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Abstract

This paper develops a multihypothesis testing framework for calculating nu-

merically the optimal minimax test with discrete observations and an arbi-

trary loss function. Discrete observations are common in data processing

and make tractable the calculation of the minimax test. Each hypothesis is

both associated to a parameter defining the distribution of the observations

and to an action which describes the decision to take when the hypothesis

is true. The loss function measures the gap between the parameters and the

actions. The minimax test minimizes the maximum classification risk. It is

the solution of a finite linear programming problem which gives the worst

case classification risk and the worst case prior distribution. The minimax

test equalizes the classification risks whose prior probabilities are strictly pos-

itive. The minimax framework is applied to vector channel decoding which

consists in classifying some codewords transmitted on a binary asymmetric

channel. The Hamming metric is used to measure the number of differences

between the emitted codeword and the decoded one.

Keywords: Multiple hypothesis testing, statistical classification, minimax

test, linear programming
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1. Introduction

The problem of classifying discrete distributions often appears in en-

gineering applications, including pattern recognition with discrete-valued

data [1, 2], sensor network with quantized observations [3, 4] image pro-

cessing [5, 6, 7], and channel decoding [8, 9] among others. The goal of this

work is to decide between K hypotheses H1, . . . , HK where the Probability

Mass Function (pmf) of the observed data x depends on the known value of

a certain parameter given the hypothesis. A decision error is measured with

an arbitrary loss function which depends both on the true hypothesis and

the chosen one. We assume that the prior probabilities of the hypotheses

are unknown. This is a classical assumption when the prior knowledge of

observations is insufficient.

1.1. Minimax Classification

Contrary to a purely Bayesian criterion which needs a complete statis-

tical description of the problem [10], the minimax criterion is well adapted

to classification problems where the probability of each hypothesis is un-

known. This criterion consists in minimizing the largest probability to make

a classification error. The optimal test consists in choosing the maximum

of weighted likelihood functions. The weights are generally very difficult to

calculate [11], even in some simple cases. Furthermore, the minimax test

may satisfy the equalization property, i.e., the worst classification errors are

all equal, which is quite interesting in practice.
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There are two main trends in literature to design minimax test. The first

trend consists in calculating analytically the minimax test. On the first hand,

the minimax test is studied in a general setting [10, 11]. Although there is

a vast literature, it is still difficult to find an algorithm which calculates the

minimax test for a specific situation. For instance, the famous book [10] does

not describe any algorithm to compute a minimax test. On the second hand,

the minimax test is often established for a specific issue [12, 13, 14, 15, 16]

but the algorithm can not be easily extended to an other observation model.

The second trend consists in computing numerically the minimax test [17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The paper [17] is certainly the

first to use of programming techniques for testing two composite hypotheses

based on discrete random variables. The LP approach was already implicit in

[18] with real-valued observations. It is shown in [19] how to use the simplex

method for calculating minimax decisions functions. Duality theory was first

used in [20] and for the general case of minimax tests in [21]. The results are

extended to the more general class of most stringent tests in [22]. The paper

[23] introduced a framework where the theory of infinite LP is applicable. The

survey [24] gives an overview of these pioneering approaches. All the above

mentioned papers are focused on the classification of only two hypotheses.

In the case of several hypotheses, the work [26] is devoted to solving

general minimax problems by iteration methods. To solve a decision prob-

lem with an arbitrary loss function, numerical solutions involving nonlinear

optimization to obtain the least favorable distribution have been studied in

[27, 31, 32]. Obtaining the least favorable distribution simplifies the problem

but it does not provide necessarily an equalizer minimax test, even when it
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exists. Indeed, in case of discrete observations, the equalization of the classi-

fication risks needs the randomization of the test, which is not obtained when

only the least favorable distribution is computed. The work [25] showed that

the theory of infinite LP can be exploited for multiple hypotheses testing

problems but they do not propose any constructive algorithm to solve the

problem. The case of several hypotheses is closely related to the problem of

minimax estimation [33], except that the parameter space is generally not

finite but continuous and compact in case of minimax estimation.

1.2. Discrete Observations and Finite Linear Programming

This paper is in favor of a “discretize-then-optimize” approach, i.e., the

case of discrete observations can be interpreted as the discretization, or quan-

tization, of continuous real observations. Discrete observations often occur

in signal processing applications where the quantization of continuous values

is necessary [34]. Digital communications and image processing are some

fields where quantization is crucially important [35, 36] to limit the size of

the storage or to describe a digital content with only a few features. Wire-

less sensor networks are characterized by limited resources, such as energy

and communication bandwidth. One way to save energy is to limit the data

transmitted in the network by using quantized data [3, 37, 38]. More gener-

ally, the approach studied in this paper can be easily applied to any signal

processing applications where data quantization is of interest. The way the

data are quantized is out of the scope of this work.

Discrete observations naturally involve finite Linear Programming (LP).

