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Highlights

• A novel robust design of multiple-input multiple-output radar beamforming with

full DoFs is proposed.

• A novel jointly estimating the desired signal steering vector and the covariance

matrix is proposed.

• An iterative alternating method to solve two relaxed convex subproblems is de-

rived, whose convergence is analytically proved.

• The covariance matrix estimation method is presented via the matrix rank-constrained

minimization method.

• The proposed beamformer for MIMO radar can flexibly control the robust region

and achieve high output performance.
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Abstract

In this paper, we consider robust adaptive beamformer design for multiple-input multiple-

output (MIMO) radar systems. The desired transmit-receive steering vector is esti-

mated through maximizing the output power subject to constraints upon correlation

coefficient and steering vector norm. The original nonconvex problem is reformulated

as two reduced dimension semi-definite programming (SDP) problems. An iterative

procedure is devised to tackle the two SDP problems, whose convergence is analyt-

ically proven. Based on the estimated desired signal, we are then able to obtain the

interference covariance matrix via the matrix rank-constrained minimization method.

Compared to other robust adaptive beamforming methods for MIMO radar, the pro-

posed approach has the advantages of high efficiency and accuracy. Simulation results

are presented to confirm the effectiveness and robustness of the proposed approach.

Keywords: Robust beamforming, MIMO radar, iterative algorithm,

convex quadratic program
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1. Introduction

Multiple-input multiple-output (MIMO) radar has received significant attention due

to its various advantages over conventional radar systems, such as enhanced detec-

tion performance, improved parameter identifiability and angular resolution, providing

more degrees of freedom (DOFs), and better spatial coverage [1]. MIMO radar is usu-5

ally divided into statistical (or widely separated) MIMO radar [2] and colocated (or

coherent) MIMO radar [3]. Statistical MIMO radar which is comprised of widely sep-

arated transmit and receive antennas, can achieve spatial diversity gain and enhance

detection performance. On the other hand, colocated MIMO radar with waveform di-

versity can enhance parameter identifiability and increase the flexibility of transmit10

beampattern design, thereby improving spatial resolution via a great increase in DOFs

of the system [4].

In practice, the adaptive beamforming algorithm is usually used to extract the de-

sired signal and suppress simultaneously the interference as well as noise at the array

output [5]. However, the conventional beamforming method often suffers severe per-15

formance degradation due to certain factors such as small number of training snap-

shots, corruption of training data by the desired signal in many practical applications,

and the mismatch between the assumed and actual knowledge [6]. Thus, robust design

techniques have been an active research topic. During the past decade, various ro-

bust adaptive beamformers have been proposed based on different principles to achieve20

high resolution in the framework of phased array receivers [7–9]. The diagonal loading

technique is prevalent in enhancing the robustness of the beamformer. However, the

limitation of the diagonal loading method is that the diagonal loading factor must be

generally determined empirically [10]. The worst-case optimization-based technique

developed in [11] delimits the uncertainty set by upper bounding the norm of the mis-25

match vector. In [12], a robust method is proposed by exploiting the specific structure

of the matrix to enhance the robustness of adaptive arrays. In order to combat the effect

of the desired signal in the sample covariance matrix, some robust methods based on

covariance matrix estimation have been developed [13–17]. In the shrinkage method,

an enhanced covariance matrix is obtained to improve the robustness against the signal30
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mismatch problem. But the improvement in performance is limited [13, 14]. A spatial

power spectrum sampling algorithm has been proposed to form an interference-plus-

noise covariance matrix for further improvement in performance [15–17], while these

techniques usually involve high computational complexity. The associated robust op-

timization techniques have also been considered for use in MIMO radar [18–20]. In35

[18], the worst-case optimization algorithm was used in MIMO radar. Moreover, in

[19] a robust design has been proposed to mitigate signal mismatch with a certain se-

lected probability distribution, which is a variant of the worst-case-based approach.

An adaptive beamformer with magnitude response constraints is developed for MIMO

radar [20], which employs the convex optimization method to obtain an exact robust40

solution.

In this paper, we consider a novel robust adaptive beamforming problem using full

DOFs in the context of MIMO radar. The desired transmit-receive steering vector is

estimated through maximizing the output power subject to spatial correlation coeffi-

cient and norm constraints. Then we devise an iteration procedure to tackle a relaxed45

version of the original nonconvex problem. Each iteration of the algorithm is handled

via solving two low-dimensional convex optimisation problems [21, 22]. Then with

the analyzed desired signal steering vector and the shrinkage estimator preprocessing,

the interference covariance matrix can be estimated via the matrix rank-constrained

minimization method. Compared with other high-performance algorithms for MIMO50

radar, the results indicate the effectiveness and robustness of the proposed algorithm.

The remainder of this paper is organized as follows. The MIMO signal model is de-

scribed in Section 2. In Section 3, a novel steering vector method is proposed. Then, a

new method to reconstruct the interference-plus-noise covariance matrix is introduced.

In Section 4, we evaluate the performance via numerical simulations. Finally, conclu-55

sions are drawn in Section 5.

