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Abstract

In this paper, we propose two new space-time (ST) coding schemes for multiple-antenna signalling based on

multiple Khatri-Rao and Kronecker products of symbol matrices, denoted MKRST and MKronST codings,

respectively. These new coding schemes generalize the standard Khatri-Rao coding by introducing extra

space/time diversities due to a mutual space-time spreading of the transmitted data streams, induced by Khatri-Rao

and Kronecker products between symbol matrices. Parallel non-iterative decoding methods are proposed for

estimating each symbol matrix. We consider a one-way two-hop multi-input multi-output (MIMO) relay system

using the MKRST and MKronST codings at both the source and relay nodes, and three different relaying protocols,

namely, amplify-and-forward (AF), decode-and-forward (DF) and estimate-and-forward (EF). For the DF and EF

protocols, the channel and symbol estimation is split into two successive phases, one at the relay and the other one

at the destination. Exploiting parallel factor (PARAFAC) models for the tensors of signals received at the relay

and the destination, closed-form semi-blind receivers arederived for joint symbol and channel estimation. System

parameters identifiability is also discussed, and the computational cost of the proposed receivers and decoders is

detailed. Monte Carlo simulation results are provided to assess the performance of the proposed coding schemes,

and semi-blind receivers.

Keywords: Khatri-Rao product, Kronecker product, PARAFAC, MIMO relaying, space time coding, semi-blind

receivers.

1. Introduction

Currently, there are as many mobile subscriptions as peoplein the world. To support the tremendous increase

of the resulting data traffic, one solution consists in moving closer the user equipments (UEs) to the base stations

(BSs). That leads to what is calledsmall-cellsin cellular networks which will play an important role in future

long-term evolution (LTE) networks. Another possibility is offered by cooperative infrastructures where relays

help communications between source and destination nodes [1].
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The basic result on cooperative communications is the seminal work [2] which established the capacity of

certain relay channels. In [3], the benefits of cooperative communications were presented in terms of data rate,

diversity and error performance in the context of code division multiple access (CDMA) systems. In [4], the

authors discussed practical issues for implementation. In[5], low-complexity cooperative protocols were proposed

and analyzed in the case of two cooperating terminals. Two relaying protocols are commonly used: AF, and DF.

With the AF protocol, the relay retransmits the received signals without decoding, while DF involves decoding

and re-encoding at the relay before forwarding the coded information to the destination. Note that recent works

consider also non-orthogonal and orthogonal space-time block codes (OSTBC) in cooperative relaying systems

[12] [13].

Since the pioneering work [6], the use of tensor decompositions has been widely studied for point-to-point

wireless communication systems. The practical motivationfor tensor modeling comes from the fact that one can

simultaneously benefit from multiple (more than two) signaldiversities, like space, time and frequency diversities,

for instance. Therefore, tensor approaches allow to improve the reliability of wireless links while enabling a joint

multiuser signal separation and channel estimation, undermodel uniqueness conditions more relaxed than those

with conventional matrix-based solutions. Several tensor-based communication systems rely on the PARAFAC

decomposition [7] of the received signals [6, 8, 9, 10], or onvariants of this decomposition, such as, for instance,

the block-PARAFAC models of [14, 15], and the more general framework of constrained PARAFAC models [11].

Such constrained PARAFAC models were proposed to design tensor-based MIMO communication systems,

like the constrained factors (CONFAC) [16], PARATUCK-2 [17], PARATUCK-(2,4) [18], or still the generalized

PARATUCK [19] decompositions. Note that in [20], three basic wireless communication systems are presented

in an unified way by means of a constrained PARAFAC model whichcan be viewed as a block-CONFAC-(2,3)

model [11]. A nested PARAFAC model was also recently proposed for a double Khatri-Rao space-time-frequency

coding [21].

In the context of cooperative wireless communications, a few results have been published on tensor-based

receivers. Some works are dedicated to supervised channel estimation, i.e. with the use of training sequences,

as in [22] and [23] - [24] for two-way and one-way two-hop relay systems, respectively. In [25] and [26], a

scenario of one-way three-hop multi-relay system is considered, where multiple relay links are exploited at the

receiver to estimate all the partial channels involved in the communication. However, all these works rely on

supervised channel estimation methods, which can be bandwidth consuming, especially for moderate to large

number of antennas. In [27] and [28], semi-blind receivers based on the PARAFAC model have been introduced for

uplink multiuser cooperative communication systems, by assuming single-antenna relays in clustered propagation

scenarios. In [29], a general scenario withK relays assuming Khatri-Rao space-time coding at each relayis

modeled by means of a generalized nested PARAFAC model whichcan be decomposed intoK + 1 third-order

PARAFAC models for jointly estimating the information symbols and the individual channels, at the destination

node. Recent works have proposed semi-blind receivers withjoint symbol and channel estimation by considering

multiple-antenna (MIMO) relays, which do not require training sequences. In this context, we can cite the

PARAFAC-PARATUCK receiver [30] and the nested PARAFAC receiver [31, 32]. These works consider an

amplify-and-forward (AF) relaying protocol.

In this paper, we first propose generalized Khatri-Rao and Kronecker ST codes for two-hop MIMO relay
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systems. This approach combines a simplified KRST coding [8], i.e. without pre-coding, with extra time

(and space) spreading introduced by multiple Khatri-Rao (and Kronecker) products of symbol matrices. The

resulting ST codings are called multiple Khatri-Rao product-based space-time (MKRST) and multiple Kronecker

product-based space-time (MKronST) codings. Using these MKRST and MKronST codings at the source and

the relay, tensor models are derived for the signals received at the relay and the destination, and closed-form

semi-blind receivers using rank-one matrix approximations by means of singular value decompositions (SVD)s

are presented.

We consider three different relaying protocols in this work. More specifically, in addition to the usual AF

protocol, we also consider DF and EF relaying protocols. With the AF protocol, we propose a semi-blind receiver

that exploits two separate PARAFAC models to estimate the channel and symbol matrices at the destination only,

whereas for DF and EF the joint channel and symbol estimationis split into two phases, one at the relay and

the other one at the destination. Identifiability conditions and scaling ambiguity relations are derived for the

PARAFAC models exploited by the proposed receivers, and their computational complexities are analyzed.

The main contributions of this paper can be summarized as follows:

• We propose two new space-time (ST) coding schemes based on multiple Khatri-Rao and Kronecker

products of symbol matrices, denoted MKRST and MKronST, respectively. Compared to the standard

Khatri-Rao coding [8], these new ST codings allow to introduce extra space/time diversities, thanks to a

mutual space-time spreading of the transmitted data streams. A singular value decomposition (SVD)-based

rank-one approximation is proposed to estimate in paralleleach symbol matrix of the Khatri-Rao and

Kronecker products, avoiding error propagation inherent to the iterative closed-form solution presented

in the Appendix.

