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Abstract—We study the target parameter estimation for sub-Nyquist pulse-Doppler radar. Several past works have 

addressed this problem but either have low estimation accuracy for off-grid targets, take large computation load, or lack 

versatility for analog-to-information conversion (AIC) systems. To overcome these difficulties, we present a general 

and efficient estimation scheme. The scheme first formulates a general model in the sense that it is applicable to all 

AICs regardless of whether the targets are on or off the grids. The estimation of Doppler shifts and delays is performed 

sequentially, in which the Doppler estimation is formulated into a spatial spectrum estimation problem and the delay 

estimation is decomposed into a series of compressive parameter estimation problems with each corresponding to an 

estimated Doppler shift. By the sequential and decomposed processing, the computational complexity is substantially 

reduced, and by the parametric estimation techniques, the high accurate estimation is obtained. Theoretical analyses 

and numerical experiments show the effectiveness and the correctness of the proposed scheme. 
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I. INTRODUCTION 

We consider target parameter estimation in a sub-Nyquist pulse-Doppler radar via analog-to-information conversion 

(AIC) systems. The problem has received extensive attention in recent years and several methods have been reported 

[1-6]. Among these reported methods, some estimate the target parameters simultaneously by sparse reconstruction 

[1-3], some perform sequential estimation of the delays and Doppler shifts [4-6], some assume that the targets are 

located on the predefined delay-Doppler grids [1, 2, 4, 5], and some are developed on specific AIC systems [4-6]. 

These methods either have low estimation accuracy for off-grid targets, take large computation load, or lack versatility 

for AIC systems (See [7] for a review). In general, the sequential methods have computational advantages and are more 

suitable to practical radar applications. 

Recently, we developed a general sequential delay-Doppler (GeSeDD) estimation scheme in [7]. GeSeDD is 

versatile in suiting for any AIC system and has the advantages of high estimation accuracy, high resolution and 

moderate-size computational complexity. This paper continues our study on the development of general sequential 
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estimation method with the aim to reduce the computational overhead. Instead of grouping the targets into classes with 

each corresponding to a distinct time delay [7], we classify the targets into groups with each corresponding to a distinct 

Doppler shift. For the universal applicability, we formulate a compressive measurement model regardless of AIC 

systems and on-grid and/or off-grid targets. By the new model, we find that the Doppler shifts can be estimated 

independently of the time delays by parametric direction-of-arrival (DOA) estimation techniques [8]. With the 

estimated Doppler shifts, we establish a tactics that further decomposes the estimation of time delays into a series of 

compressive parameter estimation problems with each corresponding to a distinct Doppler shift. The compressive 

parameter estimation techniques [3, 9-11] can be taken to estimate the time delays. By the sequential and decomposed 

processing, combined with parametric estimation techniques, the novel estimation scheme has high computational 

efficiency and high estimation accuracy. Theoretical analyses and simulation results confirm our assertions. 

The rest of this paper is organized as follows. The problem formulation is defined in Section II. The estimation 

scheme of Doppler shifts and delays is introduced in Section III. Section IV presents the analyses on computational 

complexity. The experiments are simulated in Section V. Conclusion is given in Section VI. 

II. PROBLEM FORMULATION 

The data model we will develop is similar to that in [7], except that we classify the targets into groups with each 

corresponding to a distinct Doppler shift. Consider a radar scene consisting of K  non-fluctuating moving point targets. 

Assume that there are vK  ( vK L ) targets having distinct Doppler shifts and each Doppler shift iv  is associated with 

,v iK  different delays ij  ( ,1, , v ij K  ). For a co-located pulse-Doppler radar transmitting L  pulses in a coherent 

processing interval (CPI), the complex baseband echo corresponding to the l -th pulse ( 0 1l L   ) is given by 

        
, ,

j2 j2

1 1 1 1

, , ( 1)
v i v iv v

i i

K KK K
t lTl

ij ij ij ij
i j i j

r t e g t lT e g t lT t lT l T    
   

              (1) 

where T  is the pulse repetition interval (PRI),  g t  is the complex envelop of transmitting pulses with bandwidth 

B  and pulse width pT  ( pT T ) and ij   is the complex gain of the target with the delay-Doppler pair  ,ij i  . 

