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Abstract

Unit norm finite frames are generalizations of orthonormal bases with many

applications in signal processing. An important property of a frame is its co-

herence, a measure of how close any two vectors of the frame are to each other.

Low coherence frames are useful in compressed sensing applications. When

used as measurement matrices, they successfully recover highly sparse solutions

to linear inverse problems. This paper describes algorithms for the design of

various low coherence frame types: real, complex, unital (constant magnitude)

complex, sparse real and complex, nonnegative real and complex, and harmonic

(selection of rows from Fourier matrices). The proposed methods are based on

solving a sequence of convex optimization problems that update each vector of

the frame. This update reduces the coherence with the other frame vectors,

while other constraints on its entries are also imposed. Numerical experiments

show the effectiveness of the methods compared to the Welch bound, as well as

other competing algorithms, in compressed sensing applications.
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1. Introduction

A frame in finite dimensions [1, 2] is just a collection of vectors that span

the whole space (usually redundant or overcomplete – meaning more vectors

than the dimension of the working space). For a frame of N vectors in Cm, the

redundancy is defined as the ratio ρ = N/m. The redundancy of a frame defines

one of its key properties, as it directly affects several design objectives such as the

resilience to erasures, additive noise and quantization [3]. Overcomplete frames

have been used with great success in the time-frequency analysis/synthesis [4]

of natural signals (Gabor [5],[6] and wavelet [7] transforms, including adaptive

representations [8]) while publicly available toolboxes that efficiently implement

these techniques [9],[10] have eased their use in signal processing applications.

Incoherent frames, frames whose vectors have large distances (angles) be-

tween them, have applications in coding and communications [3], as well as

in sparse representations/compressive sensing [11, Chapter 5]. In compressed

sensing, the success of the sparse approximation algorithms based on greedy

methods [12] and `1 relaxation [13], depends upon the incoherence of the mea-

surement dictionaries (frames) used. These theoretical developments show that,

in the deterministic case, the success of recovery algorithms to return the true

sparse solution depends on the incoherence of the measurement frames: the

lower the coherence the higher the success rate of the recovery methods as a

function of sparsity. The mutual coherence is also connected to the restricted

isometry property (RIP) concept [11, Chapter 6], that provides guarantees for

sparse recovery in the case where random measurements are performed.

Due to their potential applications, it is valuable to design highly incoher-

ent frames in any m-dimensional vector space and with any number of unit

norm vectors N > m. In many applications, the unit norm constraint is not

the only constraint that needs to be imposed on the frame. For example, uni-

tal incoherent frames (whose entries have the same magnitude), or incoherent

frames constructed by selecting rows from Fourier matrices (which are also uni-

tal), are important in communication applications [3][2, Chapter 7]. In this
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case, the unital constraints reflect practical limitations of the communications

hardware. Also, sparse incoherent frames reduce in general the computational

complexity of using the frames as analysis/synthesis operators [14, 15], while

nonnegative incoherent frames are useful in nonnegative matrix factorizations

[16]. Therefore, although in many signal processing applications [2] incoherence

is a desirable property, there are hard, real-world system constraints that are

more important than the incoherence requirement.

For certain dimensions, it is possible to construct tight optimally incoherent

[17] real, complex or unital/harmonic [18, 19] frames called equiangular tight

frames (ETFs). Their construction, which is primarily based on tools from

number and graph theory, is elegant, but unfortunately only possible for few

values of m, N . Thus, it is convenient to have a numerical procedure that can

design highly incoherent frames (without the guarantee that these are in fact

the most incoherent) for any m and N .

There is extensive prior work on the creation of incoherent frames, either

real or complex valued, not necessarily equiangular, by iterative optimization

[20] [21]. Most of these numerical algorithms typically deploy some alternating

minimization, for a fixed number of iterations, that lowers the coherence. This

minimization process is not in general, however, monotonically convergent to

a local minimum. Some methods focus on reducing the magnitudes of the off-

diagonal entries of the Gram matrix of these frames, followed by a factorization

step based on the singular value decomposition [20, 22] to recover the frame

vectors. Because these algorithms do not deal directly with the frame vectors,

but with the Gram matrix of the frame, they are faced with an important lim-

itation: it is very difficult, or computationally expensive, to impose additional

constraints to the entries of the vectors. The main reason behind this limitation

is that the singular value decomposition (used to factor out the frame synthe-

sis matrix from the Gram matrix) does not easily accommodate for additional

constrains in the factorization. A recent new development based on convex op-

timization, deals with the frame entries directly, and has proven very efficient

for the design of incoherent real valued frames [23, 24, 25, 26]. An advantage
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of this method is that the addition of new constraints that are convex, or that

have an efficient convex relaxation, is relatively simple.

In this paper, we provide designs for both real and complex frames, and con-

sider various specific constraints: non-negativity, sparsity and unit magnitude.

We describe the design problems as general optimization problems, and then

provide tractable solutions via convex relaxation. These formulations allow us

to reduce coherence by establishing a reference frame and a trust region around

this frame, where to search for a new, more incoherent, frame. The proposed

work extends and improves upon previous methods that are not able to impose

further constraints to the frame [20, 21, 24].

In the special case of designing incoherent harmonic frames (selections of

rows from Fourier matrices), due to the distinct nature of the problem, we

introduce a different type of convex optimization problem. Our approach is

based on iterative reweighted `∞/`1 norm minimization, which is a relaxation

of a binary optimization problem that we formulate. This method naturally

extends also to the design of incoherent Hadamard frames, selections of rows

from Hadamard matrices, and in general to selections from any unital matrix.