In fact, as described in Section 2, the decision function is then a vector of

reals which makes possible the construction of a finite LP problem to com-
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pute the minimax test and the worst prior distribution. After discretization,

the standard LP problem [39] can be solved using techniques for large-scale

LP [40], e.g., interior point methods, Dantzig-Wolfe decomposition, etc. On

the contrary, continuous observations lead to infinite LP because the deci-

sion function generally belongs to an infinite dimensional space, as shown for

instance in [22]. Infinite LP has the advantage to fit a general case but it

is numerically difficult to solve as shown for example in [41, 42]. The main

way to numerically solve an infinite LP consists in discretizing the problem

or to discretize the solution of the problem if it is known. Alternative ap-

proaches for solving infinite LP consist in approximating the initial problem

by a sequence of LP problems with finite dimensional spaces [42]. The main

drawback of this alternative “optimize-then-discretize” approach would be

to develop ad-hoc optimization algorithms.

1.3. Contributions of the Paper

The approach proposed in this paper is based on [22] where the author

solves a LP problem to calculate the minimax test between only two hy-

potheses (binary classification). The paper [22] does not consider any loss

function; only the probability of misclassification is studied. It deals with

hypotheses which can be composite, i.e., each hypothesis may refer to an in-

finite number of statistical models. It is focused on continuous observations

and it studies the minimax test as the solution of an infinite LP problem. It

also proves a weak duality theorem between the primal infinite LP problem

and its dual. The solution of the dual LP problem gives the worst case dis-

tribution of the minimax test. All the results proposed in [22] are theoretical

and no algorithm is proposed, or can be easily derived, to compute the min-
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imax test. The case of discrete observations is just very briefly introduced

as a motivation of the general study. This paper extends [22] to the multiple

hypothesis framework (K-ary classification with K ≥ 3) and to an arbitrary

loss function, i.e., it considers that the classification risk between a couple of

hypotheses can change with respect to the involved couple of hypotheses. It

only considers simple hypothesis: each hypothesis refers to only one statisti-

cal model. It is focused on discrete observations in order to make tractable

the computation of the minimax test.

The first contribution of this paper is the design of a minimax classifi-

cation test between multiple hypotheses as the solution of a finite LP prob-

lem, called the primal problem, when the observations are discrete and the

loss function is arbitrary. This contribution is summarized in Theorem 2.

The explicit calculation of the randomized minimax test makes it possible

to equalize the classification risks, which is discussed in Corollary 1. This

equalization of the classification risks is generally not fulfilled by a Bayes test

because it depends on the worst case distribution.

The second contribution is the computation of the worst case distribution,

also called the least favorable prior, which is obtained as the solution of the

dual LP problem. The minimax test is then expressed as the maximum

of weighted likelihood functions, i.e., it is a Bayesian test associated to the

worst case weights. This contribution is summarized in Theorem 3. The

calculation is very accurate since there is no need of a stopping criterion to

halt the algorithm.

Finally, the minimax test is applied to noisy channel decoding. The

Hamming metric is used to measure the number of differences between the
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emitted codeword and the decoded one. Assuming that the channel and the

codebook are known but not the probabilities of each codeword, it is shown

that the minimax test outperforms the conventional Maximum Likelihood

(ML) decoder, also known as the Multiple Generalized Likelihood Ratio Test

(MGLRT), which assumes an uniform prior over the codebook. The ML

decoder is clearly suboptimal in case of the binary asymmetric channel when

the prior distribution of the codewords is not uniform. It should be noted

that the optimality of the minimax test is non-asymptotic and it is different

from the random coding sense usually employed in channel decoding.

1.4. Organization of the Paper

The paper is organized as follows. Section 2 describes the statistical

framework, including the presentation of the minimax criterion and the LP

problem whose solution is the minimax test. Section 3 studies the solution

of the LP problems, both the primal and the dual ones, which lead to the

minimax test closed-form expression and the worst case distribution of the

hypotheses. Section 4 shows the relevance and efficiency of the proposed test

for noisy channel decoding. Finally, Section 5 concludes this paper.

The following notations are used throughout the paper. The notation

X ∼ p means that X follows the pmf p. The expectation of the function

f(X) with respect to the distribution of X is denoted EX [f(X)]. If X ∼ pθ

follows the distribution pθ parametrized by a vector θ, then the expectation is

denoted EXθ [f(X)]. Lower-case and upper-case letters are for scalar variables

or random variables, bold lower-case letters for column vectors, bold upper-

case letters for matrices and calligraphic upper-case letters or upper-case

Greek letters for sets. Transposition, the transformation of columns into
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rows in a vector x, resp. a matrix A, is denoted by x>, resp. A>.

2. Minimax Test for Discrete Distributions

This section presents the multiple hypotheses testing problem which con-

sists in classifying a discrete random vector characterized by its pmf.

2.1. Randomized Classification Problem

Let X be a discrete random variable taking values x in a finite sample

space X = {x1, . . . ,xm} where xi ∈ An, A is the coding alphabet of finite

size and n is the size of x. Assume that X has a pmf denoted pθ(x) where

θ ∈ Rp is a vector of parameters characterizing the distribution of X. It is

assumed that there are K possible parameters, i.e., θ ∈ Θ = {θ1, . . . ,θK}.
It is then desirable to solve the multiple hypotheses testing problem between

the statistical hypotheses H1,. . . ,HK where Hk is defined by

Hk : {X ∼ pθk}. (1)

