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Cracow University of Technology, Cracow, Poland.

Antonio Napolitano∗

EURASIP Member, University of Napoli “Parthenope”, Department of Engineering, 80143, Napoli, Italy

Abstract

The problem of time average estimation is addressed in the fraction-of-time probability frame-
work. In this approach, the observed signal is modeled as a single function of time rather than as
a sample path of a stochastic process. Under mild regularity assumptions on temporal cumulants
of the signal, a central limit theorem (CLT) is proved for the normalized error of the time aver-
age estimate, where the normalizing factor is the square root of the observation interval length.
This rate of convergence is the same as that obtained in the classical stochastic approach, but
is derived here without resorting to mixing assumptions. That is, no ergodicity hypothesis is
needed. Examples of functions of interest in communications are provided whose time average
estimate satisfies the CLT. For the class of the almost-periodic functions, a non normal limit
distribution for the normalized error of the time average estimate can be obtained when the
normalizing factor equals the observation interval length. The limit distribution, nevertheless,
depends on the sequence adopted to perform the limit, a result that cannot be obtained in
the classical stochastic approach. Numerical examples illustrate the theoretical results and an
application to test the presence of a nonzero-mean cyclostationary signal is presented.

Keywords: Time average; Central limit theorem; Fraction-of-time probability; Functional
approach; Pseudo-random functions; Almost-periodic functions.

1. Introduction

In the classical stochastic approach, signals or time series are modeled as realizations of
stochastic processes [14]. For this purpose, a sample space Ω equipped with a σ-field F and
a probability measure P defined on F are introduced. Probabilistic functions are defined as
integrals of functions of the stochastic processes made with respect to the probability measure.
Estimates of these probabilistic functions are time averages, over finite time intervals, of functions
of a single realization. Then some mixing assumptions assure the convergence of the estimates
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to the corresponding probabilistic functions as the time interval becomes infinite (ergodicity
theorems [25]).

In practice, it is difficult if not impossible to verify the mixing assumptions. In addition,
quite frequently in practical cases only one realization of the time series exists. This is the case,
for example, of a biological signal measured for a specific living being, the signal coming from a
specific astronomic source, a communication signal arising from a specific transmitter, and the
exchange rate between two specific currencies.

An alternative approach for signal analysis consists in modeling the observed signal or time
series as a single function of time. Such a signal is modeled as a segment of an idealized one
existing on the whole real line (that is, a “persistent” signal). Such an approach is referred to as
functional approach [5, Sec. 2.11] or fraction-of-time (FOT) probability approach [17, Chap. 8]
and was first adopted in [44] for correlation and spectral analysis (see [29] for an extensive
historical perspective).

The key concept in the FOT approach is the relative measure µR of sets introduced in
[27]. For a Borel set A, its relative measure µR(A) is defined as the Lebesgue measure of
A ∩ [−T/2, T/2], divided by T , and considered in the limit as T → ∞. Such a measure plays
an equivalent role to the theoretical probability P in the stochastic approach where the object
(Ω,F , P ) is considered. Once the concept of relative measurability is introduced for a signal
x(t), a valid distribution function can be constructed whose expectation is the infinite time
average [29]. The distribution at point ξ represents the fraction-of-time that the signal is below
the level ξ [17, Chap. 8]. Using such distribution and expectation, all the familiar probabilistic
functions as mean, moments and cumulants can be constructed. Moreover, considering two or
more time-shifted versions of the same signal, concepts can be extended to the multivariate case
leading to the definition of joint distributions, autocorrelation, cross moments, and cumulants
[18], [19], [29]. Independence of functions in the functional approach can be defined [27], [26],
and a central limit theorem (CLT) proved [12]. Higher-order statistics are considered in [20], [39]
and a link with the relative measure is established in [34, Chap. 6]. Further results on signals
modeled as single functions of time are in [10], [24], [31], [32].

The classical probability measure is σ-additive and continuous and, hence, the ensemble
expectation is σ-linear. These properties are a consequence of the implicit assumption in the
theory of probability that the sample space Ω has a finite measure [21], [22]. Thus, the nor-
malization P (Ω) = 1 is obtained just dividing a measure by the (finite) measure of the whole
space. In contrast, the analogous normalization of the relative measure µR(R) = 1 is obtained
by a limit process as T → ∞. Consequently, the relative measure is not σ-additive and not
continuous. Moreover, the infinite time average, unlike the ensemble expectation, is not σ-linear
[29]. Such lack of σ-additivity and σ-linearity is not an obstacle using the FOT approach in
practice when dealing with time averages. It is, rather, a motivation. In fact, assumptions on
the stochastic process and consequent results expressed in terms of ensemble averages could not
be explained in terms of time averages as needed by the practitioner. In contrast, in the FOT
approach, assumptions are made directly on the unique available time series at hand and results
are proved by proving the convergence of time averages when the observation interval grows to
infinity.

In this paper, the problem of infinite time average estimation of a continuous-time persistent
signal is addressed in the fraction-of-time probability framework. Such problem is fundamental
in signal processing. For example, time average estimation occurs in the following problems:
estimation of any coefficient of a Fourier series [4, chap. 1], cyclic autocorrelation estimation by
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the cyclic correlogram [18, Chap. 11, Sec. A], cyclic spectrum estimation by the time-smoothed
cyclic periodogram [18, Chap. 13, Sec. A], characteristic function, moment, and cumulant esti-
mation.

In both stochastic and FOT approaches, the estimator is the time average of the signal over
the finite time interval [t − T/2, t + T/2] centered in t and with width T . In the stochastic
approach, t is fixed (and generally assumed to be 0 or T/2) and the variability of the estimate
is due to the sample path chosen for the estimation, that is, the estimate is a random variable
(it depends on ω ∈ Ω). Under appropriate mixing and stationarity assumptions, as T → ∞
the estimate converges in some probabilistic sense to the expected value of the process. In
contrast, in the FOT approach, the variability of the estimate is due to t, the central point
of the observation interval, when t ranges in a wider temporal interval, say [−Z/2, Z/2], with
Z ≫ T [34, Sec. 6.3.5]. In the FOT approach, asymptotic results are expressed in terms of
a double limit as Z → ∞ (to average the variability with respect to t, the central point of
the observation interval) and as T → ∞ (to consider the whole time series), provided that
Z/T → ∞.

In a practical situation where a unique signal source exists, the experimenter observes dif-
ferent segments of the unique signal emitted or generated by the source, computes an estimate
of the time average for each segment, and then averages these estimates to reduce variability.
Moreover, the estimates computed on different segments can be used to compute the empirical
distribution of the error and possibly the confidence intervals. This is exactly the model of the
estimation theory in the FOT approach.

Under assumptions of summability of FOT cumulants, a CLT is proved for
√
T times the es-

timation error, which is the same rate of convergence found in the classical stochastic approach.
That is, it is shown that the normalized error, as a function of time, has a normal distribution
when the data-record length T becomes infinitely large. It is worth emphasizing that the as-
sumptions are given here in terms of properties (summability of FOT cumulants) of the single
function of time. Such assumptions can be analytically verified. In contrast, analogous CLT
theorems in the classical stochastic approach make mixing assumptions [11], possibly expressed
in terms of summability of cumulants of stochastic processes, on the ensemble of realizations
that constitute the stochastic process. In particular, in the classical stochastic approach the
analysis of rates of convergence is generally made under ergodicity conditions. The proposed
approach does not require ergodicity hypothesis and is alternative to different approaches that
have been proposed when the observed time series is not ergodic [9]. As numerical illustrative
example on the CLT, a Bass function is analyzed [3, Secs. II and V-3-5]. It describes a sample
path of a binary pulse-amplitude modulated (PAM) signal with stationary white modulating
sequence.

Note that the cumulant summability assumption is not verified in the case of long range
dependence [37, Chap. III] occurring for impulsive noise encountered in several application fields
[16], [40], [41], [42]. In such case, the proposed approach cannot be applied and further analysis
is required.

The almost-periodic functions are signals of interest in many applications [2], [4], [18], [34],
[35] that do not satisfy the assumptions for the CLT. Also in this case cumulants are not
summable. However, in the paper it is shown that T times the estimation error has non zero
bounded covariance and cumulants and convergence of estimates of covariance, cumulants, and
distribution of the normalized estimation error can be obtained only along appropriate sequences
{Tn} of data-record lengths. Such a result does not have a counterpart in the classical stochastic
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approach and emphasizes the usefulness of the FOT approach as an alternative.
As an example of application, the problem of estimating the cyclic autocorrelation func-

tion of a non-zero mean cyclostationary signal is addressed in the FOT probability framework.
A result that cannot be established in the classical stochastic approach is found. Then, the
FOT counterpart of a statistical test for presence of cyclostationarity originally presented in
the stochastic approach [8] is shown to be effective even in the case of strong almost periodic
component superimposed to the cyclostationary signal of interest.

The paper is organized as follows. In Section 2, a brief overview of the FOT probabil-
ity approach is provided to introduce notation and definitions. In Section 3, the problem of
time average estimation is addressed and a CLT theorem is stated for the normalized error.
Pseudo-random functions and almost-periodic functions are treated in detail in Sections 4 and
5, respectively. Numerical results are reported in Section 6 and an example of application in
Section 7. Conclusions are drawn in Section 8. Proofs are reported in Appendix.

2. Fraction-of-Time Probability Framework for Signal Analysis

In this section, the fraction-of-time (or functional) approach for signal analysis is briefly
reviewed in order to introduce definitions and notation. See [12], [29] for further details.

Definition 2.1. Let us consider the set A ∈ BR, where BR is the σ-field of the Borel subsets
and µ is the Lebesgue measure on the real line R. The relative measure of A is defined as [27]

µR(A) , lim
T→∞

1

T
µ(A ∩ [t0 − T/2, t0 + T/2]) (2.1)

provided that the limit exists. In such a case, the limit does not depend on t0 and the set A is
said to be relatively measurable (RM). �

The relative measure is additive [29, Fact 2.4] but not σ-additive [29, Fact 2.5].

Definition 2.2. Let x(t) be a Lebesgue measurable function. The function x(t) is said to be
relatively measurable if and only if the set {t ∈ R : x(t) 6 ξ} is RM for every ξ ∈ R − Ξ0,
where Ξ0 is at most a countable set of points. �

Examples of RM functions are the almost-periodic functions and some pseudo-random func-
tions [29, Sec. 6]. Functions that are not RM can be easily constructed, in contrast to functions
that are not Lebesgue measurable [29], [30].

Let 1A be the indicator function of the set A, that is, 1A = 1 if t ∈ A and 1A = 0 if t 6∈ A
and let us denote by

〈φ(t)〉t ≡ lim
T→∞

1

T

∫ t0+T/2

t0−T/2
φ(t) dt (2.2)

the infinite time average of the function φ(t), where the limit is independent of t0.

