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Abstract

Autism Spectrum Disorders are associated with atypical movements, of which stereotypical motor movements (SMMs)
interfere with learning and social interaction. The automatic SMM detection using inertial measurement units (IMU)
remains complex due to the strong intra and inter-subject variability, especially when handcrafted features are extracted
from the signal. We propose a new application of the deep learning to facilitate automatic SMM detection using multi-
axis IMUs. We use a convolutional neural network (CNN) to learn a discriminative feature space from raw data. We
show how the CNN can be used for parameter transfer learning to enhance the detection rate on longitudinal data. We
also combine the long short-term memory (LSTM) with CNN to model the temporal patterns in a sequence of multi-axis
signals. Further, we employ ensemble learning to combine multiple LSTM learners into a more robust SMM detector.
Our results show that: 1) feature learning outperforms handcrafted features; 2) parameter transfer learning is beneficial
in longitudinal settings; 3) using LSTM to learn the temporal dynamic of signals enhances the detection rate especially
for skewed training data; 4) an ensemble of LSTMs provides more accurate and stable detectors. These findings provide
a significant step toward accurate SMM detection in real-time scenarios.

Keywords: Convolutional Neural Networks, Long Short-Term Memory, Transfer Learning, Ensemble Learning,
Wearable Sensors, Autism Spectrum Disorders

1. Introduction

Autism spectrum Disorder (ASD) is a complex and het-
erogeneous neuro-developmental disorder. Specific symp-
toms in ASD are difficulties in social interactions, repet-
itive or restricted behaviors, and verbal/nonverbal com-
munication difficulties. Prevalence of ASD is reported to
be 1 in 88 individuals [1]. While the majority of studies
have mainly focused on social and communication prob-
lems of ASD children, the repetitive and restricted be-
haviors associated with ASD individuals are also objects
of interest because of their effect on the learning perfor-
mance and socialization; and also as an indicator of dis-
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tress [2, 3, 4]. Stereotypical Motor Movements (SMMs) are
the major group of atypical repetitive behaviors in children
with ASD. SMMs occur without evoking stimuli and in-
clude hand flapping, body rocking, and mouthing [5, 6, 7].
SMMs have a specific negative effect on the quality of life
of ASD children: they can affect negatively on the per-
formance of children during learning new skills and while
using the learned skills [8]. Furthermore, since these type
of movements are socially abnormal, they cause difficul-
ties in interaction with pairs in the school or other social
settings [9]. In some cases, the severity of SMMs can lead
to a meltdown event and even can cause self-damaging
behaviors [10].

There are three traditional approaches for measuring the
SMMs [11]: 1) paper-and-pencil rating, 2) direct behav-
ioral observation, and 3) video-based methods. Paper-and-
pencil rating is an interview-based approach which suffers
from the subjectivity in rating. Furthermore, it cannot
accurately detect the intensity, amount, and duration of
SMMs [12]. In the direct behavioral observation approach,
therapists can directly observe and record the sequences of
SMMs. This method is not also a reliable approach due
to the several reasons [11, 13]: first, in high speed move-
ments, it is hard for therapists to accurately observe and
document all SMM sequences instantaneously. Second, de-
termining the start and end time of the SMM sequences
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is difficult. Third, it is impossible for therapists to con-
currently record all environmental conditions and SMMs.
Video-based approaches are based on video capturing, of-
fline coding, and analysis of SMMs. Since multiple coding
sessions of the captured videos are feasible, this observa-
tional method is much more accurate than two previous
approaches, but it is time-consuming and unpractical as a
clinical tool[14].

Considering the high prevalence rate of autism in chil-
dren [15] and the limitations of existing methods for mea-
suring SMMs, it is essential to develop time efficient and
accurate methods for automatic SMM detection. Develop-
ing a real-time SMM detection and quantification system
would be advantageous for ASD researchers, caregivers,
families, and therapists. Such a system would provide a
powerful tool to evaluate the adaptation of subjects with
ASD to diverse life contexts within an ecologic approach.
In particular, it helps to mitigate the meltdown behav-
iors that are anticipated by the increase in atypical behav-
iors. Any automatic quantification of atypical movements
would indeed help caregivers and teachers to defuse the
mechanism leading to stereotyped behaviors by involving
children in specific activities or social interactions. Such
involvement decreases the frequency of SMMs and grad-
ually alleviates their duration and severity [16, 17]. A
real-time implementation of SMM detection system (see
Figure 1) would help therapists to evaluate the efficacy of
behavioral interventions.

Inertial Measurement Units (IMUs) provide effective
tools for measuring the frequency, intensity, and dura-
tion of physical activities over a time period via embed-
ded accelerometer, gyroscope, and magnetometer sensors.
Due to the small size and possibility of embedding in the
mobile phones, IMUs have been adopted as common and
useful sensors for wearable devices to measure the phys-
ical activities in either constrained and free-living envi-
ronments [18, 19, 20]. In recent years, human activity
recognition using IMU sensors has been widely studied.
Most of these studies tried to extract time and frequency
domain features such as mean, standard deviation, skew-
ness, and FFT peaks from raw signals to feed them to
a classifier for activity identification [21, 22]. According
to the achieved results in human activity recognition sys-
tems, applying pattern recognition on the collected data
by IMU sensors can reliably and accurately detect physical
activities which are an evidence for the possibility of apply-
ing such techniques to automatically detect SMMs in ASD
children [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].
Despite meaningful amount of research in this direction,
few challenges for automatic SMM detection using wear-
able sensors still remain unsolved especially in real-time
applications.

One of the important challenges for accurate SMM de-
tection is to extract a set of effective and robust features
from the IMU signal. As in many other signal process-
ing applications, SMM detection is commonly based on
extracting handcrafted features from the IMU signals. So

far, a wide variety of feature extraction methods have been
used in the literature. Generally two main types of features
are extracted from the accelerometer signal [37]: i) time
domain features, ii) frequency domain features. For time
domain features, some statistical features such as mean,
standard deviation, zero-crossing, energy, and correlation
are extracted from the overlapping windows of the signal.
In the case of frequency features the discrete Fourier trans-
form is used to estimate the power of different frequency
bands. In addition, the Stockwell transform [38] is pro-
posed by [33] for feature extraction from 3-axis accelerom-
eter signals in order to provide better time-frequency res-
olution for non-stationary signals. In spite of their popu-
larity, manual feature extraction and selection suffer from
subjectivity and time inefficiency [39] that restrict the per-
formance and also the application of SMM detection sys-
tems in real-time scenarios.

