1(Ȧβc,j

sc)]}

= 2Re{tr[(Ȧθceie
T
i sc)

Hγ−1(Ȧβc
eje

T
j sc)]}

= 2Re[(eTi Ȧ
H

θc
γ−1Ȧβc

ej)(e
T
j scs

H
c ei)]

= 2LRe[(Ȧ
H

θc
γ−1Ȧβc

)ij(R
T
scsc

)ij]

(67)

F(βn,i, βn,j) = 2Re{tr[(Ȧβn,i
Ψsn)

Hγ−1(Ȧβn,j
Ψsn)]}

= 2Re{tr[(Ȧβn
Ψeie

T
i sn)

Hγ−1(Ȧβn
Ψeje

T
j sn)]}

= 2Re[(eTi Ψ
HȦ

H

βn
γ−1Ȧβn

Ψej)(e
T
j sns

H
n ei)]

= 2LRe[(ΨHȦ
H

βn
γ−1Ȧβn

Ψ)ij(R
T
snsn

)ij]

(68)

F(βn,i, βc,j) = 2Re{tr[(Ȧβn,i
Ψsn)

Hγ−1(Ȧβc,j
sc)]}

= 2Re{tr[(Ȧβn
Ψeie

T
i sn)

Hγ−1(Ȧβc
eje

T
j sc)]}

= 2Re[(eTi Ψ
HȦ

H

βn
γ−1Ȧβc

ej)(e
T
j scs

H
n ei)]

= 2LRe[(ΨHȦ
H

βn
γ−1Ȧβc

)ij(R
T
scsn

)ij]

(69)

F(βc,i, βc,j) = 2Re{tr[(Ȧβc,i
sc)

Hγ−1(Ȧβc,j
sc)]}

= 2Re{tr[(Ȧβc
eie

T
i sc)

Hγ−1(Ȧβc
eje

T
j sc)]}

= 2Re[(eTi Ȧ
H

βc
γ−1Ȧβc

ej)(e
T
j scs

H
c ei)]

= 2LRe[(Ȧ
H

βc
γ−1Ȧβc

)ij(R
T
scsc

)ij]

(70)
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where Ȧςn , Ȧςc (ς = θ, β), Rsnsn , Rsnsc , Rscsn and Rscsc has the form of

Ȧςn=

[

∂A

∂ς1
,
∂A

∂ς2
,...,

∂A

∂ςKn

]

(71)

Ȧςc=

[

∂A

∂ς1
,
∂A

∂ς2
,...,

∂A

∂ςKc

]

(72)

Rsnsn =
1

L
sns

H
n (73)

Rsnsc =
1

L
sns

H
c (74)

Rscsn =
1

L
scs

H
n (75)

Rscsc =
1

L
scs

H
c (76)

for white noise, γ has the form of σ2IMN .

According to equations from (71) to (76), we obtain

Fθnθn = 2LRe[(ΨHȦ
H

θn
γ−1ȦθnΨ)⊗ (RT

snsn
)] (77)

Fθnθc = 2LRe[(ΨHȦ
H

θn
γ−1Ȧθc)⊗ (RT

scsn
)] (78)

Fθnβn
= 2LRe[(ΨHȦ

H

θn
γ−1Ȧβn

Ψ)⊗ (RT
snsn

)] (79)

Fθnβc
= 2LRe[(ΨHȦ

H

θn
γ−1Ȧβc

)⊗ (RT
scsn

)] (80)

Fθcθc = 2LRe[(Ȧ
H

θc
γ−1Ȧθc)⊗ (RT

scsc
)] (81)

Fθcβn
= 2LRe[(Ȧ

H

θc
γ−1Ȧβn

Ψ)⊗ (RT
snsc

)] (82)

Fθcβc
= 2LRe[(Ȧ

H

θc
γ−1Ȧβc

)⊗ (RT
scsc

)] (83)

Fβnβn
= 2LRe[(ΨHȦ

H

βn
γ−1Ȧβn

Ψ)⊗ (RT
snsn

)] (84)

Fβnβc
= 2LRe[(ΨHȦ

H

βn
γ−1Ȧβc

)⊗ (RT
scsn

)] (85)

Fβcβc
= 2LRe[(Ȧ

H

βc
γ−1Ȧβc

)⊗ (RT
scsc

)] (86)
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Then the CRB matrix C can be expressed as

C = F−1 (87)

and the individual CRBs of θ and β for the circular signals as well as the

strictly non-circular signals can easily be extracted from (87) as follows

CRBθi = Ci,i (88)

CRBβi
= Ci+K,i+K (89)

where Ci,i (i = 1, 2, . . . , K) denotes the (i, i)th element of C.

It should be pointed out that the above CRB analysis is also applicable

to the case where all the incoming signals are noncircular or circular signals.

6. Simulation results

In this section, five sets of simulations are performed to demonstrate the

performance of the proposed method. The first set of simulation is based

on a URA with M = 3 rows and N = 4 columns, while for the next three,

N = M = 5; and for the last one, the number of antennas varies. Both dx

and dy are half wavelength.

The mixed circular and strictly noncircular signals have an equal power.