We use our proposed algorithms to compute incoherent frames of various

dimensions. We compare the impact of adding the different constraints on the

coherence, and we show that the complex valued incoherent frames approach

the lower bound of performance in many cases. In the harmonic and Hadamard

cases, we show that the proposed method matches the best results in all the cases

where an exhaustive search was computationally possible (low m and N). We

also compare with previously proposed methods, and show that our algorithms

match or outperform them. Finally, we present a compressive sensing applica-

tion where the incoherent frames designed by the proposed methods improve the

sparse approximation performance of the OMP algorithm [12]. Since incoherent

frame design is mostly performed off-line in general, because it depends only on

sizes (m,N), we do not focus on the computational complexity analysis of the

algorithms. Still, the convex optimization [27] problems we propose are solved

in polynomial time in m and N by standard solvers [28].
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2. Frames background

A finite unit-norm frame over the field Cm is a sequence of N vectors fi ∈

Cm, 1 ≤ i ≤ N, that satisfies ‖fi‖2 = 1 and there exists constants 0 < α ≤

β < ∞, called the lower and upper bounds of the frame, such that α‖v‖22 ≤∑N
i=1 |fHi v|2 ≤ β‖v‖22, ∀ v ∈ Cm. We introduce the frame synthesis matrix

F ∈ Cm×N consisting of the concatenated frame vectors F =
[
f1 f2 . . . fN

]
,

i.e., Fc =
∑N
i=1 cifi [2, Chapter 1]. If α = β then the frame is called tight and

it enjoys excellent properties in terms of reconstruction accuracy [29].

The mutual coherence [2, Chapters 6.7, 6.8 and 9.1] of F with and without

normalization is given by

µ0(F) = max
1≤i<j≤N

|fHi fj |
‖fi‖2‖fj‖2

, µ(F) = max
1≤i<j≤N

|fHi fj |. (1)

If the vectors of the frames are normalized, i.e., ‖fi‖2 = 1 for all i, then µ0(F)

and µ(F) are identical. If the vectors of the frame have the same `2 norm, i.e.,

‖fi‖2 = γ for all i, then µ0(F) = γ−2µ(F); notice that the maximum occurs in

those cases for the same indices (i, j) for both definitions in (1). Consider for

example N ×N complex unital matrices, i.e., matrices with unit (or constant)

magnitude entries. If we select any m rows from such a matrix, then each

column has the same energy (γ =
√
m), and thus we need not worry about the

normalization step of the computation of the mutual coherence if the goal is

to minimize it. As shown in the next sections, this observation allows for the

introduction of an algorithm for the selection of a given number of rows from

a fixed unital matrix, such that the mutual coherence of the extracted m × N

frame is greatly reduced. If we select any m rows from a matrix which is not

unital, then the normalization operations in (1) become essential for the correct

calculation of the coherence, and thus can no longer be avoided.

The Gram matrix [2, Chapters 1.4.3 and 6.7] of the normalized full rank

frame F is G = FHF ∈ CN×N . This matrix is Hermitian and positive semidef-

inite with rank m and it has a unit diagonal (because of the normalized frame

vectors). Therefore, only m of its N eigenvalues λi are nonzero and they obey
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∑m
i=1 λi = tr(G) = N and

∑m
i=1 λ

2
i = tr(GHG) ≥ m−1N2 (in fact, if F is a

tight frame then λi = m−1N for 1 ≤ i ≤ m) [18, Section 2]. Also, the off-

diagonal entries are equal to the inner products between any two distinct frame

vectors. The mutual coherence of the frame F is

µ(F) = max
1≤i<j≤N

|gij |, (2)

i.e., the maximum absolute value of the off-diagonal entries of the Gram matrix

G. The lowest value of the mutual coherence, called the Welch bound (WB)

[17], when N ≤ m2 for complex valued frames is

µ =

√
N −m
m(N − 1)

. (3)

This bound, which is discussed in detail in [11, Chapter 5.2], is achieved by

equiangular tight frames (in this case all off-diagonal entries of the Gram matrix

are equal in absolute value to the Welch bound) [18, Section 2]. Therefore,

when an equiangular tight frame exists, it is known to be the most incoherent.

Sadly, these frames exist only for few pairs (m,N). For any (m,N), the frame,

not necessarily tight, that achieves the minimum mutual coherence is called

Grassmannian [3]. Denote the squared Frobenius norm of F ∈ Cm×N as ‖F‖2F =

tr(FHF) =
∑m
i=1

∑N
j=1 |fij |2. Then, an important and well known result from

the frame literature, that we often use in this manuscript, is the following:

Theorem 2 of [20]. Let F be a m×N full rank matrix with singular value

decomposition UΣVH . With respect to the Frobenius norm, the closest α-tight

frame to F is given by αUVH . �

3. Real valued incoherent frame design

Recently, a method for the design of real valued incoherent frames (m,N)

was introduced [24]. The method is based on convex optimization used in an

iterative fashion: each frame vector is updated such that its coherence with

the other frame vectors, which are fixed, is reduced. Herein, the previously

introduced SIDCO method for real valued frames from [23, 24] and shown in

Algorithm 1 is denoted as R–SIDCO.
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Ideally, to create optimally incoherent unit norm frames F of size m×N we

would like to solve exactly the following optimization problem:

minimize
fi; ‖fi‖2=1, 1≤i≤N

max
i,j; j 6=i

|fTj fi|. (4)

The difficulty lies in the fact that both the objective and the equality constraint

are non-convex. The approach taken in [24] is not to solve this problem directly,

but given a real unit norm frame H =
[
h1 . . . hN

]
∈ Rm×N to find a new

real unit norm frame F =
[
f1 . . . fN

]
of equal size, near the initial one, with

smaller mutual coherence. Therefore, we update each frame vector hi at a time

to a new vector fi such that its maximum absolute value inner product with all

the other frame vectors hj , j 6= i is minimized. The problem for each hi is

minimize
fi∈Rm; ‖fi−hi‖22≤Ti

max
j; j 6=i

|hTj fi|. (5)