Another challenge toward developing a real-time SMM
detection system is personalization due to the intra and
inter-subject variability [33, 35]. This challenge, despite
its crucial importance, has been undervalued [33]. Intra-
subject variability is mainly due to the high variability
in the intensity, duration, frequency, and topography of
SMMs in each individual with ASD. Inter-subject differ-
ences are defined by the same variability across different
individuals. Existence of these two types of variability
within and across ASD persons motivates the necessity
of developing an adaptive SMM detection algorithm that
is capable to adjust to new patterns of behaviors. Fea-
ture learning and transfer learning [40] can be considered
as candidate solutions to attack these challenges. To this
end, here we present an extended version of our previous
efforts in [41, 42] with four main contributions: 1) robust
feature learning from multi-sensor IMU signals; 2) enhanc-
ing the adaptability of SMM detection system to new data
via parameter transfer learning; 3) improving the detection
rate by incorporating the temporal dynamics of signals in
the feature learning process; and 4) using principles of the
ensemble learning to enhance the detection rate.

To achieve our first goal, we propose a new application of
the deep learning paradigm in order to directly learn dis-
criminating features for detecting SMM patterns. In par-
ticular, we use a convolutional neural network (CNN) [43]
to bypass the commonly used feature extraction procedure.
The idea of the CNN is inspired by the visual sensory sys-
tem of living creatures [44]. Following this idea, LeCun
et al. [45] developed a deep CNN architecture to address
a pattern recognition problem in computer vision. Hav-
ing fewer connections and parameters due to the weight
sharing property, CNNs are easier to train compared to
other deep neural networks. Currently, CNN solutions are
among the best-performing systems on pattern recognition
systems specifically for the handwritten character [45] and
object recognition [46]. Beyond audio and image recog-
nition systems, CNNs are successfully applied on various
types of signals. Mirowski et al. [47] applied CNN on EEG
signals for seizure detection. In the domain of psychophys-
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Data collection using wearable sensors Data Analysis Monitoring Children

Figure 1: A real-time automatic SMM detection system. Inertial Measurement Units (IMUs) can be used for data collection. The collected
data can be analyzed locally or remotely to detect SMMs. In case of detecting abnormal movements, an alert is sent to a therapist, caregiver,
or parents.

iology, for the first time Martinez et al. [39] proposed a
model based on CNN to predict affective states of fun, ex-
citement, anxiety, and relaxation. Their proposed model
was tested on skin conductance and blood volume pulse
signals. Recent studies show the advantageous of applying
CNN on accelerometer signals for human activity recogni-
tion [48, 49, 50].

To fulfill our second goal, we employ the parameter
transfer learning by pre-initializing the parameters of the
CNN [51]. We hypothesize that this capability can be used
to transfer the prior knowledge regarding the distribution
of parameters from one dataset to another dataset that are
collected in a longitudinal study. If successful, our method
can be employed in order to enhance the adaptability of
SMM detection system to new unseen data, thus facilitates
its applications in wild real-world scenarios.

By the definition, SMMs are repetitive behaviors, thus
temporal patterns stored in the sequence of samples are ex-
pected to contain valuable information. Our third contri-
bution relies on the fact that the proposed CNN architec-
ture does not fully exploit the temporally structured infor-
mation in the IMU signal sequences. This is a general issue
in SMM detection, in which the segments of IMU signals
are treated as statistically independent samples. Therefore
the possible long-term dependencies stored in the longer
temporal intervals of the signal are ignored in the detection
process. Long short-term memory (LSTM) [52] as a type
of recurrent neural networks (RNN) has been effectively
used for learning long-term temporal dependencies in se-
quential data such as speech recognition [53], handwriting
recognition [54], and natural language modeling [55]. Re-
cently, the LSTM has also been successfully used for hu-
man activity recognition using wearable technologies as a
classic sequence analysis problem [56, 57, 50]. Considering
these studies in human activity recognition, it is expected
that learning the temporal patterns stored in the consecu-
tive samples of IMU data to provide higher accurate SMM
detectors. Thus, here we propose a deep architecture,
stacking an LSTM layer on top of the CNN architecture, in

order to learn the dynamic feature space on the sequence
of IMU data. We further show that combining multiple
LSTM models using an ensemble learning technique can
improve the stability of results. To the best of our knowl-
edge, it is the first time that a recurrent architecture is
used for SMM detection using wearable technologies.

The rest of this paper is organized as follows: in Sec-
tion 2 we first briefly review the formal definitions and
concepts about CNN, LSTM, parameter transfer learn-
ing, and the ensemble of the best base learners approach.
Then using the presented definitions we introduce the pro-
posed CNN and LSTM architectures 1 for SMM detection
on IMU signals. The experimental materials and proce-
dures are explained in this section. Section 3 compares our
experimental results versus the state of the art solutions
in SMM detection. Our results on a simulated dataset
and two real datasets show that feature learning via the
CNN outperforms handcrafted features in SMM classifica-
tion. Furthermore, it is shown that the parameter trans-
fer learning is beneficial in enhancing the SMM detection
rate when moving to a new dataset. Finally our results
illustrate that including the dynamics of recorded data in
feature learning process improves the classification perfor-
mance in SMM detection especially when an unbalanced
training set is used in the training phase. In Section 4
we discuss how the proposed deep architecture facilitates
developing real-time SMM detection systems. We further
discuss the main limitation of our method and state the
possible future directions. Section 5 concludes this paper
by summarizing our achievements.

2. Methods

2.1. Notation

Let S1,S2, . . . ,Sc ∈ RL be c time-series of length L
that are recorded by a set of inertial measurement units

1Here the architecture implies the customization of the structural
parameters of the CNN such as the number of layers, the number
and size of filters, etc.
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(IMUs) (e.g., accelerometer, gyroscope, and magnetome-
ter sensors) at the sampling frequency of ν Hz. Thus,
T = L/ν represents the length of the signal in seconds.
We refer to each Si as a data channel. Now consider
Xt ∈ Rc×ν for t ∈ {1, 2, . . . , T} as a sample in the raw
feature space that is constructed by concatenating time-
series of c data channels in a given time t. Let yt ∈ {0, 1}
be the label associated to Xt where yt = 1 corresponds
to an SMM sample. In this text, we use boldface capital
letters to represent matrices, boldface lowercase letters to
represent vectors, and italic lowercase letters to represent
scalars. We represent the matrix and element-wise multi-
plication between A and B matrices by A ·B and A�B,
respectively. Further, [a,b] represents vector concatena-
tion operation between a and b vectors.