The approximation follows from the stop-and-hop assumption [12]. For unambiguous estimation, the delays and 

Doppler shifts satisfy 0,ij pT T    and  1 2 ,1 2iv T T  .  
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Under parametric waveform dictionary [13] with the delay ij ,       , , , 1, , ,ij ij ij vt t g t i K           

,1, , v ij K  , the echo signal  lr t  can be expressed as 

      
,

j2

1 1

, , 0,
v iv

i

KK
lTl

ij ij
i j

r t e t lT t lT T   
 

       (2) 

In the presence of noise, the received baseband signal is given by 

        
,

j2
1

1 1

, , 0,
v iv

i

KK
lTl l

ij ij
i j

r t e t lT n t t lT T   
 

         (3) 

where  ln t  is assumed to be a lowpass complex Gaussian process with power spectral density 0N  and bandwidth 

B , and all of the  ln t  (1 l L  ) are independently and identically distributed (i.i.d.). 

For sub-Nyquist radars, the received signal  1
lr t  is sampled by an AIC system to attain compressive 

measurements [14]. Denote       T
1, , , ( 1)l l l l N

nyq nyqr lT r lT T r lT N T      r      and    , , ,l l l
nyqn lT n lT T n     

  T
1( 1)l N

nyqn lT N T     as the Nyquist-rate sampling vectors of  lr t  and  ln t  in a PRI  , ( 1)t lT l T  , 

respectively, where the superscript  T  represents transposition. The compressive measurement vector 1l M
cs

s   of 

the signal  1
lr t  obtained from any AIC system can be represented as 

  l l l l l
cs cs   s M r n Mr n  (4) 

where M NM   ( M N ) is the measurement matrix and 
T

[1], [2], , [ ]l l l l l
cs cs cs csn n n M    n Mn    1M   is the 

compressive measurement vector of the noise  ln t . The [ ]l
csn m  (1 m M  ) is an i.i.d. complex Gaussian process 

with zero-mean and variance 0NN B M  [15]. In the formulation of (4), we are not confined to any specific AIC system. 

Then the matrix M  depends on the assumed AIC system. In this sense, (4) is a general compressive measurement 

model for any sub-Nyquist radar. 

Let       T
1( ) ,0 , , , , , ( 1) N

ij ij ij nyq ij nyqT N T           ψ      be the Nyquist-rate sampling vector of the 

parametric atom  ,ij t  . The compressive vector l
css  can be explicitly described by 

 
,

2 2

1 1 1

( )
v i

i i

KK K
j lT j lTl l l

cs ij ij cs i cs
i j i

e e
 

  
  

     s Mψ n Mψ n  (5) 

where , 1

1
( )v iK N

i ij ijj
  


 ψ ψ  . Define 1 2, , , v

v

N K
K

   Ψ ψ ψ ψ   and 1 2
T2 12 2, , , K v

j lT Kj lT j lTl e e e      θ   . We 

can rewrite (5) as 
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 l l l
cs cs s MΨθ n  (6) 

Concatenating all L  compressive measurement vectors l
css  and l

csn  as 0 1 1, , , L M L
cs cs cs

    S s s s   and 

0 1 1, , , L M L
cs cs cs

    N n n n  , respectively, we have 

  S MΨΘ N  (7) 

with 0 1 1, , , K LL     Θ θ θ θ  . 

Our goal is to accurately and efficiently estimate the target parameters ij , ij  and i  ( 1,2, , vi K  , 

,1,2, , v ij K  ) from the compressive measurement data matrix S . As discussed in [7], estimating these parameters can 

be performed by solving a high-dimensional nonlinear optimization, which will take large computational load. 

III. ESTIMATION OF TARGET PARAMETERS 

In the proposed scheme, we first estimate the Doppler shifts and then the delays and gains. 