2. MIMO signal model

Consider a MIMO narrowband radar system composed of Mt transmit antennas and

Mr receive antennas. We assume that all transmit and receive antennas are isotropic.

4
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Each transmit element emits a different waveform and the baseband signal at the re-

ceiver can be written as

x (t) = α0ar (φ0) at
T (θ0)s (t) +

J∑
j=1
α jar

(
φ j

)
at

T
(
θ j

)
s (t) + n (t) , (1)

where t is the time index, and (·)T denotes the transpose operation. Parameters α0 and

α j denote respectively the complex coefficient of the desired signal, and the complex

coefficient of the jth interference. We assume that the desired signal, interference,

and noise are statistically mutually independent, and the interference is neither close

to nor in the mainlobe beam region of the array. The directions of departure (DODs)

and directions of arrival (DOAs) of the desired signal and interferences with respect to

the transmit and receive array normals are denoted respectively as
{
θ j, ϕ j

}J

j=0
. We also

assume that the waveforms s (t) =
[
s1 (t) , . . . , sMt (t)

]
are mutually orthogonal with unit

energy such that
∫

TN
s (t) sH(t)dt = I , where I and TN represent the identity matrix and

the radar pulse width; n(t) is the additive white Gaussian noise vector; and at(·) and

ar(·) denote the corresponding Mt × 1 and Mr × 1 steering vectors, which have the

following general forms

at(θ) =
[
1 e j2πdt sinθ/λ . . . e j2π(Mt−1)dt sinθ/λ

]T
,

ar(φ) =
[
1 e j2πdr sinθ/λ . . . e j2π(Mr−1)dr sinθ/λ

]T
,

(2)

where λ is the carrier wavelength. The interelement spacing in the transmit and receive

arrays are denoted by dt and dr, respectively. By matched filtering the received data

to the mtth transmitted waveform at the receiver (i.e., ymt (t) =
∫

TN
x (t) smt

∗(t)dt,mt =

1, . . . ,Mt, where ()∗ denotes the conjugate operator), then the output of the matched

filters of the MIMO radar can then be expressed as

y = α0at (θ0) ⊗ ar (φ0) +
J∑

j=1
α jat

(
θ j

)
⊗ ar

(
φ j

)
+ z

= ys + y j + z,
(3)

where ys, y j, z are the desired signal, interference, and noise vector components, re-

spectively; and ⊗ denotes the Kronecker product; at (θ0)⊗ar (φ0) denotes the Mt Mr ×1

5
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transmit-receive steering vector. Under the assumption that both the signal steering

vector and the data matrix are known precisely, the transmit-receive beamforming

weight vector w can be obtained via maximizing the output signal-to-interference-plus-

noise ratio (SINR)

SINR =
wHRsw
wHR jnw

=
σ2

0

∣∣∣wHat (θ0) ⊗ ar (φ0)
∣∣∣2

wHR jnw
, (4)

where σ2
0 denotes the desired signal power, and |·| is an absolute operator. Rs =

E
[
ysyH

s

]
and R jn = E

[(
y j + z

) (
y j + z

)H
]

represent the desired signal and the interference-

plus-noise covariance matrices, respectively, where E {·} is the statistical expectation

operator. In practice, the interference-plus-noise covariance matrix is difficult to be

obtained, thus, it is usually replaced by the sample covariance matrix R̂, which is cal-

culated from the received signal vectors as

R̂ =
1
L

L∑

l=1

y (l) yH(l), (5)

where y (l) denotes the sample data at the lth snapshot and L denotes the number of

snapshots. The transmit-receive beamforming weight vector is given by

w =
R̂−1 (at (θ0) ⊗ ar (φ0))

(at (θ0) ⊗ ar (φ0))HR̂−1 (at (θ0) ⊗ ar (φ0))
. (6)

Note that R̂ contains the desired signal component. As stated in the last section,

the calculated adaptive weight vector by using R̂ will obtain worse performance as

compared with the one using the covariance matrix without any contribution from the

desired signal. Based on the Capon spatial power spectrum estimator [23], the beam-

former output power can be expressed as

P (θ0) =
1

(at (θ0) ⊗ ar (φ0))HR̂−1 (at (θ0) ⊗ ar (φ0))
. (7)

6
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3. Proposed method

As stated previously, adaptive beamformers are sensitive to steering vector mis-

match, especially when the desired signal is present in the training data, which may60

cause the self-null phenomenon of the direction of the desired signal and result in dra-

matic performance degradation. In addition, the reconstructed interference-plus-noise

covariance matrix may not be easily obtained. In this section, we propose a different

approach to obtain the beamforming weight vector. The main idea is first to estimate

the desired signal steering vector and then remove the actual desired signal information65

from the sample covariance matrix.