The statistical decision problem between multiple hypotheses is stated as

the triplet (Θ,Ψ, w). On the basis of the outcome of the experiment X = x

where the pmf of X is pθ for θ ∈ Θ, it is desirable to choose an action

d(x) ∈ Ψ = {ψ1, . . . ,ψK} where d : X 7→ Ψ is the decision. The loss for

state θ and decision d(X) is the positive random quantity w(θ, d(X)) where

w : Θ×Ψ 7→ [0,+∞) is the loss function and its expectation, called the risk

function for state θ and decision d, is

R(θ, d) = EXθ [w(θ, d(X))]. (2)

8



Typical loss functions are the 0−1 loss function, i.e., w(θj,ψk) = 0 if

j = k and 1 otherwise, and the quadratic loss function, .i.e., w(θj,ψk) =

‖θj −ψk ‖2 where ‖·‖ denotes the Euclidean norm when θj and ψk belong

to the same vector space. Furthermore, this paper exploits randomized de-

cision tests. The decision problem is then viewed as the triplet (Θ,Ψ∗, w)

where Ψ∗ denotes the set of all pmf defined over Ψ.

Definition 1. A randomized test for testing K hypotheses H1,. . . ,HK

is any measurable mapping δ(x) : X 7→ Ψ∗. The test function

δ(x)=(δ1(x), . . . , δK(x)) satisfies 0 ≤ δk(x) ≤ 1 for all k = 1, . . . , K and

K∑
k=1

δk(x) = 1, ∀x ∈ X . (3)

The set of randomized tests is denoted D∗.

The randomized decision function δ ∈ D∗ chooses action ψi with the

probability δi(x). Then, the average loss is

Eδ(x)[w(θ, δ(x))] =
K∑
j=1

δj(x)w(θ,ψj). (4)

The risk function R(θ, δ) becomes:

R(θ, δ) = EXθ [w(θ, δ(X))] =
m∑
i=1

pθ(xi)Eδ(xi)[w(θ, δ(xi))]

=
m∑
i=1

K∑
j=1

pθ(xi)δj(xi)w(θ,ψj). (5)

Definition 2. A randomized test δ∗ ∈ D∗ is a minimax test between the

hypotheses H1,. . . ,HK if

max
θ∈Θ

R(θ, δ∗) = inf
δ∈D∗

max
θ∈Θ

R(θ, δ). (6)
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The minimax test is a special case of the Bayes test whose definition is

recalled hereafter. Define the K-dimensional unit simplex

SK = {q ∈ [0, 1]K :
K∑
j=1

qj = 1}. (7)

Definition 3 (Bayes test). Let q ∈ SK be a prior distribution. Given 1 ≤
j ≤ K, let g

(q)
j (x) be the j-th weighted likelihood defined by

g
(q)
j (x) =

K∑
k=1

qkpθk(x)w(θk,ψj), ∀x ∈ X . (8)

The Bayes test function, also called the weighted likelihood test function,

δ(q)(x) = (δ
(q)
1 (x), . . . , δ

(q)
K (x)) is given by:

δ
(q)
j (x) =


1 if g

(q)
j (x) < mink 6=j{g(q)

k (x)},
ηj(x) if g

(q)
j (x) = mink 6=j{g(q)

k (x)},
0 if g

(q)
j (x) > mink 6=j{g(q)

k (x)},
(9)

where 0 ≤ ηj(x) ≤ 1 for all x.

Let r(q, δ) be the Bayes risk, associated to prior distribution q ∈ SK and

the test δ, defined by

r(q, δ) = Eθ,XR(θ, δ) =
K∑
k=1

qkR(θk, δ)

=
K∑
k=1

m∑
i=1

K∑
j=1

qkpθk(xi)w(θk,ψj)δj(xi) (10)

where θ is considered as a random variable such that θ ∼ q. The following

theorem [10, section 2.9, Theorem 1] shows that the minimax test can be

interpreted as a Bayes test associated to a least favorable prior distribution.
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Theorem 1 (The Minimax Theorem). For a given decision problem

(Θ,Ψ∗, w), there exists a minimax test δ∗ and a least favorable distribution

q∗, also called the worst case prior, such that

inf
δ∈D∗

sup
q∈SK

r(q, δ) = sup
q∈SK

inf
δ∈D∗

r(q, δ) = r(q∗, δ∗). (11)

The test δ∗ is Bayes with respect to q∗.

Theorem 1 establishes the existence of the minimax test. Furthermore,

let δ(q)(x) be the Bayes test which minimizes the Bayes risk when q is given,

i.e., r(q, δ(q)) = infδ∈D∗ r(q, δ). Theorem 1 shows that the minimax test

achieves the maximum Bayes risk supq∈SK r(q, δ
(q)).

2.2. Primal and Dual Linear Programming Problems

The following theorem shows that the calculation of the minimax test

is stated as the solution of a LP problem. To the best of our knowledge,

although the proof is straightforward, it was not established in a previous

paper.