We normalize and update hi = fi‖fi‖−12 after solving (5). Also, we can define

Hi =
[
h1 . . . hi−1 hi+1 . . . hN

]
∈ Cm×(N−1), (6)

for each i = 1, . . . , N and thus the objective function becomes ‖HT
i fi‖∞. To

solve this problem, we define for each vector hi in the reference frame a trust

region (an m-ball centered at hi of radius
√
Ti), where we search for a new vector

fi such that its correlation with the other vectors in the frame Hi is smaller

than that of hi. Since now we are dealing with a convex objective function and

constraint, the formulation in (5) can be viewed as a convex relaxation of the

original problem (4). The parameters Ti are chosen such that

Ti ≤ 1− max
j; j 6=i

|gij |2, with gij the entries of G = HTH. (7)

This inequality establishes the maximum possible value of Ti such that the

current variable fi (scaled by any constant α 6= 0) remains in an m-ball around

hi constrained by the vectors of Hi. This constraint guarantees a monotonically

decreasing mutual coherence, and as numerically shown in [24] the convergence

is fast, in a few steps. Since we observe, in numerical simulations, that local

minima are found quickly, the heuristic Step 2 in Algorithm 1 updates the frames
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Algorithm 1 – Sequential Iterative Decorrelation by Convex Opti-
mization (R–SIDCO) [24]
Input: The pair (m,N) and the number of iterations K.
Output: Frame H ∈ Rm×N as incoherent as possible until maximum number
of iterations K is reached.

Initialization:

1. Create H ∈ Rm×N with random entries from the standard Gaussian
distribution. Normalize its columns.

2. With H = UΣVH update the frame by the unit polar decomposition
(by Theorem 2 of [20]): H = UVH . Normalize its columns.

Iterations 1, . . . ,K:

1. For each i in randomized {1, . . . , N}:
(a) Set radius Ti of trust region to the bound in (7) and solve (5) for fi.

(b) Normalize and update hi = fi‖fi‖−12 .

2. If the algorithm has converged, update frame by its unit polar decom-
position H = UVH (Theorem 2 of [20]) and normalize columns.

such that there might be (and experimentally we observe that it usually is) a

temporary increase in the mutual coherence, but the frame is closer, in Frobenius

norm, to a tight frame. The temporary increase in coherence is attenuated in

the following, regular, steps of the algorithm.

Based on the general template presented here, we formulate and solve sim-

ilar optimization problems where the entries satisfy additional constraints in

subsequent sections.

4. Extensions of R–SIDCO

This section is concerned with extending the R–SIDCO method proposed

for real valued incoherent frame design to other frame types: complex valued,

complex unital, nonnegative both real and complex and sparse both real and

complex. All the extensions we discuss focus on some modifications of the

template Algorithm 1 and we deal with each one separately in the next sections.
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4.1. Complex valued incoherent frames

The easiest extension of R–SIDCO is to complex valued frames H ∈ Cm×N .

Consider the optimization problem

minimize
fi∈Cm; ‖fi−hi‖22≤Ti

‖HH
i fi‖∞. (8)

In this complex case, the optimization problem is a quadratic program with

2m+1 real variables and N−1 constraints. With the choice of Ti from the bound

(7), each update of fi is guaranteed to keep or decrease the mutual coherence

of the frame (see Remark 1 of [24]). Briefly, this is because the trust region

constraint leads to a higher `2 norm of fi with increasing the angle from the

reference hi and therefore the normalization step fi‖fi‖−12 cannot increase the

mutual coherence. As such, the convergence to a local minimum is guaranteed.

We call this approach C–SIDCO.

Frames designed by C–SIDCO find use in communication applications since

they are equivalent to antipodal spherical codes [30]. Also, in the quantum in-

formation theory literature there are constructions of symmetric, information-

ally complete, positive operator valued measures (SIC-POVM) [31] that achieve

coherence 1/
√
m+ 1 for N = m2 vectors in complex Hilbert spaces. These

complex frames have been constructed, by numerical methods, for all dimen-

sions m ≤ 151 (and a few others up to m = 844) [32] and it is conjectured that

they exist for any m (Zauner’s conjecture). Notice that in this general case,

SIC-POVMs supply highly overcomplete frames with very low coherence.

4.2. Complex unital incoherent frames

An additional constraint that all entries have equal magnitude can be added

to the design of complex valued incoherent frames. Together with the constraint

‖fi‖2 = 1 we have that |fij | = m−1/2, which is also a non-convex constraint.

Thus, after relaxing the magnitude constraints, the proposed problem is

minimize
fi∈Cm; |fij−hij |2≤Ti, |fij |−m−1/2≤γ

‖HH
i fi‖∞, (9)

with the constraints for all j = 1, . . . ,m and where 0 < γ � 1 is a constant that

manages the unital constraint. In this formulation, we focus on the individual
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entries of the variable fi since their magnitudes are also constrained. The new

constraint |fij − hij |2 ≤ Ti implicitly imposes ‖fi −hi‖22 ≤ mTi. In the spirit of

the trust regions approach, we approximate the constraint |fij | = 1 by defining a

trust region with the convex constraint |fij |−m−1/2 ≤ γ. The constraints in (9)

ensure together that the trust region is defined around the reference vector and

close to unit magnitude entries. After solving this problem the normalization

step is fi = m−1/2 (fi � |fi|), where � is the elementwise division operation.

Unfortunately, due to the new trust regions the convergence result previously

presented for C–SIDCO does not hold anymore. Therefore, in the iterative

process we keep track of the best frame achieved so far (the one with the lowest

mutual coherence) and return it when the algorithm terminates.

In the case of complex unital frames, the decomposition that takes place at

Step 2 of the initialization in C–SIDCO destroys in general the unital structure

previously imposed. Thus, Step 2 is changed to a decomposition H = UVH ,

with H = UΣVH , and a normalization H = m−1/2(H� |H|).

We do expect these complex unital frames to achieve coherence larger than

the general complex frames due to the additional unital constraint. As such,

the complex valued incoherent frames, after normalization, serve as good initial-

izations in these situations. Alternatively, we can also use incoherent harmonic

frames, which are discussed next, since they are also naturally unital.

