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cUniversité de Toulouse, UPS, CNRS, CNES, IRAP, 31400 Toulouse, France

dSchool of Electrical and Computer Engineering (FEEC), University of Campinas,
Campinas/SP, Brazil

eGIPSA-Lab, Grenoble INP, CNRS, Grenoble, France
fEngineering, Modeling and Applied Social Science Center (CECS), Federal University of

ABC, Santo André/SP, Brazil

Abstract

In the context of nonlinear Blind Source Separation (BSS), the Post-Nonlinear

(PNL) model is of great importance due to its suitability for practical nonlinear

problems. Under certain mild constraints on the model, Independent Compo-

nent Analysis (ICA) methods are valid for performing source separation, but

requires use of Higher-Order Statistics (HOS). Conversely, regarding the sole

use of the Second-Order Statistics (SOS), their study is still in an initial stage.

In that sense, in this work, the conditions and the constraints on the PNL

model for SOS-based separation are investigated. The study encompasses a

time-extended formulation of the PNL problem with the objective of extracting

the temporal structure of the data in a more extensive manner, considering SOS-

based methods for separation, including the proposition of a new one. Based

on this, it is shown that, under some constraints on the nonlinearities and if a
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given number of time delays is considered, source separation can be successfully

achieved, at least for polynomial nonlinearities. With the aid of metaheuristics

called Differential Evolution and Clonal Selection Algorithm for optimization,

the performances of the SOS-based methods are compared in a set of simulation

scenarios, in which the proposed method shows to be a promising approach.

Keywords: Blind Source Separation, Post-Nonlinear, Second-Order Statistics

1. Introduction

In many practical applications, retrieving a set of source signals from some

observations that are actually mixtures of these sources can be of great relevance.

If there is no (or incomplete) prior knowledge about the sources and mixing

transform, the problem is referred to as Blind Source Separation (BSS) [1, 2, 3].5

Throughout three decades of existence, this problem has been subject of great

attention from the academic community, where the initial efforts were mainly

aimed at the standard linear and instantaneous mixing model, with the assump-

tion that the sources are statistically mutually independent. Indeed, the study

of this topic contributed to a solid theoretical framework known as Indepen-10

dent Component Analysis (ICA) [1], which provided methods that explicitly

use Higher-Order Statistics (HOS), such as FastICA, JADE and Infomax [1, 4].

Although the mutual independence assumption is sufficient for linear sepa-

ration, the use of the HOS may result in some estimation difficulties. However,

in certain cases, additional information about the sources can be explored to15

lead to simpler methods [5]. For instance, the sources may exhibit temporal

structures (i.e., temporal dependence among samples), which can be statisti-

cally characterized e.g. by temporal correlations, being thus possible to perform

source separation based only on Second-Order Statistics (SOS), if there is suffi-

cient temporal diversity [1]. In this case, even Gaussian sources, which are not20

separable using HOS methods, can be separated. This perspective motivated

the proposal of diverse SOS-based methods, such as SOBI [6], WASOBI [7],

AMUSE, TDSEP, among others [1, 4]
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Regarding the nonlinear BSS problem, there has been a considerable effort

for extending the ICA framework and other BSS methods to nonlinear mixing25

models, in view of promising applications like smart chemical sensor arrays [8],

hyperspectral imaging [9, 10] and quantum bit uncoupling [11]. However, from

a general standpoint, mutual independence may not be sufficient for performing

nonlinear separation [1]. Thus, except recent works [12] which propose a new

general framework for nonlinear source separation, the studies on this topic were30

focused on a constrained set of nonlinear models in which the ICA methods are

still valid [13]. For instance, the Post-Nonlinear (PNL) mixing model is com-

posed of an instantaneous linear stage followed by a set of univariate nonlinear

functions, which must obey some constraints (e.g., monotonicity) to enable the

use ICA-based methods for separation [14].35

However, when dealing with temporally structured sources in nonlinear mod-

els, there is still no parallel with the linear case [5, 13], especially because the

study based on the sole use of the SOS is very incipient, raising fundamental

issues like conditions for identifiability and uniqueness of solutions. In view of

this, in this work, we focus on the analysis of SOS-based methods in the PNL40

mixing problem, prompting to outline the set of constraints and conditions to

ensure the validity of the approach. This initial step is made by considering the

case in which the nonlinearities belong to a class of cubic polynomials, revealing

promising perspectives – including the nonlinear separation of Gaussian sources.