Theorem 2. The test δ∗(x) is a minimax test for testing H1,. . . ,HK in the

class D∗ if and only if there exists a number γ∗ ≥ 0 such that (δ∗, γ∗) is

a solution of the LP problem where the linear form b(δ, γ) = γ has to be

minimized among the couples (δ, γ) of the class K ⊂ Ψ∗×R+ that is defined
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by the following restrictions:

δi(x) ≥ 0, ∀x ∈ X , ∀1 ≤ i ≤ K, (12)

−δi(x) ≥ −1, ∀x ∈ X , ∀1 ≤ i ≤ K, (13)
K∑
i=1

δi(x) ≥ 1, ∀x ∈ X , (14)

−
K∑
i=1

δi(x) ≥ −1, ∀x ∈ X , (15)

γ −R(θk, δ) ≥ 0, ∀k ∈ 1, . . . , K, (16)

where R(θk, δ), given in (5), is a linear function of δ.

Proof. If δ∗(x) is a minimax test with the maximum loss γ∗ =

max1≤k≤K R(θk, δ
∗) ≥ 0, then the pair (δ∗, γ∗) satisfies the restrictions (12)-

(16). Furthermore, if the test δ∗ is minimax, then an other pair (δ, γ) can

not satisfy these restrictions unless γ ≥ γ∗.

If (δ∗, γ∗) is a solution to the LP problem, then δ∗ ∈ D∗ on account

of (12)-(15). Moreover, max1≤k≤K R(θk, δ
∗) ≤ γ∗ on account of (16). It is

obvious that the optimum solution should satisfy max1≤k≤K R(θk, δ
∗) = γ∗

since γ∗ is minimized. If δ∗ is not a minimax test, then there exists δ′ ∈ D∗

with 0 ≤ max1≤k≤K R(θk, δ
′) = γ′ < γ and hence there exists a feasible

element (δ′, γ′) ∈ K with γ′ < γ, which contradicts the fact that (δ∗, γ∗) is a

solution to the LP problem.

All the restrictions in Theorem 2 are given under the form of inequalities

but, if necessary, the restrictions (14) and (15) can be merged and rewritten

as the equality contraint (3). The LP problem given in Theorem 2 is easily

stated in matrix form. Specifically, let wj,k = w(θj,ψk) and pi,j be the
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probability

pi,j = pθj(xi). (17)

The randomized test δ(x) is defined by the matrix ∆ = [δi,j] where δi,j =

δj(xi) for all 1 ≤ i ≤ m and 1 ≤ j ≤ K. The risk function in (5) is

R(θk, δ) =
m∑
i=1

K∑
j=1

pi,k wk,j δi,j (18)

for all θk. The vectorization of the K × m matrix ∆ = [δi,j], denoted by

vec(∆) or vec(δi,j), is the Km × 1 column vector obtained by stacking the

columns of the matrix ∆ on top of one another:

vec(∆) = (δ1,1, . . . , δm,1, . . . , δ1,K , . . . , δm,K)> . (19)

Then, it is aimed to solve the minimax LP problem MLP1:

min
y≥0

b>y = γ (20)

s.t. A>y ≥ c (21)

where the vector y is given by

y = (vec(∆)>, γ)> ∈ RKm+1, (22)

the vector b associated to the linear form is

b = (0, . . . , 0, 1)> ∈ RKm+1, (23)

the second member c ∈ Rm(K+2)+K is

c = (−11×mK , 11×m, −11×m, 01×K)> , (24)
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and the class of feasible solutions is characterized by the (m(K + 2) +K)×
(mK + 1) matrix A given by

A> =


−ImK 0mK×1

11×K ⊗ Im 0m×1

−11×K ⊗ Im 0m×1

−M 1K×1

 . (25)

The matrix M = Q>(W ⊗ Im) of size K ×mK models the K restrictions

(16) within the matrix A. It is detailed as follows:

M =


p1,1w1,1 . . . pm,1w1,1 p1,1w1,2 . . .

p1,2w2,1 . . . pm,2w2,1 p1,2w2,2 . . .
...

...
...

... . . .

p1,K wK,1 . . . pm,K wK,1 p1,K wK,2 . . .

. . . pm,1w1,2 . . . p1,1w1,K . . . pm,1w1,K

. . . pm,2w2,2 . . . p1,2w2,K . . . pm,2w2,K

. . .
...

...
...

...
...

. . . pm,K wK,2 . . . p1,K wK,K . . . pm,K wK,K

 (26)

where W = [wj,k]1≤j,k≤K is the loss matrix,

Q =
K∑
i=1

(fif
>
i )⊗ (Pfi) =


p1 0m×1 . . . 0m×1

0m×1 p2 . . . 0m×1

...
...

. . .
...

0m×1 0m×1 . . . pK

 , (27)

pj is the j-th pmf viewed as the vector

pj = (p1,j, p2,j, . . . , pm,j)
>, (28)
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and P is the m×K matrix containing all the pmfs:

P =
[
p1 p2 . . . pK

]
. (29)

The symbol ⊗ denotes the Kronecker product, fi denotes the ith unit vector

of RK (its ith component is one, all others zero) and In denotes the n × n
identity matrix. The symbol 1m×n, respectively 0m×n, denotes the m × n

matrix with all entries one, respectively zero.

We consider also the dual minimax LP problem MLP2:

max
z≥0

c>z (30)

s.t. Az ≤ b (31)

The vector z ∈ Rm(K+2)+K is decomposed into four subvectors v ∈ RmK ,

λ ∈ Rm, µ ∈ Rm and q ∈ RK such that

z = (v1,1, . . . , vm,K , λ1, . . . , λm, µ1, . . . , µm, q1, . . . , qK) = (v,λ,µ, q). (32)

With these notations, the mK + 1 restrictions Az ≤ b can be detailed as:

−vi,j + λi − µi −
K∑
k=1

qkpi,kwk,j ≤ 0 (33)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ K and

K∑
k=1

qk ≤ 1. (34)

The class of feasible solutions satisfying z ≥ 0 and (31) is denoted L.