This approach is denoted as U–SIDCO, and it produces frames that find use

in communication systems, where a low peak-to-average-power ratio (PAPR) is

desirable, for example in limited feedback codebooks [33]. In practice, constant

amplitude signals are also used by power-limited hardware [20]. In the frame

literature there is a work on dealing with a low PAPR [20]. Our algorithm

U–SIDCO designs incoherent frames with PAPR = 1, the lowest value.

4.3. Nonnegative incoherent frames

Another extension of R–SIDCO is to nonnegative frames, i.e., frames with

nonnegative entries, both real and complex (separately on each component).
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The optimization problem to be solved is:

minimize
fi; ‖fi−hi‖22≤Ti, <(fi)≥0, =(fi)≥0

‖HH
i fi‖∞. (10)

The convergence (to a local minimum) results from the general C–SIDCO and

R–SIDCO hold in this case since the nature of the trust region around the

references hi is not modified by the additional nonnegativity constraints and

there is no post processing of the solutions fi. The difficulty lies in applying the

heuristic Step 2, since there are no guarantees that the unit polar decomposition

UVH leads to a nonnegative frame. This is because the original frame H was

nonnegative – indeed experimentally it is observed that this does not usually

happen. To circumvent this difficulty we propose a new simple update: H =

H + δR, where R of size m×N is a matrix with random entries drawn from a

standard Gaussian distribution; and normalize the columns of H to have unit

`2 norm. Intuitively, we add to the current reference frame H a random small

perturbation – δ controls the size of the perturbation. We consider that |δ| � 1

and we are that it is not possible to reach negative entries close to zero, since

the following optimization problems impose again the nonnegativity constraint.

These approaches are denoted by NR–SIDCO and NC–SIDCO, in the real

and complex cases, respectively. Nonnegative frames are useful for nonnegative

matrix factorizations [34] applications.

4.4. Sparse incoherent frames

We now consider sparse frames, which contain a large number of zero entries,

which are also incoherent. We propose to solve the optimization problem:

minimize
fi; ‖fi−hi‖22≤Ti

‖HH
i fi‖∞ + λ‖fi‖1. (11)

The parameter λ, which is fixed and provided as an input, controls the `1

regularization term which introduces the zero entries in the current variable

frame vector fi, in the style of the LASSO [35]. Various λ produce frames of

differing sparsity levels.

When the number of iterations K has been reached or the algorithm has

converged, a polishing step follows. For each hi, we establish its support Si =
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{k | |hki| ≤ ε with k = 1, . . . ,m}, and then solve the problem

minimize
fi; ‖fi−hi‖22≤Ti, fki=0 ∀k∈Si

‖HH
i fi‖∞. (12)

When designing sparse incoherent frames, the heuristic Step 2 of Algorithm 1

is avoided, since it will not preserve the sparsity. We have observed numerically

that a very good initialization is a general frame created by R–SIDCO or C–

SIDCO (equivalent to having λ = 0 in (11)). These new approaches are denoted

by SR–SIDCO and SC–SIDCO, respectively.

An alternative to the `1 approach in (11) is to decide a priori the zero entries

of each frame vector and run the optimization problems only for the other

entries, in the same manner described in (12). Let us consider for example the

case where we impose the zero structure to the frame H ∈ Cm×N as follows: H =H11 0

0 H22

, where each block has size m/2×N/2, assuming for simplicity no

rounding issues. We have that µ(H) = max{µ(H11), µ(H22)}, and also that the

Welch bound for frames (m/2, N/2) is
√

2N−1N−2 larger than the Welch bound for

frames (m,N). As such, no matter how the optimization is done for the entries of

H11 and H22, there is a lower bound to the minimum for the overall frame. Also,

the structure imposed can lead to low values for spark(H) (the minimum number

of linear dependent columns of H) whose value should be as large as possible

to guarantee the success of sparse recovery algorithms [36]. A simple idea is

to spread the zeros in the frame coefficients, for each vector for example, in a

random manner. We observe, by numerical experimentation, that heuristics like

these help avoid the problems previously described. Additionally, this idea of

explicitly setting certain entries to zero for each frame vector has the advantage

of providing control on the sparsity level of each frame vector individually. This

way, we can ensure that all frame vectors have the same sparsity level, a task

which is difficult when using the `1 penalty. A final advantage for fixing the

zero entries a priori is that the convergence results of R–SIDCO and C–SIDCO

hold (they hold also for the polishing steps previously described).

We can find in the frame literature work on sparse tight frames created by
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spectral tetris [37] with less than 3N nonzero entries, sparse Steiner equiangular

tight frames [38] with less than
√

2mN nonzero entries, and an approach based

on discrete Gabor expansions [39]. The goal of these constructions is to reduce

the computational burden of using the frame as an analysis/synthesis operator.

We develop next a different numerical approach for the design of incoherent

frames that are selections from fixed unital matrices.

5. Harmonic frames

A harmonic frame H ∈ Cm×N is a frame consisting of a subset of m rows

from the Fourier matrix F ∈ CN×N . Due to their structural properties, we

propose an algorithm to build incoherent harmonic frames that is significantly

different from the SIDCO approaches.

The Gram matrix of any harmonic frame is circulant, that is, G = HHH =

circ(g) = m−1FHdiag(g̃)F, where g = m−1FH g̃ is the first column of G, and

g̃ ∈ {0, 1}N denotes a binary vector corresponding to selecting certain rows of

the Fourier matrix, i.e., H = diag(g̃)F. The circulant matrix G is completely

defined by its first column vector g – all other columns are cyclic permutations

of this vector, with offset equal to the column index. Given a set K ⊂ ZN , we

call a selection pattern a vector g̃ ∈ {0, 1}N such that g̃k+1 = 1 when k ∈ K and

zero otherwise. We equivalently denote g̃ = 1K. This vector/set equivalence

notation will ease the presentation of the results in this section.