The SOS-based investigation to be followed is performed considering block-45

structured correlation matrices with a set of time delayed samples, being able

to encompass the temporal structure of data more organically [15]. However,

the potential nonlinear statistical dependencies it carries demands a suitable

treatment of the statistical information, which will be attained through the

proposition of a novel SOS-based criterion. Besides these contributions, we con-50

sider an extended formulation of the PNL problem, for which the manipulation

of the block-structured matrices is more straightforward. This will allow the

analytical computation of the considered SOS-based cost functions, providing a

rich theoretical analysis.
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Although SOS-based methods are usually associated with mathematical sim-55

plicity, the nonlinear context may lead to inherent complex multimodal SOS-

based cost functions and hence, high computational cost. In that sense, a proper

exploration of the search space can be performed by metaheuristics. In this

work, the metaheuristics Differential Evolution (DE) [16] and Clonal Selection

Algorithm (CLONALG) [17] are considered for parameter optimization in order60

to avoid local convergence.

This work is organized as follows. In Section 2, the PNL model is pre-

sented considering the temporal-extended formulation and the particular non-

linear case. Section 3 describes the SOS-based criteria to be used, introducing

the proposed method; the analytical computation of the covariance matrices is65

presented as well. The identifiability conditions and bounds are analyzed in

Section 4 and the performance results are shown in Section 5. Finally, Section

6 concludes the work.

2. The Post-Nonlinear Mixing Model

In the problem of Blind Source Separation (BSS), the main objective is to70

recover the original sources s(n) from observed mixtures x(n) = Φ (s(n)), with

x(n) = [x1(n), · · ·, xM (n)]T the observation vector with M mixtures, s(n) =

[s1(n), · · ·, sN (n)]T the vector with N source signals at time instant n and Φ(·)

the mixing mapping [1]. Generally, Φ (·) is assumed to be linear and instanta-

neous, however, this approach may not be adequate for certain applications and75

a nonlinear model must be considered, such as the Post-Nonlinear (PNL) [14].

The PNL structure is particularly interesting because it sequentially com-

bines linear and nonlinear stages, as shown in Fig. 1. Due to their relative

simplicity, the mixtures can be mathematically written as x(n) = f (As(n)),

where A is an M×N matrix and f(·) is a set of M component-wise functions.80

The separation system is the mirrored version of the mixing system, with output

given by y(n) = Wg (x(n)), where W is an N×M matrix and g(·) is a set of

M component-wise functions [1]. In this work, we focus on the case in which
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Figure 1: Mixing and separating systems in the PNL model.

N = M (determined case), i.e., when the number of sources and of mixtures

are equal (for a single source, the PNL model can establish important analogies85

with Wiener Hammerstein systems, due to their similarity [18]).

Under certain constraints on the nonlinear functions f(·) and g(·), it is known

that the (independent) sources can be separated by ICA methods, which requires

the use of HOS [1, 19]. However, under the additional assumption that the

sources are temporally colored, the viability and the conditions for separation90

of PNL mixtures using only Second-Order Statistics (SOS) still remain open

questions. In that sense, in this work, we search for these answers by considering

a class of PNL mixtures to be separated by SOS-based methods. However, the

temporal information will be extracted by block-structured correlation matrices

with an arbitrary number of time delays. To facilitate the manipulation of95

these matrices, we formulate a temporal-extended version of the PNL problem,

presented in the following.

2.1. Time-Dependent Sources in the PNL Model

The temporal structure in the sources is usually seen as the inherent result

of the system which generates them. However, in some applications, it can be100

modeled as the result of independent and identically distributed (i.i.d.) signals

processed by linear or nonlinear systems, whose signature is the temporal struc-

ture imprinted on the signals. For simplicity, in this work, to investigate the

(SOS) features in the PNL models, we restrain ourselves to the case in which

the temporal structure is obtained by means of a linear filtering system.105
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To suitably describe the temporal structure in the sources, we consider vec-

tors with the N sources at time instant n concatenated with d delayed versions

of them in the following form (similarly to [15]):

s(n) = [s1(n), · · ·, s1(n−d), s2(n), · · ·, s2(n−d), · · ·, sN (n), · · ·, sN (n−d)]
T