• We describe a one-way two-hop MIMO relaying system using theproposed ST codings both at the source

and relay nodes. Three different relaying protocols are considered, namely AF, DF and EF. Then,

PARAFAC tensor models are established for the signals received at the relay and the destination.

• Exploiting the algebraic structure of these PARAFAC models, we derive closed-form semi-blind receivers

for jointly estimating the two-hop channels and the transmitted symbols, for each relaying protocol. A

modified version of the AF receiver of [31, 32] is also proposed to enhance the performance of channel

estimation. Identifiability is discussed for each PARAFAC model, and a comparative complexity analysis is

made for the proposed receivers and decoders.

The rest of the paper is organized as follows. In Section 2, wepresent two new ST coding schemes, named

MKRST and MKronST. SVD-based methods are proposed for decoding in parallel each symbol matrix. An

iterative closed-form decoding solution is also presentedin the Appendix. Section 3 describes the proposed

MIMO relay system using the new ST codings both at the source and the relay, and PARAFAC models are

established for the tensors of signals received at the relayand the destination, considering three different relaying

protocols. In Section 4, we derive closed-form semi-blind receivers for each protocol. Section 5 presents Monte

Carlo simulation results to illustrate the performance of the proposed receivers. Section 6 contains the conclusion

and some perspectives for future work.
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Notation: Scalars, column vectors, matrices and tensors are denotedby lower-case, boldface lower-case, boldface

upper-case, and calligraphic letters, e.g.,a, a,A,A, respectively.Ai. andA.j represent thei-th row and thej-th

column ofA ∈ C
I×J , respectively. The operator diag(·) forms a diagonal matrix from its vector argument. The

Kruskal-rank (k-rank) ofA, denoted bykA, is the greatest integerkA such thateveryset ofkA columns ofA is

linearly independent. The Kronecker, Khatri-Rao (column-wise Kronecker) and Hadamard products are denoted

by⊗, ⋄ and∗, respectively. We use the superscriptsT ,∗ ,H ,−1 ,† for matrix transposition, complex conjugation,

Hermitian transposition, inversion, and Moore-Penrose pseudo inversion, respectively.

Given a third-order tensorX ∈ CI×J×K , with entriesxi,j,k, the matricesXJK×I , XKI×J , andXIJ×K denote

tall 1-mode, 2-mode and 3-mode unfoldings, withxi,j,k = [XIJ×K ](i−1)J+j,k = [XJK×I ](j−1)K+k,i =

[XKI×J ](k−1)I+i,j . A PARAFAC decomposition ofX ∈ CI×J×K , with rank-R and matrix factors (A,B,C),

will be noted‖A,B,C;R‖. Tall and flat 1-mode matrix unfoldings ofX are respectively given by

XJK×I = (B ⋄C)AT = (XI×JK)T . (1)

2-Mode and 3-mode unfoldings are easily deduced by permuting the dimensions (I, J,K) and the factors

(A,B,C) accordingly.

2. Space-time coding based on multiple Khatri-Rao and Kronecker products of symbol matrices

In [8], a broad class of space time (ST) codes, called Khatri-Rao space-time (KRST) codes, is proposed for a

point-to-point MIMO system. This KRST coding is composed ofa linear constellation pre-coding, and a linear

post-coding for time spreading. This coding has a design flexibility, spanning the range from full diversity to

full transmission rate. Its main drawback is the complexityof decoding which is carried out by means of sphere

decoding, as suggested in [8]. To simplify the decoding step, KRST coding without pre-coding was recently used

in the context of MIMO relaying systems, at both the source and relay nodes, [31] and [32].

In this paper, we propose a new ST coding approach that generalizes the KRST scheme, while providing

additional diversity in one-way two-hop MIMO relaying systems. The idea is to mutually spread in time-domain

or in space-time domain several sets of data streams, by resorting to multiple Khatri-Rao or Kronecker products

between symbol matrices. In the next subsection, after a brief recall of the simplified KRST coding used in

[31] and [32], the so-called MKRST and MKronST encoding techniques are introduced. Parallel non-iterative

decoding methods are presented for estimating each symbol matrix. Iterative decoding techniques for these

multiple Khatri-Rao and Kronecker products based codes arealso presented in the Appendix.

2.1. MKRST and MKronST encoding techniques

Consider the symbol matrixS ∈ CN×Ms containingN data-streams composed ofMs symbols each, to be

multiplexed byMs transmit antennas. A simplified KRST coding consists of a time spreading of the symbol

matrix by means of a code matrixC ∈ CP×Ms , whereP is the spreading length. The encoded symbols are given

by the following Khatri-Rao product

V = C ⋄ S ∈ C
PN×Ms . (2)
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In scalar form, the coding is such that

v(p−1)N+n,ms
= cp,ms

sn,ms
, (3)

showing that each symbolsn,ms
is repeatedP times.

In this paper, the code matrix will be chosen as a truncated discrete Fourier transform (DFT) matrix with

entriescp,ms
= 1√

P
exp

(
i2π(ms−1)(p−1)

P

)

,ms = 1, · · · ,Ms; p = 1, · · · , P , andi2 = −1. The matrixC has

orthonormal columns, i.e.,CTC∗ = IMs
.

Consider the matrixS built as multiple Khatri-Rao products ofQ ≥ 2 symbol matricesSq ∈ CNq×Ms with

q = 1, · · · , Q, i.e.,S = S1 ⋄ · · · ⋄ Sq ⋄ · · · ⋄ SQ =
Q⋄

q=1
Sq ∈ CN×Ms , with N =

Q∏

q=1
Nq. The MKRST codes are

given by

V = C ⋄
( Q⋄
q=1

Sq

)
. (4)

We assume that the first row ofSq, for q = 1, · · · , Q, is formed with ones to eliminate scaling ambiguities at

decoding.

Different from the KRST code of [8], the MKRST coding inducesa double time spreading of each symbol

snq,ms
of the sub-matrixSq. One is due to the code matrixC, and the other one to the multiple Khatri-Rao

products with the sub-matricesSq′ , q′ = 1, · · · , Q; q′ 6= q. The time diversity provided by each sub-matrixSq′ is

controlled by the parameterNq′ . The encoded symbols can be written in scalar form as

v(p−1)N+n,ms
= cp,ms

Q
∏

q=1

snq,ms
, (5)

with n = (n1 − 1)
Q∏

q=2

Nq + (n2 − 1)
Q∏

q=3

Nq + · · ·+ (nQ−1 − 1)NQ + nQ.

Therefore, each symbolsnq,ms
of Sq is repeatedP






Q∏

q′=1
q′ 6=q

Nq′




 times. The main difference between KRST

and MKRST codes is that, with the last one, we have supplementary design parameters to control the diversity

gain. Increasing the dimensionsNq implies an increase of time diversity, at the cost of a lower transmission rate

given byRMKRST =
Ms

Q∑

q=1
Nq

P
Q∏

q=1
Nq

. Moreover, since the symbol matrices may have different time spans (Nq), the

time spreading (coding gain) can vary from one symbol matrixto another, allowing an unequal error protection.