2.2. Feature Learning via Convolutional Neural Network

The goal of an SMM detector is to predict the prob-
ability of being an SMM for a given sample Xt, i.e.,
P (yt = 1 | Xt). While the raw feature space (Xt) is sensi-
tive to intra and inter-subject differences, feature learning
can provide the possibility to learn a new feature space
that is robust over time and across different subjects. The
aim of feature learning is to learn a linear or non-linear
mapping function F : Xt 7→ x′t, where x′t ∈ Rd is called
the learned feature space. Then a classifier can be used in
the learned feature space to estimate P (yt = 1 | x′t).

Convolutional neural networks (CNNs) offer an effective
infrastructure for feature learning. CNN benefits from in-
variant local receptive fields, shared weights, and spatio-
temporal sub-sampling features to provide robustness over
shifts and distortions in the input space [43]. A classic
CNN has a hierarchical architecture that alternates con-
volutional and pooling layers in order to summarize large
input spaces with spatio-temporal relations into a lower di-
mensional feature space. A 1D-convolutional layer receives
the input signal Xt ∈ Rc×ν , convolves it with a set of f
filters with the length of m, W ∈ Rf×c×m, and produces
a feature map Mt ∈ Rf×ν :

Mt = Xt ∗W =
∑c
j=1

∑m
i=1 w1,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1 w1,j,i × xj,ν+i∑c

j=1

∑m
i=1 w2,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1 w2,j,i × xj,ν+i

...
...

...∑c
j=1

∑m
i=1 wf,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1 wf,j,i × xj,ν+i

 (1)

where ∗ represents the convolution operator. The feature
map is then fed to an activation function, generally the
rectified linear unit (ReLU), to add non-linearity to the
network and also to avoid the gradient vanishing prob-
lem [58], where:

M+
t = max(0f×ν ,Mt). (2)

Here max(., .) represents the element-wise max operation.
Finally, in order to reduce the sensitivity of the output
to shifts and distortions, M+

t is passed through a pooling
layer which performs a local averaging or sub-sampling

over a pooling window with size of p elements and cal-
culates the reduced feature map M′t ∈ Rf× νu . In fact, a
pooling layer reduces the resolution of a feature map by
factor of 1

u where u is the stride (or step) size. Max-pooling
and average-pooling are two commonly used pooling func-
tions which compute the maximum or average value among
the values in a pooling window, respectively. In average-
pooling for m′i,j ∈M′t, i ∈ {1, . . . , f}, and j ∈ {1, . . . , νu},
we have:

m′i,j =
1

p

p∑
k=1

mi,(j−1)×u+k. (3)

Alternatively, in the max-pooling each element of the
reduced feature map is the maximum value in a corre-
sponding pooling window:

m′i,j = max(mi,(j−1)×u+1,mi,(j−1)×u+2, . . . ,mi,(j−1)×u+p). (4)

The reduced feature map M′t can be used as the input
to the next convolutional layer, i.e., Xt of the next layer.
In general, the reduced feature map computed by stacking
several convolution, ReLU, and pooling layers is flattened
as a vector before the classification step. The flattening
step is performed by collapsing the rows of M′t in the form
of a vector. The resulting vector is called the learned fea-
ture space x′t that represents a new representation of the
original feature space. This new representation is typi-
cally fed to a fully connected neural network followed by
a softmax layer for the classification purposes.

In this paper, and for the purpose of SMM detection on
the multi-sensor IMU data, we propose to use a three-layer
CNN to transform the time-series of multiple sensors to a
new feature space. The proposed architecture is shown in
Figure 2. Three convolutional layers are designed to have
4, 4, and 8 filters with the length of 9 samples (i.e., 0.1
seconds), respectively. The length of the pooling window
and pooling stride are fixed to 3 (p = 3) and 2 (u = 2),
respectively. The pooling stride of 2 reduces the length
of feature maps by the factor of 0.5 after each pooling
layer. The output of the third convolutional layer after
flattening provides the learned feature vector. Then, the
learned feature vector is fed to a two-layer fully-connected
network with 8 and 2 neurons that are connected to a
softmax layer. A dropout [59] rate of 0.5 is used in the fully
connected layers to avoid the overfitting problem. Since
only the information in Xt is used to compute x′t and then
predict yt, we refer to the learned feature space via this
CNN architecture as the static feature space.

2.3. Parameter Transfer Learning via Network Pre-
initialization

The quality and characteristics of recorded IMU signals
varies not only from subject to subject but also from time
to time in a single subject. Therefore it is important that
the SMM detector system be able to adapt to new streams
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Figure 2: (a) The proposed architecture for SMM detection in the static feature space using a three-layer CNN. (b) The first CNN layer.
This layer receives the one-second long time-series of several IMU sensors at time t, i.e., Xt, and transfer it to the first level reduced feature
map M′t. (c) The second CNN layer that uses the first level reduced feature map M′t as its input, and transfer it to the second-level reduced
feature map. (d) The third CNN layer. The reduced feature map of this layer is reshaped to the learned feature vector x′t using the flattening
operation. (e) The learned feature vector is fed to a fully-connected followed by a softmax layer to classify the samples to SMM and no-SMM
classes.

of signals in longitudinal scenarios. In this paper, we ex-
plore the possibility of parameter transfer learning via net-
work pre-initialization in order to transfer the learned pat-
terns to the newly seen data in a different time span. In
this direction we first formalize the background theoretical
concepts.

In the statistical learning theory, the goal is to learn a
task T in a certain domain D. A domain D = {X , ρX } is
defined as a possible conjunction between an input space
X and a marginal probability distribution ρX . For ex-
ample in the SMM detection context, the recorded IMU
signal for different subjects can be considered as differ-
ent domains as the marginal probability distribution ρX is
different from one subject to another. Similarly different
domains can be defined by time in longitudinal data col-
lection scenarios. Given a domain D, a task T = {Y,Φ}
is defined as a predictive function Φ from D to the out-
put space Y. For example in this study Φ is the SMM
detector, and Y represents the categorical output space of

SMM and no-SMM samples. Assume DS , DT , TS , and
TT to represent the source domain, target domain, source
task, and target task, respectively. Transfer learning aims
to benefit from the knowledge in the source domain and
task in order to improve the predictive power in the target
domain when DS 6= DT or TS 6= TT [40].