=
[

sT1 (n), s
T
2 (n), · · ·, s

T
N (n)

]T
,

(1)

where d is the maximum considered time delay and si(n) = [si(n), · · ·, si(n−d)]
T
,

for i = {1, . . ., N}. We wish to express the time-extended sources s(n) as

functions of i.i.d signals r(n) (note that all the underlined variables are time-

extended versions of the classical formulation, similarly to s(n) and s(n)). In

order to do so, we consider a set of N Finite Impulse Response (FIR) filters

that are responsible for introducing correlation in the signals s(n) (i.e., s(n)

are composed of moving average (MA) processes [20]). The coefficients of each

FIR filter are arranged in vectors hi, for i = {i, . . . , N}. Hence, for instance,

an FIR filter with transfer function Hi(z) = hi,0+hi,1z
−1 + · · ·+ hi,Lhi

z−Lhi is

represented by the vector hi = [hi,0, hi,1, · · ·, hi,Lhi
]. Based on this, we define

Hi = hi ⊲ Id+1 =























hi,0 · · · hi,Lhi
0 0 · · · 0

0 hi,0 · · · hi,Lhi
0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 hi,0 · · · hi,Lhi
0

0 · · · 0 0 hi,0 · · · hi,Lhi























, (2)

in which hi ⊲ Id+1 is the diagonal replication of vector hi, being the resulting

matrix Hi of dimension (d+1) × (Lhi
+d+1), and Id+1 the identity matrix of

size d+1.

For the sake of simplicity, we assume henceforth N = 2 sources without loss

of generality. In this case, the sources s(n) can be written as functions of r(n):

s(n) = Hr(n) =





H1 0

0 H2



 r(n), (3)

whereH is a block-diagonal matrix with dimensionsN(d+1)×(
∑N

i=1(Lhi
+d+1))

and r(n) = [r1(n), r1(n−1), · · ·, r1(n−Lh1
−d), r2(n), r2(n−1), · · ·, r2(n−Lh2

−d)]T110
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is the temporal-extended i.i.d. vector with the original signals r1(n), r2(n) and

their delayed versions. Note that the samples of each i.i.d. signal ri(n) consid-

ered separately will be combined by H, but there is no mixing between r1(n)

and r2(n). Eq. (3) shall be useful for analytically computing certain statistical

moments, since it express the sources si(n) as functions of i.i.d. signals.115

Proceeding with the PNL temporal-extended formulation, we can write the

linear mixtures as u(n) = As(n), with the extended linear mixing matrix A:

A =





a11Id+1 a12Id+1

a21Id+1 a22Id+1



 , (4)

in which each element is replicated along a diagonal of a (sub)matrix of size

d+1. The time-extended observations (mixtures) x(n) can be written as

x(n) = F (u(n)) = F (As(n)) , (5)

where F(·) is a set of functions diagonally positioned as

F(·) =





f1(·)⊙ Id+1 0

0 f2(·)⊙ Id+1



 =





























f1(·) 0 0

0
. . . 0 0

0 0 f1(·)

f2(·) 0 0

0 0
. . . 0

0 0 f2(·)





























,

(6)

in which f(·)⊙ Id+1 is the diagonal replication of function f(·).

The separating system is a mirrored version of the mixing one, with output

y(n) = WG (x(n)) , (7)

where G(·) and W have structures similar to F(·) and A, respectively.

By combining Eqs. (7), (5) and (3), we are able to directly express the

separated sources y(n) as functions of r(n) as

y(n) = WG (F (AHr(n))) . (8)
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Undoubtedly, in practical scenarios, the elements F , A, H and r(n) are consid-

ered unknown and the separation task may be performed relying on, for instance,

some statistical properties of the sources s(n), like the mutual independence.120

Notwithstanding, Eq. (8) is of great theoretical importance, since it exposes a

direct relation to i.i.d. signals and opens the way for the analytical computa-

tion of the statistics involved in the separation process, as we intend to show.

It is important to note that some additional assumptions may be necessary, for

example, the definition of the type of the nonlinearities F(·) and G(·).125

2.2. A Special Case: The Cubic Nonlinearity

In order to find a subset of constrained PNL models in which the SOS-based

methods are sufficient for separation, we start from a simple hypothesis that

the combined nonlinear function G ◦ F yields as output

z(n) = As(n) + Γ (As(n))
⊙3

, (9)

where

Γ =





γ1Id+1 0

0 γ2Id+1



 (10)

and (·)⊙3 is the Hadamard power of 3 (i.e., an element-wise cubic operator).