In a multiuser scenario, each symbol matrixS can be viewed as a set of data streamsSq associated with different

users (q = 1, · · · , Q).

We now define the MKronST coding based-on the Kronecker product of Q ≥ 2 symbol matricesSq ∈

C
Nq×Msq with q = 1, · · · , Q, i.e.,S = S1 ⊗ · · · ⊗ Sq ⊗ · · · ⊗ SQ =

Q

⊗
q=1

Sq ∈ CN×Ms , with N =
Q∏

q=1
Nq and

Ms =
Q∏

q=1
Msq , which implies different space-time redundancies for eachsymbol matrix. Eq. (4) then becomes

V = C ⋄
( Q

⊗
q=1

Sq

)
. (6)
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With the MKronST coding, we also assume the first row ofSq formed with ones to eliminate scaling ambiguity at

decoding. This coding combines a double time spreading withone space spreading for each symbolsnq,msq

of the sub-matrixSq ∈ C
Nq×Msq which is repeatedP






Q∏

q′=1
q′ 6=q

Nq′













Q∏

q
′′

=1

q
′′

6=q

Msq′′








times, the two products

corresponding to time and space spreadings introduced by the multiple Kronecker products. For the MKronST

coding, the transmission rate is given byRMKronST =

Q∑

q=1
NqMsq

P
Q∏

q=1
Nq

.

2.2. Decoding techniques

Once the matrixS estimated, the decoding consists in estimating the sub-matricesSq ∈ CNq×Ms (or Sq ∈
C

Nq×Msq ), with q = 1, · · · , Q, such that̂S =
Q⋄

q=1
Sq (or Ŝ =

Q

⊗
q=1

Sq). This problem can be solved iteratively by

determining the symbol matricesSq with a two-by-two search, as described in the Appendix. Thisbasic algorithm

was proposed in [33] for estimating two matrix factors of a Khatri-Rao product associated with a third-order

PARAFAC model.

A drawback of this iterative algorithm is that its performance degrades whenQ increases, due to error

propagation. To overcome this problem, we propose a decoding procedure which operates in a parallel way for

estimating each symbol matrix. Before presenting this procedure, let us recall the following formula for permuting

the matrix factors(A ∈ CI×R,B ∈ CJ×S) of a Kronecker product

A⊗B = ΠI,J (B⊗A)ΠS,R (7)

whereΠI,J andΠS,R are two permutation matrices of dimensions(IJ × JI) and (SR × RS), respectively,

defined as

ΠI,J =
∑

i

∑

j

(

e
(I)
i e

(J)T

j

)

⊗
(

e
(J)
j e

(I)T

i

)

, (8)

ΠS,R =
∑

s

∑

r

(

e(S)
s e(R)T

r

)

⊗
(

e(R)
r e(S)S

s

)

, (9)

e
(J)
j being thej-th canonical basis vector of the Euclidean spaceR

J .

To illustrate the proposed decoding procedure, consider the caseQ = 4, with S = S1 ⊗ S2 ⊗ S3 ⊗ S4.

The matricesS1 andS4 can be estimated by applying the algorithm in the Appendix tothe following two

decompositions ofS

S = S1 ⊗ S(2,3,4) with S(2,3,4) = S2 ⊗ S3 ⊗ S4, (10)

S = S(1,2,3) ⊗ S4 with S(1,2,3) = S1 ⊗ S2 ⊗ S3. (11)
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For estimatingS2, we use the following equation obtained by permuting the factorsS1 andS2

S2 ⊗ S1 ⊗ S3 ⊗ S4 = ΠN2,N1 (S1 ⊗ S2)ΠMs1 ,Ms2
⊗ S3 ⊗ S4

= (ΠN2,N1 ⊗ IN3N4)
︸ ︷︷ ︸

Πrow
2 −row permutation

S
(
ΠMs1 ,Ms2

⊗ IMs3Ms4

)

︸ ︷︷ ︸

Πcolumn
2 −column permutation

= S2 ⊗ S(1;3,4) with S(1;3,4) = S1 ⊗ S3 ⊗ S4. (12)

Applying the algorithm in the Appendix allows to estimateS2 andS(1;3,4). Similarly, by permutingS3 with

S1 ⊗ S2, we obtain

S3 ⊗ S1 ⊗ S2 ⊗ S4 = (ΠN3,N1N2 ⊗ IN4)
︸ ︷︷ ︸

Πrow
3

S
(
ΠMs1Ms2 ,Ms3

⊗ IMS4

)

︸ ︷︷ ︸

Πcolumn
3

= S3 ⊗ S(1,2;4). (13)

In summary, forQ = 4, we can use Eqs. (10), (12), (13) and (11) to estimateS1, S2, S3 andS4, in parallel. Such

an approach can be generalized to anyQ. Each symbol matrixSq is estimated by applying the algorithm in the

Appendix to the following equation

Sq ⊗ S1 · · · ⊗ Sq−1 ⊗ Sq+1 ⊗ · · · ⊗ SQ = Πrow
q SΠcolumn

q , (14)

where

Πrow
q = ΠNq,N1···Nq−1 ⊗ INq+1···NQ

, (15)

Πcolumn
q = ΠMs1 ···Msq−1

,Msq
⊗ IMsq+1

···MsQ
. (16)

Besides avoiding error propagation, another advantage of this approach is that the estimation of the symbol

matricesSq, q = 1, · · · , Q, can be parallelized. In the case of the MKRST coding whereS = S1⋄· · ·⋄Sq⋄· · ·⋄SQ,

the same procedure can be applied without column permutation.

3. System Model

We consider a one-way two-hop MIMO relay system, with the proposed MKRST and MKronST codings both

at the source and relay nodes. The system is illustrated by means of Figure 1, whereMs, Mr andMd denote the

numbers of antennas at the source, relay, and destination nodes, with(Ms,Mr,Md) ≥ 2. The source-relay and

relay-destination channels,H(sr) ∈ CMr×Ms andH(rd) ∈ CMd×Mr , are assumed to be Rayleigh flat-fading and

quasi-static during the transmission protocol. LetX̃ = X + N be the noisy received signal tensor, the entries of

the noise tensorN being zero-mean circularly-symmetric complex-valued Gaussian random variables.

During the first hop, the source transmits the MKRST or MKronST encoded symbols defined in Eqs. (4) and

(6), respectively. The signals received at the relay are given by

X̃
(sr)
Mr×PN = H(sr)(C ⋄ S)T +N

(r)
Mr×PN , (17)
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Source

. . .

Ms

Relay

. . .

Mr

Destination

. . .

Md

H(sr) H(rd)

Figure 1: System Model.

whereN(r)
Mr×PN is the noise term added at the relay.