3.1. Steering Vector Estimation

According to the description in [13], shrinkage methods are suitable for high-

dimensional covariance estimation with small number of samples. We use the shrink-

age form as

R̃ = α̂I + β̂R̂, (8)

where α̂ and β̂ are combination coefficients ( β̂ ∈ [0, 1] , α̂ ≥ 0 ), which are solutions

corresponding to the minimisation of the MSE function

MSE
(
R̃
)

= E
{∥∥∥R̃ − R

∥∥∥2

F

}
, (9)

where R denotes the theoretical covariance matrix of the array output vector; and ‖·‖F
represents the Frobenius norm of a matrix. Note that as suggested in [13], the estimates

of α̂ and β̂ can be obtained as follows

α̂ = min

[
ν̂ρ̂

‖R̂−ν̂I‖2

F

, ν̂

]
,

β̂ = 1 − α̂
ν̂
,

(10)

where ρ̂ = 1
L2

L∑
l=1
‖y (l)‖4 − 1

L

∥∥∥R̂
∥∥∥2

F
, and ν̂ = tr

(
R̂
)/

(Mt Mr). Substituting (10) into (8),

we can obtain an estimate of the covariance matrix R̃. The Capon spatial spectrum can

be used for the direction of arrival estimation, and we aim to obtain a beamformer that

7
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maximizes the array output power, By considering that at ⊗ ar represents the actual

transmit-receive steering vector, our aim is to find

min
at⊗ar

(at ⊗ ar)
HR̃−1 (at ⊗ ar) . (11)

Next, we assume that āt(θ0) and ār(φ0) denote the presumed transmitted steering

vector and the presumed receive steering vector, respectively. Thus the presumed

transmit-receive steering vector can be expressed as āt(θ0) ⊗ ār(φ0). In order to elim-

inate the ambiguity in the desired signal covariance term, let ‖āt(θ0)‖ =
√

Mt, and

‖ār(φ0)‖ =
√

Mr, where ‖·‖ denotes the Euclidean norm. We define the spatial correla-

tion coefficient as the absolute value of the cosine of the angle between two vectors a1

and a2, which can be expressed as

cor (a1, a2) =

∣∣∣aH
1 a2

∣∣∣
‖a1‖ ‖a2‖ , (12)

where 0 ≤ cor (a1, a2) ≤ 1. We also assume that the actual steering vectors satisfy the

same norm constraint as the presumed steering vectors (i.e., ‖at‖ =
√

Mt, ‖ar‖ =
√

Mr),

which is reasonable for many scenarios including the cases of look direction error and

phase perturbations. The norm constraint still holds approximately for the small gain

perturbations [12]. Applying the spatial correlation methodology, we obtain

µ ≤
∣∣∣(at ⊗ ar)

H (āt(θ0) ⊗ ār(φ0))
∣∣∣

‖at ⊗ ar‖ ‖āt(θ0) ⊗ ār(φ0)‖ ≤ 1, (13)

where µ is an appropriate scalar factor. For a robust adaptive beamformer, we can use

the constraint to distinguish the desired signal region from the interference region, and

to guarantee that the desired signal can be covered by the region of interest [12], which

offers efficient, and flexible choices for the robustness parameters. As a reference, µ

can be defined as

µ =

∣∣∣∣(āt(θ0) ⊗ ār(φ0))H
(
āt(θµ) ⊗ ār(φµ)

)∣∣∣∣
Mt Mr

, (14)

8
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where θµ can be set according to the robust region of interest, which means that the

left side of the inequality constraint in (13) measures the relative correlation between

the presumed transmit-receive steering vector and a reference transmit-receive steering

vector. Then, we get

ν ≤
∣∣∣(at ⊗ ar)

H (āt(θ0) ⊗ ār(φ0))
∣∣∣ ≤ Mt Mr, (ν = µMt Mr) . (15)

We next append the correlation coefficient and the norm constraint. Proceeding in

this way, the transmit-receive steering vector of the MIMO radar can be calculated by

solving the following optimization problem

min
at⊗ar

(at ⊗ ar)
HR̃−1 (at ⊗ ar) ,

s.t. ν ≤
∣∣∣(at ⊗ ar)

H (āt(θ0) ⊗ ār(φ0))
∣∣∣ ≤ Mt Mr,

‖at ⊗ ar‖ =
√

Mt Mr.

(16)

It is well-known that the transmit-receive steering vector of the MIMO radar is a

special structured model of the virtual steering vector, i.e. the transmit-receive steering

vector of the MIMO radar is the Kronecker product of the transmit and receive array

steering vectors. In order to avoid solving the high-dimensional optimisation problem

directly, the optimisation problem (16) can be reformulated as

min
ar ,at

(at ⊗ ar)
HR̃−1 (at ⊗ ar) ,

s.t. ν ≤
∣∣∣aH

t āt (θ0) aH
r ār (φ0)

∣∣∣ ≤ Mt Mr,

‖ar‖ =
√

Mr,

‖at‖ =
√

Mt.

