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Abstract

In radio astronomy, accurate calibration is of crucial importance for the new generation of radio inter-

ferometers. More specifically, because of the potential presence of outliers which affect the measured data,

robustness needs to be ensured. On the other hand, calibration is improved by taking advantage of these

new instruments and exploiting the known structure of parameters of interest across frequency. Therefore,

we propose in this paper an iterative robust multi-frequency calibration algorithm based on a distributed

and consensus optimization scheme which aims to estimate the complex gains of the receivers and the direc-

tional perturbations caused by the ionosphere. Numerical simulations reveal that the proposed distributed

calibration technique outperforms the conventional non-robust algorithm and per-channel calibration.

Keywords: Calibration, robustness, multi-frequency, radio astronomy.

1. Introduction

In radio interferometry, the easiest approach to perform calibration is to consider one frequency bin at a

time [1, 2], with a single centralized agent processing the data, leading to suboptimality and computational

limitations. However, considering the specific variation of parameters across frequency enables to add some

modeling structure on the unknown parameters to estimate and therefore perform more accurately direction

dependent calibration [3], notably for the new generation of radio interferometers where multiple frequency

sub-bands are present [4]. Exploiting the frequency-dependent response has already been studied in the

context of bandpass solutions [5], assuming a smooth response in frequency and also for direction dependent

calibration with smooth polynomials [6, 7]. As direction dependent perturbation effects are particularly
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significant in observations with new instruments, we focus in this paper on the regime where the receiving

elements of the array have a large field-of-view and possibly long baselines, resulting in a direction dependent

calibration problem in which receptors see different parts of the ionosphere [2]. We call this the direction

dependent distortion regime.

On the one hand, multi-frequency calibration aims to take into account a whole frequency range, e.g.,

between 30 and 240 MHz for the nominal operating bandpass of the Low Frequency Array (LOFAR) [8,

9]. A computationally efficient way to handle the multiple sub-frequency bands in radio astronomy is to

apply distributed and consensus algorithms with a decentralized strategy. In this context, we apply the

Alternating Direction Method of Multipliers (ADMM) [10, 6], which is well-suited for large-scale problems

as in radio interferometry. This technique is based on decomposition and coordination tasks with a group

of computational agents. Each of them has access to a part of the data and finds a solution to a local

subproblem, in a restricted frequency interval. Communication with a fusion center enforces consensus

among all agents, the goal being to solve a global constrained optimization problem. By collecting and

storing data in a distributed way among different computational agents, the global operational cost in the

network is substantially reduced.

On the other hand, measurements are frequently affected by the presence of outliers due to interference

or weak background sources. As a consequence, the noise can no longer be considered Gaussian as in [6].

In order to propose an alternative to [11], where the noise model is based on the Student’s t distribution, in

this work, we make use of a compound-Gaussian model which includes heavy-tailed distributions [12]. This

is more general and reveals to be more robust [13]. Therefore, to take into account the presence of outliers

and the variability of parameters across frequency, we propose here a Multi-frequency Robust Calibration

Algorithm (MRCA) based on a compound-Gaussian distribution for modeling the noise and the consensus

ADMM approach [10]. As in [14], we aim at estimating physical parameters appearing in the Jones terms

[15, 3].

In this paper, we use the following notation: The trace and determinant operators are, respectively, given

by tr {·} and | · |. The B × B identity matrix is referred by IB and || · ||2 denotes the l2 norm. The symbol

⊗ represents the Kronecker product, vec(·) stacks the columns of a matrix on top of one another, diag{·}

converts a vector into a diagonal matrix while bdiag{·} is the block-diagonal operator. Finally, ℜ{·} and

ℑ{·} are, respectively, the real and imaginary parts, [·]k refers to the k -th entry of the considered vector,

arg {·} is the argument of a complex number and j is the complex number whose square equals −1.
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2. Model setup