Definition 2.3. Each RM function x(t) generates a function

Fx(ξ) , µR({t ∈ R : x(t) 6 ξ}) =
〈
1{t∈R : x(t)6ξ}

〉
t

(2.3)

in all points ξ where the limit (2.1) exists.
The function Fx(ξ) is called FOT distribution of x(t). It has all the properties of a valid

distribution function except for the right continuity in the discontinuity points [29]. �
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The function Fx(ξ) is obtained in the limit as T → ∞ of the finite-time FOT distribution

FT,t(ξ) ,
1

T
µ
({

u ∈ [t− T/2, t+ T/2] : x(u) 6 ξ
})

(2.4)

which has all the properties of a valid distribution function including the right continuity in the
discontinuity points [29]. The expectation induced by FT,t(ξ) is the finite time average on the
interval [t− T/2, t+ T/2].

The expectation induced by the FOT distribution (2.3) is the infinite time average (2.2) [29,
Corollary 3.1] (stationary FOT model [34, Sec. 6.2]). It is not σ-linear.

The relative measure µR plays an equivalent role to the theoretical probability P in the
stochastic approach where the object (Ω,F , P ) is considered [29]. Similarly, the infinite time
average plays, in the FOT probability framework, the same role played by the ensemble operator
E{·} in the classical stochastic framework. For example, for a stationary stochastic process X(t)
we have that the cumulative distribution function can be expressed as

FX(ξ) = E
{
1{X(t)6ξ}

}
(2.5)

which is the stochastic counterpart of (2.3).

Definition 2.4. Let x(t) be a RM function. The FOT characteristic function Φx(ω) of x(t) is
defined as

Φx(ω) ,
〈
ejωx(t)

〉
t
=

∫

R

ejωξdFx(ξ) (2.6)

where the second equality is consequence of the fundamental theorem of expectation in the func-
tional approach [29, Theorem 3.2]. �

Let Ξ0 be at most a countable set of (k− 1)-dimensional manifolds of Rk. The joint charac-
terization of k signals is made starting from the following definition.

Definition 2.5. The Lebesgue measurable functions x1(t), . . . , xk(t) are said to be jointly rela-
tively measurable if the limit

Fx1...xk
(ξ1, . . . , ξk) , µR({t ∈ R : x1(t) 6 ξ1} ∩ · · · ∩ {t ∈ R : xk(t) 6 ξk})

=
〈
1{t∈R : x1(t)6ξ1} · · · 1{t∈R : xk(t)6ξk}

〉
t

(2.7)

exists for all (ξ1, . . . , ξk) ∈ R
k − Ξ0. �

In most cases, the joint relative measurability of any time-shifted versions of signals is re-
quired. This is the case, for example, when the cross-correlation and cross-moments of two or
more signals must be defined [29, Corollary 4.2].

The independence of sets is defined in terms of relative measure in [12, Def. 2.4], [27]. Then,
the independence of functions is defined in [12, Def. 2.5], [27], and the following result is proved.

Theorem 2.6. [12, Theorem 2.6]. The jointly RM functions x1(t), . . . , xk(t) are FOT-independent
if and only if

Fx1···xk
(ξ1, . . . , ξk) = Fx1(ξ1) · · ·Fxk

(ξk) ∀(ξ1, . . . , ξk) ∈ R
k − Ξ0 . (2.8)
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Note that in the FOT approach the independence condition (2.8) is a theorem. In contrast,
in the classical stochastic approach, the factorization of the kth-order joint distribution into the
product of the k marginal distributions is assumed as definition of independence for k stochastic
processes [14, Sec. 1.3].

Definition 2.7. Let x1(t), . . . , xk(t) be jointly RM functions. Their joint cumulant is defined
as

cumt {x1(t), . . . , xk(t)} , (−j)k
∂k

∂ω1 . . . ∂ωk
log

〈
ejω1x1(t) · · · ejωkxk(t)

〉
t

∣∣∣
ω=0

(2.9)

where ω , [ω1, . . . , ωk]. For k = 2 we have the FOT covariance covt[x1(t + s), x2(t)] ,
〈x1(t+ s) x2(t)〉t − 〈x1(t)〉t 〈x2(t)〉t. �

Definition 2.8. Let {xn(t)}n∈N be a sequence of RM functions. If a RM function x(t) exists
such that, for every real a and b,

lim
n→∞

µR

(
{t ∈ R : a < xn(t) 6 b}

)
= µR

(
{t ∈ R : a < x(t) 6 b}

)
(2.10)

the sequence {xn(t)}n∈N is said to be convergent with respect to µR to x(t) (RM weak convergence
or convergence in FOT distribution). �

Sufficient conditions for weak convergence are given in the assumptions of [12, Theorem 3.1].
Definition 2.8 can be straightforwardly extended to define the weak convergence (in terms

of joint relative measure) of jointly RM functions.

3. Time Average Estimation

In this section, for the time average estimate, the FOT characterization is derived in terms
of FOT bias, covariance, and distribution. For this purpose, assumptions are made directly on
the observed signal, without invoking the existence of an underlying stochastic process whose
signal at hand is a realization.

Let x(t) be a bounded RM function. Its time average is defined as

m , 〈x(t)〉t =
∫

R

ξ dFx(ξ) (3.1)

where the second equality is due to [29, Theorem 3.2].

Definition 3.1. Let x(t) be a RM function with time average m. The estimator m̂T (t) of m
based on the observation x(u), u ∈ [t− T/2, t + T/2], is defined as

m̂T (t) ,
1

T

∫ t+T/2

t−T/2
x(u) du =

1

T

∫ T/2

−T/2
x(u+ t) du =

∫

R

ξ dFT,t(ξ) . (3.2)

Note that in the classical stochastic approach, x(t) is modeled as a sample path of a stochastic
process, that is x(t) = X(t, ω) and the estimator of the time average has the same expression
(3.2). However, in such a case t is considered fixed (and generally assumed to be 0 or T/2)
and m̂T (t) is a random variable. That is, its variability is due to the dependence on ω ∈ Ω.
If some mixing and stationarity assumptions hold, as T → ∞ the estimate converges in some
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probabilistic sense to the expected value E{X(t, ω)} of the process [5], [14, Chap. XI], [21], [22],
[37, Chap. III]. In contrast, in the FOT approach, the variability of the estimate is due to t,
the central point of the observation interval, when t ranges in a wider temporal interval, say
[−Z/2, Z/2], with Z ≫ T [34, Sec. 6.3.5].

Theorem 3.2. Let x(t) be a bounded RM function with time average m. It results that

bias [m̂T (t)] , lim
Z→∞

1

Z

∫ Z/2

−Z/2
[m̂T (t)−m] dt = 0 . (3.3)

Proof: See Appendix. �

From Theorem 3.2 it follows that the rate of convergence as T → ∞ of the bias of estima-
tor m̂T (t) is arbitrarily fast for every bounded RM function (in particular for pseudo-random
functions (Sec. 4) and almost-periodic functions (Sec. 5)). That is, we have

lim
T→∞

T r bias [m̂T (t)] = 0 ∀r > 0 . (3.4)

3.1. Normalized Time Average

In this section, a FOT statistical characterization of the estimation error for the time average
is provided. The obtained results are useful in deriving confidence intervals for the estimate.

Assumption 3.3. For any k > 2 and any (τ1, . . . , τk) ∈ R
k the translated time series x(t +

τ1), . . . , x(t+ τk) are jointly RM. �

Since the translate of an almost-periodic function is in turn almost-periodic, and almost-
periodic functions are jointly RM [29, Theorem 6.3], we have that Assumption 3.3 is verified
by the translates of almost periodic functions. In addition, this assumption is verified by the
translates of a Agnew-Kac function (Sec. 4.2). Note that, in general, the translates of a RM
function are not necessarily jointly RM [29, Example 6.1].

Assumption 3.4. The function x(t) has a summable FOT covariance. That is

∫

R

|covt[x(t+ s), x(t)]| ds < ∞ . (3.5)

Assumption 3.5. For any k > 2 and any (τ1, . . . , τk−1) ∈ R
k−1 the functions x(t+τ1), . . . , x(t+

τk−1, x(t)) have joint kth-order cumulant such that, when T → ∞
∫ u+T/2

u−T/2
· · ·

∫ u+T/2

u−T/2︸ ︷︷ ︸
k−1

|cumt [x(t+ τ1 + s1), . . . , x(t+ τk−1 + sk−1), x(t)]|ds1 · · · dsk−1 = o(T k/2−1)

(3.6)

where o(·) can depend on τ1, . . . , τk−1. In (3.6), we can put u = 0 since the condition holds as
T → ∞. �

7



Note that Assumption 3.5 is verified if the functions x(t + τ1), . . . , x(t + τk−1), x(t) have
summable joint kth-order cumulant:

∫

Rk−1

|cumt [x(t+ τ1 + s1), . . . , x(t+ τk−1 + sk−1), x(t)]| ds1 · · · dsk−1 < ∞ . (3.7)

Assumptions 3.4 and 3.5 are verified if the signal x(t) and its time-shifted version x(t + τ)
are approximately FOT independent (see Theorem 2.6) when |τ | becomes large.

It is important to emphasize that Assumptions 3.3–3.5 refer to the single available function
of time. They do not involve any underlying stochastic process and their validity can be directly
verified on this single function.

Definition 3.6. Let x(t) be a bounded RM function. The normalized time average with rate of
convergence T a, a > 0, is defined as

m̃T (t) , T a [m̂T (t)−m] . (3.8)

Theorem 3.7. Central Limit Theorem. Under Assumptions 3.4 and 3.5, for any k > 2 and any
(τ1, . . . , τk) ∈ R

k, the vector of normalized time averages [m̃T (t+τ1), . . . , m̃T (t+τk)] having each
entry defined as in (3.8) with a = 1/2, converges in FOT-distribution to the multidimensional
Gaussian law with mean vector [0, . . . , 0] and covariance matrix {K(τi − τj)}ki,j=1 defined by

K(τ) , lim
T→∞

covt [m̃T (t+ τ), m̃T (t)] =

∫

R

covt[x(t+ τ + s), x(t)] ds . (3.9)

Proof: See Appendix. �

Note that Theorem 3.7 is different from the CLT in [12]. In fact, in [12] it is proved that a
properly normalized sum of functions independent in the FOT sense has a normal FOT distribu-
tion when the number of functions tends to infinity. In contrast, only one function is considered
in Theorem 3.7.

The well-known property that the marginal distributions obtained from a multidimensional
Gaussian distribution are in turn Gaussian leads to the following result which is an immediate
consequence of Theorem 3.7.

Corollary 3.8. Under Assumptions 3.4 and 3.5, the normalized time average m̃T (t) defined
in (3.8) with a = 1/2 converges in FOT-distribution to the Gaussian law with zero mean and
variance K(0). Hence, when K(0) > 0 we have

lim
T→∞

Fm̃T
(ξ) = lim

T→∞
µR

(
{t ∈ R : m̃T (t) 6 ξ}

)
=

1√
2πK(0)

∫ ξ

−∞
e−s2/2K(0) ds . (3.10)

�

Once the FOT distribution is obtained for the estimate, confidence intervals can be defined
exactly as in the classical stochastic approach.
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4. Pseudo-Random Functions

In this section, pseudo-random functions are considered. These functions are determinis-
tic with erratic behavior. At first, pseudo-random functions with ideal characteristics such
that the CLT (Theorem 3.7) is satisfied are defined and their FOT characterization provided.
Then, practical examples of functions that approximately fit this characterization are consid-
ered. Specifically, the Bass pseudo-random functions [3, Section V-3-5] and PAM signals with
modulating sequences obtained by a linear congruential generator (LCG) [23] are considered.