In this study, we are interested in the application of
parameter transfer learning via pre-initializing the param-
eters of a deep neural network, as a well-established tech-
nique in the deep learning community, to improve the
SMM prediction performance across different subjects and
time intervals. To this end, we define the source domain
DS as the IMU signal which is collected on several sub-
jects at the time span T1. Similarly the target domain
DT is defined as the IMU signal which is collected on sev-
eral subjects at the time span T2. Assume ΦS be the
learned predictive function, i.e., the CNN classifier, in the
source domain. We use the learned parameters in ΦS to
pre-initialize the parameters of the predictive function in

5



the target domain ΦT . In simpler words, instead of ran-
dom pre-initialization, we initialize the parameters of CNN
classifier in the target domain with the learned CNN pa-
rameters in the source domain. We hypothesize that such
a knowledge transfer via learned parameters improves the
prediction performance in the longitudinal studies where
the data are collected at different time intervals.

2.4. SMM Detection in Dynamic Feature Space using
LSTM

In SMM detection using static feature space (see Sec-
tion 2.2) only the data in Xt is used to predict yt. Thus
it is implicitly assumed that the sequence of samples over
time are independent and identically distributed (i.i.d).
But in reality, this assumption is not valid as the samples
in consecutive time steps are highly dependent. Therefore,
it is expected that accounting for this dependency would
improve the performance of the SMM detector. Follow-
ing this hypothesis, we propose to use a long short-term
memory (LSTM) layer to model the temporal dependency
between the consecutive time steps of the recorded signal.

Let x′t be a set of static features that are extracted or
learned from samples in the raw feature space (i.e., from
Xt). Here we assume the CNN architecture explained in
Section 2.2 is used to compute x′t. Then, let ct ∈ Rq and
ht ∈ Rq to represent the cell state and output of an LSTM
unit at time step t, respectively, where q is the number of
neurons in the LSTM unit. We will refer to ht as the
dynamic feature space. The LSTM unit receives x′t, ht−1,
and ct−1 as its inputs, and computes ct and ht as follows:

ct = ft � ct−1 + it � c̃t, (5)

ht = ot � (1− e−2×ct)� (1 + e−2×ct)−1. (6)

Here ft ∈ Rq is called the forget gate vector and its
elements are real numbers between 0 and 1 that decide how
much information to be passed from ct−1 to ct. During
the learning phase, the forget gate learns the forget weight
matrix Wf and the forget bias vector bf. ft is computed
by

ft = (1 + e−(Wf·[ht−1,x
′
t]+bf))−1. (7)

Using a tangent hyperbolic function, c̃t ∈ Rq provides
new candidate values between −1 and 1 for ct by learning
Wc and bc:

c̃t = (1− e−2×(Wc·[yt−1,x
′
t]+bc))� (1 + e−2×(Wc·[yt−1,x

′
t]+bc))−1, (8)

where it ∈ Rq is the input gate vector with elements be-
tween 0 and 1. These values determine the level of new
information in c̃t to be transferred to the cell state ct. it
is computed based on Wi and bi as follows:

it = (1 + e−(Wi·[yt−1,x
′
t]+bi))−1. (9)

Finally, ot ∈ Rq is the output gate vector that filters the
cell state ct to generate the output of the LSTM unit ht:

ot = (1 + e−(Wo·[yt−1,x
′
t]+bo))−1. (10)

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Classification

Long Short-Term Memory

Time

Figure 3: The proposed architecture for SMM detection in the dy-
namic feature space using long short-term memory. Each feature ex-
traction block contains a trained three-layer CNN architecture (see
Figure 2).

In this paper, a fully-connected layer with dropout of
0.2 is used to transfer the output of the LSTM layer at
time t, i.e., ht, to the input of the softmax layer zt =

[z
(0)
t , z

(1)
t ]T ∈ R2:

P (yt = 1 | xt−τ ,xt−τ+1, . . . ,xt) =
ez

(1)
t

ez
(0)
t + ez

(1)
t

, (11)

where τ represents the number of previous time steps that
are used as the input to the LSTM layer. Figure 3 presents
a schematic overview of the proposed architecture.

2.5. Ensemble of the Best Base Learners

Due to the random initialization and using stochastic
optimization algorithms on random mini-batches in train-
ing deep learning models, retraining the same model on the
same training set results in heterogeneous approximations
of the target classifier. This heterogeneity is the direct re-
sult of reaching different local optimums in optimizing a
complex non-convex error surface. One possible approach
to overcome this problem is ensemble learning (EL) [60].
The main idea behind EL is to combine the knowledge
learned by individual classifiers in order to achieve a more
superior and stable performance. It is shown that in gen-
eral an ensemble of classifiers works better than every
single classifier due to the statistical, computational, and
representational reasons [61]. Considering the success of
deep learning ensembles in pattern recognition and sig-
nal processing applications [62, 63, 64, 65], in this study
we are interested in applying classifier selection voting ap-
proach [66] to combine an ensemble of the best base learn-
ers.
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Algorithm 1 The training and test procedures in the
majority voting on a set of b best models.

1: procedure training(C,Xtr ,ytr)
2: for all ci ∈ C do
3: Predict ŷ using ci on Xtr.
4: Evaluate ŷ and store the performance in αi.

end
5: for i← 1, l do
6: Store the best i classifiers in C∗i .
7: Predict ŷ1, . . . , ŷi using classifiers in C∗i on Xtr.
8: Compute majority voting ỹ on predictions in ŷ1, . . . , ŷi.
9: Evaluate ỹ and store the performance in αi.

end
10: Find the best value for b by b = argmaxi(αi).
11: return C∗b .

12:
13: procedure test(C∗b ,Xts, yts)
14: Predict ŷ1, . . . , ŷb using classifiers in C∗b on Xts.
15: Compute majority voting ỹ on predictions in ŷ1, . . . , ŷb.
16: Evaluate ỹ and store the performance in α.
17: return α.

Let (Xtr,ytr) and (Xts,yts) to be the corresponding
sample/target pairs in the training and test sets, respec-
tively. Then assume C = {c1, c2, . . . cl} be a set of l base
learners trained on the training set. Our goal is to first
find a set of b best classifiers C∗ ⊆ C based on a perfor-
mance measure α on the training set, and then to combine
their prediction on the test set using majority voting in the
prediction phase. Algorithm 1 summarizes this approach.

2.6. Experimental Materials

We assess the performance of the proposed methods on
both simulated and real data. In the following, we describe
the datasets and the procedures that are used for data
preparation.