These signals define a third-order tensorX̃ (sr) ∈ CMr×P×N which satisfies a PARAFAC model

‖H(sr),C,S;Ms‖, with S =
Q⋄

q=1
Sq or S =

Q

⊗
q=1

Sq, depending on the coding used at the source. The

signals received at the relay are then re-encoded accordingto a chosen protocol, before being transmitted to the

destination. In this paper, we consider three different protocols, denoted as AF, DF and EF, which are described

in the next two subsections.

3.1. AF Protocol

With the AF protocol, the signals received at the relay are re-encoded using a simplified KRST coding with a

truncated DFT matrixG ∈ CJ×Mr , whereJ is the spreading length of the relay code. This matrix satisfies also

the column orthonormality propertyGTG∗ = IMr
as the source code matrix.

After transmission through the relay-destination channelH(rd), the signals received at the destination define

a fourth-order tensor̃X (srd) ∈ CMd×J×P×N such as

X̃
(srd)
Md×JPN = H(rd)(G ⋄ X̃(sr)

PN×Mr
)T +N

(d)
Md×JPN , (18)

= H(rd)

(

G ⋄ (C ⋄ S)
(

H(sr)
)T
)T

+H(rd)
(

G ⋄N(r)
PN×Mr

)T

+N
(d)
Md×JPN , (19)

whereN(d)
Md×JPN is the noise term at the destination.

As shown in [31], Eq. (19) represents a flat 1-mode unfolding of the tensorX̃ (srd) which satisfies a nested

PARAFAC model with the following factor matrices(H(rd),G,H(sr),C,S). However, we can also represent

the tensorX̃ (srd) by means of two PARAFAC models obtained by combining the lasttwo modes(p, n) and the

first two modes(md, j), respectively. One PARAFAC model‖H(rd),G, X̃
(sr)
PN×Mr

;Mr‖ is directly deduced from

Eq. (18). The second PARAFAC model‖H(srd)
JMd×Ms

,C,S;Ms‖ can be obtained by rewriting (18) as the following

unfolding, with the use of (17)

X̃
(srd)
JMd×PN =

(

G ⋄H(rd)
)

X̃
(sr)
Mr×PN +N

(d)
JMd×PN , (20)

=
(

G ⋄H(rd)
)

H(sr) (C ⋄ S)T +
(

G ⋄H(rd)
)

N
(r)
Mr×PN +N

(d)
JMd×PN , (21)

= H
(srd)
JMd×Ms

(C ⋄ S)T +N
(rd)
JMd×PN +N

(d)
JMd×PN , (22)

whereN(rd)
JMd×PN =

(
G ⋄H(rd)

)
N

(r)
Mr×PN represents the noise added at relay received at destination, and

H
(srd)
JMd×Ms

=
(

G ⋄H(rd)
)

H(sr), (23)
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Table 1: Noiseless PARAFAC models of received signals tensors, with the protocols AF, DF and EF. For EF, replaceˆ̂
S by Ŝ.

AF DF/EF

X
(srd)
JMd×PN = H

(srd)
JMd×Ms

(C ⋄ S)T X
(sr)
Mr×PN = H(sr)(C ⋄ S)T

X
(srd)
JMd×PN =

(
G ⋄H(rd)

)
X

(sr)
Mr×PN X

(rd)
Md×JN = H(rd)

(

G ⋄ ˆ̂S
)T

can be interpreted as a tall 3-mode unfolding of the effective channel tensorH(srd) ∈ CMd×J×Ms between the

source and the destination.

The transmission rate of the proposed relaying system is dependent on the coding used. For the MKRST

coding, the source transmitsMs

Q∑

q=1
Nq symbols inP

Q∏

q=1
Nq symbol periods. Then, the relay takesJP

Q∏

q=1
Nq

symbol periods for forwarding the symbols to the destination, during the second hop. That gives the following

transmission rate

RAF
MKRST =

Ms

Q∑

q=1
Nq

P (J + 1)
Q∏

q=1
Nq

. (24)

In the case of the MKronST coding, it is easy to derive the following transmission rate

RAF
MKronST =

Q∑

q=1
NqMsq

P (J + 1)
Q∏

q=1
Nq

. (25)

Comparing (25) with (24), one can conclude that the transmission rate of the MKRST coding is higher than

the one of the MKronST coding for whichMs =
Q∏

q=1

Msq . However, this last coding provides more redundancies

of transmitted symbols due to the space diversity introduced by multiple Kronecker products.

3.2. DF and EF Protocols

In this subsection, we consider the case where the relay and the source have the same number of antennas

(Mr = Ms). With the DF protocol, the matrix̂S estimated at the relay is decoded by applying the parallel

decoding described in section 2.2, and then the estimated symbols are projected onto the alphabet. That gives

estimated symbol matriceŝSq, q = 1, · · · , Q, which are re-encoded using the MKRST (or MKronST) coding as
ˆ̂
S =

Q⋄
q=1

Ŝq (or ˆ̂S =
Q

⊗
q=1

Ŝq). In the case of the EF protocol, the estimated matrixŜ is directly re-encoded using

the relay code matrixG ∈ CJ×Ms .
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After transmission through the relay-destination channelH(rd), the signals received at destination are given

by

X̃
(rd)
Md×JN = H(rd)

(

G ⋄ ˆ̂S
)T

+N
(d)
Md×JN , (26)

for the DF protocol, and

X̃
(rd)
Md×JN = H(rd)

(

G ⋄ Ŝ
)T

+N
(d)
Md×JN . (27)

for the EF protocol.

The third-order tensor̃X (rd) ∈ CMd×J×N containing the signals received by theMd destination antennas in

JN symbol periods, satisfies the PARAFAC model‖H(rd),G, Ŝ or
ˆ̂
S;Ms‖. Table 1 summarizes the PARAFAC

models for each relaying protocol.

The transmission rates for the MKRST and MKronST coding-based systems using the DF protocol are given

by

RDF
MKRST =

Ms

Q∑

q=1
Nq

(P + J)
Q∏

q=1
Nq

. (28)

and

RDF
MKronST =

Q∑

q=1
NqMsq

(P + J)
Q∏

q=1
Nq

. (29)

We have to note that, as for the AF protocol, the transmissionrate with the MKRST coding is higher than the

one with the MKronST coding. Moreover, the EF protocol leadsto the same transmission rates as the DF protocol,

since the only difference between them is in the decoding andnot in the transmission. In conclusion, the DF and

EF protocols are more efficient in terms of transmission ratethan the AF one. Finally, the transmission rates for

the simplified KRST coding used in [31] and [32] can be obtained as particular cases of (24) and (28) leading to

the following expressionsRAF
KRST = Ms

P (J+1) , andRDF
KRST = Ms

P+J
.

In the next section, we present closed-form semi-blind receivers that jointly estimate the two-hop channels

and the transmitted symbols for the MKRST and MKronST codings, in distinguishing the three considered

protocols. We present necessary identifiability conditions and scaling ambiguity relations for the tensor models.

A comparative complexity analysis is also made for the proposed semi-blind receivers.