4.1. Ideal Pseudo-Random Functions

Definition 4.1. A deterministic sequence wn, n ∈ Z, is said to be pseudo-random white, in
short white, if it is zero mean and, for every integer k > 2, the kth-order cumulant of its shifted
versions is given by

cumn {wn+m1 , . . . , wn+mk
} , (−j)k

∂k

∂ω1 . . . ∂ωk
log

〈
ejω1wn+m1 · · · ejωkwn+mk

〉
n

∣∣
ω=0

= ck δm′−1mk
(4.1)

where 〈·〉n denotes the discrete-time infinite time average, m′ , [m1, . . . ,mk−1], 1 , [1, . . . , 1],
and δγ is the Kronecker delta, that is, δγ = 1 for γ = 0 and δγ = 0 for γ 6= 0. Therefore
δm′−1mk

= 1 only if m1 = · · · = mk−1 = mk. In (4.1), ck is the kth-order FOT cumulant of the
sequence wn defined as

ck , (−j)k
dk

dωk

〈
ejωwn

〉
n

∣∣∣∣
ω=0

. (4.2)

�

The behavior of such a sequence is unpredictable. For this reason wn is referred to as a
pseudo-random sequence.

From Definition 4.1, it follows that the pseudo-random white sequence wn can be seen as a
typical (i.e., satisfying the weak law of large numbers) realization of a sequence of independent
and identically distributed (i.i.d.) random variables.

Definition 4.2. Let {wn}n∈Z be the pseudo-random white sequence of Definition 4.1. The ideal
pseudo-random function x(t) is defined as

x(t) ,
+∞∑

n=−∞

wn q(t− nTp) t ∈ R (4.3)

provided that the series is convergent. In (4.3), Tp is the symbol period and q(t) is bounded and
q(t) ∈ L1(R). �

If q(t) has finite support, then a finite number of terms are non zero in the right-hand side
of (4.3) and the series is absolutely convergent. If q(t) has not necessarily finite support and the
sequence wn is bounded, then |wn| 6 M , for some M > 0, ∀n, and we have

∣∣∣
+∞∑

n=−∞

wn q(t− nTp)
∣∣∣ 6 M

+∞∑

n=−∞

|q(t− nTp)| .

In such a case, convergence in the right-hand side of (4.3) is assured by the condition q(t) =
O(|t|−2) as |t| → ∞.
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Lemma 4.3. The pseudo-random function defined in (4.3) has kth-order cumulant

cumt {x(t+ τ1), . . . , x(t+ τk)} =
ck
Tp

∫

R

q(t)

k−1∏

i=1

q(t+ τi − τk) dt . (4.4)

Proof: See Appendix. �

Theorem 4.4. Let x(t) be the pseudo-random function defined in (4.3) and m̃T (t) its nor-
malized time average with rate of convergence T a defined in (3.8). The kth-order cumulant of
m̃T (t+ τ1), . . . , m̃T (t+ τk) is such that

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} = O(T k(a−1)+1) . (4.5)

For k = 2 and a = 1/2 we have

lim
T→∞

covt {m̃T (t+ τ), m̃T (t)} =
c2
Tp

[∫

R

q(t) dt
]2

. (4.6)

Proof: See Appendix. �

Theorem 4.5. Under the assumptions of Theorem 4.4, for a = 1/2, the functions m̃T (t +
τ1), . . . , m̃T (t+ τk) are asymptotically (T → ∞) jointly normal.

Proof: See Appendix. �

4.2. Agnew-Kac Functions

Definition 4.6. The Agnew-Kac sequence is defined as [1]

an , cos
(
en

2
)

n ∈ Z . (4.7)

Theorem 4.7. k different shifted versions of the Agnew-Kac sequence an+m1 = cos(e(n+m1)2), . . . ,
an+mk

= cos(e(n+mk)
2
), with mi 6= mj for i 6= j, are independent in the FOT sense [12, Defini-

tion 2.5, Theorem 2.6], [29, Sec. 5].

Proof: See Appendix. �

Corollary 4.8. The Agnew-Kac sequence defined in (4.7) is white. That is, for every k > 2

cumn {an+m1 , . . . , an+mk
} = ck δm′−1mk

. (4.8)

Proof: See Appendix. �

For k = 2, (4.8) can be expressed as 〈an+m1 an+m2〉n = δm1−m2 , which is the autocorrelation
of the Agnew-Kac sequence an.

Definition 4.9. The Agnew-Kac pseudo-random function is defined as the pseudo-random func-
tion (4.3) with sequence wn replaced by the Agnew-Kac sequence defined in (4.7). �
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From Corollary 4.8 it follows that the Agnew-Kac sequence defined in (4.7) is a pseudo-
random white sequence according to Definition 4.1. Thus the Agnew-Kac pseudo-random func-
tion of Definition 4.9 is an example of ideal pseudo-random function (Definition 4.2). Conse-
quently, for the Agnew-Kac pseudo-random function Lemma 4.3, Theorem 4.4, and Theorem
4.5 hold.

The whiteness property of the Agnew-Kac sequence is a consequence of the very rapid vari-
ability of the argument of cosine in (4.7). Very rapidly increasing sequences, other than en

2
, can

be used in the argument of cosine to obtain other examples of pseudo-random white sequences.
From a computational point of view, note that the numerical values of en

2
and similar

rapidly increasing sequences, when stored in a (finite-length) memory register, are truncated
even for very small values of |n| . For example, in a double precision register, the value of en

2

is truncated even for |n| < 10. Thus, the Agnew-Kac sequence and similar sequences cannot
be suitably adopted to generate a white sequence in computer experiments. For this reason,
sequences less rapidly varying should be used as argument of cosine. This simplifies numerical
problems but gives rise to sequences whose whiteness is only approximate [1].

In the Sections 4.3 and 4.4, two examples of classes of binary pseudo-random sequences that
closely approximate a white pseudo-random sequence are presented.

4.3. Bass Functions

Definition 4.10. Let P (·) be a polynomial of degree greater than or equal to two with at least
one irrational coefficient for the second or higher power. The Bass pseudo-random sequence [3,
Section V-3-5] is defined as

bn , cos(π⌊P (n)⌋) = ejπ⌊P (n)⌋ n ∈ Z (4.9)

where ⌊·⌋ denotes the floor operator. �

The sequence bn assumes values ±1 with the same FOT probability. Thus, its time average
is zero.

Definition 4.11. Let {bn}n∈Z be the Bass pseudo-random sequence of Definition 4.10. The
Bass pseudo-random function [3, Section V-3-5] is defined as x(t) in (4.3) with wn replaced by
bn. �

Simulation results have shown that cumulants of bn+m1 , . . . , bn+mk
, as functions ofm1, . . . ,mk

are not spread and closely approach the expression in (4.1) up to a given order k, provided that
the order of the polynomial P (·) in definition 4.10 is sufficiently high and the coefficient of the
highest order power is irrational. In such a case, one obtains a close approximation of the normal
law for m̃T (t) with a = 1/2 (Section 6.1).

4.4. PAM Signal with Modulating Sequence Obtained by a LCG

The linear congruent generator is defined by the recurrence relation

xn+1 = (a xn + c) modm . (4.10)

The parameters m, a, and c are integers. m is called modulus and m > 0; a is called multiplier
and 0 < a < m; c is called increment and 0 6 c < m; x0 is called seed and 0 6 x0 < m. All
values assumed by integers xn are less than m and the sequence xn is periodic. The period of a
general mixed congruential generator depends on the choice of the parameters m, a, and c. It
is at most m and in some cases it can be much less than m.
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Theorem 4.12 ([23]). The sequence defined in (4.10) has full period m for all seed values
provided that 1) m and c are relatively prime; 2) a− 1 is divisible by all prime factors of m; 3)
a− 1 is divisible by 4 if m is divisible by 4. �

Different finite length sequences {xn, n = n0, . . . , n0 + N − 1} are obtained by initializing
(4.10) with different seeds. Each sequence, corresponding to a given n0, is a segment of the
unique periodic sequence defined in (4.10) with very large period. However, according to the
FOTmodel, each {xn, n = n0, . . . , n0+N−1} can be seen as a segment of an ideally infinitely long
aperiodic sequence, a pseudo-random sequence, provided that the overall observation interval
is smaller than the period of the periodic sequence defined in (4.10). This is the case in most
applications.

A pseudo-random sequence of numbers in the interval [0, 1) is obtained by taking the sequence
un , xn/m. Thus, vn , sign(un − 1/2) is a binary pseudo-random sequence. A pseudo-random
function (binary PAM signal) is then obtained by replacing in (4.3) the sequence wn with vn.

Several pseudo-random generators in various software packages are based on the LCG or its
variants. Statistical tests on these sequences are investigated, for example, in [7], [15].

5. Almost-Periodic Functions

In this section, almost-periodic functions [4, chap. 1] are defined and their FOT characteri-
zation provided.

5.1. FOT Characterization

Definition 5.1. A function x(t) is said to be uniformly almost-periodic (AP) [4, chap. 1] if ∀ǫ >
0 ∃ℓǫ > 0 such that for any interval (t0, t0 + ℓǫ) ∃τǫ ∈ (t0, t0 + ℓǫ) such that |x(t+ τǫ)− x(t)| <
ǫ ∀t ∈ R . The quantity τǫ is called a translation number of x(t) corresponding to ǫ. �

Each AP function x(t) is associated to a Fourier series with coefficients

xλ =
〈
x(t) e−jλt

〉
t

λ ∈ Λ (5.1)

where Λ is the countable set of the possibly incommensurate frequencies [4].