2.6.1. Simulated Data

In a simulation setting, 5 healthy subjects (3 females and
2 males) are asked to emulate stereotypical movements in a
controlled environment. Each participant wore an EXLs3
sensor1, a miniaturized electronic device with the function
of real-time IMU, fixed on the right wrist using a wrist-
band (see Figure 4(a)). EXLs3 sensor records three-axis
accelerometer, gyroscope, and magnetometer data (it has
9 data channels in total). The sensor was set to trans-
mit three-axis ±16g acceleration and ±2000dps angular
velocity at the 100Hz sampling rate. The participants
were instructed to perform their normal working activities
such as sitting, writing, and typing; while intermittently
performing hand flapping upon receiving a start/stop cue
from the instructor (see Figure 4(b)-(e)). The total period
of SMMs is organized somehow to keep the distribution
of two classes comparable with real datasets where 27%
of samples are in the SMM class (see Table 1 and Sec-
tion 2.6.2). The total duration of each experiment was 30
minutes organized in three 10 minutes sessions. Real-time

1For the technical description see: http://www.exelmicroel.

com/elettronica_medicale-tecnologia-indossabile-exl-s3_

module.html.

coding is undertaken during sessions to annotate the start-
ing and ending time of movements. The captured data
were band-pass filtered with a cut-off frequency of 0.1Hz
to remove the DC components. Then the signal was seg-
mented to 1 second long (i.e., 100 time-points) using a
sliding window. The sliding window was moved along the
time dimension with 10 time-steps resulting in 0.9 overlaps
between consecutive windows 2.

2.6.2. Real Data

We use the data presented in [33] wherein the accelerom-
eter data were collected for 6 subjects with autism in a
longitudinal study3. The data were collected in the labo-
ratory and classroom environments while the subjects wore
three 3-axis wireless accelerometers and engaged in body
rocking, hand flapping, or simultaneous body rocking and
hand flapping. The accelerometer sensors were attached
to the left and right wrists, and on the torso. Offline an-
notation based on a recorded video is used to annotate the
data by an expert. Two separate collections are available:
the first collection, here we call it Real Data1, was recorded
by MITes sensors at 60Hz sampling frequency [31]. The
second collection Real Data2, was recorded three years af-
ter the first recording on the same subjects using Wockets
sensors with the sampling frequency of 90Hz. The sam-
pling rate of two recordings is equalized by re-sampling the
signal in Real Data1 to 90Hz using linear interpolation.
The cut-off high pass filter at 0.1Hz is applied in order to
remove the DC components of the signal. Similar to [33],
the signal is segmented to 1-second long overlapped inter-
vals using a sliding window. The amount of overlap is set
to 10 time-points resulting in 0.87 overlap between consec-
utive windows. Table 1 summarizes the number of samples
in no-SMM and SMM classes for each subject. The dif-
ference in the number of samples in SMM and no-SMM
classes shows unbalanced nature of the real data, where
in Real Data1 and Real Data2 datasets 31% and 23% of
samples are in the SMM class, respectively.

2.7. Experimental Setups and Evaluation

To investigate the effect of static and dynamic feature
learning and parameter transfer learning on the perfor-
mance of SMM detection, we conducted four experiments.
Keras library [67] is used in our implementations4.

2.7.1. Experiment 1: Static Feature Learning

The main aim of this experiment is to compare the ef-
fectiveness of feature learning using a deep neural network
versus raw feature space and handcrafted features in an

2The collected simulated data is made publicly available at https:
//gitlab.fbk.eu/MPBA/smm-detection.

3The dataset and full description of data are publicly
available at https://bitbucket.org/mhealthresearchgroup/

stereotypypublicdataset-sourcecodes/downloads.
4See https://gitlab.fbk.eu/MPBA/smm-detection to access the

implemented scripts and codes.
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(a) (b) (c) (d) (e)

Figure 4: (a) The configuration of the EXLs3 sensor on the right hand. (b),(c) The simulated data are collected during daily work activities
(e.g., writing, typing, etc.). (d),(e) The subjects are asked to intermittently perform hand flapping upon receiving a start/stop cue from the
instructor.

Table 1: Number of samples in SMM and no-SMM classes in three
datasets.

Data Subjects No-SMM SMM All SMM/All

Simulated Data

Sub1 13875 4075 17950 0.23
Sub2 11686 6224 17910 0.35
Sub3 13694 4246 17940 0.24
Sub4 12428 5532 17960 0.31
Sub5 13583 4367 17950 0.24
Total 65266 24444 89710 0.27

Real Data1

Sub1 21292 5663 26955 0.21
Sub2 12763 4372 17135 0.26
Sub3 31780 2855 34635 0.08
Sub4 10571 10243 20814 0.49
Sub5 17782 6173 23955 0.26
Sub6 12207 17725 29932 0.59
Total 106395 47031 153426 0.31

Real Data2

Sub1 18729 11656 30385 0.38
Sub2 22611 4804 27415 0.18
Sub3 40557 268 40825 0.01
Sub4 38796 8176 46972 0.17
Sub5 22896 6728 29624 0.23
Sub6 2375 11178 13553 0.82
Total 145964 42810 188774 0.23

across-subject SMM detection setting. To evaluate the ef-
fect of both feature extraction and feature learning on the
SMM classification performance, first, without any feature
extraction the signals in raw feature space are used as the
input to a support vector machine (SVM) classifier. In this
case, all data channels of each sample Xt are collapsed into
a feature vector (with length of 900 = 9×100 in simulated
data and 810 = 9 × 90 in real data case). Second, to
evaluate the detection performance using handcrafted fea-
tures we extracted all features mentioned in [33] including
time, frequency, and Stockwell transform features, then,
we replicated the across-subject SMM detection experi-
ment in [33]. In this setting we used exactly the same
implementation provided by the authors 1 in the feature
extraction and classification steps. Third, a CNN architec-
ture (see Section 2.2) is used to learn a middle representa-
tion of the multi-sensor signal. In this experiment, all ef-
fective parameters of CNN (weights and biases) are initial-
ized by drawing small random numbers from the normal

1The code is available at: https://bitbucket.org/

mhealthresearchgroup/stereotypypublicdataset-sourcecodes/

downloads.

distribution. The stochastic gradient descent with momen-
tum (the momentum is fixed to 0.9) is used for training the
network. All these steps are performed only on the train-
ing data to ensure unbiased error estimation. Due to the
random initialization of weights and employing stochastic
gradient descent algorithm for optimization, results can be
different from one training run to another. Therefore, we
repeated the whole procedure of learning and classification
10 times and the mean and standard variation over runs
are reported. It is important to emphasize that, similar
to [33], in all three parts of this experiment the number
of samples in minority class is used to randomly draw a
balanced training set.