There is a strong connection between harmonic ETFs and difference sets [19]

(a (N,m, λ)-difference set is a subset of size m of a larger set of size N such that

every nonzero element of this set can be represented as a difference between two

elements in exactly λ ways). Other work uses character sums estimates [40] or

almost difference sets [41] to construct highly incoherent harmonic frames for

certain dimensions. Unfortunately, these approaches cover only some values of

(m,N). We now propose an optimization procedure that allows for the design

of highly incoherent harmonic frames of any dimension.
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5.1. Incoherent harmonic frames

For any (m,N), to construct the most incoherent harmonic frame, we would

like to solve exactly the non-convex optimization problem:

minimize
g̃;

∑N
k=1 g̃k=m, g̃k∈{0,1}

m−1‖Fg̃‖∞, (13)

where the matrix F is the complex conjugate transpose Fourier matrix FH of

size N restricted to the rows index by 2 : bN/2c + 1. The objective function

is the mutual coherence of the harmonic frame created by selecting the rows of

the Fourier matrix corresponding to ones in the vector g̃. The absolute value

Gram matrix of a harmonic frame is a symmetric circulant matrix; subsequently,

the search for its maximum off-diagonal entry, i.e., the coherence, is restricted

to the first half (except the first entry, which is 1) of the first column. This

simplification is reflected in the structure of the operator F. Solving exactly

the non-convex (due to the integer constraints) optimization problem in (13),

will result in deciding which m rows of the Fourier matrix deliver the smallest

mutual coherence. In this setting, m is given (fixed) and the problem can be

seen as a mixed binary optimization problem.

The binary problem in (13) is hard because the search space is large, com-

binatorial. The complexity can be reduced since there are several equivalence

classes. If we select rows of the Fourier matrix from a set K ⊂ {1, . . . , N} of

size |K| = m, with associated selection pattern g̃ = 1K, we have a particular

coherence value. This value is also reached when: the set is circularly shifted

Knew = (K+j) mod N for j = 1, . . . , N−1 (the result follows from the circular

shift property of the Fourier transform), and the set is multiplied with a con-

stant τ ∈ ZN , relatively prime to N , i.e, Knew = τK mod N . Proofs of these

facts are given in [42, Theorem 4]. This shows that the solution to (13) is not

unique. Therefore we let g̃1 = 1 be fixed when solving (13).

Furthermore, a result on the set K offers insights into the result of the

complementary set Kc = {0, 1, . . . , N − 1} \ K. Consider the new selection

pattern g̃c = 1Kc
= 1 − g̃. The unique part of the circulant Gram matrix

of the frame resulting from the new selection pattern is (m − N)−1FH g̃c =
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(m−N)−1

m−N
mg2:N

 =

 1

m
m−N g2:N

 . This result establishes the fact that find-

ing an incoherent (or ETF) harmonic frame (m,N) automatically leads to the

construction of an incoherent (or ETF) harmonic frame (N −m,N).

5.2. An algorithm for the design of incoherent harmonic frames

Based on (13), consider the following convex optimization problem:

minimize
g̃

m−1‖Fg̃‖∞ + λ‖Wg̃‖1

subject to g̃1 = 1,
N∑
k=2

g̃k = m− 1, g̃k = 0, for k ∈ K0

0 ≤ g̃k ≤ 1, for 2 ≤ k ≤ N.

(14)

This optimization problem is at the heart of the proposed optimization proce-

dure based on iterative reweighted `1 optimization (IRL1) [43] and solved via

CVX [28]. The overall proposed design algorithm is shown in Algorithm 2.

Compared to (13), we add a regularization term ‖Wg̃‖1 to promote sparsity

for the solution g̃. The diagonal matrix W is fixed and consists of weights inverse

proportional to the magnitudes of the entries in g̃, used to further increase the

sparsity of the solution. This regularization term works in connection with the

sum constraints. The overall goal of the regularization term is to move the

solution’s coefficients either towards zero or one.

Regarding the constraints, the key observation is that we relax the hard

binary constraints g̃k ∈ {0, 1} to the convex inequality constraints g̃k ∈ [0, 1].

Notice that due to this relaxation, the solution g̃ may not have exactly m

nonzero entries but possibly more. The last constraint explicitly imposes zeros

in the position indexed by a given set K0. Without this constraint, in the

first step of Algorithm 2 with W = I, the solution to (14) would always be

g̃ =
[
1; m−1

N−11
]
. To see this start from

m−1FH

 1

m−1
N−11

 = m−1

 m(
1− m−1

N−11
) =

 1

N−m
m(N−1)1

 ,
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Algorithm 2 – IRL1 Incoherent Harmonic Design.
Input: The pair (m,N), the number of iterations K, parameters ζ and λ and
the length of the local search `.
Output: The binary vector g̃ such that the frame diag(g̃)F has mutual
coherence as low as possible and 1T g̃ = m.

1. Generate randomly the set K0 ⊂ {2, . . . , N} of size dζ(N −m)e.
2. Set W = I.
3. For 1, . . . ,K: solve (14) for fixed W and K0, update diagonal wk = 1−g̃k.
4. Establish the support of g̃: K = {k − 1 | |g̃k| > ε with k = 1, . . . , N}.
5. If necessary, reduce the support size |K| to m:

for |K| down to m set K = K \ {k∗} with

k∗ = arg min
K′=K\{k} for each k∈K

‖F1K′‖∞. (15)

6. Start a local search close to the set K:

{A,Z} = arg min
A⊂{Kc∪Z},|A|=`

‖F1K\Z∪A‖∞,

for each set Z = {z1, . . . , z`} ⊂ K, |Z| = `.
(16)

7. Set K = K \ Z ∪ A and return g̃ = 1K.

and observe that N−m
m(N−1) ≤

√
N−m
m(N−1) for any (m,N) with m ≤ N . Thus, for

this g̃ the `∞ norm part of the objective function is always below the Welch

bound. In fact, this solution provides the lowest infinity norm, and thus, it is

preferred to any other solution. Because of this behavior, without the constraint

with K0, the optimization problem would not introduce zeros in any position.

Therefore, as a heuristic measure, we explicitly impose zeros in the solution by

the set K0, whose size we choose to be dζ(N −m)e, with ζ � 1 fixed.