2.1. Direction dependent distortion regime

An interferometer output consists of visibilities, i.e., correlations of signals measured by two array ele-

ments along the corresponding baseline vector. In the noise free case, the measurements are given, for each

frequency f ∈ F = {f1, . . . , fF }, by

S[f ]
pq (θ

[f ]) =

D
∑

i=1

J
[f ]
i,p(θ

[f ])C
[f ]
i J

[f ]H

i,q (θ[f ]) (1)

where (p, q) ∈ {1, . . . ,M}2 is a pair of receivers with p < q, M denotes the total number of array elements

and D the number of calibrator sources, while J
[f ]
i,p(θ

[f ]) refers to the so-called 2 × 2 Jones matrix [15, 3],

accounting for the perturbation effects along the path from the i-th source to the p-th receiver. We note

θ[f ] the unknown parameter vector of interest, whose elements are detailed further below. Finally, C
[f ]
i is

the known source brightness matrix of the i-th calibrator source, describing its polarization state. After

vectorization of measurements (1) and considering the noise effect, we obtain the 4 × 1 data vector x
[f ]
pq =

vec
(

S
[f ]
pq (θ[f ])

)

+n
[f ]
pq where n

[f ]
pq is the noise vector for baseline (p, q) and vec

(

S
[f ]
pq (θ[f ])

)

=
∑D

i=1 s
[f ]
i,pq(θ

[f ])

in which s
[f ]
i,pq(θ

[f ]) =
(

J
[f ]∗

i,q (θ[f ])⊗ J
[f ]
i,p(θ

[f ])
)

c
[f ]
i and c

[f ]
i = vec(C

[f ]
i ). Finally, the 4B×1 full measurement

vector at frequency f , with B = M(M−1)
2 the total number of baselines, reads

x[f ] =
[

x
[f ]T

12 , . . . ,x
[f ]T

(M−1)M

]T

=

D
∑

i=1

[

s
[f ]T

i,12 (θ
[f ]), . . . , s

[f ]T

i,(M−1)M (θ[f ])
]T

+
[

n
[f ]T

12 , . . . ,n
[f ]T

(M−1)M

]T

. (2)

In the direction dependent distortion regime, a particular decomposition of the Jones matrix is given by

[15, 16]

J
[f ]
i,p(θ

[f ]) = G[f ]
p (g[f ]

p )H
[f ]
i,pZ

[f ]
i,p(ϕ

[f ]
i,p)F

[f ]
i,p(ϑ

[f ]
i,p). (3)

Specifically, the complex electronic gain matrix is represented by G
[f ]
p (g

[f ]
p ) = diag{g

[f ]
p } while H

[f ]
i,p is an

assumed known matrix gathering the geometric delay and beam pattern [15, 3]. In addition, propagation

through the ionosphere induces two effects. The first one is a phase delay given by the matrix Z
[f ]
i,p(ϕ

[f ]
i,p) [3],

and written as

Z
[f ]
i,p(ϕ

[f ]
i,p) = exp

(

jϕ
[f ]
i,p

)

I2 (4)

where ϕ
[f ]
i,p ∝ TECi,p/f [17], with TECi,p the Total Electron Content defined as the integrated electron

density along line of sight i-p. The second effect is the so-called Faraday rotation [16] in (3), given by

F
[f ]
i,p(ϑ

[f ]
i,p) =





cos(ϑ
[f ]
i,p) − sin(ϑ

[f ]
i,p)

sin(ϑ
[f ]
i,p) cos(ϑ

[f ]
i,p)



 (5)

where the unknown rotation angle ϑ
[f ]
i,p ∝ RMi,p/f

2 [3] and RMi,p is the Rotation Measure which depends

on the magnetic field and the electron density along the path i-p.
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Therefore, the (2MD+2M)×1 complex unknown parameter vector is given by θ[f ] = [ǫ[f ]
T

,g
[f ]T

1 , . . . ,g
[f ]T

M ]T

in which ǫ[f ] = [ϑ
[f ]
1,1, . . . , ϑ

[f ]
D,M , exp(jϕ

[f ]
1,1), . . . , exp(jϕ

[f ]
D,M )]T refers to the frequency dependent per-receiver

and per-source ionospheric effects.