3. Solution of the Linear Programming Problem

This section first describes the theoretical solution of the LP problem,

then it underlines how this solution can be computed in practice.
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3.1. Theoretical Solution

The following well-known lemma is recalled and adapted to our statistical

problem in order to underline the meaning of each variable and to make

understandable the proof of Theorem 3.

Lemma 1. If y ∈ K is feasible for MLP1 and z ∈ L is feasible for MLP2,

c>z ≤ b>y. (35)

Proof.

c>z = −
m∑
i=1

K∑
j=1

vi,j +
m∑
i=1

λi −
m∑
i=1

µi (36)

≤ −
m∑
i=1

K∑
j=1

δi,jvi,j +
m∑
i=1

(λi − µi)
K∑
j=1

δi,j (37)

≤ −
m∑
i=1

K∑
j=1

δi,jvi,j +
m∑
i=1

(λi − µi)
K∑
j=1

δi,j

+
K∑
k=1

qk(γ −
m∑
i=1

K∑
j=1

pi,kwk,jδi,j) (38)

where inequality (37) comes from (12), (13), (14), (15) and inequality (38)

comes from (16), (18) and qk ≥ 0 for all k. It follows that

c>z ≤
m∑
i=1

K∑
j=1

δi,j(−vi,j+λi−µi−
K∑
k=1

qkpi,kwk,j)+γ
K∑
k=1

qk. (39)

The restrictions (33) and (34) yield c>z ≤ γ = b>y.

The following well-known lemma [39] is just recalled.
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Lemma 2. If y∗ ∈ K is feasible for MLP1 and z∗ ∈ L is feasible for MLP2

such that

c>z∗ = b>y∗ (40)

then (y∗, z∗) constitutes a pair of optimal solutions for MLP1 and MLP2.

The following lemma establishes that MLP1 and MLP2 admit a pair of

optimal solutions (y∗, z∗).

Lemma 3. There exist an optimal solution y∗ ∈ K for MLP1 and an optimal

solution z∗ ∈ L for MLP2 such that (40) is satisfied.

Proof. According to Theorem 1, the minimax test exists so the primal prob-

lem MLP1 has a finite optimal solution y∗. Due to the strong duality prop-

erty of LP [39, chap. 4], the dual problem MLP2 has also an optimal solution

z∗ and (40) is satisfied.

The following theorem, based on Lemma 3, is the main result of this

paper. It shows that the worst case distribution is given as the solution of

the dual LP problem.

Theorem 3 (Minimax test). Let y∗ = (δ∗, γ∗) ∈ K and z∗ =

(v∗,λ∗,µ∗, q∗) ∈ L be some solutions of, respectively, MLP1 and MLP2.

For all 1 ≤ i ≤ m and 1 ≤ j ≤ K, let g∗i,j be the discrete decision function:

g∗i,j =
K∑
k=1

q∗k pi,k wk,j (41)

where q∗k is given in q∗. The minimax test δ∗ = [δ∗i,j] given in y∗ satisfies

δ∗i,j =

 1 if g∗i,j < mink 6=j g
∗
i,k,

0 if g∗i,j > mink 6=j g
∗
i,k.

(42)
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In case of equality between at least two discrete decision functions, i.e., g∗i,j =

mink 6=j g
∗
i,k, the minimax test is using a tie-breaking decision rule based on

the values 0 ≤ δ∗i,j ≤ 1 given by the solution of MLP1. The distribution q∗,

given by the solution of MLP2, is the worst prior distribution associated to

the minimax test. Futhermore, the test δ∗ satisfies

max
1≤k≤K

R(θk, δ
∗) = γ∗. (43)

Proof. The proof is inspired from [22] but it contains two main technical

differences: we consider i) more than two hypotheses and ii) an arbitrary

loss function. The optimal solutions y∗ and z∗ are given in Lemma 3. The

equality (40) holds if and only if equality holds everywhere in the proof of

Lemma 1. Hence, the optimal pairs of solution (y∗, z∗) satisfies

i) δ∗i,j = 1 when v∗i,j > 0 from (37),

ii) γ∗ −
m∑
i=1

K∑
j=1

pi,kwk,jδ
∗
i,j = 0 when q∗k > 0 from (38),

iii)
K∑
j=1

δ∗i,j = 1 for all 1 ≤ i ≤ m from (37),

iv) δ∗i,j = 0 when −v∗i,j + λ∗i − µ∗i −
K∑
k=1

q∗kpi,kwk,j < 0 from (39),

v)
K∑
k=1

q∗k = 1 when γ∗ > 0 from (39).

According to (33), we have v∗i,j ≥ λ∗i − µ∗i − g∗i,j. If λ∗i − µ∗i + g∗i,j ≤ 0, it is

necessary that v∗i,j = 0 to maximize c>z since c>z decreases as vi,j increases

as shown in (36). Hence, in order to maximize c>z, it is clear that

v∗i,j = max
{

0, λ∗i − µ∗i − g∗i,j
}

(44)
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where g∗i,j is given in (41). To derive the closed form of the test, let us

consider the family of points {v∗i,1, . . . , v∗i,K} for a given index i. Two cases

can occur as described hereafter.