The key idea of Algorithm 2 is to set a small number of coefficients to zero

and let the optimization problem decide on the others to be nulled, such that

the coherence is minimized. Since different sets K0 produce different results we

run this optimization procedure with several set choices.

Notice that due to the constraints on the variable g̃, the `1 penalization

term simplifies to ‖Wg̃‖1 = wT g̃, where w = diag(W). A discussion about the

weights is in order. Taking absolute values is omitted due to the positive entries

in the solution. In this implementation we use the update wk = (g̃k + ε)−1, for
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1 ≤ k ≤ N, where ε is a fixed constant close to zero. The idea of the weights

is to have magnitudes inverse proportional to the magnitudes of the entries in

the solution. Analysis of the IRL1 is difficult in general, but some results are

available [44]. Other ways of choosing the weights avoid the use of an additional

parameter. For example, consider the update wk = 1− g̃k‖g̃‖−1∞ , for 1 ≤ k ≤ N .

In this case, the penalty term reaches a stationary point of

wT g̃ = ‖g̃‖1 −
‖g̃‖22
‖g̃‖∞

= m− ‖g̃‖22, (17)

where the last equality holds in our case due to the constraints on g̃. If the

entries of the solution are binary, i.e., in {0, 1}, then the penalty term reaches

its minimum and is exactly zero. Notice that the term is concave, and thus

it has been shown that its minimization is NP–hard in general [45]. The it-

erative steps proposed here approximate the problem by solving a sequence of

convex optimization problems. This way we make the overall problem tractable,

without the guarantee of reaching the global optimum solution.

The convex optimization problem (14) is used iteratively in Algorithm 2. The

first step is to randomly generate the set K0 with the indices in the solution that

are explicitly set to zero. As explained before, this is to avoid the optimization

problem reaching a trivial solution. Next, the reweighted `1 optimization follows

for K iterations trying to pushing the solution’s coefficients to zero or one values.

Since IRL1 does not control directly the support of the solution, Step 5

iteratively eliminates, i.e., sets to zero, coefficients from g̃ (or equivalently the set

K), until onlym remain. With this strategy, each elimination causes the minimal

increase in the mutual coherence. Step 6 makes a last effort to further decrease

the mutual coherence. Based on the solution computed up to this point 1K, we

search for a better solution “around” this reference. The search, combinatorial

in nature, checks for the best subset Z of size ` of K that can be substituted by

a new set A of equal size, such that the mutual coherence is maximally reduced.

For computational reasons, we choose ` � m. Assuming that F1K has been

computed and K′ = {K \ {j}} ∪ {k}, observe that F1K′ = F1K − Fej + Fek.

This shows that the local search procedure in Step 6 of Algorithm 2 can be done
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fast by updating the unique part of the Gram matrix across iterations, without

fully reconstructing it at each step.

The proposed method can be extended to the selection of rows of any

fixed matrix, provided that its entries have constant magnitude, for example

Hadamard matrices. Otherwise, the normalization operation in (1) is necessary

and a different optimization strategy needs to be proposed.

6. Numerical results

We provide numerical results for the proposed algorithms, comparing with

the Welch bound and with other previously proposed algorithms. We also show

how the created incoherent frames perform when used to recover sparse vectors.

6.1. Incoherent frames designed via the proposed methods

Equiangular tight frames exist only for a small number of pairs (m,N). For

example, in the case of harmonic frames for N ≤ 256, there are 143 known

ETFs (checked by the existence of the equivalent difference set [46]). Even for

the pairs where we encounter an ETF, usually the redundancy is quite low. For

example, out of the 143 known harmonic ETFs, 57 have redundancy ρ ∈ [2, 3],

while harmonic ETFs with high redundancy (ρ ≥ 10) exist only for a few m. In

general, harmonic ETFs mostly exist for a prime or prime power m. A similar

discussion can be made in the case of real valued ETFs. Conditions developed in

[18] for the existence of real valued ETFs allow for 182 of such structures when

N ≤ 256. Out of these, 97 ETFs have redundancy ρ ∈ [2, 3]. A recent survey of

ETFs can be found in [47]. We now present numerical results for constructing

highly incoherent frames (not necessarily equiangular) for any pair (m,N).

Figure 1 shows the mutual coherence for various frame types and various

N with fixed m = 25 and m = 15 (for the latter we also show sparse and

positive frames in Figure 2). The Welch bound is also shown as a reference.

In terms of the incoherent frames, the best results are reached by the general

complex frames designed via C–SIDCO. For redundancies ρ ∈ {2, 3, 4}, the

results are close to the Welch bound, while for larger values the gap to the
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Figure 1: Incoherent frames designed for m = 25 (left) and m = 15 (right).
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Figure 2: Incoherent frames designed for m = 15.

bound increases. For low redundancies, the complex frames designed via C–

SIDCO show coherence levels below the 1/
√
m limits of 0.2 and 0.2582 (for

m = 25 and m = 15 respectively), that are marked in the plots. The next best

frames in terms of coherence are the complex unital ones designed via U–SIDCO

with γ = 0.01. The performance gap between them and the similar harmonic

incoherent frames seems to decrease with N . Of course, complex unital frames

must always produce structures at least as incoherent as the harmonic frames.

Failure to do so is attributed entirely to the numerical optimization procedure

(9) at the heart of U–SIDCO, that can get stuck in a bad local minimum.

Figure 2 shows the coherences reached by sparse incoherent frames for a fixed

`1 regularization of λ = 1.8. Different λs lead to frames with different coherence

values and sparsity levels. The percentages indicate the overall sparsity levels.

Observe that we do encounter a 10−20% increase in coherence with the benefit

of having approximately 50% of the frame coefficients set to zero. Notice that
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the performance of the sparse complex frames is similar to that of the full real

frames. In the case of sparse unital frames, we fix the zero entries a priori and

optimize only over the rest of the entries. The zero entries are set randomly for

each frame vector individually thus ensuring that they have the same sparsity

level. We have chosen this approach for the sparse unital frame since adding

the `1 penalty to (9) cannot produce any sparse solution (due to the conflict

with the unit magnitude constraints).