A. Estimation of the Doppler shifts 

The estimation of Doppler shifts is performed independently of the delays and gains. To see this, we take the 

transpose operation on both sides of (7) and have 

 T T T T T S Θ Ψ M N  (8) 

where      T
1 2, , , L K

K



      Θ a a a   and     Tj2 1j2 11, , , ii L TT L

i e e      a   . If we take TΘ  as the steering 

matrix and T TΨ M  as the source matrix consisting of vK  sources, we can see that (8) is exactly the same as the model 

of classical DOA estimation problem for an L -element uniform linear array [8]. The i -th row of T TΨ M  represents 

the arriving source with spatial frequency  1 2,1 2i if v T   , and the number of snapshots equals to that of 

compressive samples M  in one PRI. The target parameters, gains and delays, are contained in Ψ  which does not 

affect the independent estimation of the Doppler shifts. Then the Doppler shifts can be estimated by the parametric 

DOA estimation methods, such as MUSIC [16] and ESPRIT [17].  

In practical radar scenarios, there may be several targets with the same delays but having different Doppler shifts. 

In such case, the source signals resulting from the radar echoes become coherent and the resulting matrix T TΨ M  is not 

of full-row rank. If the case occurs, we can take the coherent DOA techniques [18] to estimate the Doppler shifts. 
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The parametric DOA estimation idea has been taken in our previous work [7] which formulates the estimation of 

the time delays as a DOA estimation problem. However, the proposed method is superior to the GeSeDD method when 

the coherent sources appear in the corresponding DOA estimation problem. In GeSeDD, the estimation of time delays 

is targeted as a beamspace DOA estimation problem, where classical coherent DOA estimation techniques cannot be 

exploited directly [8] and advanced techniques, such as interpolated array technique [19], should be utilized. Then the 

computational load increases and the estimation accuracy is also affected. In contrast, the proposed method can figure 

out the coherent sources by classical techniques, since the DOA estimation problem in (8) is of element-space. 

When the Doppler shifts are all on the Nyquist grids, the proposed method reduces to the compressive sampling 

pulse-Doppler (CoSaPD) method [4] if we take the discrete Fourier transform (DFT) on (8) to estimate the Doppler 

shifts. In this case, the coherent sources have no effect on the estimation of Doppler shifts. 

B. Estimation of the delays and gains 

With the estimated Doppler shifts, a straightforward way to estimate the delays ij  and gains ij  ( 1,2, , vi K  , 

,1,2, , v ij K  ) is to solve the following optimization problem 

 2

F,
arg min

ij ij 
S MΨΘ  (9) 

By expressing MΨΘ  as  T

1

K

i ii
v


 MΨΘ Mψ a  and column-wise vectorizing the equation (7), we can translate the 

problem (9) into 

     ,
2

1 1, 2
arg min vec ( )v i

ij ij

K K

i ij iji j
v

 
 

 
  S a M ψ  (10) 

where   1vec MLS   is the column-wise vectorized S ,   denotes the Kronecker product and 

      , T

1
( ) vecv iK

i ij ij i i i ij
v v v 


   a M ψ a Mψ Mψ a  

The problem (10) is a special nonlinear least square with the unknown ,v iK , and can be resolved by the compressive 

parameter estimation techniques [3, 9-11].  

Directly computing (10) is time-consuming because of its high observation dimension ML  in   1vec MLS  . We 

find that the problem (10) can be further decomposed into vK  sub-problems with each corresponding to a Doppler 

shift iv  and having low observation dimension M . 



6 

Note that Θ  is a Vandermonde matrix having full-row rank. Then † ΘΘ I with   1† H H 
Θ Θ ΘΘ , the 

Moore-Penrose pseudo-inverse of Θ . Post-multiplying the both sides of the equation (7) by †Θ , we have 

 † † †
1 2, , ,

vK     SΘ MΨ NΘ Mψ Mψ Mψ NΘ  (11) 

It is seen that the i -th column of †SΘ  is the noisy version of the measurement vector iMψ  corresponding to the 

Doppler shift i . Denoting 
i

s  and 
i

n  respectively as the i -th column of †SΘ  and †NΘ , we have 

 , 1,2, ,
i ii vi K   s Mψ n   (12) 

Then directly solving (10) is equivalent to solving the vK  sub-problems in which each is confined to find the delays 

ij  and gains ij  corresponding to the Doppler iv , 

 ,
2

1, 2
arg min ( ) , 1,2, ,v i

i
ij ij

K

ij ij vj
i K 

 


 s M ψ   (13) 

In comparison with (10), the observation dimension of (13) is reduced L  times and thus the computational load is 

greatly alleviated. 