4. Closed-Form Semi-Blind Receivers

Assume the code matricesC andG have a truncated DFT structure and are known at the relay and destination

nodes. We derive closed-form receivers for jointly estimating the individual channels (H(sr),H(rd)) and the

transmitted symbols (Sq, q = 1, · · · , Q). For each protocol, we first present the Khatri-Rao products which are

used by the receivers at the relay and destination nodes.
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4.1. Semi-Blind Receiver for the AF Protocol

The transmitted symbol matrixS can be estimated at the destination using the following tall3-mode unfolding

of X̃ (srd) deduced from (22) by permuting the matrix factors

X̃
(srd)
JMdN×P =

(

H
(srd)
JMd×Ms

⋄ S
)

CT +N
(rd)
JMdN×P +N

(d)
JMdN×P . (30)

The source code matrixC being assumed column-orthonormal (CTC∗ = IMs
), which impliesP ≥ Ms, a

least square (LS) estimate of the Khatri-Rao productR = H
(srd)
JMd×Ms

⋄ S is given by

R̂ = X̃
(srd)
JMdN×PC

∗ ∈ C
JMdN×Ms . (31)

OnceR estimated, the factor matrices(H(srd)
JMd×Ms

,S) of the Khatri-Rao product can be obtained by applying the

algorithm described in the Appendix. Then, the symbol matricesSq, q = 1, · · · , Q, are decoded from the estimate

Ŝ by applying the parallel decoding algorithm described in section 2.2.

The channelH(rd) can be estimated at the destination using the following tall2-mode unfolding ofX̃ (srd)

deduced from (20)

X̃
(srd)
MdPN×J = (H(rd) ⋄ X̃(sr)

PN×Mr
)GT +N

(d)
MdPN×J (32)

Owing to the column orthonormality of the code matrixG, the LS estimate of the Khatri-Rao productY =

H(rd) ⋄ X̃(sr)
PN×Mr

is given by

Ŷ = X̃
(srd)
MdPN×JG

∗ ∈ C
MdPN×Mr . (33)

OnceY estimated, the factors (H(rd), X̃
(sr)
PN×Ms

) of the Khatri-Rao product can be obtained by applying the

algorithm described in the Appendix.

To estimate the channelH(sr), we use the transpose of Eq. (17), withS and X̃(sr)
PN×Mr

replaced by their

estimated values obtained in previous steps of the algorithm. The LS estimation gives

Ĥ(sr)T = (C ⋄ Ŝ)†X̂(sr)
PN×Mr

. (34)

Furthermore, exploiting the orthonormality property ofC simplifies this estimation as

Ĥ(sr)T =
(

(CHC) ∗ (ŜH Ŝ)
)−1

(C ⋄ Ŝ)HX̂
(sr)
PN×Mr

= diag−1(ρ1, · · · , ρMs
)(C ⋄ Ŝ)HX̂

(sr)
PN×Mr

(35)

whereρms
= ||Ŝ.ms

||22, ms = 1, · · · ,Ms.

The same approach can be used to estimateH(sr) from (23), withH(rd) andH(srd)
JMd×Ms

replaced by their

estimated values obtained in previous steps of the algorithm, as

Ĥ(sr) = diag−1(̺1, · · · , ̺Mr
)(G ⋄ Ĥ(rd))HĤ

(srd)
JMd×Ms

, (36)

with ̺mr
= ||Ĥ(rd)

. mr ||22, mr = 1, · · · ,Mr.

The closed-form receiver for the AF protocol, denoted as AF-KRF, is summarized in Table 3. Note that in [32]

it was also proposed an AF-KRF receiver. However, in [32] thechannel matricesH(rd) andH(sr) are estimated

from the 2-mode unfoldingH(srd)
MdMs×J =

(
H(rd) ⋄H(sr)T

)
GT deduced from (23) and estimated from (30). It is
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worth noting that, contrary to [32], the proposed AF-KRF receiver directly estimates the relay-destination channel

H(rd) from the received signal tensor̃X (srd). As will be shown later in the simulation results (c.f. Fig. 4), this

new solution provides a significant performance improvement in terms of normalized mean square error (NMSE),

in comparison with the solution of [32].

4.2. Semi-Blind Receiver for the DF and EF Protocols

Differently from the AF-KRF receiver for which the estimation is carried out at the destination only, in the DF

and EF cases the estimation is split between the relay and thedestination.

With the DF protocol, the symbol matrixS and the channelH(sr) are first estimated at the relay using the tall

2-mode unfolding ofX̃ (sr) deduced from the PARAFAC model‖H(sr),C,S;Ms‖

X̃
(sr)
MsN×P = (H(sr) ⋄ S)CT +N

(d)
MsN×P . (37)

Exploiting the orthonormality property ofC gives the following LS estimate of the Khatri-Rao productZ =

H(sr) ⋄ S
Ẑ = X̃

(sr)
MsN×PC

∗ ∈ C
MsN×Ms . (38)

Then, the symbol matrixS and the channelH(sr) are estimated from̂Z by applying the algorithm in the Appendix.

Once the matrixS estimated, the sub-matricesSq, q = 1, · · · , Q, are estimated using the decoding approach

of subsection 2.2, and the estimated symbols are projected onto the alphabet.

Then, a new symbol matrix denoted asˆ̂S is calculated using the estimated matricesŜq formed with the

projected symbols, and it is re-encoded with the relay code matrix G. The flat 1-mode unfolding (26) of the

tensorX̃ (rd) ∈ C
Md×J×N containing the signals received at destination can be rearranged as the following tall

2-mode unfolding

X̃
(rd)
MdN×J = (H(rd) ⋄ ˆ̂S)GT +N

(d)
MdN×J . (39)

The LS estimate of the Khatri-Rao productQ = H(rd) ⋄ ˆ̂S is given by

Q̂ = X̃
(rd)
MdN×JG

∗ ∈ C
MdN×Ms . (40)

Applying the algorithm in the Appendix allows to estimate the factors (H(rd), ˆ̂S) from the estimatêQ. Then, the

same procedure as the one used at the relay allows to estimatethe symbols from the estimateˆ̂S.

In the case of the EF protocol, the matrixŜ estimated at the relay is directly re-encoded as shown by Eq.(27),

i.e., without decoding and projection onto the alphabet. That implies a lower computational complexity than the

one with the DF protocol, at the cost of a possible performance degradation. The channelH(rd) and the matrixS

are then estimated from Eqs. (39) and (40) withˆ̂
S replaced bŷS.

Table 2 summarizes the Khatri-Rao products considered for estimating the symbols and channels matrices.

4.3. Identifiability and scaling ambiguity relations

The system parameter identifiability is linked to the uniqueness of the LS estimates of the Khatri-Rao products

R, Y, Z andQ, i.e. the full column rank property of the code matricesC andG inducing the uniqueness of the

right inverse ofCT andGT in Eqs. (30), (32), (37) and (39). That implies the necessaryconditionsP ≥Ms and
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Table 2: Khatri-Rao products used by the receivers with the protocols AF, DF and EF. For EF, replaceˆ̂S by Ŝ.