Assumption 5.2. The coefficients xλ defined in (5.1) are such that
∑

λ∈Λ

|xλ| < ∞ . (5.2)

Proposition 5.3. In [4] it is shown that any AP function is bounded and is the uniform limit
of a sequence of trigonometric polynomial functions. Furthermore, under Assumption 5.2, we
have

x(t) =
∑

λ∈Λ

xλ e
jλt . (5.3)

Remark 5.4. The time average of the AP function is equal to the Fourier coefficient for λ = 0,
that is, 〈x(t)〉t = x0. Thus, the coefficient xλ0 of the series expansion (5.3) of x(t) is equal to
the time average of e−jλ0t x(t) (see (5.1)). Therefore, the estimation of any Fourier coefficient
xλ0 can be reduced to the estimation of the time average of the AP function e−jλ0t x(t). Thus,
the results of this section regarding the estimation of the time average hold for the estimation of
any Fourier coefficient of an AP function. �
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Lemma 5.5. An almost-periodic function is RM [29, Theorem 6.1]. Two or more almost-
periodic functions are jointly RM [29, Theorem 6.3]. �

Lemma 5.6. Covariance. Let be x(t) given in (5.3). We have

covt {x(t+ τ + s1), x(t+ s2)} =
∑

λ6=0

|xλ|2 ejλτ ejλ(s1−s2) . (5.4)

Proof: The result follows from a straightforward calculation. �

Lemma 5.7. Cumulants. Let be x(t) given in (5.3). We have

cumt {x(t+ v1), . . . , x(t+ vk)} =
∑

P

(−1)p−1(p− 1)!
∑

λ1∈Λ

· · ·
∑

λk∈Λ

( k∏

i=1

xλi
ejλivi

) ( p∏

i=1

δ
λ
T
νi
1

)
(5.5)

where P is the set of distinct partitions {ν1, . . . , νp} of {1, . . . , k}, λνi is the vector whose entries
are λℓ with ℓ ∈ νi, and 1 , [1, . . . , 1]. Note that in (5.5), Λ can be replaced by Λ \ {0}.

Proof: See Appendix. �

5.2. Normalized Time Average

From Lemmas 5.6 and 5.7 we have that almost-periodic functions do not satisfy Assumptions
3.4 and 3.5. In this section, asymptotic results for normalized time average (3.8) of AP functions
are established.

The estimator of the time average of the AP function (5.3) can be expressed as

m̂T (t) ,
1

T

∫ t+T/2

t−T/2
x(u) du = x0 +

∑

λ6=0

xλ
λ

2 ejλT/2 sin(λt) . (5.6)

Lemma 5.8. The kth-order cumulant of the normalized time average (3.8) of the almost-
periodic function (5.3) under Assumption 5.2 is given by

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} = T k(a−1)
∑

P

(−1)p−1(p− 1)!

∑

λ1 6=0

· · ·
∑

λk 6=0

( k∏

i=1

xλi
ejλiτi

) ( p∏

i=1

δ
λ
T
νi
1

)
2k

k∏

i=1

sin(λiT/2)

λi
. (5.7)

In particular, for the covariance we have

covt {m̃T (t+ τ), m̃T (t)} = cumt {m̃T (t+ τ), m̃T (t)} = 4T 2(a−1)
∑

λ6=0

|xλ|2 ejλτ
sin2(λT/2)

λ2
(5.8)

Proof: See Appendix. �

Assumption 5.9. The almost-periodic function x(t) with series (5.3) is such that λ = 0 is not
a cluster of cycle frequencies. That is,

λinf , inf
λ∈Λ
λ6=0

|λ| > 0 . (5.9)
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Lemma 5.10. Let x(t) be a non constant almost-periodic function satisfying Assumptions 5.2
and 5.9. For the normalized time average m̃T (t) with rate of convergence T a defined in (3.8),
we have that for every k > 2

lim
T→∞

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} = 0 0 6 a < 1 (5.10)

lim
T→∞

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} does not exist a = 1 (5.11)

lim sup
T→∞

|cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}| < ∞ a = 1 (5.12)

lim
T→∞

|cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}| = ∞ a > 1 . (5.13)

For k = 2 we deduce the asymptotic behavior for the covariance covt {m̃T (t+ τ), m̃T (t)}.
Proof: See Appendix. �

From Lemma 5.10 and Theorem 3.2, it follows that for 0 6 a < 1 the normalized time
average m̃T (t) defined in (3.8) as T → ∞ converges weakly in the FOT sense (Def. 2.8) to the
distribution degenerated in zero.

From Lemma 5.10, we have that for a = 1 the covariance covt{m̃T (t + τ), m̃T (t)} is not
convergent as T → ∞. However, since |covt{m̃T (t+ τ), m̃T (t)}| is bounded, sequences {Tn}n∈N
exist such that the limit limn→∞ covt{m̃Tn(t + τ), m̃Tn(t)} exists and is finite (and depends
on the considered sequence {Tn}n∈N). Analogously, we have that for a = 1 the cumulant
cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} is not convergent as T → ∞. However, since |cumt{m̃T (t +
τ1), . . . , m̃T (t + τk)}| is bounded (see (A.17) and following sentence), sequences {Tn}n∈N exist
such that the limit limn→∞ cumt {m̃Tn(t+ τ1), . . . , m̃Tn(t+ τk)} exists and is finite.

In line with the above considerations, we have the following results.

Theorem 5.11. FOT Distribution of the Normalized Time Average of a Periodic Function.
Let x(t) be measurable, locally integrable, and periodic with period P > 0. Let us consider the
sequence of data-record lengths Tn = 2nP + ρn with ρn → ρ ∈ [0, 2P ) as n → ∞.

For the normalized time average (3.8) with a = 1 we have

lim
n→∞

m̃Tn(t) = lim
n→∞

Tn [m̂Tn(t)−m] = Ψρ(t) (5.14)

where

Ψρ(t) ,
∫ t+ρ/2

t−ρ/2
[x(u)−m] du . (5.15)

In addition, in the continuity points of FΨρ(ξ) we have

lim
n→∞

Fm̃Tn
(ξ) = lim

n→∞
µR ({t ∈ R : m̃Tn(t) 6 ξ}) = µR ({t ∈ R : Ψρ(t) 6 ξ}) , FΨρ(ξ) (5.16)

where Fm̃Tn
(ξ) and FΨρ(ξ) are the FOT distributions of m̃Tn(t) and Ψρ(t), respectively.

Proof: See Appendix. �

Notice that the function Ψρ(t) is periodic in t with period P , and periodic in ρ with period
2P . Moreover Ψ0(t) = ΨP (t) = 0. Thus, whenever ρ = 0 or ρ = P , the limit FOT-distribution
FΨρ(ξ) is the Dirac measure at 0.
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Example 5.12. Let be x(t) = cos(2πνt+ ϕ), where ν > 0 and P = 1/ν. We have that

m = 0 (5.17)

covt[x(t+ τ), x(t)] =
1

2
cos(2πντ) (5.18)

m̂T (t) =
1

πνT
cos(2πνt+ ϕ) sin(πνT ) (5.19)

covt[m̂T (t+ τ), m̂T (t)] =
1

2π2ν2T 2
sin2(πνT ) cos(2πντ) (5.20)

Ψρ(t) =
1

πν
cos(2πνt+ ϕ) sin(πνρ) . (5.21)

The FOT probability density of Ψρ(t) is

fΨρ(ξ) =
ν√

sin2(πνρ)− π2ν2ξ2
for |ξ| < | sin(πνρ)|

πν
and 0 otherwise . (5.22)

Theorem 5.13. FOT Distribution of the Normalized Time Average of the Sum of Two Periodic
Functions with Incommensurate Periods. Let be x(t) = x1(t) + x2(t), where each xi(t) is locally
integrable and periodic with period Pi. The periods are assumed incommensurate, that is, they
are not relatively rational.

1) Let
Tn = 2n1,nP1 + ρ1,n = 2n2,nP2 + ρ2,n (5.23)

with n1,n, n2,n → ∞, ρ1,n → ρ1 ∈ [0, 2P1), and ρ2,n → ρ2 ∈ [0, 2P2) as n → ∞. We have

lim
n→∞

m̃Tn(t) = lim
n→∞

Tn

(
m̂Tn(t)−m

)
= Ψρ1

1 (t) + Ψρ2
2 (t) , Ψρ1,ρ2(t) (5.24)

where Ψρi
i (t), i = 1, 2 are defined according to (5.15). In addition, in the continuity points

of FΨρ1,ρ2 (ξ) we have

lim
n→∞

Fm̃Tn
(ξ) = lim

n→∞
µR ({t ∈ R : m̃Tn(t) 6 ξ})

= µR ({t ∈ R : Ψρ1
1 (t) + Ψρ2

2 (t) 6 ξ}) , FΨρ1,ρ2 (ξ) (5.25)

2) Conversely, when there is a sequence {Tn}n converging to infinity such that Tn(m̂Tn(t)−m)
converges in FOT-distribution, then the limit is necessarily a FOT-distribution FΨρ1,ρ2 (ξ)
for some 0 6 ρ1 < 2P1 and 0 6 ρ2 < 2P2.

3) For each ρ1 ∈ [0, 2P1) and ρ2 ∈ [0, 2P2), there is a subsequence of Tn(m̂Tn(t) −m) which
converges to Ψρ1(t) + Ψρ2(t).

Proof: See Appendix. �

This theorem can be easily generalized to any almost periodic signal x(t) which is the sum
of a finite number of periodic functions with linearly independent periods.

Finally, note that the results in Theorems 5.11 and 5.13 are novel in the FOT approach and
do not have any counterpart in the classical stochastic approach.
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6. Numerical Results

In this section we present numerical results that illuminate the theory developed in Sections
4 and 5.

6.1. Bass Functions

A finite segment of the Bass function (Definition 4.11) is built with q(t) = sinc2(t/Tp), where
Tp = 4Ts, with Ts sampling period. The Bass sequence {bn}n=0,...,N−1 is generated according to
(4.9) by using a 3rd-order polynomial P (n) = p0+p1 n+p2 n

2+p3 n
3 with coefficients p0 =

√
2,

p1 =
√
1.5, p2 =

√
0.7, and p3 =

√
0.15.

Let

µT ,
〈
m̃T (t)

〉
t

and σT ,

[〈[
m̃T (t)− µT

]2〉

t

]1/2
(6.1)

be the FOT mean and FOT standard deviation of m̃T (t), respectively. Here 〈·〉t denotes the
average over t ∈ [−Z/2, Z/2].

The FOT probability density function (pdf) of the normalized time-average m̃T (t) with
a = 1/2 (see (3.8)) is evaluated for different values of data-record length Z = NTs (N even for
the sake of simplicity) and T . It is assumed T =

√
NTs. Therefore, in the ideal case where

Z → ∞ we have T → ∞ with Z/T → ∞.
The FOT pdf of [m̃T (t)−µT ]/σT (with a = 1/2) is computed by the kernel-based estimator

[38, Sec. 2.1.8, pp. 64-65]

f
(kernel)
N (ξ) =

∫ +∞

−∞
β−1
N W

(ξ − t

βN

)
dFN (t) ≃

N/2∑

i=−N/2

W
(ξ − ξi

βN

) 1

(N + 1) βN
(6.2)

and is compared with the standard normal pdf. In (6.2), [ξ1, . . . , ξN ] represents the sample
with ξi , [m̃T (iTs) − µT ]/σT . The function W (ξ) = e−ξ2/2/

√
2π is the kernel, and the scaling

parameter βN is chosen according to the Silverman’s rule: βN = (4/3)1/5N−1/5. The estimation
procedure is summarized in Table 1.

The pdf f
(kernel)
N (ξ) is evaluated in Np = 2((Z − T )/Ts)

1/3 points (Rice rule) uniformly
distributed in the interval [−5.5, 5.5].