2.2. Noise modeling as a compound-Gaussian distribution

The presence of outliers has multiple causes in radio astronomy, such as errors in the sky model due

to weak sources in the background [11] or man-made Radio Frequency Interference (RFI) [18], leading to

statistics, with heavy-tailed distributions, different from the classical Gaussian case [1]. To ensure robustness

in the proposed estimator, we adopt a two-scale compound-Gaussian noise modeling given for each baseline

by

n[f ]
pq =

√

τ
[f ]
pq µ[f ]

pq , (6)

where the power factor τ
[f ]
pq is a positive real random variable and the 4 × 1 vector µ

[f ]
pq follows a zero-

mean complex circular Gaussian distribution, i.e., µ
[f ]
pq ∼ CN (0,Ω[f ]) 1. Therefore, calibration amounts to

estimate for each frequency f the (2MD + 2M)× 1 vector θ[f ] describing Jones matrices, as well as B × 1

texture realizations τ [f ] = [τ
[f ]
12 , τ

[f ]
13 , . . . , τ

[f ]
(M−1)M ]T and the 4 × 4 speckle covariance matrix Ω[f ] (which

must satisfy, e.g., tr
{

Ω[f ]
}

= 1 to avoid the ambiguity with the power factor, the choice of this constraint

being arbitrary [19]). In the following, we assume independence of n
[f ]
pq between baselines and frequencies

and no specific prior structure exists w.r.t. f . Let us note that the algorithm can be adapted to perform an

independent estimation of unknown parameters for each time interval. In order to consider different time

scales for the unknown effects, a similar approach to the one proposed in this work for the multi-frequency

scenario can be adopted, using specific time variation models or assuming smoothness across time.

3. Description of the proposed estimator

In this section, we introduce the Relaxed Maximum Likelihood (RML) method. Then, the ADMM

algorithm is proposed to estimate the frequency dependent parameters in a distributed way. In the iterative

procedure, each subset of parameters is updated alternatively, while fixing the remaining parameters.

3.1. Robust estimation of Jones matrices

Robust calibration is based on the model (2) and the compound-Gaussian noise model (6). Estimations

are performed iteratively with the ML method similar to that of [19]. Specifically, here, we choose not to

specify the probability density function (pdf) of the texture parameters which are assumed unknown and

deterministic, leading to the RML. By doing so, we ensure more flexibility and robustness to any prior

1It is possible to consider a baseline dependent covariance matrix Ω
[f ]
pq . In this case, the proposed algorithm requires a few

modifications which are straightforward.
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mismatch w.r.t. the unknown pdf of τ [f ]. Using independency between measurements, the log-likelihood

function of the RML reads

log f
(

{x[f ]}f∈F | {θ
[f ], τ [f ],Ω[f ]}f∈F

)

= −
∑

f∈F

l[f ](θ[f ])−
∑

f∈F

∑

pq

log |πτ [f ]pq Ω
[f ]| (7)

in which l[f ](θ[f ]) =
∑

pq

1

τ
[f]
pq

u
[f ]H

pq (θ[f ])Ω[f ]−1

u
[f ]
pq (θ[f ]) with u

[f ]
pq (θ[f ]) = x

[f ]
pq −

D
∑

i=1

s
[f ]
i,pq(θ

[f ]). Let us recall

that for a given frequency f , θ[f ] is the (2MD + 2M) × 1 vector of interest, τ [f ] contains the B texture

parameters and Ω[f ] is the 4 × 4 speckle covariance matrix. After some calculus, the optimization of the

log-likelihood function w.r.t. the noise parameters leads to the following texture estimate

τ̂ [f ]pq =
1

4
u[f ]H

pq (θ[f ])Ω[f ]−1

u[f ]
pq (θ

[f ]) (8)

while the speckle covariance matrix reads

Ω̂[f ] =
4

B

∑

pq

u
[f ]
pq (θ[f ])u

[f ]H

pq (θ[f ])

u
[f ]H
pq (θ[f ])Ω̂[f ]−1

u
[f ]
pq (θ[f ])

(9)

followed by a normalization step, Ω̂[f ] ← Ω̂[f]

tr{Ω̂[f]}
, to avoid any ambiguity. Consequently, the proposed

algorithm consists in updating alternatively {θ̂[f ]}f∈F , {Ω̂[f ]}f∈F and {τ̂ [f ]}f∈F in a global iterative loop.

Estimation of {θ[f ]}f∈F can be achieved iteratively, for a fixed {τ̂ [f ]}f∈F and {Ω̂[f ]}f∈F , thanks to the

ADMM procedure. More specifically, we need to maximize successively the cost funtion w.r.t. the complex

gain vector g[f ] = [g
[f ]T

1 , . . . ,g
[f ]T

M ]T and on the other hand, w.r.t. the direction dependent ionospheric

effects ǫ[f ].