(17)

The problem (17) is non-convex with respect to optimization variables (ar, at). It

can be seen from (17) that the objective function can be transformed into a separable

form with respect to one variable vector if either of the transmit and receive array

steering vectors at and ar is fixed. Thus, an iterative alternating method is presented

to solve the problem, which is able to provide high quality solutions to the formulated

non-convex problem [24, 25]. Assume the desired transmit steering vector at is known,

9
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the optimization problem (17) can be simplified as follows

min
ar

aH
r R̃−1

r ar,

s.t. ν ≤
∣∣∣aH

t āt (θ0) aH
r ār (φ0)

∣∣∣ ≤ Mt Mr,

‖ar‖ =
√

Mr,

(18)

where R̃−1
r = [at ⊗ I]HR̃−1 [at ⊗ I] ∈ CMr×Mr . Similarly, fix the receive steering vector

ar and (17) can be reduced to

min
at

aH
t R̃−1

t at,

s.t. ν ≤
∣∣∣aH

t āt (θ0) aH
r ār (φ0)

∣∣∣ ≤ Mt Mr,

‖at‖ =
√

Mt,

(19)

where R̃−1
t = [I ⊗ ar]

HR̃−1 [I ⊗ ar] ∈ CMt×Mt . The optimization problems (18) and

(19) are nonconvex quadratic programs. The key difficulties with (18) and (19) are

their nonconvexity due to the left side of the inequality constraint and the nonlin-

ear equality constraints ‖ar‖ =
√

Mr and ‖at‖ =
√

Mt, which implies that the con-

vex optimization technique cannot be applied directly with such constraints. Since
∣∣∣aH

1 a2

∣∣∣2 =
(
aH

1 a2

)∗ (
aH

1 a2

)
, then we have

∣∣∣aH
1 a2

∣∣∣2 = tr
{
a1aH

1 a2aH
2

}
= tr

{
Ra1

Ra2

}
, where

tr{·} represents the trace of the matrix within the braces. For the problem (18), the

transmit steering vector at and āt (θ0) are known, which means that γ = aH
t āt (θ0) is

constant. We exploit the equivalent matrix formulation

min
Ar

tr
(
R̃−1

r Ar

)
,

s.t. ν2
/
|γ|2 ≤ tr

(
Rār Ar

) ≤ (Mt Mr)
2
/
|γ|2,

tr (Ar) = Mr,

Ar = araH
r ,

(20)

where Rār = ār (φ0) āH
r (φ0). All the nonconvexity of problem (18) is now confined in

the rank-one constraint Ar = araH
r . The problem (20) can be relaxed into a convex

SDP optimization problem, i.e., neglecting the rank-one constraint [26]. By doing so,

10
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we obtain an enlarged relaxed quadratic problem

min
Ar

tr
(
R̃−1

r Ar

)
,

s.t. ν2
/
|γ|2 ≤ tr

(
Rār Ar

) ≤ (Mt Mr)
2
/
|γ|2,

tr (Ar) = Mr,

Ar�0,

(21)

where A�0 denotes A is a positive semidefinite (PSD) matrix. Analogously, if the

receive steering vector ar and ār (φ0) are known, ρ = aH
r ār (φ0) is constant. The opti-

mization problem (19) can be recast equivalently as

min
At

tr
(
R̃−1

t At

)
,

s.t. ν2
/
|ρ|2 ≤ tr

(
Rāt At

) ≤ (Mt Mr)
2
/
|ρ|2,

tr (At) = Mt,

At = ataH
t ,

(22)

where Rāt = āt (θ0) āH
t (θ0). Neglecting the rank-one constraint, the SDP relaxation of

the problem (22) is given by

min
At

tr
(
R̃−1

t At

)
,

s.t. ν2
/
|ρ|2 ≤ tr

(
Rāt At

) ≤ (Mt Mr)
2
/
|ρ|2,

tr (At) = Mt,

At�0.

(23)

These semidefinite programming problems (21) and (23) can be solved efficiently

by the interior point method [27]. Once one pair of optimal solutions {Ar,At} is

obtained, we can check the rank of Ar and At. If the rank of A?
r = a?r

(
a?r

)H and70

A?
t = a?t

(
a?t

)H equal to one, then a?r and a?t can be obtained exactly [26, 28]. Equa-

tions (21) and (23) are a relaxation of (18) and (19) obtained through dropping the

rank-one constraint, respectively. If Ar or At has rank higher than one, we can con-

struct a rank-one optimal solution via the matrix decomposition theorem [29], and thus

the solutions a?r and a?t are optimal for (18) and (19). Specifically, in order to construct75

11
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the rank-one optimal solution, we exploit a specific rank-one matrix decomposition

theorem [29, Theorem 2.2], which is cited as the following lemma.

Lemma 1: Let X be a non-zero M×M (M ≥ 3) complex Hermitian positive semidef-

inite matrix of rank r and Ai be Hermitian matrices, i = 1, 2, 3. Then,

• if r ≥ 3, one can find, in polynomial time, a rank-one matrix xxH such that x

(synthetically denoted as x = D1 (X,A1,A2,A3)) is in range (X), and

xHAix = tr (XAi) , i = 1, 2, 3 (24)

with X − 1
r xxH � 0 and rank

(
X − 1

r xxH
)
≤ r − 1.80

• if r = 2, for any z not in the range space of X, one can find a rank-one matrix xxH

such that x (synthetically denoted as x = D2 (X,A1,A2,A3)) is in the linear subspace

spanned by range {z} ∪ range (X), and

xHAix = tr (XAi) , i = 1, 2, 3 (25)

with X + zzH − 1
r xxH � 0 and rank

(
X + zzH − 1

r xxH
)
≤ 2.