Case 1: there exists j such that v∗i,j > 0. This involves that δ∗i,j = 1

according to i). Hence, for all ` 6= j, δ∗i,` = 0 since
∑K

j=1 δ
∗
i,j = 1. This

imposes that v∗i,` = 0 according to i). This also involves that j is the unique

index such that v∗i,j > 0. Since v∗i,` = 0, it follows from (44) that λ∗i−µ∗i ≤ g∗i,`.

On the contrary, v∗i,j > 0 involves that g∗i,j < λ∗i − µ∗i . Hence, it follows that

g∗i,j = min
1≤`≤K

g∗i,` < min
1≤`6=j≤K

g∗i,`. (45)

Case 2: v∗i,j = 0 for all j. It is impossible that δ∗i,j = 0 for all j since the

constraint iii) should be satisfied. Hence, according to constraint iv), there

exist some coefficients j1, . . . , jt such that g∗i,j` =
∑K

k=1 q
∗
kpi,kwk,j` = λ∗i−µ∗i =

%∗i for all `. The indices j such that δ∗i,j = 0 satisfy g∗i,j > %∗i according to iv).

It follows that

g∗i,j` = min
1≤j≤K

g∗i,j (46)

for all `. Hence, δi,j = 0 for all j /∈ {j1, . . . , jt} and δi,j` > 0 for all ` such

that
∑t

`=1 δ
∗
i,j`

= 1.

It should be noted that the decision function (41) of the minimax test

corresponds to the decision functions of the Bayes test in Definition 3 for

the worst prior distribution q∗. In case of a tie-break between some discrete

decision functions, as underlined in Theorem 3, the dual problem does not

precise the value the decision function for the tie-break; the solution of the

primal problem is then crucial. The tie-breaking decision rule is required to

obtain an equalizer test as shown in the next corollary.

19



Corollary 1 (Equalizer test). Let y∗ = (δ∗, γ∗) ∈ K be a solution of MLP1

and q∗ the worst prior associated to δ∗. The optimal minimax test δ∗ is an

equalizer test almost everywhere, i.e., it satisfies R(θk, δ
∗) = γ∗ for all q∗k > 0

and R(θk, δ
∗) ≤ γ∗ when q∗k = 0.

Proof. It is a consequence of ii) in the proof of Theorem 3.

The equalization property of the minimax test is very interesting in prac-

tice. It must be noted that, in general, the randomization is necessary to

satisfy this property. Under mild assumptions, we can show that the Bayes

risk r(q∗, δ∗) of the minimax test δ∗ can be achieved by a non-randomized

Bayes test δ? (see [10] for instance) but it does not involve that the non-

randomized Bayes test equalizes the risk functions R(θk, δ
?) for all k such

that qk > 0 .

3.2. Practical Aspects of the Solution

The minimax test can be computed in two different ways. The first way

consists in computing the minimax test directly under the form ∆ = [δi,j].

The test looks like a LookUp Table (LUT) where the discrete observation

plays the role of the input and the output is the decision. The LUT form

describes entirely the test but it is not easily interpretable in practice. The

computation of the LUT ∆ = [δi,j] requires to solve explicitly the LP prob-

lem MLP1 (20)-(21). In case of a large number m of discrete values or a

large number K of hypotheses, this large-scale optimization problem can

be resource demanding and time consuming. Fortunately, as mentioned in

Subsection 1.2, many numerical approaches and tools exist to deal with large-

scale LP.
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The second way consists in computing the minimax test under the form

(41)-(42). This second form is simpler to use than the previous form for tak-

ing a decision and it avoids the LUT. Furthermore, this form of the test makes

more interpretable the decision by highlighting the role of each element: the

prior, the loss function and the pmf of the discrete observation. Unfortu-

nately, this form needs to know the prior distribution coefficients q∗k which

have to be computed by solving the LP problem MLP2 (30)-(31). Hence, this

second solution may also require to solve a large-scale optimization problem.

Moreover, since the test values ∆ = [δi,j] are not explicitly computed, the

resulting test is not necessarily able to deal with the tie-breaking decision

rule (see the discussion after Corollary 1). Hence, the equalization property

may not hold.

In practice, whatever the way to compute and to use the minimax test,

it is recommended to exploit existing software libraries to solve the LP prob-

lem. The matrix form given by (23), (24) and (25) can be easily implemented.

When the matrix and vectors are too large, an alternative solution is to com-

pute directly the linear constraints (12)-(16) with an adequate programming

library able to deal with large-scale optimization problem. It must be noted

that the LUT ∆ = [δi,j] or the worst case distribution q∗ are computed only

once.

The next section presents a simple application where the samples are nat-

urally discrete. In case of real observations, as mentioned in Subsection 1.2,

the discrete samples can be obtained by quantizing the real observations.