AF DF/EF

X̃
(srd)
JMdN×PC

∗ = H
(srd)
JMd×Ms

⋄ S X̃
(sr)
MrN×PC

∗ = H(sr) ⋄ S

X̃
(srd)
MdPN×JG

∗ = H(rd) ⋄ X̃(sr)
PN×Mr

X̃
(rd)
MdN×JG

∗ = H(rd) ⋄ ˆ̂S

J ≥ Mr. Note that the choice of a truncated DFT structure forC andG allows to simplify the calculation of the

pseudo-inverses in Eqs. (35) and (36).

Disregarding the noise, the estimated matricesH(sr), H(rd) andS are equal to their true values up to column

scaling ambiguities (permutation ambiguity does not existdue to the knowledge ofC andG). For eliminating

these scaling ambiguities, we assume the first row of each symbol matrixSq, q = 1, · · · , Q, is equal to an all-ones

vector. This assumption is necessary for symbol decoding, regardless of the considered protocol. Then, the final

estimates of the channels and symbols matrices for the AF receiver are obtained as

Ŝ← ŜΛS, Ĥ
(srd)
JMd×Ms

← Ĥ
(srd)
JMd×Ms

(ΛS)
−1, (41)

Ĥ(rd) ← Ĥ(rd)ΛH(rd) , X̂
(sr)
PN×Mr

← X̂
(sr)
PN×Mr

(ΛH(rd))
−1

, (42)

whereΛS = diag−1(Ŝ1.) andΛH(rd) = diag−1(Ĥ
(rd)
1. )diag(H(rd)

1. ).

In the case of the DF receiver, the final estimates are given by

Ŝ← ŜΛS, Ĥ(sr) ← Ĥ(sr)(ΛS)
−1, (43)

Ĥ(rd) ← Ĥ(rd)ΛH(rd) ,
ˆ̂
Ŝ←

ˆ̂
Ŝ (ΛH(rd))

−1
. (44)

Note that the first rows ofH(rd) andS are assumed to be known at the destination. In practice, the first row of

H(rd) can be estimated using a short training sequence generated at the relay as proposed in [32].

The closed-form receivers associated with the DF and EF protocols, denoted as DF-KRF and EF-KRF

respectively, are summarized in Table 3.

4.4. Complexity Analysis

In this section, a comparison of the computational complexity of the proposed closed-form semi-blind receivers

is provided. The dominant complexity cost is associated with the SVD-based rank-one approximations to compute

the factors of the Khatri-Rao matrix products using the algorithm in the Appendix. Note that, for a matrix of

dimensionsJ ×K, the complexity of its SVD isO(min(J,K)JK) [37].

For the AF-KRF receiver, the computational complexity associated with joint channel and symbol estimation

is concentrated at the destination node, whereas for the DF-KRF receiver, the complexity is shared between the

relay and destination nodes.

The AF-KRF receiver calculatesMs andMr SVD-based rank-one approximations in steps (1.2) and (1.7)of

Table 3, respectively. The computational cost of step (1.2)isMsO(min(JMd, N)JMdN), the factorMs coming
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Table 3: Closed form semi-blind KRF receivers.

1. Joint estimation ofH(sr), H(rd) andS.

(A) AF-KRF receiver

GivenX̃
(srd)

, C andG.

(1.1) Compute the LS estimate ofR = H
(srd)
JMd×Ms

⋄ S using (31).

(1.2) Use the algorithm in the Appendix to estimateH
(srd)
JMd×Ms

andS from R̂.

(1.3) Remove the scaling ambiguities ofŜ andĤ(srd)
JMd×Ms

using (41).

(1.4) Use the parallel decoding algorithm of subsection 2.2to estimate the symbol matricesSq ; q = 1, · · · , Q from Ŝ.

(1.5) Project the estimated symbols onto the alphabet.

(1.6) Compute the LS estimate ofY = H(rd) ⋄ X̃
(sr)
PN×Mr

using (33).

(1.7) Use the algorithm in the Appendix to estimateH(rd) andX̃(sr)
PN×Mr

from Ŷ.

(1.8) Remove the scaling ambiguities ofĤ(rd) andX̂(sr) using (42).

(1.9) Compute the LS estimate ofH(sr) using (35) or (36).

(B) DF-KRF receiver

GivenX̃
(sr)

, X̃
(rd)

, C andG.

– Relay Processing

(1.1) Compute the LS estimate ofZ = H(sr) ⋄ S using (38).

(1.2) Use the algorithm in the Appendix to estimateH(sr) andS from Ẑ.

(1.3) Remove the scaling ambiguities ofŜ andĤ(sr) using (43).

(1.4) Use the parallel decoding algorithm of subsection 2.2to estimate the symbol matricesSq ; q = 1, · · · , Q from Ŝ.

(1.5) Project the estimated symbols onto the alphabet.

(1.6) Computeˆ̂S =
Q
⋄

q=1
Ŝq , or ˆ̂S =

Q

⊗
q=1

Ŝq .

(1.7) Re-encodeˆ̂S usingG.

– Destination Processing

(1.8) Compute the LS estimate ofQ = H(rd) ⋄ ˆ̂
S using (40).

(1.9) Use the algorithm in the Appendix to estimateH(rd) and ˆ̂S from Q̂.

(1.10) Remove the scaling ambiguities of
ˆ̂
Ŝ andĤ(rd) using (44).

(1.11) Use the parallel decoding algorithm of subsection 2.2 to estimate the symbol matricesSq .

(1.12) Project the estimated symbols onto the alphabet.

(C) EF-KRF receiver

GivenX̃
(sr)

, X̃
(rd)

, C andG.

Steps (1.1)-(1.2) of the DF-KRF receiver.

Steps (1.7)-(1.12) of the DF-KRF receiver, withˆ̂S replaced bŷS.
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Table 4: Complexities of the receivers with the AF, DF and EF protocols, and of MKRST and MKronST decodings.

Receivers
AF-KRF MsO(min(JMd, N)JMdN) +MrO(min(Md, PN)MdPN)

DF/EF-KRF MsO(min(Ms, N)MsN) +MsO(min(Md, N)MdN)

Decoders
MKRST O

(
Q−1∑

q=1
Nq min

(

Nq ,
Q∏

q
′=q+1

Nq
′

)
Q∏

q
′=q+1

Nq
′Ms

)

MKronST O

(
Q−1∑

q=1
NqMsq min

(

NqMsq ,
Q∏

q
′=q+1

Nq
′Ms

q
′

)

·
Q∏

q
′=q+1

Nq
′Ms

q
′

)

from the fact that the calculation of the matrix factors of the Khatri-Rao product is made column-by-column. For

step (1.7), the computational cost isMrO(min(Md, PN)MdPN).

For the DF-KRF receiver (Mr = Ms), the complexity to estimate the Khatri-Rao product factors from Ẑ is

given byMsO(min(Ms, N)MsN), while the complexity associated with the processing at destination, i.e. step

(1.9) in Table 3, isMsO(min(Md, N)MdN).