The kernel-based estimator and the QQ plot of the sample data are compared with the
standard normal for N = 50 · 103 (Fig. 1), N = 100 · 103 (Fig. 2), and N = 500 · 103 (Fig. 3).
The convergence of the kernel-based pdf estimator to the standard normal is evident.

compute µT , σT by (6.1)

compute ξi = [m̃T (iTs)− µT ]/σT
for i = −N/2, . . . , N/2

compute f
(kernel)
N (ξ) by (6.2)

Table 1: FOT pdf estimation algorithm.

In order to have a quantitative measure of the convergence of the kernel-based pdf estimate
to the standard normal, the Kolmogorov-Smirnov metric

DN , sup
ξ

∣∣∣F (kernel)
N (ξ)− Fnormal(ξ)

∣∣∣ (6.3)
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Figure 1: N = 50 · 103. Left: Kernel-based estimator of the FOT pdf versus standard normal. Right: QQ
plot of sample data versus standard normal.
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Figure 2: N = 100 · 103. Left: Kernel-based estimator of the FOT pdf versus standard normal. Right:
QQ plot of sample data versus standard normal.

with

F
(kernel)
N (ξ) =

N/2∑

i=−N/2

∫ ξ

−∞
W

(u− ξi
βN

)
du

1

(N + 1) βN
(6.4)

and the L1 metric

LN ,
∫

R

∣∣∣dF (kernel)
N (ξ)− dFnormal(ξ)

∣∣∣ =
∫

R

∣∣∣f (kernel)
N (ξ)− fnormal(ξ)

∣∣∣ dξ (6.5)

are computed for N = 50 · 103, 100 · 103 and 500 · 103. The results are reported in Table 2.

6.2. Almost-Periodic Functions

In order to illustrate the result of Theorem 5.13, the sum of two sinusoids with incom-
mensurate frequencies is considered. At least one frequency must be irrational and, hence, at
discrete-time, at least one sinusoid must be almost periodic. In fact, at discrete time, a sinu-
soid is periodic only if the frequency is a rational number. Therefore, strictly speaking, the
discrete-time counterpart of (A.19) does not hold. However, a close approximate equality in the
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Figure 3: N = 500 · 103. Left: Kernel-based estimator of the FOT pdf versus standard normal. Right:
QQ plot of sample data versus standard normal.

N DN LN

50 · 103 0.0208 0.0754

100 · 103 0.0129 0.0587

500 · 103 0.0063 0.0314

Table 2: Kolmogorov-Smirnov metric DN and L1 metric LN for increasing values of N .

discrete-time counterpart of (A.19) is obtained if the discrete-time signal is obtained by sampling
a continuous-time signal with sufficiently high sampling rate.

Let us consider the continuous-time signal x(t) = cos(2πf1t)+cos(2πf2t) with 1/f1 = P1 = 1
and 1/f2 = P2 = π sampled with period Ts = 10−2 s. Let us assume ρ1 = 1/2 and ρ2 = 1.

By taking n1,n = n and ρ1,n = ρ1, the sequences Tn, n2,n, and ρ2,n are given by

Tn = 2nP1+ρ1 = 2n2,nP2+ρ2,n n2,n =
⌊2nP1 + ρ1

2P2

⌋
ρ2,n = 2nP1+ρ1−2n2,nP2 . (6.6)

For each n, the integer nk 6 n is chosen such that |ρ2,nk
− ρ2| is minimum. We obtain the

results in Table 3.

nk n1,nk
ρ1,nk

n2,nk
ρ2,nk

Tnk
[s]

16 16 0.5 5 1.08407 32.5

195 195 0.5 62 0.942511 390.5

239 239 0.5 76 0.977917 478.5

261 261 0.5 83 0.99562 522.5

616 616 0.5 196 0.99568 1232.5

971 971 0.5 309 0.99574 1942.5

Table 3: Sequences.

The FOT probability density function (pdf) of the normalized time-average m̃Tnk
(t) with

a = 1 (see (3.8)) is evaluated for different values of data-record length Z = NTs (N even) and
Tnk

. It is assumed that Z grows faster than Tnk
as nk increases. The kernel-based estimate
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(6.2) is adopted and is compared with the theoretical pdf ftheoretical(ξ). The two sinusoids with
incommensurate frequencies are independent functions in the FOT sense [12], [26, Chap. 4], [27].
Thus,

ftheoretical(ξ) = fΨρ1
1
(ξ)⊗ fΨρ2

2
(ξ) (6.7)

where ⊗ denotes the convolution and fΨρi
i
(ξ) are defined according to (5.22). In addition, for

the sake of comparison, the density of Ψρ1,ρ2(t) = Ψρ1
1 (t) + Ψρ2

2 (t) is estimated with the kernel
method. The kernel and the scaling parameter for the density estimation are chosen as in Section
6.1.

In Figs. 4–6, the estimated FOT pdf of m̃Tnk
(t) (thick solid line), the numerically evaluated

theoretical pdf (6.7) (thin solid line), and estimated FOT pdf of Ψρ1,ρ2(t) (thin dotted line) are
reported for Tnk

= 32.5 s, Z = 200 Tnk
(Fig. 4), Tnk

= 390.5 s, Z = 250 Tnk
(Fig. 5), and

Tnk
= 522.5 s, Z = 300 Tnk

(Fig. 6).
A quantitative measure of the convergence of the kernel-based pdf estimate to the theoret-

ical pdf (6.7) when the data-record length increases along the sequence {Tnk
}, is obtained by

computing the Kolmogorov-Smirnov metric

DN , sup
ξ

∣∣∣f (kernel)
N (ξ)− ftheoretical(ξ)

∣∣∣ (6.8)

and the L1 metric

LN =

∫

R

∣∣∣f (kernel)
N (ξ)− ftheoretical(ξ)

∣∣∣ dξ . (6.9)

Results for the values of Tnk
considered in Figs. 4–6 are reported in Table 4.

Tnk
[s] DN LN

32.5 0.285 0.228

390.5 0.224 0.186

522.5 0.176 0.056

Table 4: Kolmogorov-Smirnov metric DN and L1 metric LN for increasing values of Tnk
.

The results in Figs. 4–6 and Table 4 confirm the convergence along subsequences proved in
Theorem 5.13.

In order to illustrate the convergence to different distributions depending on the values of ρ1
and ρ2, an experiment with ρ2 = 0.4 is carried out. In Fig. 7, the result when the approximation
of the estimate to the theoretical distribution is close is reported.
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Figure 4: Tnk
= 32.5 s. Estimated FOT pdf of

m̃Tn
k
(t) (thick solid line), numerically evaluated

theoretical pdf (6.7) (thin solid line), estimated
FOT pdf of Ψρ1,ρ2(t) (thin dotted line).
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Figure 5: Tnk
= 390.5 s. Estimated FOT pdf of

m̃Tn
k
(t) (thick solid line), numerically evaluated

theoretical pdf (6.7) (thin solid line), estimated
FOT pdf of Ψρ1,ρ2(t) (thin dotted line).
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Figure 6: Tnk
= 522.5 s. Estimated FOT pdf of

m̃Tn
k
(t) (thick solid line), numerically evaluated

theoretical pdf (6.7) (thin solid line), estimated
FOT pdf of Ψρ1,ρ2(t) (thin dotted line).
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Figure 7: Tnk
= 1156.5 s, Z = 500Tnk

. Estimated
FOT pdf of m̃Tn

k
(t) (thick solid line), numerically

evaluated theoretical pdf (6.7) (thin solid line),
estimated FOT pdf of Ψρ1,ρ2(t) (thin dotted line).

7. Application

7.1. Test for Presence of a Non-Zero-Mean Cyclostationary Signal

In the context of cyclostationary signal analysis, the cyclic correlogram is adopted as estima-
tor of the cyclic autocorrelation function, a key parameter adopted in a plethora of applications
[35].

In the classical stochastic process framework, a properly normalized version of the cyclic
correlogram can be proved to be asymptotically normal for a zero mean process under mild
mixing assumptions, possibly expressed in terms of summability of cumulants [8], [11]. Thus,
the result is not valid, in particular, if the process x(t) contains an additive almost-periodic
component.

In this section, by exploiting Theorem 3.7 and Lemma 5.10, the asymptotic normality of a
properly normalized version of the cyclic correlogram is proved in the FOT framework for the
case of signals possibly containing and additive almost-periodic component. Such a problem
is of interest in communications when (possibly intentional) interfering tones are superposed
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to the zero-mean signal of interest [35] or in machine monitoring and diagnostics [2]. Thus, a
cyclostationarity detector, based on the asymptotic normality of the cyclic periodogram, origi-
nally derived in the case of zero-mean signals, is proved to be effective even in the case of strong
sinewave components superimposed to the signal of interest.

Every signal can be decomposed into the sum of an almost-periodic component and a residual
term not containing any finite-strength additive sinewave component. In the most general case,
almost periodicity must be considered in a generalized sense [34, Sec. 6.3.1]. In the following,
the decomposition is considered with some further regularity assumptions on the almost-periodic
component and the residual term.

Let us consider signals for which the following decomposition holds x(t) = xuap(t) + xr(t),
where xuap(t) is a uniformly almost-periodic function with Fourier series

xuap(t) =
∑

η∈E1

xη e
j2πηt (7.1)

and xr(t) is a residual term not containing any finite-strength sinewave component, that is

〈
xr(t) e

−j2πηt
〉
t
= 0 ∀η ∈ R . (7.2)

Let us assume that the Fourier series in (7.1) is absolutely convergent, the functions of any set
of translates xr(t+ s1), . . . , xr(t+ sk) are jointly RM, xr(t+ s) and xuap(t) are jointly RM, and
xr(t) is such that Assumptions 3.4 and 3.5 are satisfied and, moreover, (3.7) holds at least for
k = 4.

The cyclic autocorrelation of x(t) at cycle frequency α is [35, Eq. (2.5)]

Rα
x (τ) ,

〈
x(t+ τ) x(t) e−j2παt

〉
t
=

∑

η∈E1

xη x
∗
η−α ej2πητ +Rα

xr
(τ) . (7.3)

With reference to the notation of Section 3, the infinite time average m ≡ Rα
x(τ) is estimated

by the finite-time average m̂T (t) ≡ R
(T )
x (α, τ ; t), where

R(T )
x (α, τ ; t) ,

1

T

∫ t+T/2

t−T/2
x(u+ τ) x(u) e−j2παu du (7.4)

is the cyclic correlogram of x(t). We have

√
T [m̂T (t)−m] ≡

√
T
[
R(T )

x (α, τ ; t) −Rα
x(τ)

]

=
√
T
[∑

η1

∑

η2

xη1 x
∗
η2 e

j2πη1τ 1

T

∫ t+T/2

t−T/2
e−j2π(α−η1+η2)u du−

∑

η∈E1

xη x
∗
η−α ej2πητ

]

+
√
T
[∑

η

xη
1

T

∫ t+T/2

t−T/2
xr(u+ τ) e−j2π(α−η)u du− 0

]

+
√
T
[∑

η

xη e
j2πητ 1

T

∫ t+T/2

t−T/2
xr(u) e

−j2π(α−η)u du− 0
]

+
√
T
[ 1
T

∫ t+T/2

t−T/2
xr(u+ τ) xr(u) e

−j2παu du−Rα
xr
(τ)

]
(7.5)
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When T → ∞, the first term approaches zero due to (5.10) (Lemma 5.10).
Since xr(t) satisfies Assumptions 3.4 and 3.5, also the real and imaginary parts of xr(t)e

j2πγt

do. Furthermore, similarly to the case of stochastic cumulants, the kth-order FOT cumulant
of the lag products xr(t + τ + si) xr(t + si), i = 1, . . . , k, can be expressed in terms of FOT
cumulants of xr(t+ si) up to order 2k [28], [5, Sec. 2.3], [34, pp. 83, 84]. Thus, since (3.7) with
k = 4 and Assumptions 3.4 and 3.5 hold for xr(t), then Assumptions 3.4 and 3.5 also hold for
the lag-product waveform xr(t+τ)xr(t). In particular, (3.7) with k = 4 assures the summability
of the covariance of xr(t+ τ) xr(t).