We next consider the optimization of receive steering vector a#
r with fixed transmit

steering vector. The solution of the relaxed SDP problem (21) can be obtained firstly.

Then, resorting to Lemma 1, we can find an optimal solution a#
r of problem (18). We

then use the same approach for the transmit steering vector. With fixed receive steering85

vector, we can solve A#
t via the relaxed SDP problem (23). Then an optimal solution a#

t

of (19) can be obtained based on Lemma 1. Algorithm 1 and Algorithm 2 summarize

respectively the procedures to determine the optimal solution ar of (18) and at of (19).

12
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Algorithm 1 Algorithm for Receive Steering Vector Design

Require: ν, R̃−1
r , Rār .

Ensure: An optimal solution a#
r .

1: Solve the problem (21), obtain A#
r ;

2: if rank
(
A#

r

)
= 1 then

3: Perform an eigen-decomposition A#
r = ã#

r

(
ã#

r

)H
;

4: else if rank
(
A#

r

)
= 2 then

5: Find ã#
r = D2

(
A#

r , R̃
−1
r , IMr ,Rār

)
;

6: else

7: Find ã#
r = D1

(
A#

r , R̃
−1
r , IMr ,Rār

)
;

8: end if

9: Output a#
r =

√
Mr

‖ã#
r‖ ã

#
r .

Algorithm 2 Algorithm for Transmit Steering Vector Design

Require: ν, R̃−1
t , Rāt .

Ensure: An optimal solution a#
t .

1: Solve the problem (23), obtain A#
t ;

2: if rank
(
A#

t

)
= 1 then

3: Perform an eigen-decomposition A#
t = ã#

t

(
ã#

t

)H
;

4: else if rank
(
A#

t

)
= 2 then

5: Find ã#
t = D2

(
A#

t , R̃
−1
t , IMt ,Rāt

)
;

6: else

7: Find ã#
t = D1

(
A#

t , R̃
−1
t , IMt ,Rāt

)
;

8: end if

9: Output a#
t =

√
Mt

‖ã#
t ‖ ã

#
t .

Here we use the discrete-time index k to represent the iteration number in the opti-

mization problem, we get the beamformer output power P(k) at the kth iteration

P(k) =
1

(
a(k)

r ⊗ a(k)
t

)H
R̃−1

(
a(k)

r ⊗ a(k)
t

) . (26)
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Thus, the objective function of (17) is the reciprocal of the array output power, i.e.,

1
P(k) . We perform the optimization alternately by using Algorithm 1 and Algorithm 2

until the estimates satisfy the convergence condition which is expressed as

∣∣∣ 1
P(k) − 1

P(k+1)

∣∣∣ ≤ δ. (27)

where δ is a threshold to determine that the difference between two consecutively ob-

tained P values is small enough. Based on the above analysis, the transmit and receive90

array steering vectors at and ar can be obtained according to Algorithm 3.

Algorithm 3 Iterative Procedure for Transmit-Receive Design

Require: ν, R̃−1
r , Rār , R̃−1

t , Rāt , δ.

Ensure: An optimal solution
(
a#

t , a
#
r

)
to problem (17).

Set k = 0, a(k)
t = āt (θ0).

1: repeat

2: k := k + 1;

3: Solve the problem (18) to find the a#
r through Algorithm 1;

4: Set a(k)
r = a#

r ;

5: Use a(k)
r to update ar in (19);

6: Solve the problem (19) to find the a#
t through Algorithm 2;

7: Set a(k)
t = a#

t ;

8: Replace at in (18) with a(k)
t ;

9: Until
∣∣∣ 1

P(k) − 1
P(k+1)

∣∣∣ ≤ δ;
10: Report a#

t = a(k+1)
t , a#

r = a(k+1)
r .

Proposition 1: The proposed iterative procedure for solving the problem (17) is

convergent.

Proo f : From Algorithm 3, we consider the iterative alternating routine

a(0)
t → a(1)

r → . . . a(k)
t → a(k+1)

r → a(k+1)
t → . (28)

We first prove that the objective function, i.e., 1
P(k) is a monotone non-increasing
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sequence. For a complex-valued problem, the relaxed SDP problem is equivalent to

the original quadratically constrained quadratic program (QCQP) problem when the

number of constraints is no more than 3, i.e., SDR is not just a relaxation. It is tight [21].

Thus, the two problems (18) and (19) are equivalent to two convex SDP optimization

problems. For the optimization of a(k+1)
r with fixed a(k)

t , i.e., a(k)
t → a(k+1)

r . Since the

problem (18) shares hidden convexity properties. It implies that the a(k+1)
r is an optimal

solution to (18) with fixed a(k)
t , then

(
a(k)

t ⊗ a(k+1)
r

)H
R̃−1

(
a(k)

t ⊗ a(k+1)
r

)
≤

(
a(k)

t ⊗ a(k)
r

)H
R̃−1

(
a(k)

t ⊗ a(k)
r

)
= 1

P(k) . (29)

Similarly, for the optimization of a(k+1)
t with fixed a(k+1)

r , i.e., a(k+1)
r → a(k+1)

t . The

problem (19) is hidden convex. As a result, in the (k + 1)th iteration, the a(k+1)
t is an

optimal solution to (19) in the feasible set, and we get

1
P(k+1) =

(
a(k+1)

t ⊗ a(k+1)
r

)H
R̃−1

(
a(k+1)

t ⊗ a(k+1)
r

)
≤

(
a(k)

t ⊗ a(k+1)
r

)H
R̃−1

(
a(k)

t ⊗ a(k+1)
r

)
.