The parameter m obviously depends on the resolution of the quantizer. It is

reasonable to maintain m as small as possible. From this way, the approach
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proposed in this paper can be extended to any classification problems where

the statistical distribution of the observations is exactly known for each possi-

ble hypothesis. The loss function does not have to satisfy strong assumptions

except that it takes on only non-negative values. As discussed in [10], the

loss function can play an important role in practice and it should be chosen

carefully. When the worst case distribution is significantly different from the

uniform distribution, it is expected that the minimax test will significantly

outperform the MGLRT which remains the standard solution to solve this

kind of decision problem. By definition, even if the prior distribution of the

hypotheses is known, the minimax test will also outperform the Bayes test

in terms of the maximum classification risk. Finally, since the minimax test

is based on the worst case distribution, it is more robust to a possible prior

distribution misspecification than the Bayes test.

4. Application to Noisy Channel Decoding

This section considers the problem of channel decoding which is a natural

case of discrete observations.

4.1. Minimax Channel Decoding

The problem of symbol decoding is frequently encountered in coded com-

munication. The standard solution is given by the ML when the channel is

known [8]. A number of related works [43] replace the ML channel decoder

by a Maximum-A-Posteriori (MAP) decoder that incorporates the statistics

of the source fed to the channel encoder. When the channel is unknown,

there exist universal decoders in the random coding sense [8, 44]. Specif-

ically, the exponential decay rate of the average error probability of these
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universal decoders, w.r.t. the ensemble of randomly chosen codes, is the

same as that of the average error probability obtained by the optimum ML

decoder. However, universality in the random-coding sense does not imply

that for a specific code, a decoder can not be more powerful than the ML

decoder. This example considers that the channel is known but the prior

distribution of the input codewords is unknown, which is especially relevant

for non-uniform sources [45, 46].

4.2. Problem Statement

We assume a given discrete memoryless channel whose transition prob-

ability matrix, π = [π(θ, x)]θ,x∈A, is known: π(θ, x), also denoted π(x|θ), is

the probability of the channel producing the output symbol x ∈ A when the

input is θ ∈ A. For simplicity, we assume that the output alphabet of the

channel is the same as the input alphabet. We assume a given loss function,

also called the fidelity criterion, Λ : A2 → [0,∞), represented by a matrix

Λ = [Λ(θ, x)]θ,x∈A, where Λ(θ, x) denotes the loss incurred by decoding the

symbol θ with the symbol x. An example of such a loss function is the

Hamming metric, i.e., Λ(θ, x) = 0 when θ = x, and Λ(θ, x) = 1 otherwise.

Consider the vector channel πn(x|θ) =
∏n

j=1 π(xj|θj), where θ =

(θ1, . . . , θn) ∈ An is the vector channel input and x = (x1, . . . , xn) ∈ An

is the observed vector channel output. A codebook Θ = {θ1, . . . ,θK} of

length n and rate R is a collection of K = b2nRc vectors θi = (θi,1, . . . , θi,n)

in An which represent the set of messages to be transmitted across the chan-

nel. Here, bac denotes the integer part of the real value a. Upon transmitting

one of the K messages θi, a vector x is received at the channel output, under

the conditional pmf πn(·|θi). The decoder, which observes x ∈ An, has to
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decide which message θ ∈ Θ was truly transmitted. This is a typical instance

of the hypothesis problem (1) where

pθi(x) = πn(x|θi) =
n∏
j=1

π(xj|θi,j) (47)

for all i ∈ {1, . . . , K}. It is assumed that the action set and the parameter

set are equal, i.e., Ψ = Θ. The loss function is then

w(θ,x) =
1

n

n∑
i=1

Λ(θi, xi). (48)

Hence, the randomized decision δ(x) ∈ Θ can be interpreted as a n-block de-

coder which minimizes the average Hamming distortion between the channel

input vector and the channel output decoded vector.

4.3. Numerical Results

The proposed example considers a Binary Asymmetric Channel (BAC)

where A = {0, 1} and

π =

1− π0 π0

π1 1− π1

 (49)

where 0 ≤ π0, π1 ≤ 1. The case π0 = π1 corresponds the binary symmetric

channel and the case π0 = 0 to the Z-channel. Without loss of generality, we

can restrict the values of the parameters π0 and π1 as follows:

0 ≤ π0 ≤ π1 ≤ 1, (50)

π0 ≤ 1− π0, (51)

π0 ≤ 1− π1. (52)

In fact, by permuting the columns of π, i.e., by flipping the channel outputs

(change zero to one and one to zero), and/or by permuting its rows, i.e., by
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flipping the channel inputs, we can easily obtain a matrix π such that 1− π0

is a maximum element of the matrix. Hence, 1− π0 ≥ π1 yields π0 ≤ 1− π1

and 1−π0 ≥ 1−π1 yields π0 ≤ π1. It follows that π0 is necessary a minimum

element of the matrix and all the restrictions (50), (51) and (52) are satisfied.

Note that (51) can be simplified to π0 ≤ 1/2.

Without any loss of generality but to simplify the numerical experiment,

we assume that the codebook is composed of all the words of length n = 2:

Θ =
{
θ = (θ1, θ2), θi ∈ {0, 1}

}
(53)

such that θ1 = (0, 0), θ2 = (0, 1), θ3 = (1, 0) and θ4 = (1, 1). The pmf pθi(x)

of hypothesis Hi is then given by (47) where the marginal pmf π(xj|θi,j) is

(1− π0)(1−θi,j)(1−xj)π
(1−θi,j)xj
0 π

θi,j(1−xj)
1 (1− π1)θi,jxj . (54)

Without loss, we assume that xj = θj for all 1 ≤ j ≤ K = 4, i.e., X = Θ.