The power of additive white Gaussian noise is σ2
n. The signal-to-noise ratio

is defined as SNR = 10log10(σ
2
s/σ

2
n). The root mean squared error (RMSE)

as defined by RMSE =

√

1
KMc

K
∑

k=1

Mc
∑

q=1

(ζ̂qk − ζk)
2
is adopted for quantitative

evaluation, where Mc is the number of Monte Carlo simulations, K is the

number of signals, ζ̂q,k is the estimate of the parameter (θ̂k or β̂k) in the kth

Monte Carlo simulation, and ζk is the true value standing for either θk or
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βk. For comparison, the DOA estimation results obtained using the method

in [21], which does not exploit the noncircular information of the signals,

the theoretical error performance and CRB of the proposed method are also

provided. Note that we cannot compare with the method in [22], because

when the angle ambiguity problem emerges, the method in [22] fails to work.

6.1. 2-D DOA estimation

We consider four uncorrelated mixed BPSK and QPSK signals from di-

rections (60◦, 80◦), (85◦, 70◦), (85◦, 95◦) and (110◦, 95◦), respectively. Four

cases are studied corresponding to one, two and four BPSK signals. The

SNR is set at 10dB. The number of snapshots is 500, and Mc is 500. Fig.2

(a) to (d) displays the 2-D DOA scattergram of the circular and strictly non-

circular signals by both the proposed method and the method in [21], with

number of strictly noncircular signals increasing from one to four. It can be

seen that the proposed method outperforms the method in [21], especially

when the number of strictly noncircular signals increases. This is because the

noncircularity information is utilized in the proposed method which increases

the effective array aperture.

6.2. Performance versus SNR

In this simulation, we study the performance with respect to a varying S-

NR ranging from -5dB to 20dB. Here we suppose four uncorrelated mixed sig-

nals are from directions (60◦, 50◦), (70◦, 50◦), (70◦, 60◦) and (80◦, 70◦). Three

cases are considered as before starting from Kn = 1 associated with (60◦, 50◦)

up to Kn = 4 with all above signals. The number of snapshots is 800 and

Mc = 5000. As shown in Fig.3 (a) and (b), the estimation performance of

21



50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

Proposed

True values

Xia [21]

True values

(a)

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

Proposed

True values

Xia [21]

True values

(b)

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

Proposed

True values

Xia [21]

True values

(c)

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

50 100 150
65

70

75

80

85

90

95

100

θ (degree)

β
(d

e
g
re

e
)

 

 

Proposed

True values

Xia [21]

True values

(d)

Fig. 2: 2-D scattergram for mixed signals. (a) Case 1: one BPSK and three QPSK signals.

(b) Case 2: two BPSK and two QPSK signals. (c) Case 3: three BPSK and one QPSK

signals. (d) Case 4: four BPSK signals.
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Fig. 3: RMSE of versus SNR with the number of snapshots to be 800. (a) θ. (b) β.

the proposed method for both angles are superior to that of the method in

[21] in all four cases. As before, the performance of the proposed method im-

proves consistently from case 1 to case 4, with more and more noncircularity

information available.

6.3. Performance versus snapshots

The performance of the proposed method is studied in this part with the

number of snapshots varying from 50 to 1050. The SNR is fixed at 5 dB

and the other parameters are the same as in Sec.6.2. Simulation results are

shown in Fig.4 (a) and (b), and we can draw similar conclusions as in Sec.6.2.

6.4. Performance versus angle separation

Now the performance of the proposed method is investigated with the

angle separation ∆ of 2-D DOAs varying from 0 to 27. The SNR is fixed at

5dB and the snapshot number is 500. Four uncorrelated signals arrive from

directions ((60+∆)◦, (50+∆)◦), ((70+∆)◦, (50+∆)◦), ((70+∆)◦, (60+∆)◦)
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Fig. 4: RMSE of versus snapshots with SNR fixed at 5dB. (a) θ. (b) β.

and ((80+∆)◦, (70+∆)◦). We also consider four cases where one, two, three

and four BPSK signals are present. Naturally, as angle separation varies

from small to large, all methods perform well since the joint diagonalization

procedure can solve the angle ambiguity problem, as shown in Fig.5 (a) and

(b). Moreover, our proposed method again outperforms the method in [21]

for all four cases.

6.5. Performance versus number of rows (columns)

Now we study the effect of array size on the performance. M and N are

assigned the same value and vary from 4 to 12. The SNR is fixed at 5dB

and the number of snapshot is 800. Fig.6 (a) and (b) show the RMSE of

estimated angles obtained by the algorithm in [21] and the proposed one.

From case 1 to case 4, it can be seen that the superiority of our proposed

algorithm is more significant when the size of array is small such as when

the number of rows (columns) equals 4 or 5. When the size of array becomes

large in case 1 to case 3, the proposed method is inferior to the method in
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Fig. 5: RMSE of versus angle separation with SNR fixed at 5dB and the snapshot number

to be 500. (a) θ. (b) β.

[21]. This is because when the number of rows (columns) is increased, the size

of the new data vector x̃ becomes larger, and the accuracy of the estimated

covariance matrix of x̃ will be worse with given the number of snapshots. We

can improve this phenomenon by increasing the number of snapshots.

7. Conclusion

A 2-D DOA estimation method using the URA has been proposed for a

mixture of circular and strictly noncircular signals. Based on an ESPRIT-

like method, the estimated 2-D DOAs of the sources are paired automatically

by joint diagonalization of two direction matrices. The theoretical error per-

formance of the proposed method is analyzed and a closed-form expression

for the deterministic CRB of 2-D DOAs for the mixed signals scenario is de-

rived. Simulation results show that the performance of the proposed method

consistently outperforms the reference method that does not exploit the non-
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circularity information of the impinging signals.
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