This can be viewed as, for instance, the combination of a cubic nonlinearity

F(u(n)) = u⊙3(n) and a G(x(n)) = sgn(x(n)) ⊙ (|x(n)|)⊙1/3 + Γx(n). Based

on Eq. (8), the system output can now be written as

y(n) = Wz(n) = WAHr(n) +WΓ (AHr(n))
⊙3

. (11)

Hence, according to this model, two observations can be outlined: (i) the sep-

arated sources can be viewed as the combination of a linear mixing/demixing

term and a nonlinear mixing/demixing term; (ii) if Γ = 0, then the second

(nonlinear) term vanishes and the problem is reduced to the linear one.130

Very interestingly, each element of (AHr(n))
⊙3

can be viewed as a poly-

nomial raised to the power of 3, which can be expanded and rearranged in a

matrix form. For instance, in a hypothetical simple case with constants c1 and

8



c2, we intend to perform the following rearrangement: (c1r1(n)+c2r1(n−1))3 =

c31r
3
1(n) + c32r

3
1(n−1)+ 3c21c2r

2
1(n)r1(n−1)+ 3c1c

2
2r1(n)r

2
1(n−1) =

[

c31, c
3
2, 3c

2
1c2,

3c1c
2
2

] [

r31(n), r
3
1(n−1), r21(n)r1(n−1), r1(n)r

2
1(n−1)

]T
, where the constant terms

and the signals r1(n) and r1(n−1) are separated in different vectors. This proce-

dure can be extended to all elements of (AHr(n))
⊙3

, but, all considered signals

in r(n) (i.e, r1(n), . . ., r1(n−Lh1
−d), r2(n), . . ., r2(n−Lh2

−d)) must be taken

into account, resulting

(AHr(n))
⊙3

=





























(a11h1,0)
3r31(n) + (a11h1,1)

3r31(n−1) + · · ·
...

(a11h1,0)
3r31(n−d) + (a11h1,1)

3r31(n−d−1) + · · ·

(a21h1,0)
3r31(n) + (a21h1,1)

3r31(n−1) + · · ·
...

(a21h1,0)
3r31(n−d) + (a21h1,1)

3r31(n−d−1) + · · ·





























=





























[ξ11, ξ12, . . .]
[

r31(n), r
3
1(n−1), . . .

]T

...

[ξ11, ξ12, . . .]
[

r31(n−d), r31(n−d−1), . . .
]T

[ξ21, ξ22, . . .]
[

r31(n), r
3
1(n−1), . . .

]T

...

[ξ21, ξ22, . . .]
[

r31(n−d), r31(n−d−1), . . .
]T





























,

(12)

where ξij corresponds to the factor that multiplies the term involving the

original signals r1(n), r2(n) and/or their delayed versions, for i = 1, . . . ,N

(recall that it is assumed N = 2) and for j = 1, . . . ,Lv, with Lv equal to

the resulting number of terms after the cubic expansion. The number of ele-

ments Lv can be combinatorially obtained: assuming that all FIR filters have135

the same maximum length Lh+1, without loss of generality, we have that

Lv = (N(Lh+1)+2)!/(3!(N(Lh+1)−1)!). Due to the excessive length of the

vectors, we have shown only the initial terms.

Assuming now that θi = [ξi1, ξi2, · · ·, ξiLv
] is a row vector with Lv ele-

ments, and that ρ(n) =
[

r31(n), r
3
1(n−1), r32(n), r

3
2(n−1), · · ·, r21(n)r2(n−1), · · ·,

r1(n)r2(n)r2(n−1), · · ·]T is the column vector with Lv terms involving the sig-

9



nals r1(n), r2(n) and their delayed versions, Eq. (12) can be rewritten as

(AHr(n))
⊙3

=











































θ1 0 · · · 0

0 θ1
. . .

...
...

. . .
. . . 0

0 · · · 0 θ1

θ2 0 · · · 0

0 θ2
. . .

...
...

. . .
. . . 0

0 · · · 0 θ2



























































ρ(n)

ρ(n−1)
...