(30)

According to (29) and (30), we obtain 1
P(k+1) ≤ 1

P(k) , i.e., the objective function is

non-increasing during the alternating iterations. Moreover, the objective function is95

positive, i.e., 1
P(k) =

(
a(k)

t ⊗ a(k)
r

)H
R̃−1

(
a(k)

t ⊗ a(k)
r

)
> 0, then it is bounded below. Hence,

according to the monotone convergence theorem[30], the alternating optimization is

guaranteed to converge.

3.2. Covariance Matrix Estimation

In order to remove the information related to the desired signal in the sample covari-

ance matrix, a rank-constrained problem arises. If the number of interference signals

is known to be less than or equal to J, the interference covariance matrix R̃i can be

determined by solving the optimization problem

min
R̃i

∥∥∥R̃ − Rs − R̃i

∥∥∥2

F
,

s.t. rank(R̃i) ≤ J,

R̃i�0.

(31)
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Then, with the analyzed transmit and receive array steering vectors at and ar , the

optimization in (31) can be recast as

min
R̃i

∥∥∥R̃ − σ̃2
0(at ⊗ ar) (at ⊗ ar)

H − R̃i

∥∥∥2

F
,

s.t. rank(R̃i) ≤ J,

R̃i�0,

(32)

where σ̃2
0 denotes the estimated desired signal power. According to the updated ar and

at, the desired signal power can be estimated as

σ̃2
0 = 1

(ar⊗at)HR̃−1(ar⊗at)
. (33)

With matrix variable R̃i, the solution for the rank-constrained problem (32) can be

obtained as follows [31]

R̃i =
J∑

i=1
λi

(
R̃a

)
ei

(
R̃a

)
eH

i

(
R̃a

)
,

R̃a , R̃ − σ̃2
0 (at ⊗ ar) (at ⊗ ar)

H ,

(34)

where λi and ei denote the ith largest eigenvalue and the corresponding normalized

eigenvector of the matrix within the braces. Furthermore, only the noise covariance

matrix term σ2
n remains unknown; in order to eliminate the effect of noise perturbation,

the eigenvalues of noise should be equal. Thus σ2
n can be replaced by the smallest

eigenvalues of sample covariance matrix (i.e., σ̃2
n = 1/((Mt Mr − J − 1)

∑(Mt Mr

i=J+1 λi

(
R̃
)
).

Thus, the noise covariance matrix can be modified as σ̃2
nI . Finally, the reconstructed

interference-plus-noise covariance matrix can be expressed as

R̃in =
J∑

i=1
λi

(
R̃a

)
ei

(
R̃a

)
eH

i

(
R̃a

)
+

Mt Mr∑
i=J+1

σ̃2
n

(
R̃a

)
ei

(
R̃a

)
eH

i

(
R̃a

)
,

= AΛAH ,

(35)

where A =
[
e1

(
R̃a

)
, . . . , eMt Mr

(
R̃a

)]
, and Λ = Diag

[
λ1, . . . , λJ , σ̃

2
n, . . . , σ̃

2
n

]
, where

Diag(·) denotes the diagonal matrix formed by the entries of the vector argument. Once

we get the transmit-receive steering vector and the interference-plus-noise matrix, the
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transmit-receive beamforming weight vector for the MIMO radar can be expressed as

w =
R̃−1

in (at ⊗ ar)

(at ⊗ ar)
HR̃−1

in (at ⊗ ar)
=

AΛ−1AH (at ⊗ ar)

(at ⊗ ar)
HAΛ−1AH (at ⊗ ar)

. (36)

3.3. Discussion100

In our work, we assume that the desired signal region and interference region can

be distinguished via the correlation coefficient and norm constraints, which can be also

exploited to restrict the desired signal to the region of interest. Thus, we can obtain the

corrected transmit-receive steering vector based on the Capon spatial spectrum esti-

mator, which offers efficiency because the extended Capon beamformer can determine105

accurately the power of the desired signal. Then, based on the estimated information

about the desired signal, we reconstruct the interference-plus-noise covariance matrix

via the matrix rank-constrained minimization method to remove the information cor-

responding to the desired signal from the sample covariance matrix. Thus, with the

reconstructed interference-plus-noise matrix and the corrected steering vector, the pro-110

posed algorithm is robust to the steering vector mismatch.

In our approach, the main computational complexity lies in the estimation of the

interference-plus-noise covariance matrix and the processing of Algorithm 3. Since

the proposed beamformer employs the full DOFs of the MIMO radar (i.e., the adap-

tive dimension of the beamformer is (Mt Mr)), the computational complexity of the115

covariance matrix estimation and eigenvalue decomposition is O
(
(Mt Mr)3

)
. The com-

putational complexity of the Algorithm 3 is linear with respect to the number of it-

erations k, and the computational burden associated with each iteration. Finally, each

iteration comprises the solution of two low-dimensional SDP problems (21) and (23).