In the CoSaPD method [4], a vector similar to 
i

s  is generated by the row-wise DFT of S . For the targets whose 

Doppler shifts are on the Nyquist grids, the matrix Θ  is a partial Fourier matrix and the DFT operation simply 

classifies the targets into groups with each corresponding to a distinct Doppler shift. For the formulation (7), the 

difficulty is that the matrix Θ  is not a partial Fourier matrix. However, noting the Vandermonde structure of Θ , we 

devise a similar decomposition as described in (11). This decomposition greatly enhances computational efficiency. 

In addition to its generality to deal with the targets of the on- and/or off-grids, the vector 
i

s  generated by (12) 

has the improved signal-to-noise ratio (SNR) with respect to the signal vector in (5). Let  ib  be the i -th column of 

†Θ . Then for each distinct Doppler shift i , since † ΘΘ I , we have 

 
   
   

T

T

1

0,

i i

i i i i

 

 

 


 

a b

a b
 (14) 

Let   1H H
i N i i i i


 P I Θ Θ Θ Θ  which is an orthogonal projection matrix with        1 1 1, , , , ,i i i K

    
   Θ a a a a   

 1L K  . With (14), we can derive 

    
   

**

T **

i i
i

i i i




 


P a
b

a P a
 (15) 
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By the definition of 
i

n , we have 

 
 

   

**

T **i

i i

i i i





 


NP a
n

a P a
 (16) 

whose power is given by      
22 2 T **

22

l
cs i i i i i  n Pa a P a . Note that the signal power in (5) is the same as in (12) for 

a distinct Doppler target. Then after the decomposed processing, the SNR in (12) will be improved by 

     
2 2T **

2i i i i i L   a P a Pa . When all the Doppler shifts are on the Nyquist grids, all  ia  ( 1,2, , vi K  ) are 

orthogonal to each other and iP  is an identity matrix. Then      
2 2T **

2i i i i i L   a P a Pa  and the SNR for the 

on-grid targets is enhanced by L  times, which is consistent with the analyses on CoSaPD in [4]. For CoSaPD, the 

row-wise DFT operation performs as matched filtering processing by  *

ia  in Doppler dimension. In this sense, the 

decomposed processing to generate the signal vector 
i

s  has the similar function. However, for the off-grid targets, an 

extra pre-processing     T ** *
i i i i P a P a  is introduced, which cause a loss on the SNR improvement. 

In classic pulse-Doppler processing, we usually perform the matched filtering in time domain and coherent 

integration in Doppler dimension to enhance the target strength for further processing. One may argue if there is SNR 

loss for the proposed scheme because the matched filtering processing in time domain does not explicitly appear, as 

pointed out by one of reviewers. As discussed in other works [4], this is a difference of the radar signal processing in 

compressed domain from the classical processing. In fact, the matched filtering processing is implied in the estimation 

process by (13), which increases the input SNR by pMBT N  times. Then the system processing gain after the delay 

estimation will be improved to be        
2 2T **

2i i i i i pMBT N   
  

a P a P a . For the on-grid targets, the processing gain 

equals to pLMBT N , which is same as that in CoSaPD. 

The proposed scheme performs the estimation of the Doppler shifts and the delays sequentially by (8) and (13). 

Although the SNR is greatly enhanced at each processing stage, the system processing gain by the proposed sequential 

processing is less than that by the classic pulse-Doppler processing because of the noise-folding phenomena caused by 

the sub-Nyquist sampling. Then the optimal estimation accuracy with the compressed data in (7) is lower than that by 

the Nyquist data as revealed by the Cramer-Rao bound (CRB) analyses in [20]. The simulations in Section V confirms 
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the theoretical analyses. 