3.2. Distributed estimation of the frequency dependent parameters

To estimate the parameter vector {θ[f ]}f∈F , with {τ̂
[f ]}f∈F and {Ω̂[f ]}f∈F fixed, we use the ADMM

procedure [10], which is adapted for distributed optimization problems. In such case, a set of computational

agents is considered. Each of them achieves calibration locally for a specific frequency f and transmits the

estimates to the fusion center where consensus among all agents is enforced thanks to known constraints.

Closed-form expressions are not straightforward to obtain, in order to overcome this difficulty, we rewrite the

ionospheric phase delay in (4), for i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}, as exp
(

jϕ
[f ]
i,p

)

= b[f ]T zi,p and the

Faraday rotation angle in (5) as ϑ
[f ]
i,p = 1

f2 zi,p s.t. zi = [zi,1, . . . , zi,M , zTi,1, . . . , z
T
i,M ]T is the vector of hidden

variables for the i-th source direction, which are frequency independent and need to be estimated. The

N × 1 vector b[f ] is defined s.t. [b[f ]]k =
(

1
f

)k−1

where N − 1 is the order of the truncated approximation

power series of exp
(

jϕ
[f ]
i,p

)

. As regards the gains, we enforce smoothness with polynomials thanks to

g[f ]
p = B̃[f ]z̃p (10)
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where B̃[f ] = b̃[f ]T ⊗ I2, in which the Ñ × 1 vector b̃[f ] is defined s.t. [b̃[f ]]k =
(

f−f0
f0

)k−1

for a given

reference frequency f0 [6]. Finally, the 2Ñ × 1 vector z̃p contains the corresponding hidden variables for the

p-th receiving element. Consequently, multi-frequency calibration is formulated as

{θ̂[f ]}f∈F , ẑ = argmin
{θ[f]}f∈F ,z

∑

f∈F

l[f ](θ[f ]) s.t. θ[f ] = B[f ]z

where z = [z1,1, . . . , zD,M , zT1,1 . . . , z
T
D,M , z̃T1 , . . . , z̃

T
M ]T is the augmented vector of hidden variables and the

global frequency basis matrix is given by B[f ] = bdiag{ 1
f2 IDM , IDM⊗b[f ]T , IM ⊗B̃[f ]}. Thus, consensus op-

timization is associated with the following augmented Lagrangian problem [10] L
(

{θ[f ]}f∈F , z, {y[f ]}f∈F

)

=
∑

f∈F L[f ]
(

θ[f ], z,y[f ]
)

, where L[f ]
(

θ[f ], z,y[f ]
)

= l[f ]
(

θ[f ]
)

+ h[f ]
(

θ[f ], z,y[f ]
)

, in which using [20, 21], it

can be proven that

h[f ]
(

θ[f ], z,y[f ]
)

= 2ℜ
{

y[f ]H
(

θ[f ] −B[f ]z
)}

+ ρ||θ[f ] −B[f ]z||22 (11)

and y[f ] = [y
[f ]
1,1, . . . , y

[f ]
D,M , y

[f ]
1,1, . . . , y

[f ]
D,M , ỹ

[f ]T

1 , . . . , ỹ
[f ]T

M ]T denotes the associated Lagrange multipliers for

a given f while ρ is a regularization factor. Due to separability in frequency, calibration can be carried

out independently by each agent. The three steps of the ADMM algorithm are the following for the t -th

iteration

•
(

θ̂[f ]
)t+1

= argmin
θ[f]

L[f ]

(

θ[f ], (ẑ)
t
,
(

ŷ[f ]
)t
)

performed locally by each agent (12)

• (ẑ)
t+1

= argmin
z

∑

f∈F

h[f ]

(

(

θ̂[f ]
)t+1

, z,
(

ŷ[f ]
)t
)

performed globally at the fusion center (13)

•
(

ŷ[f ]
)t+1

=
(

ŷ[f ]
)t

+ ρ

(

(

θ̂[f ]
)t+1

−B[f ] (ẑ)
t+1

)

performed locally by each agent (14)