Therefore, the real and imaginary parts of second, third, and fourth term in the right-hand
side of (7.5) are asymptotically jointly normal due to Theorem 3.7. Consequently, the real and
imaginary parts of their sum are asymptotically jointly normal.

In conclusion, Theorem 3.7 and Lemma 5.10 allow one to establish the asymptotic joint
normality of real and imaginary parts of the properly normalized cyclic periodogram even in
the case of non-zero mean signal, a result that is not available in the literature in the stochastic
process framework and that cannot be established in this framework.

As an example of application, let us consider the problem of testing the presence of cyclo-
stationarity in the available data x(t) by the statistical test proposed in [8] (in the stochastic
process framework). The FOT counterpart of this test is based on the asymptotic joint normal-
ity of the real and imaginary parts of the function of t in (7.5). Specifically, defined the column

vector r , [Re{R(T )
x (α, τ ; t)}, Im{R(T )

x (α, τ ; t)}]T and its FOT covariance matrix Σ, the test

H0 : Rα
x(τ) = 0

H1 : Rα
x(τ) 6= 0

(7.6)

based on the observation of x(u) for u ∈ [t− T/2, t+ T/2] reduces to

Q(T )(t) , T r
TΣ−1

r
H1

≷
H0

λ (7.7)

where the threshold λ is analytically determined starting from the FOT false alarm rate Pfa

since Q(T )(t) has asymptotically a χ2
2 FOT distribution Fχ2

2
(ξ) under H0. That is, we have

λ = F−1
χ2
2
(1− Pfa).

Note that test (7.7) is formally analogous to the one derived in [8] since both are obtained
by straightforward calculation on Gaussian densities. However, the test statistic Q(T )(t) is a
function of time while its analogous in [8] is a random variable and does not depend on t. In [8],
the performance analysis is made in terms of probability of missed detection and probability of
false alarm. In contrast, in Section 7.2, the FOT counterparts of these probabilities are defined
and adopted for performance analysis in the FOT approach.

Test (7.7) is derived in the stochastic process framework under the assumption that the
process x(t) has summable cumulants and, in particular, is zero mean. The non-zero-mean case
is addressed in [8, Sec. II-B] where two situations are considered. In the first one, the non zero
mean is due to a transient added function that does not give contribution to the computation of
the cyclic autocorrelation. In the second one, it is assumed that the non zero mean is consistently
estimated and then subtracted from the original process x(t).

The estimation of the mean is not practical if the almost-periodic component is not periodic
and with many unknown frequencies. However, according to the results of this section, such
estimation procedure can be avoided by performing test (7.7) directly on the available data x(t).
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7.2. Simulation Setup

In this section, the simulation setup in the FOT probability framework is defined and the
correspondence with the analogous setup in classical stochastic framework is clarified.

For the test statistic Q(T )(t) defined in (7.7) the FOT probability of missed detection is
defined as

Pmd , µR

({
t ∈ R : Q(T )(t) 6 λ | H1

})
= lim

Z→∞

1

Z

∫ Z/2

−Z/2
1{Q(T )(t)6λ |H1}

dt . (7.8)

It is worthwhile to underline that in the FOT framework the time variable t plays the same
role played in the stochastic approach by the variable ω ranging in the sample space. Thus,
the FOT probability of missed detection Pmd is defined in terms of relative measure µR and is
the temporal average of the indicator of the set of values of t such that Q(T )(t) 6 λ under the
hypothesis that Rα

x(τ) 6= 0. In contrast, in the classical stochastic approach, the probability of
missed detection is defined in terms of a measure on the sample space Ω and is the ensemble
average of the indicator of the event that the test statistic is less than the threshold under the
hypothesis H1.

Similarly, the FOT probability of false alarm is defined as

Pfa , µR

({
t ∈ R : Q(T )(t) > λ |H0

})
= lim

Z→∞

1

Z

∫ Z/2

−Z/2
1{Q(T )(t)>λ |H0}

dt . (7.9)

The estimate of Pmd over the finite data-record length t ∈ [−Z/2, Z/2] is obtained as

P
(Z)
md =

1

Z

∫ Z/2

−Z/2
1{Q(T )(t)6λ | H1}

dt ≃ 1

2M + 1

M∑

m=−M

1{Q(T )(mTs)6λ |H1}
(7.10a)

≃ 1

2L+ 1

L∑

ℓ=−L

1{Q(T )(ℓhTs)6λ |H1}
. (7.10b)

The approximate equality in (7.10a) is due to the discrete time approximation of the continuous
time average with sampling period Ts, where 2M + 1 is the largest odd integer less than Z/Ts.
In (7.10a), 2M + 1 data-blocks of length T = NTs are used to compute the values Q(T )(mTs)
for the average. Two adjacent blocks are temporally shifted one another by Ts and overlap by
N − 1 samples. The approximate equality (7.10b) is to reduce the computational complexity
of (7.10a). In fact, in (7.10b), two adjacent blocks are temporally shifted one another by hTs

and overlap by max{0, N − h} samples. Only L < M blocks of length T are considered for
computing the average, where L depends on the value of h. If h > N , blocks do not overlap. In
such a case we have the FOT counterpart of the Monte Carlo simulations made in the classical
stochastic approach.

The simulation procedure is summarized in Table 5

7.3. Numerical Results

The cyclostationary signal-of-interest (SOI) contained in x(t) is obtained by filtering a PAM
signal (Sec. 4.4) with stationary white binary modulating sequence, rectangular pulse with
50% duty cycle, and symbol period Tp = 8Ts, where Ts = 1/fs is the sampling period. The
adopted filter is a one-pole system with bandwidth fs/8. The SOI exhibits cyclostationarity
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compute r , [Re{R(T )
x (α, τ ; t)}, Im{R(T )

x (α, τ ; t)}]T
for t = ℓhTs, ℓ = −L, . . . , L

estimate Σ by moving block bootstrap [36]

compute Q(T )(t) by (7.7)
for t = ℓhTs, ℓ = −L, . . . , L

compute λ = F−1
χ2
2
(1− Pfa)

estimate Pmd by P
(Z)
md given in (7.10b)

Table 5: FOT Monte Carlo simulation to estimate Pmd.

at cycle frequencies α = k/Tp, with k integer. Additive Gaussian noise with slowly varying
power spectral level flat within the bandwidth (−fs/2, fs/2) and two equal power sinusoidal
tones are superimposed to the SOI. The frequencies of the two tones are 1/(2Tp) and

√
2/(2Tp).

Thus, their sum is almost-periodic. According to (7.3), the tone at frequency 1/(2Tp) gives
non-zero contribution to the cyclic autocorrelation at cycle frequency α = 1/Tp. If considered
as interference, the magnitudes of the two tones, compared to the magnitude of SOI, are such
that the signal-to-interference ratio (SIR) is –10 dB.

The test (7.7) is performed at (α, τ) = (1/Tp, 0). Nb = 28 bits are processed to compute
the cyclic correlograms. Thus, the data-record length is N = T/Ts = NbTp/Ts = 211. The
covariance matrix Σ is estimated by moving block bootstrap [36] with subsamples (blocks) of
length T taken when t ranges in [−Z/2, Z/2]. See also [13], [34, Secs. 2.6.4.1, 6.3.5].

105 Monte Carlo experiments are carried out to evaluate the test performance in terms
of FOT probability of missed detection Pmd as a function of the Gaussian signal-to-noise ratio
(SNR) for fixed values of Pfa that determine the threshold λ. In the FOT context, different signal
segments used for the Monte Carlo simulation are taken from a unique time series observed in
a time interval [−Z/2, Z/2] with Z ≫ T . The results reported in Fig. 8, according to the
theoretical results of Section 7.1, show the effectiveness of test (7.7) even in the case of strong
additive almost-periodic component.
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Figure 8: Pmd as function of SNR for (�) Pfa = 10−2, (◦) Pfa = 10−3, and (∗) Pfa = 10−4.

8. Conclusion

Time average estimation is addressed in the fraction-of-time probability framework. For
an observed signal, modeled as a single function of time, summability of temporal cumulants
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is assumed. Then, a central limit theorem (Theorem 3.7) is proved for the normalized time
average estimation error, with normalizing factor equal to the square root of the observation
interval length. The Agnew-Kac pseudo-random functions are shown to satisfy the sufficient
conditions for the CLT. These functions, however, are difficult to be implemented. Thus, as close
approximations, the Bass functions and functions whose modulating sequences are obtained by
a linear congruent generator are considered since they are suitable models for signals of interest
in communications. The notable class of the almost-periodic functions is also considered. In
such a case, it is shown that a singular distribution is obtained when the normalizing factor is
the square root of the observation interval length. However, a non normal limit distribution
for the normalized error of the time average estimate can be obtained when the normalizing
factor equals the observation interval length. The limit distribution is shown to depend on the
sequence adopted to perform the limit (Theorems 5.11 and 5.13). This result cannot be obtained
in the classical stochastic approach. Several numerical examples illustrate the theoretical results.
As an example of application, the asymptotic normality of the estimation error of the cyclic
autocorrelation is proved in the case of non-zero mean signals and the result is exploited for
cyclic detection.

Appendix A. Proofs

Proof of Theorem 3.2

Using (3.2), for every finite T and Z we have

1

Z

∫ Z/2

−Z/2
[m̂T (t)−m] dt =

1

T

∫ T/2

−T/2

1

Z

∫ Z/2

−Z/2
[x(u+ t)−m] dt du (A.1)

where the interchange of the order of integrals is granted by the Fubini and Tonelli theorem
[6, Sec. 3.4]. In fact, x(t) is Lebesgue measurable and bounded and both integration intervals
[−T/2, T/2] and [−Z/2, Z/2] are finite. In the limit as Z → ∞ we have

lim
Z→∞

1

Z

∫ Z/2

−Z/2
[m̂T (t)−m] dt = lim

Z→∞

1

T

∫ T/2

−T/2

1

Z

∫ Z/2

−Z/2
[x(u+ t)−m] dt du

=
1

T

∫ T/2

−T/2
lim

Z→∞

1

Z

∫ Z/2

−Z/2
[x(u+ t)−m] dt du = 0 (A.2)

where the limit in Z in the third term is zero due to (3.1). The interchange of limit and integral
operations in (A.2) is allowed by the dominated convergence theorem [6, Sec. 4.3]. In fact, since
x(t) is bounded, for some C > 0 we have that supt |x(t)| < C. Hence,

∣∣∣ 1
Z

∫ Z/2

−Z/2
[x(u+ t)−m] dt

∣∣∣ 6 1

Z

∫ Z/2

−Z/2
|x(u+ t)−m| dt 6 2C

with the right-hand side summable in [−T/2, T/2] and independent of Z.