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY 

This section analyzes the computational complexity of the proposed scheme. We utilize ESPRIT algorithm [17] to 

estimate the Doppler shifts because of its high estimation accuracy and computational efficiency, and exploit the 

parameter perturbed orthogonal matching pursuit (PPOMP) algorithm [3] to estimate the delays and gains for its high 

estimation accuracy. 

As is known, estimating the Doppler shifts from S  by ESPRIT algorithm takes  2 3ML L  operations. To 

estimate the delays and gains, we take  2 3KLM K L K   operations to generate all the vectors 
i

s  from S  and 

 PMN  operations to solve the problem (13) for each 
i

s  where P  is the maximum number of iterations for 

nonlinear optimization sub-problems in PPOMP [3]. In the worst case where the delays and Doppler shifts are distinct 

between any two targets, we have to solve the problem (13) by K  times. Then we have the total computational load 

of the proposed scheme as  2 3ML L +  2 3KLM K L K  +  KPMN . For sub-Nyquist radar, it is known that 

K L P M N   . Then the computational complexity of our scheme is approximated as  KPMN . In [7], we have 

derived that the complexities of GeSeDD via beamspace root MUSIC (abbreviated as GeSeDD-1) and GeSeDD via 

beamspace spectral MUSIC (abbreviated as GeSeDD-2) are respectively approximated as  3N  and  2DMN , 

where D  is the ratio between the Nyquist grid space and the grid-search space and generally satisfies K D L  . It is 

also argued in [7] that the computational complexity of GeSeDD is comparable to that of CoSaPD method and Doppler 

focus (DF) method in [5]. Then the proposed scheme has the smallest computational complexity among these methods. 

V. SIMULATION RESULTS 

This section simulates some experiments to show the estimation accuracy and the computational advantages of the 

proposed scheme. The transmitted signal is assumed to be a linear frequency modulation pulsed signal with bandwidth 

100 MHzB   and pulse width 10 μspT  . The PRI is 100 μsT   and the number of pulses is 100L  . The delay cell 

size 0 1 B   is 0.01μs  and the Doppler cell size 0 1 ( )v LT  is 0.1 KHz . Without special statements, the delay and 

the Doppler shift of all the targets are randomly chosen with a uniform distribution from the intervals  0,10 μs  and 
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 -5,5 KHz . The gain amplitudes and phases of the targets are uniformly distributed in  0.1,1  and  0,2 , 

respectively. The 
22

2 2
SNR l l l

cs cs cs s n n  is assumed to be identical in each pulse interval. The estimated delays and 

Doppler shifts are determined by the estimated targets having the K  largest amplitudes of gains. 

The Xampling is taken as a sample AIC with one-fifth Nyquist rate, where the measured Fourier coefficients are 

randomly selected. For performance comparisons, simulation results by GeSeDD-1 and GeSeDD-2 [7], CoSaPD [4] 

and DF [5] are demonstrated. As a benchmark, a simultaneous method, the PPOMP in [3], is also shown for its high 

estimation accuracy. For GeSeDD-2, the grid space is set as one-tenth delay cell size for grid search in beamspace 

spectral MUSIC. For the DF method, the grid spaces of delay and Doppler shift are both set as a half of cell size. 

We now evaluate the delay/Doppler estimation performance of all methods in the noisy case. The relative 

root-mean-square error (RRMSE) is utilized as a metric for the performance evaluation. Let the set  1 2, , , K  τ   

and  1 2, , , Kv v vv   be the delay and Doppler shift estimate values of K  targets. The RRMSEs of the time delay 

and the Doppler shift are defined respectively as  

 2

10

1 1
RRMSE

K

k k
kK  

 

   and  2

10

1 1
RRMSE

K

v k k
k

v v
v K 

   