2.7.2. Experiment 2: Parameter Transfer Learning

As discussed before, deep neural networks provide the
capability of parameter transfer learning via network pre-
initialization. We applied this experiment only on two real
datasets in order to investigate the possibility of transfer-
ring learned knowledge from one dataset to another in a
longitudinal data collection setting. This experiment is
similar to Experiment 1, except for the network initializa-
tion step. Instead of random initialization, here we firstly
train the CNN on one balanced real dataset, e.g., Real
Data1, and then we use the learned parameters for pre-
initializing the parameters of CNN before training on an-
other balanced real dataset, e.g., Real Data2. Similar to
previous experiment, we repeated the whole experiment
10 times to evaluate the standard deviation of the classifi-
cation performance.

2.7.3. Experiment 3: Training on the Unbalanced Training
Set

As explained, in Experiment 1 and 2 we balanced the
training set based on the number of samples in minority
class. Even though balancing the training set improves
the quality of the trained model but in fact it suffers from
some deficits: 1) by balancing the training set we impose
a wrong prior assumption on the original distribution of
data. As shown in Table 1 in real datasets around 0.3
of samples belong to SMM class, when by balancing the
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Figure 5: The distribution of SMM and no-SMM samples in the 2-dimensional t-SNE space for (a) raw feature space, (b) handcrafted features,
(c) static feature space learned by CNN, (d) static feature space learned by pre-initialized CNN, and (e) dynamic feature space learned by
LSTM. Feature learning increases the separability of samples in two classes compared to raw and handcrafted features.

dataset we assume it is 0.5; 2) by balancing the training set
we cannot employ the full richness of the data as we need
to remove significant amount of samples from the train-
ing set; 3) in some practical scenarios, such as real-time
adaptation or classification on the sequence of streamed
data, balancing the training set is impractical. Consider-
ing these limitations, in this experiment in order to eval-
uate the effect of balancing on the performance of CNN
model we evaluate the performance of the proposed CNN
architecture in predicting SMMs when unbalanced train-
ing sets are used in the training phase.

2.7.4. Experiment 4: Dynamic Feature Learning

In this experiment, we are interested in answering three
main questions: 1) what are the advantages of learning
temporal representation of IMU signals for reliable SMM
detection? 2) how long is the most informative time inter-
val in IMU signals for detecting abnormal movements? 3)
what is the optimal configuration for the LSTM unit? To
answer these questions, we applied the proposed LSTM ar-
chitecture in Section 2.4 on the three benchmark datasets
with different values for τ and q, i.e., time steps and neuron
number, respectively. We set τ = {1, 3, 5, 10, 15, 25, 50}
and q = {5, 10, 20, 30, 40, 50}. The LSTM unit is trained
on the extracted features by the CNN using the RM-
SProp [68] optimizer. The learned dynamic features via
LSTM (ht) are classified to target classes using a softmax
classifier. It is worthwhile to emphasize that, in this set-
ting, since the order of samples in the training set matters,
balancing the training set is impossible, thus we use the
original unbalanced data.

2.7.5. Experiment 5: Ensemble of LSTMs

To explore the possible advantage of combining multiple
classifiers, we used the procedure explained in Section 2.5
in order to combine a set of b best base learners. In this
experiment, we used the LSTM models in the Experiment
4 as base learners for the classification of unbalanced data.

For all datasets, we used the same configurations for the
LSTM models by fixing τ = 25 and q = 40. We set l =
10 and used the F1-score for the performance metric α
in Algorithm 1. The experiment is repeated 10 times to
evaluate the standard deviation over the mean prediction
performance.

2.7.6. Evaluation

In all experiments the leave-one-subject-out scheme is
used for model evaluation in order to measure the robust-
ness of the trained model against inter-subject variability.
Due to the unbalanced class distributions in the test set,
we computed the F1-score to evaluate the classification
performance:

F1 = 2× Precision×Recall
Precision+Recall

,

where true positive (TP), false positive (FP), and false
negative (FN) rates are used as follows to compute the
precision and recall:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
.

3. Results

3.1. Feature Learning Outperforms Handcrafted Features

The classification performances summarized in Table 2
compare the quality of feature learning via CNN with raw
and handcrafted feature spaces on three datasets. In all
three datasets, the classification performance of SMM de-
tection on the handcrafted and learned features is higher
than the classification performance on the raw feature
space. This observation demonstrates the importance of
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Table 2: Results for SMM detection using raw, handcrafted, static, dynamic feature spaces, and ensemble learning in three benchmarked
datasets. The results show that feature learning generally outperforms raw and handcrafted feature spaces. In addition, the parameter
transfer learning has a positive effect on the performance of the CNN classifier. Furthermore, training the CNN classifier on unbalanced
training sets causes the performance drop in feature learning and transfer learning scenarios. Using the LSTM network to extract dynamic
features from the signal alleviates this problem to some degrees. Ensemble of LSTMs shows more stable performance compared to single
LSTM classifiers.

Data
Balanced Training Sets Unbalanced Training Sets

Sub
Raw

Features
Handcrafted
Features

Feature
Learning

Transfer
Learning

Feature
Learning
(1 sec)

Transfer
Learning

Feature
Learning
(2.5 sec)

Dynamic
Feature
Learning

Ensemble
Learning

S
im

u
la
te
d

1 0.29 0.71 0.78± 0.05 - 0.73± 0.13 - 0.95± 0.01 0.95± 0.01 0.95± 0.00
2 0.84 0.86 0.86± 0.03 - 0.78± 0.09 - 0.86± 0.13 0.95± 0.01 0.96± 0.01
3 0.55 0.76 0.80± 0.01 - 0.75± 0.13 - 0.95± 0.03 0.97± 0.01 0.97± 0.00
4 0.76 0.48 0.85± 0.03 - 0.73± 0.12 - 0.97± 0.01 0.96± 0.02 0.97± 0.01
5 0.38 0.77 0.79± 0.01 - 0.80± 0.04 - 0.91± 0.01 0.90± 0.02 0.91± 0.00

Mean 0.56 0.72 0.82± 0.03 - 0.76± 0.11 - 0.93± 0.06 0.95± 0.01 0.95± 0.01

R
e
a
l
D
a
ta

1

1 0.44 0.74 0.74± 0.02 0.71± 0.02 0.70± 0.02 0.71± 0.03 0.73± 0.04 0.77± 0.03 0.80± 0.00
2 0.32 0.37 0.75± 0.02 0.73± 0.01 0.63± 0.03 0.63± 0.04 0.68± 0.04 0.71± 0.03 0.74± 0.00
3 0.22 0.50 0.68± 0.04 0.70± 0.03 0.57± 0.08 0.59± 0.06 0.56± 0.13 0.68± 0.05 0.72± 0.01
4 0.44 0.73 0.92± 0.01 0.92± 0.00 0.88± 0.01 0.88± 0.01 0.93± 0.00 0.91± 0.01 0.93± 0.00
5 0.56 0.44 0.51± 0.04 0.68± 0.05 0.51± 0.08 0.58± 0.07 0.51± 0.04 0.52± 0.04 0.51± 0.01
6 0.56 0.46 0.90± 0.01 0.94± 0.01 0.79± 0.07 0.81± 0.09 0.86± 0.12 0.90± 0.02 0.91± 0.00