Proof of Theorem 3.7

The asymptotic zero mean for every a is consequence of Theorem 3.2.
In the following, it is proved that for a = 1/2 the asymptotic covariance is finite and joint

cumulants of order 3 or greater are asymptotically zero. Therefore, accounting for (2.9) (with
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xi(t) replaced by m̃T (t + τi)), we have that, asymptotically, the logarithm of the FOT charac-
teristic function of m̃T (t + τi), i = 1, . . . , k, is a quadratic homogeneous polynomial in the real
variables ωi’s. That is, for a = 1/2, the functions m̃T (t+ τi) have asymptotically a joint normal
FOT distribution.

For k > 2 we have the following equalities:

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}

= cumt

{
T a−1

∫ t+τ1+T/2

t+τ1−T/2
x(u1) du1, . . . , T

a−1

∫ t+τk+T/2

t+τk−T/2
x(uk) duk

}

= T k(a−1)

∫ T/2

−T/2
· · ·

∫ T/2

−T/2︸ ︷︷ ︸
k

cumt

{
x(t+ τ1 + v1), . . . , x(t+ τk + vk)

}
dv1 · · · dvk

= T k(a−1)

∫ T/2

−T/2
· · ·

∫ T/2

−T/2︸ ︷︷ ︸
k

cumt

{
x(t+ τ1 + v1 − vk), . . . , x(t+ τk−1 + vk−1 − vk), x(t+ τk)

}
dv1 · · · dvk

= T k(a−1)

∫ T/2

−T/2

∫ T/2−vk

−T/2−vk

· · ·
∫ T/2−vk

−T/2−vk︸ ︷︷ ︸
k−1

cumt

{
x(t+ τ1 + s1), . . . , x(t+ τk−1 + sk−1), x(t+ τk)

}
ds1 · · · dsk−1 dvk

(A.3)

where in the first equality subtracting the constant value T a m to all functions of t does not
modify the cumulant; in the second equality the variable changes ui = t+τi+vi, i = 1, . . . , k are
made; in the third equality the multilinearity property of cumulants is used to interchange the

cumulant cumt{·} and integrals
∫ T/2
−T/2(·)dvi operations, and all the time series in the argument

of cumulant are translated of the same quantity vk; in the fifth equality the variable changes
vi − vk = si, i = 1, . . . , k − 1, are made.

From (A.3) and accounting for Assumption 3.5 it follows that

|cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}|

6 T k(a−1)

∫ T/2

−T/2

∫ T

−T
· · ·

∫ T

−T︸ ︷︷ ︸
k−1

∣∣∣cumt

{
x(t+ τ1 + s1), . . . , x(t+ τk−1 + sk−1), x(t+ τk)

}∣∣∣ ds1 · · · dsk−1 dvk

= T k(a−1)+1o(T k/2−1) (A.4)

as T → ∞. The right-hand side of (A.4) approaches zero as T → ∞ when a = 1/2 provided
that k > 3 since k is integer.

Therefore, for a = 1/2, cumulants of order 3 or grater are asymptotically zero.
For k = 2 equality (A.3) specializes into

covt [m̃T (t+ τ1), m̃T (t+ τ2)]

= T 2(a−1)

∫ T/2

−T/2

∫ T/2−v2

−T/2−v2

covt

{
x(t+ τ1 + s1), x(t+ τ2)

}
ds1 dv2

= T 2(a−1)

∫ T/2

−T/2

∫

R

covt

{
x(t+ τ1 + s1), x(t+ τ2)

}
rect

(s1 + v2
T

)
ds1 dv2
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= T 2a−1

∫ T

−T
covt

{
x(t+ τ1 + s1), x(t + τ2)

} (
1− |s1|

T

)
ds1 (A.5)

where to obtain the third equality the Fubini and Tonelli theorem can be used since the function
s 7→ covt{x(t+ τ1 + s), x(t+ τ2)} is bounded and Lebesgue measurable.

Under Assumption 3.4 we have that the limit of the integral in the right-hand side of (A.5)
(without normalizing factor T 2a−1) exists and is finite. Thus, the asymptotic covariance K(τi −
τj) is finite if a = 1/2.

Finally, notice that

K(τi − τj) =

∫

R

covt[x(t+ τi − τj + s), x(t)] ds =

∫

R

covt[x(t+ τi + s), x(t+ τj)] ds.

Proof of Lemma 4.3

The left-hand-side of (4.4) is the kth-order FOT cumulant (see (2.9)):

cumt {x(t+ τ1), . . . , x(t+ τk)} = (−j)k
∂k

∂ω1 . . . ∂ωk
log

〈
ejω1x(t+τ1) · · · ejωkx(t+τk)

〉
t

∣∣∣
ω=0

. (A.6)

The cumulant function in (A.6) depends on the lag differences τ1 − τk, . . . , τk−1 − τk. It
is the time average of the kth-order FOT cumulant [33, Eq. (13)] which is defined adopting as
expectation operator the almost-periodic component extraction operator (almost-cyclostationary
FOT model [34, Sec. 6.3]). The pseudo random function x(t) is a pulse amplitude-modulated
(PAM) signal with pulse q(t) and white modulating sequence having kth-order cumulant ck.
The time average of its kth-order FOT cumulant [33, Eq. (13)] is given by [39, Eq. (39)] (with
β = 0 and uj = τj − τn) which is coincident with the right-hand-side of (4.4).

Proof of Theorem 4.4

By making the variable change t′ = t− τk into (4.4), we have

cumt {x(t+ τ1), . . . , x(t+ τk)} =
ck
Tp

∫

R

q(t′ + τk)

k−1∏

i=1

q(t′ + τi) dt
′ . (A.7)

It results

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}

= T k(a−1)

∫ T/2

−T/2
· · ·

∫ T/2

−T/2︸ ︷︷ ︸
k

ck
Tp

∫

R

k∏

i=1

q(t+ τi + si) dt ds1 · · · dsk

= T k(a−1)

∫ T/2

−T/2

∫ T/2−sk

−T/2−sk

· · ·
∫ T/2−sk

−T/2−sk︸ ︷︷ ︸
k−1

ck
Tp

∫

R

q(t′ + τk)

k−1∏

i=1

q(t′ + τi + ui) dt
′ du1 · · · duk−1 dsk

= T k(a−1)

∫ T/2

−T/2

∫ T/2−sk

−T/2−sk

· · ·
∫ T/2−sk

−T/2−sk︸ ︷︷ ︸
k−1

ck
Tp

rq(u1, . . . , uk−1; τ ) du1 · · · duk−1 dsk (A.8)
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where, in the first equality relations (3.8) and (4.4) are used, in the second equality the variable
changes ui = si − sk, i = 1, . . . , k − 1 and t′ = t + sk are made, so that we obtain an integral
not depending on sk, and in the third equality the definition

rq(u1, . . . , uk−1; τ ) ,
∫

R

q(t′ + τk)

k−1∏

i=1

q(t′ + τi + ui) dt
′

with τ , [τ1, . . . , τk], is used.

For k = 2 and τ2 = 0, (A.8) specializes into

covt {m̃T (t+ τ1), m̃T (t)}

= T 2(a−1) c2
Tp

∫ T/2

−T/2

∫

R

rect
(u1 + s2

T

)∫

R

q(t′) q(t′ + τ1 + u1) dt
′ du1 ds2

= T 2(a−1) c2
Tp

∫

R

q(t′)

∫

R

q(t′ + τ1 + u1)

∫ T/2

−T/2
rect

(u1 + s2
T

)
ds2 du1 dt

′

= T 2a−1 c2
Tp

∫

R

q(t′)

∫

R

q(t′ + τ1 + u1)
(
1− |u1|

T

)
rect

(u1
T

)
du1 dt

′ (A.9)

where, in the second equality the order of integrals has been interchanged due to the Fubini and
Tonelli theorem [6, Chap. 3]. Since q(t) ∈ L1(R), the Lebesgue dominated convergence theorem
entails that for a = 1/2 the limit as T → ∞ of the right-hand side (rhs) of equality (A.9) is
finite and is equal to the rhs of (4.6).

Besides from equality (A.8) it follows that

|cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}|

6 T k(a−1)

∫ T/2

−T/2

∫ T/2−sk

−T/2−sk

· · ·
∫ T/2−sk

−T/2−sk︸ ︷︷ ︸
k−1

ck
Tp

|rq(u1, . . . , uk−1; τ )| du1 · · · duk−1 dsk

6 T k(a−1)+1

∫

Rk−1

ck
Tp

|rq(u1, . . . , uk−1; τ )| du1 · · · duk−1 (A.10)

from which (4.5) immediately follows observing that, for every fixed τ , rq(u1, . . . , uk−1; τ ) ∈
L1(Rk−1).

Proof of Theorem 4.5

Assume that a = 1/2 and k > 3. From (4.5), it follows that limT→∞ cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)} =
0. Therefore, if a = 1/2, asymptotically as T → ∞, the covariance is finite (relation (4.6)) and all
the FOT cumulants of order 3 or greater are zero. That is, the functions m̃T (t+τ1), . . . , m̃T (t+τk)
are asymptotically jointly normal.

Proof of Theorem 4.7

The proof, reported in [1] for the continuous-time counterpart of the Agnew-Kac sequence,
consists in showing that for every k and every integers r1, . . . , rk it results

〈
ar1n+m1

· · · arkn+mk

〉
n
=

〈
ar1n+m1

〉
n
· · ·

〈
arkn+mk

〉
n

(A.11)

which is the necessary and sufficient condition for FOT independence of k bounded sequences
[27, Theorem 2], [12, Theorem 2.8].
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Proof of Corollary 4.8

The kth-order cumulant of the sequence an, n ∈ Z, can be expressed as (see (2.9) for the
continuous-time counterpart definition)

cumn {an+m1 , . . . , an+mk
} = (−j)k

∂k

∂ω1 . . . ∂ωk
log

〈
ejω1an+m1 · · · ejωkan+mk

〉
n

∣∣
ω=0

(A.12)

where ω = [ω1, . . . , ωk].
If at least two mℓ are different, then the corresponding shifted versions of the Agnew-Kac

sequence are FOT independent (Theorem 4.7) and the time average in (A.12) factorizes into the
product of two or more time averages, each containing a number strictly less than k of complex
exponentials. The logarithm of the product of these time averages is equal to the sum of the
logarithms of each time average. Each term of the sum does not depend on all the ω1, . . . , ωk so
that the kth-order derivative with respect to ω1, . . . , ωk is zero.