The last test concerns nonnegative frames and the results are depicted in

Figure 2. In these cases the coherence levels are the highest, especially for the

real frames. All these SIDCO derived methods run for K = 2000 iterations.

As expected, the harmonic and real frames provide the highest coherence

values, since they have the fewest degrees of freedom. Interestingly, for high

redundancy the performance gap between the two diminishes, and in some cases

the harmonic frames achieve lower coherence than their real counterparts. Also,

notice that for larger m, harmonic frames may approach the performance of

general unital complex frames.

Figure 3 shows the mutual coherence for several harmonic frames designed

via Algorithm 2. For each frame (m,N) we perform 500 runs. Also, we perform

the same number of runs for the complementary frame (N−m,N) and we choose

the solution that provides the overall lowest mutual coherence. For N = 32 and

all m, Algorithm 2 reaches the most incoherent harmonic frames (which was

checked by exhaustive search). In the case (13, 40) we do reach the known ETF.

In all runs we set K = 7, λ = m−1 and ζ = 0.1. The local search parameter

is ` = 4 for N ≤ 40, ` = 3 for N = 64 and finally ` = 2 for N = 128.

The proposed method seems to provide reasonable good solutions, especially

given the computational complexity. Still, U–SIDCO performs better in most

situations for K = 300 iterations (in a few it matches the incoherence of the

harmonic frame of same dimension). We treat the harmonic frames separately

in this test, because for a fixed choice of (m,N) the computational complexity

of exhaustively checking for the best (most incoherent) frames is impractical

even on modern computing systems, and even for relatively small dimensions
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Figure 3: Fourier and Hadamard incoherent frames. Plot on the left: mutual coherence of
harmonic frames (m,N) designed via Algorithm 2. For N = 32 and all m the lowest possible
coherences are reached (this was checked by exhaustive search) and we also reach the known
harmonic ETF (13, 40). We show the frames up to m = N/2 and for N ∈ {64, 128} we show
results up to m = 32. We also show the results of U–SIDCO that performs better than the
harmonic frames found; Plot on the right: mutual coherence of Hadamard frames (m,N). For
N = 32 the lowest possible coherences are reached (this was checked by exhaustive search).
We show the frames up to m = N/2 and for N ∈ {128, 256} only up to m = 32. The
regularization parameter in (14) is always λ = m−1.

of m and N . The gap to the best possible results offers a perspective on the

performance of the proposed numerical solutions. The authors of [40] design

harmonic frames (19, 381) with coherence 0.2820 and (29, 840), with coherence

0.1857 using number theory tools. Algorithm 2 is not able to produce harmonic

frames with lower coherences in these examples, while U–SIDCO is able to

slightly improve the coherence to 0.2816 for the frame (19, 381).

The last simulations involve harmonic and real unital frames obtained from

Hadamard matrices and the results are depicted in Figure 3. The results are

promising for the chosen dimensions, but exhaustive search is not practical for

N > 32. We do have performance references for dimensions where real unital

ETFs are allowed and Hadamard matrices exist. We run the proposed algorithm

for these dimensions and the results for N ≤ 1000 are as follows: (6, 16) the WB

is reached, (13, 40) we reach 0.5385 and the WB is 0.2308 which is attainable

with a harmonic frame, (28, 64) the WB is reached, (20, 96) we reach 0.4 and

the WB is 0.2, (54, 160) we reach 0.1852 and the WB is 0.1111, (120, 256) we

reach 0.1 and the WB is 0.0667, (88, 320) we reach 0.1591 and the WB is 0.0909,

(72, 640) we reach 0.2222 and the WB is 0.1111 and finally for (118, 768) we reach
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Table 1: Coherence comparison of C–SIDCO against previously known methods following
[19]. Best results are underlined.

(m,N) C–SIDCO [30] [48] [49] [19] CB
(2, 8) 0.7941 0.7950 0.7997 0.8415 0.8216 0.7500
(3, 16) 0.6486 0.6491 0.6590 0.8079 0.6766 0.6202
(4, 16) 0.4472 0.4472 0.4473 0.7525 0.4514 0.4472
(4, 64) 0.6906 0.6869 0.7151 0.7973 0.7447 0.6000

0.1695 and the WB is 0.0847. These results show the effectiveness of the method.

In the case (28, 64) the ETF is reached by taking rows of the Hadamard matrix

indexed inK = {4, 5, 6, 11, 13, 14, 16, 21, 23, 24, 25, 28, 32, 38, 39, 41, 42, 45, 48, . . .

49, 50, 51, 53, 54, 55, 57, 61, 63}. Notice that both in the Fourier and Hadamard

cases the mutual coherence is not monotonically decreasing with m. This is

not surprising if we consider for example that when a difference set exists for

(m,N) then in general we do not also have a difference set for (m + 1, N) and

therefore we will, most likely, have a temporary increase in coherence (see for

example in Figure 3 the fall in coherence for the Harmonic ETF (13, 40) and the

Hadamard ETF (28, 64)). This phenomenon is exacerbated in the Hadamard

case most probably due to the hard restriction on the entries of the Hadamard

matrix. This is not the case for general (real or complex valued) frames where

given a unit norm frame F0 ∈ Cm×N we can always construct a new unit norm

frame F ∈ C(m+1)×N such that we at least have µ(F) = µ(F0) just by adding a

zero row to F0.

A recent result has shown that, in compressed sensing applications, tight

frames minimize the expected mean squared error [50], outperforming frames

designed only with the incoherence target. Obviously, harmonic and Hadamard

frames (constructed by Algorithm 2) are tight, so we are interested to check the

frames constructed by Algorithm 1. General real and complex frames designed

with the proposed algorithms approach the frame potential [51], i.e., FP(H) =

‖HHH‖2F , minimum value of N2/m that is known to be reached by tight frames

(they are on average within 1% of this bound). Unfortunately, in all other cases

the frames, although highly incoherent, are no longer tight. In these cases we
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Table 2: Coherence comparison of C–SIDCO against previously known methods following
[48]. Best results are underlined.