To estimate theSq ∈ CNq×Ms matrices from their estimated Khatri-Rao product, we need to perform(Q −
1)Ms SVDs. In Table 4, the complexity is presented for each receiver and for both decoders. SincêS is not

reconstructed at the relay for the EF-KRF receiver, the complexity of the MKRST (or MKronST) decoding is

absent for the EF-KRF.

Note that MKronST requires to compute SVDs of matrices with larger dimensions than for MKRST, for

q = 1, · · · , Q − 1. The computation time associated with the permutation of symbol matrices for the decoding

algorithm, as presented in Section 2.2, can be considered negligible.

5. Simulation Results

In this section, simulation results are provided to evaluate the performance of the proposed MKRST and

MKronST coding schemes and semi-blind receivers, with the objective to show: i) the effectiveness of the parallel

MKRST decoding algorithm proposed in Section 2.2 for three different values ofQ (Fig. 2), ii) the symbol

error rate (SER) and the channels NMSE performances of the proposed semi-blind receivers associated with

each relaying protocol for the MKRST coding (Figs. 3 and 4), iii) the time and space diversity gains provided

by MKRST and MKronST coding schemes with the DF-KRF receiver(Figs. 5, 6, and 7), iv) the impact of the

spreading parameters on the SER performance of individual symbol matrices, with the DF-KRF receiver for the

MKronST scheme (Fig. 8), and v) the impact of the relay positioning on the SER performance for each hop

(Fig. 9).

As a reference for comparison, we also consider the standardKRST coding scheme adopted in the previous

works [31] and [32] for relay-assisted MIMO systems. Two performance criteria are considered, namely, the SER
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Table 5: Values of design parameters used in the simulations.

Figures Simulation Parameters

Fig. 2 MKRST: Msq = Nq = 2

Figs. 3 and 4
AF-KRF MKRSTQ = 2 : Ms = N1 = N2 = P = J = Mr = Md = 2

DF/EF-KRF MKRSTQ = 2 : Ms = N1 = N2 = Mr = Md = 2, P = J = 3

Fig. 5

KRST:N = P = Ms = J = Mr = Md = 4

MKRSTQ = 2 : N1 = N2 = 2, J = Mr = Md = P = Ms = 4

MKRST Q = 3 : N1 = 3, N2 = 2, N3 = 1, P = J = Mr = Md = Ms = 4

Fig. 6
KRST:N = P = J = Md = 4,Ms = Mr = 2

MKronSTQ = 2 : N1 = N2 = Ms1 = Ms2 = 2, P = J = Mr = Md = 4

MKronSTQ = 3 : N1 = N3 = Ms1 = Ms2 = 2, N2 = Ms3 = 1, P = J = Mr = Md = 4

Fig. 7
MKRSTQ = 2 : N1 = N2 = Mr = Ms = 2,Md = P = J = 4

MKronSTQ = 2 : Ms2 = N1 = N2 = Ms1 = 2, P = J = Mr = Md = 4

Fig. 8 MKronSTQ = 3 : Ms3 = 1, N1 = N3 = Ms1 = Ms2 = 2, N2 = 3, P = J = Mr = Md = 4

Fig. 9 MKRST Q = 2 : Ms1 = Ms2 = N1 = N2 = P = J = Mr = Md = 2

and the NMSE of the estimated channels, calculated as:

NMSE(H) =
1

M

M∑

m=1

∥
∥
∥Ĥm −Hm

∥
∥
∥

2

F

‖Hm‖2F
,

whereĤm is the channel matrix estimated at them-th run, andM denotes the number of Monte Carlo runs.

The SER and NMSE curves represent averages over at least4 × 103 Monte Carlo runs. Each run corresponds

to different realizations of the channel matrices, symbol matrices, and noise tensors. The channel matricesH(sr)

andH(rd) have i.i.d. zero-mean complex Gaussian entries with variances1/Ms and1/Mr, respectively. The

transmitted symbols are randomly drawn from a4-QAM alphabet(±1± j) /
√
2. The noise variance is assumed

to be the same at the relay and the destination. The SER and NMSE curves are plotted as a function of the symbol

energy to noise spectral density ratio (Es/N0). At each run, the ratioEs/N0 is controlled by fixingEs = 1 and

varyingN0 at the relay and the destination to ensure the desiredEs/N0 value. The code matrices are chosen as

truncated DFT matrices, so thatC andG have orthonormal columns, i.e.,CTC∗ = IMs
andGTG∗ = IMr

. The

design parameters of the coding schemes are chosen to ensurethat all the systems simulated in a given figure have

the same transmission rate. For convenience, these design parameters are provided in Table 5.

In Fig. 2, we compare the proposed parallel decoding algorithm described in Section 2.2 with the iterative

decoding one (c.f. Appendix). For this experiment, we choose the MKRST scheme and consider different values

of Q. In the caseQ = 2, both decoding algorithms exhibit similar SER performances. However, asQ increases

the proposed parallel decoding algorithm achieves a lower SER due to the absence of error propagation, which is

not the case when using the iterative decoding algorithm. This result shows the effectiveness of parallel decoding

for Q > 2.

Figure 3 compares three different relaying protocols at therelay, leading to the AF-, DF- and EF-KRF
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receivers. As a reference for comparison, we also consider an ideal version of EF-KRF, where the relay re-encodes

the exact symbol matrixS. We can see that the DF-KRF receiver performs slightly better than the EF-KRF

one in a range of moderateEs/N0 values. Note also that the DF-KRF performs much better than the AF-KRF

one. Indeed, the DF-KRF receiver is less sensitive to noise amplification, due to the fact that the relay forwards

estimated symbols to the destination, instead of the noisy signals received at the relay. This explains the improved

SER performance of the DF-KRF receiver compared with the AF-KRF one.

Figure 4 shows the NMSE of the estimated channelsH(sr) andH(rd) obtained with the AF- and DF-based

receivers, assuming the MKRST code withQ = 2. In this experiment, we also include the performance of the

AF-KRF receiver of [32]. Recall that the receiver of [32] estimatesH(sr) andH(rd) from the effective channel

H(srd) using (30) ad (23), while the proposed AF-KRF receiver estimatesH(rd) directly from the received signal

tensorX̃ (srd). The results show an improved performance of the proposed AF-KRF receiver over the solution

provided in [32] for the estimation ofH(rd). We clearly see that DF-KRF yields more accurate estimations

of both channel matrices, due to signal reconstruction at the relay. In the subsequent experiments, we restrict

ourselves to the DF-KRF receiver due to its superior performance as illustrated by these results.

In Fig. 5, we compare the KRST and MKRST coding schemes under two configurations,Q = 2 andQ = 3.