Solving (13) directly leads to the following closed-form expression

ẑ =



ρ
∑

f∈F

(

B[f ]HB[f ]
)





−1 



∑

f∈F

B[f ]T
(

y[f ] + ρθ[f ]
)



 (15)

which is then broadcasted to all agents as a common global variable. Minimization (12) is performed thanks

to an iterative approach. Specifically, we minimize w.r.t. ǫ[f ] on the one hand, which is done by minimizing

successively w.r.t. each ϑ
[f ]
i,p and ϕ

[f ]
i,p for i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}, and w.r.t. g[f ] on the other

hand. Estimation of ϑ
[f ]
i,p is computed thanks to a 1D Newton or gradient descent-type algorithm [22],

possibly in parallel for i ∈ {1, . . . , D} and p ∈ {1, . . . ,M}, and requires to solve

ϑ̂
[f ]
i,p = argmin

ϑ
[f]
i,p

L[f ]
(

θ[f ], z,y[f ]
)

. (16)
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Regarding the ionospheric phase delays, minimization (12) for a given ϑ̂
[f ]
i,p for i ∈ {1, . . . , D} and p ∈

{1, . . . ,M} leads to

ϕ̂
[f ]
i,p =

1

2
arg

{

−
α
[f ]
i,p

β
[f ]
i,p

}

, (17)

for which notations are specified in Appendix A. For sake of clarity, in the following, dependence w.r.t.

parameters of interest is dropped and we recall that g
[f ]
p = [[g

[f ]
p ]1, [g

[f ]
p ]2]

T . The first-order derivative of the

cost function (7) w.r.t. [g
[f ]
p ]1 leads, after some calculus, to

∂l[f ](g[f ])

∂[g
[f ]
p ]1

=

M
∑

q=1
q>p

1

τ
[f ]
pq

λ[f ]
pq +

M
∑

q=1
q<p

1

τ
[f ]
qp

λ̃[f ]
qp (18)

in which the expressions of λ
[f ]
pq and λ̃

[f ]
qp are given in Appendix B. After tedious calculations and rearrange-

ment, we obtain the following solution

[g[f ]
p ]1 =

a
[f ]
p

b
[f ]
p

(19)

where a
[f ]
p = −t

[f]∗

p − [g
[f ]
p ]2

(

2S
∑

k=1

[w
[f ]
p ]2k[ω

[f]∗

p ]2k +
2V
∑

k=1

[ς
[f ]
p ]2k[̺

[f ]∗

p ]2k

)

− [ỹ
[f ]
p ]1 + ρz̃Tp [B̃

[f ]T ]:,1 and b
[f ]
p =

2S−1
∑

k=0

[w
[f ]
p ]2k+1[ω

[f ]∗

p ]2k+1+
2V−1
∑

k=0

[ς
[f ]
p ]2k+1[̺

[f ]∗

p ]2k+1+ρ, for which detailed notations are exposed in Appendix

B. Estimation of [g
[f ]
p ]2 is performed in a similar way, leading to

[g[f ]
p ]2 =

ã
[f ]
p

b̃
[f ]
p

(20)

where ã
[f ]
p = −t

[f ]∗

p − [g
[f ]
p ]1

(

2S−1
∑

k=0

[w
[f ]
p ]2k+1[ω

[f ]∗

p ]2k+1 +
2V −1
∑

k=0

[ς
[f ]
p ]2k+1[̺

[f ]∗

p ]2k+1

)

− [ỹ
[f ]
p ]2 + ρz̃Tp [B̃

[f ]T ]:,2

and b̃
[f ]
p =

2S
∑

k=1

[w
[f ]
p ]2k[ω

[f ]∗

p ]2k +
2V
∑

k=1

[ς
[f ]
p ]2k[̺

[f ]∗

p ]2k + ρ. We introduce the Matlab notation [·]:,k to refer to

the k -th column of the corresponding matrix. Finally, the global scheme of the proposed MRCA is described

in Table 1 while the operation flow and signaling exchange between fusion center and local agents is shown

in Figure 1.