Figure 1 shows max1≤k≤K R(θk, δ) for the ML decoder δ̂ and the minimax

decoder δ∗ for all the possible values of (π0, π1) satisfying the restrictions (50),

(51) and (52). In other words, π0 varies from 0 to 0.5 and π1 varies from π0

to 1 − π0. This explains why the domain where max1≤k≤K R(θk, δ) > 0 has

a triangular shape. The minimax test is calculated by solving the primal LP

problem MLP1 with the simplex algorithm [39].

To compare more precisely the minimax decoder to the ML one, let us

observe Figure 2 where the crossover probability π0 = 0.1 is fixed and π1 is

varying from π0 to 1− π0. We can see the four risk functions R(θk, δ) for all

codewords θk ∈ Θ and for both the decoders, δ̂ and δ∗. It can be noted that

the minimax decoder is an equalizer test, as discussed in Corollary 1, contrary

to the ML decoder. We can see that R(θk, δ̂) < R(θk, δ
∗) for k ∈ {1, 2, 3} but
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Figure 1: The maximum risk max1≤k≤K R(θk, δ) for the minimax decoder δ∗ (blue square)

and the ML decoder δ̂ (red circle) as a function of (π0, π1).

R(θ4, δ̂) > R(θ4, δ
∗). This explains why the maximum risk is smaller for the

minimax decoder. For example, when π1 = 1− π0 = 0.9, the transmission of

the symbol 1 ∈ A is rarely correct. Hence, the transmission of the codeword

θ4 = (1, 1) is often decoded as θ1 = (0, 0) by the ML decoder. This worst

case of decoding error leads to a large risk function R(θ4, δ̂). Contrary to

the ML decoder, the minimax decoder is automatically tuned to take into

account this worst case. This tuning is done by using the worst case prior

distribution q∗ described in Theorem 3. It is interesting to note that the ML

decoder is an equalizer decoder when π0 = π1 or π0 = 1− π1. This behavior

is explained in the following paragraph.

The worst case prior distribution is shown in Figure 3 as a function of

π1. We can see that the worst prior converges to the uniform prior as π1

is increasing. Let us explain this behavior. Let πnπ1 = [πn(xj|θi)]1≤i,j≤K be
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Figure 2: The decoding risks R(θk, δ) for the minimax decoder δ∗ (blue square) and the

ML decoder δ̂ (red circle) as a function of θk and π1 when π0 = 0.1.

the vector channel matrix when π0 = 0.1 and π1 is a free parameter. When

π1 = 0.1, the matrix πn0.1, given by

πn0.1 =


0.81 0.09 0.09 0.01

0.09 0.81 0.01 0.09

0.09 0.01 0.81 0.09

0.01 0.09 0.09 0.81

 , (55)

is symmetric. Hence, the decoding problem is invariant with respect to the

permutation of the input codewords [10]. This involves that the worst case

prior is uniform. Consequently, the minimax decoder and the ML one are
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Figure 3: The worst case prior probabilities as a function of π1 when π0 = 0.1.

equivalent. When π1 = 0.9, the matrix πn0.9 is given by

πn0.9 =


0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

0.81 0.09 0.09 0.01

 . (56)

The rows of the matrix are the same. Hence, the decoding problem is invari-

ant with respect to the permutation of the input codewords. This involves

that the worst case prior is also uniform. When 0.1 < π1 < 0.9, the matrix

πnπ1 has no special properties and the uniform prior is not necessarily the

optimal one. In this situation, the minimax decoder clearly outperforms the

ML one in the minimax sense. It is interesting to note that the worst case

distribution is not unique: when π1 = 0.1, the minimax worst prior is shown
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in Figure 3 and it is clearly different from the uniform prior associated to the

ML decoder which is also a worst prior in this case.
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Figure 4: The Bayes risk r(q, δ) for the minimax decoder δ∗ and the ML decoder δ̂ as a

function of π1 when π0 = 0.1.

Let q∗π1 be the worst prior when π0 = 0.1 and π1 is a free parameter. Let

q̂ be the uniform prior. The mean risks, i.e., the Bayes risks r(q∗, δ∗) and

r(q̂, δ̂), of both the decoders are shown in Figure 4. The Bayes risk of the

ML decoder is always smaller than the Bayes risk of the minimax decoder,

which is a direct consequence of the fact that the minimax test is associated

to the largest Bayes risk (see Theorem 1). Hence, it should be noted that

the minimax decoder minimizes the maximum decoding risk but it does not

outperform the ML decoder in the mean decoding error sense.
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5. Conclusion

This paper proposes an algorithm to calculate the minimax test with an

arbitrary loss function between simple hypotheses by solving a linear pro-

gramming problem. As a by-product, the solution of the dual problem gives

the worst case distribution. The minimax test is applied to the problem of

binary asymmetric channel decoding when the prior distribution of the code-

words is unknown and the loss function is the Hamming metric. Contrary to

the Bayes test, the minimax test equalizes the decoding risks.
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