The former corresponds to complexity of the order of O
(
M4.5

r log (1/η)
)

(where η > 0120

is a prescribed accuracy, e.g., see [32, p. 251]), and the complexity of the rank-one

decomposition requires O
(
M3

r

)
operations. Similarly, the complexity of solving the

problem (23) is given by O
(
M4.5

t log (1/η)
)

and the complexity of the rank-one decom-

position procedure is O
(
M3

t

)
. Compared to other full DOFs algorithms, the compu-

tational complexity of the sample matrix inverse (SMI) beamformer and the diago-125

nally loaded SMI (LSMI) is O
(
(Mt Mr)3

)
[10]. The computational complexity of the
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full DOFs Second-order cone programming (F-SOCP) algorithm using convex opti-

misation is O
(
(Mt Mr)3.5

)
in [18]. The proposed beamforming algorithm is therefore

comparable to other full DOFs robust beamforming algorithms. For the Kronecker

beamformer in [20], the computational complexity can be reduced to the order of130

O
(
(Mt Mr)2

)
. The two low-dimensional sub-problems in each iteration have complex-

ity O
(
M3.5

t + 2PM2.5
t

)
and O

(
M3.5

r + 2PM2.5
r

)
, where P denotes the number of sampled

points in the region of interest. Nevertheless, the Kronecker beamformer is a restricted

beamformer whose adaptive dimension is (Mt + Mr), which reduces its DOFs used for

interference suppression. In summary, the computational complexity of the aforemen-135

tioned beamformers is listed in Table 1.

Table 1: Comparisons of Computational complexities

Beamformer Proposed MRC [20] (each iteration) F-SOCP [18] SMI/LSMI

Computational O(k(M4.5
t log(1/η)+M3

t )) O(M3.5
t +2PM2.5

t )+O(M3.5
r +2PM2.5

r ) O((Mt Mr)3.5) O((Mt Mr)3)

complexity +O(k(M4.5
r log(1/η)+M3

r ))+O((Mt Mr)3) +O((Mt Mr)2)

4. Simulations

In this section, several numerical examples are exhibited to investigate the above

deterministic analysis. Consider a colocated MIMO radar system shares a uniform lin-

ear array (ULA) with Mr=Mt=7 elements spaced half a wavelength apart. Assume two140

interference directions are set to be −35◦ and 30◦, respectively, and the interference-to-

noise-ratio (INR) equals to 35dB for both interferences. The presumed desired signal

direction is set to be 0◦, and the signal-to-noise-ratio (SNR) is fixed at 5dB (except the

scenarios where SNR varies). All the simulations are carried out on a PC with Intel

Core i3 CPU and 4 GB memory. The number of snapshots is set to be N = 200 (except145

the scenarios where the snapshot number varies). 100 Monte Carlo trials are performed

in each configuration. Finally, we consider the exit conditions δ = 10−3 for Algorithm

3.
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The proposed method is compared with the SMI method, the LSMI method [10],

the F-SOCP optimization beamformer in [18], and the MRC Kronecker beamformer in150

[20]. The optimal output SINR is provided for comparison. The DL factor is assumed

as 10 times the noise power. The value ε = 5 is used for the robust beamformer in

[18]. In [20], the ripple of the magnitude response constraints approach is set as 3dB

and a fixed beamwidth of 6◦ is employed, and the relative regularization factor γ = 6.

For simplicity and without loss of generality, we assume that µ = 0.8 in the proposed155

method.

Fig. 1 shows the output SINR of the beamformers versus input SNR when the

actual direction of the desired signal is fixed at 3◦. It can be found that the pro-

posed method performs best among the tested beamformers. As expected, the proposed

beamformer can obtain the best output SINR in a large range of SNR, and this improve-160

ment is especially remarkable at high SNRs. The main reason is that the estimation of

the interference-plus-noise covariance matrix via matrix rank-constrained optimization

is effective in this situation. It implies that the proposed method is not sensitive to the

power of the desired signal.
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Figure 1: Output SINR versus input SNR in the case of signal direction error.
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In the second example, the SINR performance of these methods is shown with165

respect to the number of training snapshots. The other parameters remain the same as

for Fig.1 except the number of snapshots. The result is shown in Fig.2. Compared

with these existing algorithms, the proposed method provides a faster convergence rate

and higher output performance than the others. This performance behavior implies

that the proposed covariance estimator is well conditioned under small sample sizes.170

The MRC method also has excellent sample convergence rate, which is because the

Kronecker beamformer can reduce the number of training samples required.
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Figure 2: Output SINR versus number of snapshots in the case of signal direction error.

In Fig.3, we analyze the effect of the iteration number on the system performance.

It can be observed that the proposed algorithm has a fast convergence rate and less

than ten cycles are needed to achieve a satisfactory SINR in the scenario where only175

signal direction error exists, which is very useful for fast computation in practical ap-

plications. Moreover, the CPU run times are usually used as a performance metric.