(m,N) C–SIDCO [30] [48] [21] CB
(4, 6) 0.3273 0.3277 0.3274 0.3275 0.3162
(4, 7) 0.3536 0.3536 0.3540 0.3536 0.3536
(4, 8) 0.3780 0.3780 0.3787 0.3782 0.3780
(4, 9) 0.4021 0.4022 0.4021 0.4034 0.3953
(4, 10) 0.4113 0.4118 0.4113 0.4114 0.4082
(4, 20) 0.5000 0.5000 0.5001 0.5335 0.5000

(5, 7) 0.2664 0.2670 0.2665 0.2669 0.2582
(5, 8) 0.2952 0.2955 0.2954 0.2955 0.2928
(5, 9) 0.3201 0.3207 0.3203 0.3216 0.3162
(5, 10) 0.3333 0.3333 0.3341 0.3336 0.3333
(5, 16) 0.3889 0.3889 0.3932 0.3959 0.3830

observe that HHH is no longer exactly N/mI – as mentioned, Grassmannian

frames may not be tight frames in general. The unit polar decomposition can be

applied on the final frames in the real, complex and unital cases (followed by an

appropriate normalization) to lead to a tighter frame, with the cost of increasing

the coherence. In the sparse and nonnegative cases, the polar decomposition

may destroy the entire frame structure and thus must be avoided. If we have

a redundant frame H with coherence γµ, where µ is the WB, and γ ≥ 1 we

have that FP(H) ≤ N2

m

(
γ2 − γ2−1

ρ

)
, which shows that frames with coherence

approaching the WB, i.e., γ ≈ 1, have a bounded frame potential, close to the

minimal bound of tight frames N2/m.

6.2. Comparisons of C–SIDCO against previous methods

We compare the proposed method C–SIDCO with previously, well-known,

methods from the literature. Comparisons with the other SIDCO types of al-

gorithms are not possible since previous methods are not able to accommodate

additional constraints like unit magnitude entries or sparsity.

The results are presented in Tables 1, 2 and 3, where we replicate and com-

pare against the best previously known results. C–SIDCO runs for K = 2000

iterations and we show the best results out of 10 runs that are made with ran-

dom initial frames. As can be seen from the tables, C–SIDCO provides the best
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Table 3: Coherence comparison of C–SIDCO and Algorithm 2 against the group theoretic
and random constructions [52], respectively, when this approach does not reach ETFs. Best
results are underlined.

(m,N)
Random

Fourier [52]
Algorithm 2

Group
matrix [52]

C–SIDCO WB

(166, 499) .1786 .0949 .0888 .0649 .0635
(260, 521) .1504 .0658 .0458 .0447 .0439
(130, 521) .2376 .1190 .1175 .0796 .0761
(214, 643) .1978 .0865 .0755 .0582 .0559
(175, 701) .2316 .1023 .0687 .0700 .0655
(350, 701) .1326 .0582 .0393 .0388 .0379
(504, 1009) .1147 .0490 .0325 .0325 .0315
(336, 1009) .1384 .0691 .0597 .0476 .0446
(252, 1009) .1631 .0872 .0846 .0599 .0546
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Figure 4: Sparse recovery performance, error in support accuracy (left) and mean-squared
error (right), for incoherent frames of size (25, 150) designed by the methods proposed in this
paper as compared to a random frame. Recovery is done via OMP and the SNR level is 15dB.

results in all situations except one where it provides the second best result. We

show the composite bound (CB) for coherence as defined in [30]. There are

no large performance gaps since all methods perform quite well for the relative

small dimensions chosen (m,N). A recent result [53] has shown that the (3, 8)

ETF, with WB 0.488, cannot be constructed – here C–SIDCO is able to achieve

coherence 0.5, lower than the 0.6407 from [49].

6.3. Application of incoherent frames for sparse recovery

In this section, we show the sparse recovery performance of the incoherent

frames designed with the methods presented in this paper and we compare

against random frames. We recover s-sparse vectors x ∈ CN from m linear
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measurements y = Ax + n where n ∈ Cm is i.i.d. white Gaussian noise. We

fix m = 25 and N = 150 while the sparse recovery step is performed using

the orthogonal matching pursuit (OMP) algorithm [12]. We call the recovered

s-sparse solution x̃. The sparse vectors x are chosen randomly (the support

is selected uniformly at random and the nonzero entries are drawn from the

standard Gaussian distribution) and normalized such that ‖x‖2 = 1.

Figure 4 shows the average recovery results over 105 realization of x with the

incoherent measurement frames previously designed fixed. We show the average

error in the support of the recovery 1/2(|supp(x)\supp(x̃)|+|supp(x̃)\supp(x)|),

where supp(z) returns the index set of the nonzero entries of z, and the squared

error ‖x − x̃‖22. When the sparsity s is low all frames perform similarly while

with higher s the frames that do not have low coherence perform worse (the

random frame performs worst followed by the positive frame designed via CP-

SIDCO which has coherence 0.3233). The coherence values are 0.1993 for the

general complex, 0.2268 for the unital (with γ = 0.01 in (9)), 0.2536 for the

harmonic (with λ = 0.04 in (14)) and 0.2437 for the sparse (with λ = 1.8 in

(11) the frame has 54.52% zero entries). These frames perform similarly across

the sparsity s. The random frame is normalized such that its squared Frobenius

norm is N , the same as the proposed incoherent frames.

7. Conclusions

In this manuscript, we introduce algorithms based on convex optimization

for the design of highly incoherent real and complex frames under several con-

straints: nonnegativity, sparsity and unit magnitude. We design highly incoher-

ent frames for every dimension and under the constraints previously enumerated.

We deal with two cases: designing general frames and frames from rows of fixed

known unital matrices (like Fourier and Hadamard). We show the results of the

proposed methods relative to the performance limit of the Welch bound and

that in the general complex case the proposed methods match or outperform

previously proposed methods.
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