4. Numerical simulations

In this part, we compare the performance of the proposed MRCA with a non-robust algorithm based

on a Gaussian noise assumption and performed with an alternating least squares (ALS) method. This

method consists in updating sequentially the parameters of interest in θ[f ] for f ∈ F , by minimizing a

least squares cost function similar to that of [1, 6]. We also consider a per-channel calibration which means

that calibration is performed for each frequency separately without exploiting information across frequency

while multi-frequency algorithm refers to distributed calibration obtained with the ADMM procedure. We

generate each electronic gain entry [g
[f ]
p ]k as a complex circular Gaussian random variable with mean one

7



and variance 1
4 , while ionospheric phase delay and Faraday rotation are randomly generated, as function

of the TEC drawn from a uniform distribution U(1 × 1017, 5 × 1017) and expressed in m−2. We select

N = Ñ = 6 and the extended Lagrangian parameter is set at ρ = 10. We consider M = 8 receiving

elements, with hundreds of meters for the longest baseline, D = 2 bright signal sources and D′ = 4 weak

background sources. Let us mention that we are considering here notional examples for the purpose of

algorithm validation. In Figure 2, we plot the Mean Square Error (MSE) of the real part of one given

parameter of vector g[f1] as a function of the Signal-to-Interference-plus-Noise Ratio (SINR), for different

number of frequencies F which are selected in the range 75 − 125 MHz and f0 = 100 MHz. The SINR is

defined as the ratio of the normalized power of D calibrator sources over the sum of normalized power of D′

background sources and a noise factor. For each SINR, we perform 100 Monte-Carlo runs. A few iterations,

less than 5 for each loop in Table 1, are sufficient to attain stability in convergence, likewise for the so-called

primal and dual residuals (approximately 5 iterations), whose convergence mostly depends on parameters ρ,

N , Ñ and initializations [6, 10]. Initial values for ŷ[f ] are chosen as a vector full of ones. Better estimation

is achieved with the proposed algorithm and the behavior remains the same for other parameters of interest.

In the following Figures, the MeqTrees software [16] is used to generate the observations and ionospheric

effects need to be corrected in the presence of Gaussian background noise. We consider M = 7 receptors,

D = 2 and D′ = 16, taken from the SUMSS survey with a spectral index of 0.7. An image area of 3.5 by

3.5 degrees is shown in Figure 3, with and without the calibrator source, before adding any perturbation.

The integration time per visibility point is fixed at 60s, the total synthesis time at 12 hours and the SINR

is approximately equal to 4 dB. After calibration, performed with MRCA and different classical methods,

and subtraction of the bright calibrator from the data, we show the dirty image, i.e., the corrected residual

in Figures 4 and 5, computed using lwimager. Corresponding peak flux of the recovered weak sources in

Figure 5 are shown in Table 2. As expected, we notice better estimation performance and flux recovering

when the proposed robust multi-frequency dependent calibration is performed in regards to the per-channel

and non-robust cases, i.e., lower error and more robustness are achieved.

5. Conclusion

In this work, a multi-frequency robust iterative calibration algorithm based on compound-Gaussian

modeling and the ADMM approach was described for the so-called direction dependent distortion regime.

Numerical simulations highlight the better estimation performance of the proposed technique w.r.t. non-

robust and/or per-channel cases, and its ability to accurately solve for per-direction and per-antenna TEC

and RM physical quantities.
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Appendix A.

We specify here the notations which lead to (17). To this end, we need to consider ∂l[f](θ[f])

∂ϕ
[f]
i,p

and ∂h[f](θ[f])

∂ϕ
[f]
i,p

.

Thus, minimization (12) w.r.t. phase delay ϕ
[f ]
i,p leads to

β
[f ]
i,p exp

(

jϕ
[f ]
i,p

)

+ α
[f ]
i,p exp

(

− jϕ
[f ]
i,p

)

= 0 (A.1)

in which β
[f ]
i,p =

∑M
q=1
q>p

j

τ
[f]
pq

exp
(

− jϕ
[f ]
i,q

)

δ
[f ]
i,pq +

∑M
q=1
q<p

j

τ
[f]
qp

exp
(

− jϕ
[f ]
i,q

)

δ
[f ]H

i,qp + jy
[f ]∗

i,p − jρzHi,pb
[f ]∗ and

α
[f ]
i,p =

∑M
q=1
q>p

−j

τ
[f]
pq

exp
(

jϕ
[f ]
i,q

)