We present the run time of three typical robust algorithms, and the parameters are the

same as those for Fig.1. Run times averaged over 100 trials are shown in Table 2.
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As expected, the MRC method is by far the most efficient. This is mainly because180

it is a Kronecker beamformer, which reduces its DOFs in order to decrease the com-

putational complexity. For the full DOFs robust beamforming methods, the proposed

algorithm has a run time that is slightly more than the MRC method in this scenario. It

is also observed that the F-SOCP design is generally slowest as a result of its highest

computational complexity.185
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Figure 3: Output SINR versus iteration number.

Table 2: Comparison of Average Run Time (in seconds)

Beamformer Proposed MRC [20] F-SOCP [18]

Computation time (Sec) 1.72 1.26 2.37

In this example, a more practical scenario with direction mismatch is investigated.

The pointing error changes from −5◦ to 5◦. We assume that µ = 0.7 in the proposed

method, and the beamwidth of [20] is set to be 10◦. Other parameters remain the same
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as those used for Fig.1. The results are presented in Fig.4. As expected, a wider range

of mismatch angle leads to a worse SINR. It is clear that even small pointing error can190

lead to severe performance degradation for the SMI beamformer. Meanwhile, other

approaches are more robust against the pointing error. The results indicate that the

proposed and the MRC methods can remain robust over a large pointing error range

since these methods can flexibly control the robust region.

−5 0 5
−25

−20

−15

−10

−5

0

5

10

15

20

25

Pointing error(degrees)

O
ut

pu
t S

IN
R

(d
B

)

 

 

Optimal SINR
SMI
LSMI
F−SOCP [17]
MRC [19]
Proposed

Figure 4: Output SINR versus pointing error.

In Fig.5, we analyze the impact of µ on the performance of the proposed algo-195

rithm. The direction mismatch is assumed to be random and uniformly distributed over

[−5◦, 5◦], other parameters are the same as for generating Fig.3. In this scenario, it has

been shown that the proposed method suffers from performance degradation in output

SINR when µ is large. It is because if µ is too large, the constraint region may not

cover all the uncertainly regions, and thus, the output performance will degrade. It200

should be noted that for smaller µ, the larger the constraint region becomes. If the re-

gion of interest includes the interference signal, it may result in the interference being

regarded as the desired signal, and the beamformer may attempt to suppress the desired
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signal as if it was interference. In other words, due to the large constraint set, the calcu-

lated steering vector may converge to an interference steering vector or corresponding205

linear combination. Thus, the proposed method may also suffer severe performance

degradations. Therefore, if possible, µ should not be chosen too small.
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Figure 5: Output SINR versus µ.

From the above arguments, we only consider the direction mismatch of the desired

signal. For further insight, we consider a more general type of mismatch, and the

mismatched transmit and receive steering vectors are modeled as at = āt(θ0) + e and210

ar = ār(φ0) + e, respectively, where e is a random vector with i.i.d. zero-mean complex

Gaussian random variables for both transmit and receive signals, components ei ∼
CN

(
0, σ2

e

)
for all i. In this example, σ2

e is chosen to be 0.1. Other parameters are the

same as those used in Fig.1 and Fig.2 for Fig.6 and Fig.7, respectively. The output

SINR performance of these algorithms versus the SNR and the number of snapshots215

are shown in Fig.6 and Fig.7, respectively. As shown, the proposed algorithm still

has satisfactory performance when a general type of steering vector mismatch occurs,

which implies that the proposed method is a good candidate for real applications.
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Figure 6: Output SINR versus SNR for general type mismatch.
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Figure 7: Output SINR versus number of snapshots for general type mismatch.
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In this experiment, we study the sensitivity of the proposed algorithm to the steering

vector random error. The performance of the proposed algorithm is displayed versus220

σ2
e in Fig.8. We can see that the proposed algorithm is sensitive to the steering vector

error. The main reason is that the proposed algorithm imposes the norm constraints to

the steering vectors, which may lead to an inaccurate approximation and the perfor-

mance degradation of the beamformer. In addition, the proposed algorithm is based

on the norm constraints, so the correlation coefficient constraint can be used to distin-225

guish the desired signal region and interference region effectively. If the steering vector

norms are violated severely, the correlation coefficient constraint may also be invalid.

Therefore, the proposed algorithm is more suitable for the applications where steering

vectors satisfy or approximate the norm constraint scenarios.
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Figure 8: Output SINR versus σ2
e in the case of steering vector error.

5. Conclusion230

In this paper, a novel robust adaptive beamforming technique with full DOFs for

MIMO radar has been developed. We exploited an iterative algorithm to tackle the
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transmit/receive steering vector design problem. The cyclic optimization-based method

involves the solutions of two relaxed problems. Based on the analyzed desired signal

steering vectors and the shrinkage estimator processing, the interference-plus-noise235

covariance matrix can be effectively estimated via the matrix rank-constrained mini-

mization method. Simulation results demonstrate that the proposed technique offers a

better performance than several state-of-the-art algorithms.
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