Mean 0.42 0.54 0.74± 0.03 0.78± 0.03 0.68± 0.06 0.70± 0.06 0.71± 0.08 0.75± 0.03 0.77± 0.01

R
e
a
l
D
a
ta

2

1 0.47 0.43 0.61± 0.11 0.68± 0.05 0.33± 0.14 0.36± 0.08 0.47± 0.15 0.53± 0.09 0.59± 0.03
2 0.23 0.26 0.20± 0.04 0.22± 0.04 0.11± 0.03 0.16± 0.04 0.13± 0.05 0.26± 0.06 0.29± 0.02
3 0.01 0.03 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.02 0.02± 0.02
4 0.32 0.86 0.72± 0.03 0.77± 0.02 0.71± 0.14 0.83± 0.03 0.90± 0.02 0.76± 0.09 0.87± 0.02
5 0.38 0.73 0.21± 0.09 0.75± 0.09 0.14± 0.09 0.09± 0.02 0.23± 0.17 0.35± 0.15 0.43± 0.08
6 0.50 0.07 0.36± 0.13 0.91± 0.05 0.62± 0.08 0.70± 0.16 0.68± 0.21 0.96± 0.01 0.98± 0.00

Mean 0.32 0.40 0.35± 0.08 0.56± 0.05 0.32± 0.1 0.36± 0.08 0.40± 0.13 0.48± 0.08 0.53± 0.04

feature extraction/learning for detecting SMMs. Further-
more, the comparison between the results achieved by
handcrafted and learned features illustrates the efficacy
of feature learning over the manual feature extraction in
SMM prediction. The learned feature space reaches on av-
erage 0.10 and 0.20 higher F1-score than the handcrafted
features in case of simulated data and real data1, respec-
tively, while in case of real data2 its performance declines
by 0.05. These results support the overall efficacy of fea-
ture learning versus handcrafted features in extracting ro-
bust features for across-subject SMM detection. These
conclusions are even further confirmed in Figures 5(a)-(c),
where the t-distributed Stochastic Neighbor Embedding
(t-SNE) [69] technique is employed to visualize the dif-
ferent feature spaces in a 2-dimensional space. We used
the average of Fisher’s separability score [70] across two t-
SNE dimensions to quantify the separability of samples in
two classes for different feature spaces. Figure 5(a) shows
2D t-SNE distribution of SMM and no-SMM samples in
the raw feature space, where there is a high overlap be-
tween the samples of two classes. This high overlap is
also well-reflected in the low Fisher’s separability score in
raw feature space (0.02). Figure 5(b) depicts the distribu-
tion of samples of two classes in handcrafted feature space.
The samples in two classes are barely separable and the
Fisher’s separability score is 0.03. Figure 5(c) displays the
2D t-SNE space for the learned features via the CNN ar-
chitecture. In this case the separability score is improved
significantly to 0.10.

3.2. Parameter Transfer Learning is Beneficial in Longi-
tudinal Studies

As mentioned in Section 2.7.2, the aim of our second
experiment was to investigate the possibility of transfer-
ring learned knowledge from one dataset to another using
parameter transfer learning. Our results in Table 2 shows
that transferring knowledge from one dataset to another
in a longitudinal study, by pre-initializing the parameters
of CNN model improves the average classification perfor-
mance of the SMM detectors by 0.04 and 0.21 in Real
Data1 and Real Data2 datasets, respectively.

3.3. Training on Unbalanced Data Decreases the Perfor-
mance

The results in Table 2 illustrate the negative effect of
using unbalanced training set in training CNN architec-
ture in randomly initialized (feature learning) and pre-
initialized (transfer learning) scenarios. The performance
of SMM detection in feature learning scenario drops by
0.06 and 0.03 in Real Data1 and Real Data2 datasets,
respectively. This performance drop is even more pro-
nounced in the transfer learning scenario where we ob-
serve 0.08 and 0.20 performance drop in the corresponding
datasets.

3.4. Dynamic Feature Learning Outperforms Static Fea-
ture Learning

Figure 6 compares the averaged SMM classification per-
formance over subjects in the static feature space via the
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Figure 6: Comparison between the classification performances of CNN and LSTM for different time-steps (τ) and number of neurons q, on
three datasets and when an unbalanced training set is used for training the networks. The results show the superiority of the dynamic feature
space over the static feature space. While the number of neurons in the LSTM unit has little effect on the performance, using around 2.5
seconds long interval is the best choice for extracting effective dynamic features from the IMU signals.

CNN (the green dashed line for plain feature learning and
the blue dotted-dashed line for transfer learning) with the
dynamic feature space via the LSTM, the latter with dif-
ferent values for τ (x-axis) and q (line colors). Here in all
settings, an unbalanced training set is used in the training
phase. The results on three datasets illustrate that learn-
ing the temporal representation of signals with an LSTM
unit, consistently across datasets, improves the classifica-
tion performance compared to the static feature learning
via the CNN. The classification performance improves by
increasing τ , and it reaches its highest performance around
τ = 25. Considering the consistency of the best τ value
for different subjects and different datasets, it can be con-
cluded that using around 25 time-steps, i.e., around 2.5
seconds long interval, for extracting dynamic features is
the best choice for SMM detection purposes. On the other
hand, the results show the negligible effect of the number
of LSTM neurons (q) on the detection performance, thus,
a value around 10 can be considered a reasonable choice.

To further benchmark the advantage of dynamic feature
learning via LSTM, we used the CNN architecture for the
SMM detection on the best length for the time intervals,
i.e., on 2.5 seconds time intervals. The results on the three
datasets are summarized in Table 2 and Figure 6 (the dot-
ted red line). The results confirm the superiority of dy-
namic feature learning compared to static feature learning
despite using longer time intervals for learning static fea-
tures.

The effect of learning the temporal representation on
the separability of SMM and no-SMM samples is shown in
Figure 5(e). The higher Fisher’s separability score (0.17)
in the dynamic feature space compared to static feature
spaces can be considered as the basis for the higher classi-
fication performance of the proposed architecture, demon-
strating the importance of learning dynamic features using
an LSTM based architecture. Furthermore, employing the
dynamic-feature representation computed by the LSTM,

improves the detection rates when unbalanced training
sets are used (see Table 2). This observation is consistent
across three datasets.