δ
[f ]H

i,pq −
∑M

q=1
q<p

j

τ
[f]
qp

exp
(

jϕ
[f ]
i,q

)

δ
[f ]
i,qp−jy

[f ]
i,p+jρb[f ]T zi,p. We also introduce δ

[f ]
i,pq =



−x
[f ]H

pq +
D
∑

k=1
k 6=i

s
[f ]H

k,pq



Ω[f ]−1

d
[f ]
i,pq and d

[f ]
i,pq =

(

G
[f ]∗

q (g
[f ]
q )H

[f ]∗

i,q F
[f ]
i,q(ϑ

[f ]
i,q)

)

⊗
(

G
[f ]
p (g

[f ]
p )⊗H

[f ]
i,pF

[f ]
i,p(ϑ

[f ]
i,p)

)

c
[f ]
i .

Finally, we directly deduce (17) from (A.1).

Appendix B.

We describe here the notations introduced in the estimation of frequency dependent electronic gains.

The expressions in (18) are given by

λ[f ]
pq = t[f ]pq +w[f ]H

pq

(

I2 ⊗G[f ]∗

p

)

̟[f ]
pq (B.1)

in which t
[f ]
pq = −x

[f ]H

pq m
[f ]
pq with m

[f ]
pq = Ω[f ]−1

(

G
[f ]∗

q ⊗E1

)

w
[f ]
pq and E1 =





1 0

0 0



. Besides, w
[f ]
pq =

D
∑

i=1

(

H
[f ]∗

i,q Z
[f ]∗

i,q (ϕi,q)F
[f ]
i,q(ϑ

[f ]
i,q)

)

⊗
(

H
[f ]
i,pZ

[f ]
i,p(ϕi,p)F

[f ]
i,p(ϑ

[f ]
i,p)

)

c
[f ]
i and ̟

[f ]
pq =

(

G
[f ]
q ⊗ I2

)

m
[f ]
pq . Similarly, we

have

λ̃[f ]
qp = t̃[f ]qp + w̃[f ]H

qp

(

G[f ]∗

p ⊗ I2

)

˜̟ [f ]
qp (B.2)

in which t̃
[f ]
qp = −w̃

[f ]H

qp x
[f ]
qp with w̃

[f ]
qp = Ω[f ]−1

(

E1 ⊗G
[f ]
q

)

w
[f ]
qp and ˜̟

[f ]
qp =

(

I2 ⊗G
[f ]
q

)

w
[f ]
qp . The derivative

in (18) can be written more compactly as

∂l[f ](g[f ])

∂[g
[f ]
p ]1

= t[f ]p +w[f ]H

p

(

IS ⊗ I2 ⊗G[f ]∗

p

)

ω[f ]
p + w̃[f ]H

p

(

IV ⊗G[f ]∗

p ⊗ I2

)

ω̃[f ]
p (B.3)

in whichw
[f ]
p = [ 1

τ
[f]

p(p+1)

w
[f ]T

p(p+1), . . . ,
1

τ
[f]
pM

w
[f ]T

pM ]T , w̃
[f ]
p = [ 1

τ
[f]
1p

w̃
[f ]T

1p , . . . , 1

τ
[f]

(p−1)p

w̃
[f ]T

(p−1)p]
T and t

[f ]
p =

M
∑

q=1
q>p

1

τ
[f]
pq

t
[f ]
pq+

M
∑

q=1
q<p

1

τ
[f]
qp

t̃
[f ]
qp . Similarly, we introduce ω

[f ]
p = [̟

[f ]T

p(p+1), . . . ,̟
[f ]T

pM ]T and ω̃
[f ]
p = [ ˜̟

[f ]T

1p , . . . , ˜̟
[f ]T

(p−1)p]
T . If we

are considering the p-th array element, we note S = (M −p) and V = (p−1). Let us define the permutation

matrix P = [e1, e3, e2, e4] where the 4× 1 vector ek has zeros except at the k -th position which is equal to
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unity. With ς
[f ]
p =

(

IV ⊗PT
)

w̃
[f ]
p and ̺

[f ]
p = (IV ⊗P) ω̃

[f ]
p , we obtain the following 1D linear equation

∂l[f ](g[f ])