We can see that the MKRST scheme withQ = 3 provides the best performance with a gain of 3 dB for a SER of

10−3, in comparison with the KRST coding scheme. The MKRST codingwith Q = 3 offers a SNR gain of 1.25

dB for a SER of10−3, in comparison with the caseQ = 2. These results corroborate the coding gain provided by

MKRST due to the mutual time spreading of information symbols.

In another experiment, we concentrate our attention to the MKronST coding scheme. It can bee seen from Fig.

6 that the MKronST code performs better than the KRST code in both configurations (Q = 2 andQ = 3). More

specifically, for a SER of10−3, the SNR gains of MKronST over KRST are around 2.25 dB and 5 dB,respectively.

These gains come from the mutual space-time spreading of thesymbols provided by the MKronST code, resulting

in additional diversities, as opposed to the conventional KRST code which does not have this feature.

Figure 7 compares the MKRST and MKronST schemes withQ = 2. The performance of the MKronST is

better than that of MKRST for moderate and highEs/N0 values. For a target SER of10−3, the gain is around

3 dB. Indeed, as explained previously, MKronST provides an extra mutual spreading of the symbols across the

transmit antennas, while with MKRST the transmitted symbols are mutually spread across symbol periods only.

To illustrate the impact of the design parametersNq andMsq of the MKronST code on the SER performance,

we evaluate the SER individually for eachSq, with Q = 3. The symbol matrices have the following dimensions:

S1 (2× 2), S2 (3× 2) andS3 (2× 1). The symbols ofS1,S2, andS3 are then repeated12P , 8P , and24P times,

respectively. As shown in Fig. 8, the SER performance ofS3 is the best, followed by those ofS1 andS2.

In Fig. 9, we show the impact of the relay positioning on the SER performance for each hop. We assume

that the channelsH(sr) andH(rd) have i.i.d. zero-mean circularly-symmetric complex Gaussian entries with

variances1/(dβ0Ms) and1/((d − d0)
βMr), respectively, whered denotes the distance between the source and

destination nodes andd0 the distance between the source and the relay. In this experiment, we assumeβ = 3,

and we consider three different cases regarding the relay positioning,d0 = d/3, d0 = d/2 andd0 = 2d/3. The

first case corresponds to a situation where the relay is placed closer to the source. In the second one, the relay

is half the distance between source and relay. In the last one, the relay is placed closer to the destination. The

17



simulation results show that the SER associated with the first hop (calculated at the relay after symbol decoding)

improves when the relay is closer to the source, as expected.However, we can see that the SER performance at

the destination is nearly the same for all the three cases. This result indicates the presence of error propagation

due to decoding at the relay, which is the factor dominating the performance of the receiver at the destination.

6. Conclusion

We have proposed two new ST codings based on multiple Khatri-Rao and Kronecker products of symbol

matrices, denoted as MKRST and MKronST, respectively. A parallel closed-form decoding algorithm has been

described for estimating the transmitted symbol matrices from their Khatri-Rao or Kronecker product. Using

MKRST and MKronST codings at the source and relay nodes, and exploiting the PARAFAC models for the

tensors of signals received at the relay and the destination, we have derived closed-form semi-blind receivers for

jointly estimating the individual channels and the symbol matrices, with three different relaying protocols (AF,

DF and EF).

A computational complexity analysis of the proposed receivers has been provided, and an extensive

performance evaluation has been carried out by means of Monte Carlo simulations. The simulation results

have demonstrated that the new MKRST and MKronST coding schemes outperform the standard KRST coding,

while supporting multiuser transmissions under differentrates and code lengths per user. Another contribution

of this paper concerns the use of DF and EF relaying protocolswhich allows to significantly improve the SER

performance at the cost of a supplementary computational complexity at the relay. As perspectives to this work,

we shall consider a more general multihop MIMO relaying scenario as well as the use of space-time-frequency

transmission in MIMO-OFDM relaying systems.

Instead of using several rank-one SVDs to estimate the symbol matrices, higher-order methods such as the

sequential rank-one approximations with projection (SeROAP) recently proposed in [38] could also be considered.

Appendix

Iterative algorithm for estimating Khatri-Rao product factors

Given the Khatri-Rao productS = S1 ⋄ S2, the factor matricesS1 ∈ CN1×Ms andS2 ∈ CN2×Ms can be

estimated by calculating the rank-one approximation of thematrix defined for each column (m = 1, · · · ,Ms) as

F.m = unvecN2×N1 [S.m] = (S2).m(S1)
T
.m. (45)

Defining the singular value decomposition (SVD) ofF.m = UΣVH , them-th column ofS1 andS2 are given by

(Ŝ1).m =
√
σ1V

∗
.1 and(Ŝ2).m =

√
σ1U.1,

whereU.1 andV.1 represent the first column ofU andV associated with the largest singular valueσ1 of F.m,

respectively.

In the caseQ > 2, decomposing the matrixS =
Q⋄

q=1
Sq asS = S1 ⋄S2:Q, with S2:Q =

Q⋄
q=2

Sq, the SVD-based

algorithm described above can be applied to estimate the factorsS1 andS2:Q. Then, from the decomposition

Ŝ2:Q
∼= S2 ⋄S3:Q, whereS3:Q =

Q⋄
q=3

Sq, applying the above algorithm allows to estimate the factorsS2 andS3:Q.

Repeating the same procedureQ-1 times provides an estimation of theQ factorsSq, q = 1, · · · , Q.
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Note that the estimates of the factor matrices(S1,S2) of the Khatri-Rao productS1 ⋄ S2 are obtained up to

a scalar scaling factor for each columnms = 1, · · · ,Ms. Therefore, to eliminate these scaling ambiguities, one

needs to know one element for each column, i.e. one row ofS1 or S2. In our context, sinceS is itself estimated

from a Khatri-Rao product, thea priori knowledge of the first row of eachSq for q = 1 · · · , Q, is needed to carry

out the MKRST decoding without ambiguity.
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Figure 2: SER comparison with iterative and parallel decoding algorithms, for MKRST and three values ofQ.
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Figure 3: SER comparison between AF-KRF and DF/EF-KRF receivers for MKRST withQ = 2.
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Figure 4: Channels NMSE for AF-KRF and DF-KRF receivers for MKRST withQ = 2.
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Figure 5: SER comparison between KRST and MKRST with DF-KRF receiver.
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Figure 6: SER comparison between KRST and MKronST with DF-KRF receiver.
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Figure 7: SER comparison between MKRST and MKronST with Q=2 and DF-KRF receiver.
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28



Es/N0 [dB]
0 5 10 15

S
E

R
 F

irs
t H

op

10-5

10-4

10-3

10-2

10-1

100

d
0
=d/3

d
0
=d/2

d
0
=2d/3

Es/N0 [dB]
0 5 10 15

S
E

R
 S

ec
on

d 
H

op

10-6

10-5

10-4

10-3

10-2

10-1

100

d
0
=d/3

d
0
=d/2

d
0
=2d/3

Figure 9: SER impact of relay position for MKRST withQ = 2 and DF-KRF receiver.
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