In the simulation, the delay and Doppler separation between any two targets are respectively set to be at least 02  

and 02v  to alleviate interaction between different targets. Fig. 1 displays the curves of the RRMSEs versus the SNRs 

with ten off-grid targets for the noisy compressed data. The CRBs of delays and Doppler shifts are provided as a 

benchmark, which can be derived from the vectorized representation of (7). It is seen that when SNR 10 dB  , the 

proposed scheme has the same accuracy as GeSeDD-1 and is superior to the other sequential methods. However, both 

the proposed scheme and GeSeDD have a sharp increase in RRMSE when SNR 10 dB  . This is because both 

schemes exploit subspace DOA estimation techniques to find the Doppler shifts or the delays. As we all know, the 

subspace techniques suffer a threshold effect [7], i.e., the estimation performance is sharply decreased when the SNR is 

below a threshold value. For a small SNR ( SNR 10dB  ), PPOMP offers the highest estimation accuracy because of its 

robustness to noise [7]. In spite of the SNR, both CoSaPD and DF have poor estimation accuracy due to the basis 
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mismatch. As analyzed in [7], GeSeDD-1 has the best estimation accuracy among the simulated sequential methods. 

This simulation shows that the proposed scheme has high estimation accuracy and is comparable to any other methods.  

The proposed scheme is also applicable to the Nyquist data for the estimation of the off-grid targets. We simulate 

the RRMSE performance of the classic pule-Doppler processing [12]. A quadratic interpolation technique [12] is 

exploited to improve the estimation accuracy of the delay and Doppler shift parameters, where the Nyquist data is 

windowed by a hamming window. Fig.2 shows the estimation performance along with CRBs from the Nyquist data. 

We see that the proposed scheme has the best estimation accuracy which approaches to the CRBs for the higher SNRs. 

In the classic processing, the interpolation techniques can improve the estimation accuracy. However the improvement 

is limited as discussed in [12]. The CoSaPD method has the worst performance because it works only for the on-grid 

targets. This further shows the efficiency of the proposed parametric scheme. In comparison with Fig.1, we find that the 

classic processing performs better among all the simulated schemes with sub-Nyquist data at low SNRs ( SNR 15 dB  ) 

because of its higher processing gain. Moreover, we can find that the CRB from the Nyquist data is lower than that 

from the compressed data, which is consistent with the analyses in [20]. For the proposed scheme, the estimation 

accuracy from the compressed data is also lower than that from the Nyquist data. Then the pulse-Doppler processing in 

the compressed domain reduces the estimation accuracy to a certain extent. However, the reduction is negligible, as 

shown in Fig. 1 and Fig. 2. 

Another advantage of the proposed scheme is that it takes less computational time. We take the CPU time to 

illustrate the performance. The simulation is performed in MATLAB 2011b 64-bit environment on a PC with 3.6 GHz 

Intel core i7-4790 processor and 16 GB RAM. Fig. 3 displays the dependence of the CPU time on the number of 

targets K  with SNR=20dB. It is clear that the proposed scheme has the least computational cost. This further verifies 

our analyses in Section IV. Note that the CPU time of the proposed method increases along with larger K . This is 

because the computational complexity is dominated by the delays and gains estimation and is linearly proportional to 

K , as analyzed in Section IV. Similarly, the DF and CoSaPD methods lie on K , and the DF has stronger dependence 

on K . On the contrary, the CPU time of both GeSeDD methods is independent on K . The reason is that the 
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computational cost is controlled by the beamspace DOA estimation problem, which is not affected by K  [7]. 

VI. CONCLUSION 

In this paper, we have presented a new general sequential estimation scheme for estimating the sub-Nyquist radar 

parameters. Different from our previous contributions [7], we first estimate the Doppler shifts and then the delays and 

gains of the targets. With the new mechanism, the proposed scheme has the less computational complexity and the high 

estimation accuracy among all methods reported. Simulations validate our theoretical development. This sequential 

estimation idea has been used in the development of the CoSaPD method [4]. The difference is that, unlike [4] in which 

the targets are assumed to be on the predefined grids, the new scheme developed in this paper removes this constraint. 

In this sense, the proposed scheme is a gridless CoSaPD. 

We are currently working on the development of the target detection techniques incorporated into the proposed 

sequential scheme. 
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Fig. 1 The RRMSEs versus the SNR for noisy compressed data (K=10) 
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Fig. 2 The RRMSEs versus the SNR for noisy Nyquist data (K=10) 
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Fig. 3 The CPU time versus the number of targets with SNR=20dB 

 