∂[g
[f ]
p ]1

=t[f ]p + [g[f ]∗

p ]1

2S−1
∑

k=0

[w[f ]∗

p ]2k+1[ω
[f ]
p ]2k+1 + [g[f ]∗

p ]1

2V−1
∑

k=0

[ς [f ]
∗

p ]2k+1[̺
[f ]
p ]2k+1

+ [g[f ]∗

p ]2

2S
∑

k=1

[w[f ]∗

p ]2k[ω
[f ]
p ]2k + [g[f ]∗

p ]2

2V
∑

k=1

[ς [f ]
∗

p ]2k[̺
[f ]
p ]2k. (B.4)

Considering (B.4) and ∂h[f](g[f])

∂[g
[f]
p ]1

leads to (19). Estimation of [g
[f ]
p ]2 is similar, except that

m
[f ]
pq = Ω[f ]−1

(

G
[f ]∗

q ⊗E2

)

w
[f ]
pq and w̃

[f ]
qp = Ω[f ]−1

(

E2 ⊗G
[f ]
q

)

w
[f ]
qp where E2 =





0 0

0 1



.
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Table 1: MRCA

initialize: {θ̂[f ] ← θ
[f ]
init}f∈F , ẑ ← zinit, {ŷ[f ] ← y

[f ]
init}f∈F ,

{Ω̂[f ] ← Ω
[f ]
init}f∈F ,{τ̂

[f ]
pq ← τ

[f ]
pqinit}f∈F , p<q, (p,q)∈{1,...,M}2

1 while stop criterion unreached do

2 while stop criterion unreached do

3 while stop criterion unreached do

44 Obtain {ϑ̂
[f ]
i,p}i=1,...,D, p=1,...,M locally from (16)

55 Obtain {ϕ̂
[f ]
i,p}i=1,...,D, p=1,...,M locally from (17)

66 Obtain ĝ[f ] locally from (19) and (20)

7 end

88 Obtain ẑ globally from (15)

99 Obtain ŷ[f ] locally from (14)

10 end

1111 Obtain {Ω̂[f ]}f∈F from (9)

1212 Obtain {τ̂
[f ]
pq }f∈F , p<q, (p,q) ∈ {1,...,M}2 from (8)

13 end

input:
{

x[f ], θ̂[f ], Ω̂[f ]
}

f∈F
, {τ̂

[f ]
pq }f∈F , p<q, (p,q)∈{1,...,M}2

k -th local

processor for

frequency fk

fusion center

output:
{

θ̂[f ]
}

f=fk

{

θ̂[f ]
}

f=fk
using (16), (17), (19) and (20)

ẑ using (15)

{

ŷ[f ]
}

f=fk
using (14)

repeat

Figure 1: Operation flow and signaling exchange between the k -th local processor and the fusion center. The three arrows in

the center are performed sequentially and repeated, which corresponds to the loop from line 2 to line 10 of Table 1.
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MRCA multi-frequency robust, F = 10

MRCA multi-frequency robust, F = 3

MRCA per-channel robust, F = 1

ALS multi-frequency non-robust, F = 10

ALS per-channel non-robust, F = 1

Figure 2: MSE of the real part of a given complex gain vs. SINR.

(a) (b)

Figure 3: Dirty image representing (a) the D = 2 calibrator sources and D
′ = 16 background sources which are hardly visible,

(b) only the background sources.

Table 2: Recovered peak flux (in Jy) for the three

sources in Figure 5.

Position Number 1 Number 2 Number 3

(a) True 0.167113 0.108398 0.122119

(b) 0.162519 0.0910741 0.1111702

(c) 0.136886 0.0882433 0.10028

(d) 0.115676 0.0831246 0.082365
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(a) (b) (c) (d)

Figure 4: Corrected residual for (a) ideal case, (b) MRCA, (c) multi-frequency non-robust calibration and (d) per-channel

non-robust calibration, around one of the weakest background sources. The peak flux intensity is respectively given by (a) true

0.11856, (b) 0.117225, (c) 0.109427 and (d) 0.0808339 Jy.

(a) (b) (c) (d)

Figure 5: Corrected residual for (a) ideal case, (b) MRCA (c) multi-frequency non-robust calibration and (d) per-channel

non-robust calibration in a small area surrounding three background sources.
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