Proof of Lemma 5.7

Using the FOT counterpart of the Leonov and Shyryaev relationship between kth-order
cumulant and kth- and lower-order moments [28], we have

cumt {x(t+ v1), . . . , x(t+ vk)}

=
∑

P

(−1)p−1(p− 1)!

p∏

i=1

〈∏

ℓ∈νi

x(t+ vℓ)
〉
t
=

∑

P

(−1)p−1(p − 1)!

p∏

i=1

〈∏

ℓ∈νi

∑

λℓ∈Λ

xλℓ
ejλℓ(t+vℓ)

〉
t

=
∑

P

(−1)p−1(p− 1)!
∑

λ1∈Λ

· · ·
∑

λk∈Λ

( k∏

i=1

xλi
ejλivi

) p∏

i=1

δ
λ
T
νi
1

(A.13)

where the first summation extends over all distinct partitions P = {ν1, . . . , νp}, p = 1, . . . , n, of
{1, . . . , n}. In the last equality, we used the fact that νi ∩ νj = ∅ for i 6= j.

Finally, note that the sums over λℓ can be extended to λℓ 6= 0 since

cumt {x(t+ v1), . . . , x(t+ vk)} = cum {x(t+ v1)− x0, . . . , x(t+ vk)− x0} .

Proof of Lemma 5.8

Accounting for the multilinearity property of cumulants and (A.13), we have

cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}

= T k(a−1)

∫ T/2

−T/2
· · ·

∫ T/2

−T/2︸ ︷︷ ︸
k

cumt

{
x(t+ τ1 + s1), . . . , x(t+ τk + sk)

}
ds1 · · · dsk

= T k(a−1)
∑

P

(−1)p−1(p− 1)!
∑

λ1 6=0

· · ·
∑

λk 6=0

( k∏

i=1

xλi
ejλiτi

) ( p∏

i=1

δ
λ
T
νi
1

) k∏

i=1

∫ T/2

−T/2
ejλisi dsi

= T k(a−1)
∑

P

(−1)p−1(p− 1)!
∑

λ1 6=0

· · ·
∑

λk 6=0

( k∏

i=1

xλi
ejλiτi

) ( p∏

i=1

δ
λ
T
νi
1

)
2k

k∏

i=1

sin(λiT/2)

λi
.

(A.14)
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Proof of Lemma 5.10

From (A.14) it follows that

|cumt {m̃T (t+ τ1), . . . , m̃T (t+ τk)}|

6 T k(a−1) 2k
∑

P

(−1)p−1(p− 1)!
∑

λ1 6=0

· · ·
∑

λk 6=0

( k∏

i=1

|xλi
|

|λi|
) ( p∏

i=1

δ
λ
T
νi
1

)

6 T k(a−1) 2k
∑

P

(−1)p−1(p− 1)!
∑

λ1 6=0

|xλ1 |
|λ1|

· · ·
∑

λk 6=0

|xλk
|

|λk|
. (A.15)

For each sum, accounting for Assumption 5.9, we have the upper bound

∑

λi 6=0

|xλi
|

|λi|
=

[
∑

0<|λi|<1

+
∑

|λi|>1

]
|xλi

|
|λi|

6
1

λinf

∑

0<|λi|<1

|xλi
|+

∑

|λi|>1

|xλi
| (A.16)

which is finite due to Assumption 5.2. This proves the case 0 6 a < 1.
For a = 1 we have that when T → ∞ the magnitude of cum {m̃T (t+ τ1), . . . , m̃T (t+ τk)}

oscillates between 0 and

Qk = 2k
∑

P

(−1)p−1(p − 1)!
∑

λ1 6=0

|xλ1 |
|λ1|

· · ·
∑

λk 6=0

|xλk
|

|λk|
(A.17)

which is finite due to (A.16).
For a > 1 the magnitude of cum {m̃T (t+ τ1), . . . , m̃T (t+ τk)} approaches ∞ as T → ∞.

Proof of Theorem 5.11

Let be Tn = 2nP + ρn. From the periodicity with period P of x(t) it follows that

m̃Tn(t) =

∫ t+(2nP+ρn)/2

t−(2nP+ρn)/2
[x(u)−m] du =

∫ t+ρn/2

t−ρn/2
[x(u)−m] du , Ψρn(t) . (A.18)

Therefore,

lim
n→∞

m̃Tn(t) =

∫ t+ρ/2

t−ρ/2
[x(u) −m] du = Ψρ(t) .

As function (t, ρ) 7→ Ψρ(t) is continuous and periodic in t with period P and in ρ with period
2P , it is uniformly continuous in R

2. Therefore the sequence of functions Ψρn(t) converges
uniformly to Ψρ(t). That is ∀t ∈ R, ∀ǫ > 0 ∃nǫ : n > nǫ ⇒ |Ψρn(t)−Ψρ(t)| < ǫ.

Thus, for n sufficiently large we have Ψρ(t)− ǫ < Ψρn(t) < Ψρ(t) + ǫ ∀t.
Therefore, for every ξ ∈ R, we have the following inclusion relationships among sets provided

that n is sufficiently large

{t ∈ R : Ψρ(t) 6 ξ − ǫ} ⊆ {t ∈ R : Ψρn(t) 6 ξ} ⊆ {t ∈ R : Ψρ(t) 6 ξ + ǫ}

hence

1

Z

∫ Z/2

−Z/2
1{t∈R : Ψρ(t)6ξ−ǫ} dt 6

1

Z

∫ Z/2

−Z/2
1{t∈R : Ψρn(t)6ξ} dt 6

1

Z

∫ Z/2

−Z/2
1{t∈R : Ψρ(t)6ξ+ǫ} dt .
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Thus, in the limit as Z → ∞ we have

µR ({t ∈ R : Ψρ(t) 6 ξ − ǫ}) 6 µR ({t ∈ R : Ψρn(t) 6 ξ}) 6 µR ({t ∈ R : Ψρ(t) 6 ξ + ǫ}) .

Since ǫ is arbitrarily small, in any point of continuity of the function ξ 7→ FΨρ(ξ) we have

lim
n→∞

µR ({t ∈ R : Ψρn(t) 6 ξ}) = µR ({t ∈ R : Ψρ(t) 6 ξ}) , FΨρ(ξ)

which is coincident with (5.16).

Proof of Theorem 5.13

1) For Tn satisfying (5.23) we have

m̃Tn(t) =

∫ t+(2n1,nP1+ρ1,n)/2

t−(2n1,nP1+ρ1,n)/2
(x1(u)−m1) du+

∫ t+(2n2,nP2+ρ2,n)/2

t−(2n2,nP2+ρ2,n)/2
(x2(u)−m2) du

= Ψ
ρ1,n
1 (t) + Ψ

ρ2,n
2 (t) , Ψρ1,n,ρ2,n(t) (A.19)

where the decomposition m = m1 +m2 is not unique.

The functions (t, ρi) 7→ Ψρi
i (t), i = 1, 2 are uniformly continuous in R

2. Hence if ρ1,n → ρ1
and ρ2,n → ρ2, then limn→∞ supt

∣∣Ψρi,n
i (t)−Ψρi

i (t)
∣∣ = 0 and

lim
n→∞

sup
t

∣∣Ψρ1,n,ρ2,n(t)−Ψρ1,ρ2(t)
∣∣ = lim

n→∞
sup
t

∣∣Ψρ1,n
1 (t)−Ψρ1

1 (t) + Ψ
ρ2,n
2 (t)−Ψρ2

2 (t)
∣∣

6 lim
n→∞

sup
t

∣∣Ψρ1,n
1 (t)−Ψρ1

1 (t)
∣∣+ lim

n→∞
sup
t

∣∣Ψρ2,n
2 (t)−Ψρ2

2 (t)
∣∣ = 0 . (A.20)

By reasoning as in the proof of Theorem 5.11, for ǫ arbitrarily small and n sufficiently
large we have that Ψρ1,ρ2(t)− ǫ < Ψρ1,n,ρ2,n(t) < Ψρ1,ρ2(t)+ ǫ ∀t. Consequently, in any
point of continuity of the function ξ 7→ FΨρ1,ρ2 (ξ) we have

lim
n→∞

µR ({t ∈ R : Ψρ1,n,ρ2,n(t) 6 ξ}) = µR ({t ∈ R : Ψρ1,ρ2(t) 6 ξ}) .

2) From the above considerations we see that the FOT-distribution of Tn

(
m̂Tn−m

)
converges.

Moreover, for any n there exists ρ1,n ∈ [0, 2P1) and ρ2,n ∈ [0, 2P2) such that Tn = 2n1,nP1+
ρ1,n = 2n2,nP2 + ρ2,n.

Since the sequences ρ1,n and ρ2,n are bounded, from the Bolzano-Weierstrass theorem
there exists a subsequence {Tnk

} such that ρ1,nk
→ ρ1 and ρ2,nk

→ ρ2 as k → ∞ for some
ρ1 ∈ [0, 2P1] and ρ2 ∈ [0, 2P2]. Then from item 1) we have

lim
n→∞

Tnk

(
m̂Tnk

(t)−m
)
= Ψρ1

1 (t) + Ψρ2
2 (t) .

Recall that Ψρi
i (t) is periodic in ρi with period 2Pi, for i = 1, 2. Then by uniqueness of the

limit in the FOT-distribution, we deduce that the limit FOT-distribution of Tn

(
m̂Tn −m

)

is equal to FΨρ1,ρ2 (ξ).
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3) Let now 0 6 ρ1 < 2P1 and 0 6 ρ2 < 2P2 be fixed. Let us build a subsequence of
T (m̂T (t)−m) that converges to Ψρ1,ρ2(t).

For n ∈ N, let n1,n = n, ρ1,n = ρ1, n2,n , ⌊2nP1+ρ1
2P2

⌋, and ρ2,n , 2nP1 + ρ1 − 2n2,nP2.

Thus 2nP1 + ρ1 = 2n2,nP2 + ρ2,n with 0 6 ρ2,n < 2P2. Besides, since P1 and P2 are
linearly independent (incommensurate), the real number nP1

P2
is irrational. Then from the

Weyl Criterion [43], the sequence
{ρ2,n

2P2

}
n∈N

is equidistributed in the interval [0, 1) and the
sequence {ρ2,n}n∈N is equidistributed in [0, 2P2). As a consequence, for each k > 0 there
exists nk > nk−1, with n0 = 0, such that |ρ2,nk

−ρ2| 6 k−1, so ρ2,nk
→ ρ2 as k → ∞. Then,

accounting for item1), the sequence {Tk}k∈N defined by Tnk
, 2nkP1+ρ1 = 2n2,nk

P2+ρ2,nk

is such that
lim
n→∞

Tnk

(
m̂Tnk

(t)−m
)
= Ψρ1

1 (t) + Ψρ2
2 (t) = Ψρ1,ρ2(t) .
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