Figure 7 further explores the superiority of the dynamic
feature representation when the training set is unbalanced.
In the static feature space case, balancing the training
set and enforcing the wrong prior class distribution into
the classification task, despite higher recall rate, affects
negatively the precision of the classifier. In other words,
the classifiers have higher false alarm rate, which could
be problematic in real-world applications. This deficit is
recovered in the case of dynamic feature representation
where the classifier presents higher precision rate and com-
parable recall with respect to static features. In fact, the
LSTM-based architecture by enforcing the true prior dis-
tribution of data into the training process and, at the same
time using all the recorded samples, provides an SMM de-
tection system with higher sensitivity and specificity.

3.5. Ensemble of LSTMs Stabilizes the Performance

The last column of Table 2 summarizes the results of
the ensemble approach. The results show slight boost in
the mean performance compared to single LSTM classi-
fiers, especially on real data2 (see dashed black line in
Figure 6). Figure 7 shows that both precision and recall
contribute equally to this improvement in F1-scores. In
addition to the higher performance, the main advantage
of EL is demonstrated by the low variability of results.
This reduction in the variability is well-reflected in the re-
duced standard deviation around the mean performance
in real datasets (0.02 and 0.04 reduction in real data1 and
real data2 datasets, respectively). In other words an en-
semble of LSTMs provides more reliable SMM detector in
comparison to every single LSTM classifier.
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Figure 7: A comparison between precision and recall rates of classifiers trained on balanced/unbalanced training sets for static/dynamic
feature representations. Using dynamic feature space provides an SMM detection system with higher sensitivity and specificity.

4. Discussion

4.1. Toward Real-Time Automatic SMM Detection

In this study, we proposed an original application of
deep learning for SMM detection in ASD children using
wearable technologies. To this end, we used a three-layer
CNN architecture for learning a more discriminative and
robust feature space in an across-subject SMM detection
scenario. Our experimental results, on the simulated and
real data, support the superiority of learning middle rep-
resentation of IMU signal over traditional feature extrac-
tion methods in automatic SMM detection. Further, we
showed that the parameter transfer learning via network
pre-initialization provides the infrastructure for effective
knowledge transfer from one dataset to another in a longi-
tudinal setting. We also presented an application of LSTM
in SMM detection context for extracting dynamic features
on the sequence of IMU data. In a comparison with the
static feature space learned via CNN architecture, we illus-
trated the advantage of employing the temporal informa-
tion in improving the separability of SMM and no-SMM
samples. We experimentally showed that using around
2.5 seconds long interval for extracting dynamic features
is the best choice for SMM detection purposes. Further,
we showed using around 10 neurons in the LSTM unit
is a reasonable choice in order to extract the dynamics
of samples over time. As a side-advantage of learning a
dynamic feature space, we experimentally demonstrated
the higher performance of our method when, in a real
world setting, the distribution of samples in SMM and
no-SMM classes is highly skewed. We showed, while the
skewness of samples negatively affects the performance of

the SMM detector in the static feature space, exploiting
the temporal patterns of multi-sensor IMU signals recovers
its performance. This advantage facilitates training high-
performing models by exploiting whole data sequences in
real-time SMM detection scenarios. Our effort, for the
first time in the SMM detection context, demonstrated the
superiority of recurrent structures in extracting discrimi-
native temporal patterns from IMU signals. As the final
contribution, considering the important role of ensemble
learning for classifying the stream data in non-stationary
environments [66, 65], we employed ensemble of the best
base learners technique to improve the reliability of the
SMM detector. In summary, our results show that fea-
ture learning, transfer learning, ensemble learning, and
learning temporal structures from multi-modal IMU sig-
nals improve the performance of SMM detection systems
especially in more realistic scenarios.

Developing real-time mobile applications for detecting
the abnormal movements such as SMMs can be consid-
ered as a final goal in the context of automatic SMM de-
tection using wearable sensors. At the moment there are
numerous challenges in real-time human activity recogni-
tion using wearable sensors, namely [19, 71, 72]: 1) design-
ing effective feature extraction and inference methods; 2)
recognition on realistic data; 3) the adaptability of system
to new users. Addressing these issues demands a huge in-
vestment in research toward finding robust and effective
features that can be extracted in a reasonable time from
the stream of IMU signal. Our proposal to learn a middle
representation of the signal, that is robust to the signal
variability of a single subject data over time and also to
the across-subject variability, can be considered as an effec-
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tive solution in this direction. In addition, the parameter
transfer learning capability besides the possibility of in-
cremental training of the proposed deep architecture facil-
itates the online adaptation of an automatic SMM detector
in real-time scenarios. This finding overlooks the subject
specific [73], and monolithic [74, 35] activity recognition
systems opening new frontiers toward adaptable activity
recognition systems which are more appropriate for real-
time usages. At the end, the high detection performance
on unbalanced training sets achieved in the dynamic fea-
ture space facilitates the application of our method on the
realistic data when the incoming data samples are highly
skewed.

4.2. Limitation and Future Work

Even though the deep architecture introduced in this
study provides a significant step toward a more accurate
automatic SMM detection system in real-time scenarios,
but it suffers from a considerable limitation: the proposed
fully supervised scheme for training the SMM detection
model is problematic for its online adaptation. This prob-
lem comes from the fact that in real applications the sys-
tem has no access to the labels of incoming samples during
usage by a new user. Therefore, the adaptation to new un-
seen data should be performed only based on the input un-
labeled data. This limitation motivates future researches
on the online adaptation of the system in an unsupervised
manner. One possible solution in this direction is trans-
ductive transfer learning [40] where the basic assumption
is that no labeled data in the target domain are available.
Therefore adopting a transductive transfer learning strat-
egy in the adaptation phase can be considered as a possible
future direction to extend this work.

5. Conclusions

In this study we addressed the problem of automatic
SMM detection in the framework of deep learning. We
used a 3-layer CNN architecture to learn a robust fea-
ture space from multi-sensor/modal IMU signals. We il-
lustrated how the proposed architecture can be employed
for parameter transfer learning in order to enhance the
adaptability of SMM detection system to new data. Fur-
ther, we showed incorporating the temporal dynamics of
the signal in the feature learning process, by combining
the CNN architecture with an LSTM unit, improves the
SMM detection rate in real-world scenarios especially in
case of unbalanced data. We further illustrated the ad-
vantage of ensemble learning to provide more stable and
reliable SMM detectors. Our results demonstrate high po-
tentials of deep learning paradigm to address the crucial
challenges toward real-time SMM detection systems using
wearable technologies.
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