ρ(n−d)

















= Θρ(n), (13)

where ρ(n) is the column vector with ρ(n) and its d delayed versions – so that

ρ(n) has length (d+1)(N(Lh+1)+2)!/(3!(N(Lh+1)−1)!) – and Θ is a matrix140

with dimensions N(d+1)× (d+1)(N(Lh+1)+2)!/(3!(N(Lh+1)−1)!). Note that

the computational complexity can increase drastically, depending on the values

of N (here chosen to be 2), d and Lh.

It is interesting to note in Eq. (13) that ρ(n) encompasses elements of r(n) up

to the power of 3 (due to the assumed cubic nonlinearity) but we have expressed145

it by means of a linear matrix multiplication, i.e., (AHr(n))
⊙3

= Θρ(n).

As an example, we consider two linear FIR filters h1 = [h1,0, h1,1] and h2 =

[h2,0, h2,1] and the mixtures x(n) = (As(n))
⊙3

, with A = [a11, a12 ; a21, a22]. If

we consider d = 1, the mixtures can be expressed as

x(n) = F (As(n)) = (AHr(n))
⊙3

=

































a11 0 a12 0

0 a11 0 a12

a21 0 a22 0

0 a21 0 a22

































h1,0 h1,1 0 0 0 0

0 h1,0 h1,1 0 0 0

0 0 0 h2,0 h2,1 0

0 0 0 0 h2,0 h2,1

















·

·
[

r1(n), r1(n−1), r1(n−2), r2(n), r2(n−1), r2(n−2)
]T
)⊙3

.

(14)

By proceeding with the cubic (or Volterra) expansion, the vector ρ(n) has Lv =

(N(Lh+1)+2)!/(3!(N(Lh+1)−1)!) = 20 elements, which are all possible triplets

10



among r1(n), r1(n−1), r2(n) and r2(n−1), i.e.,

ρ(n) = [ r31(n), r31(n−1), r32(n), r32(n−1),

r21(n)r1(n−1), r21(n)r2(n), r21(n)r2(n−1), r1(n)r
2
1(n−1),

r1(n)r
2
2(n), r1(n)r

2
2(n−1), r21(n−1)r2(n), r21(n−1)r2(n−1),

r1(n−1)r22(n), r1(n−1)r22(n−1), r22(n)r2(n−1), r2(n)r
2
2(n−1),

r1(n)r1(n−1)r2(n), r1(n)r1(n−1)r2(n−1), r1(n)r2(n)r2(n−1),

r1(n−1)r2(n)r2(n−1) ]
T
.

(15)

Returning to the (cubic) case with generic FIR filters and arbitrary d, it is

possible to write a linear-like expression for the separated sources:

y(n) = WAHr(n) +WΓΘρ(n). (16)

Henceforth, we adopt the cubic nonlinearity for our analysis, but it is important

to emphasize that the idea of using the Volterra expansion is also valid for other

polynomial functions (although this topic will be left for future works). In

the following, we present the SOS-based criteria to perform separation and the150

analytical computation of the covariance matrices involved.

3. Joint Diagonalization of Correlation Matrices

The use of SOS in the linear instantaneous BSS problem is known to be

effective when it involves sources that present temporal structure [1, 6]. In such

a case, the main idea is to jointly diagonalize the correlation matrices between155

retrieved sources for a given number of delays; in other words, the objective

is to mutually decorrelate the outputs yi(n), for i = 1, . . . , N , but considering

different time delays. There are several methods that perform second-order sep-

aration, among which we cite the algorithms SOBI [6], WASOBI [7], AMUSE

and TDSEP [1, 4]. However, for PNL mixtures, the exclusive use of the SOS160

for separation has not been addressed yet. In that sense, the temporal-extended

formulation of the PNL model may give us important elements to help clarify
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certain theoretical aspects in this approach. Furthermore, given the complexity

of the PNL model, we opt for diversified uses of the SOS, which includes the clas-

sical SOBI criterion for separation [6] and an alternative SOS-based separation165

measure that combines the temporal formulation with the mutual information

measure [1], as will be described in the following.

3.1. The Block-Diagonalization

Based on the classical SOBI criterion, the following statement can be written:

given a number of time delays d, it is desired that the correlation matrix

R
yy

= E
[

y(n)yT (n)
]

=





Ry
1
y
1

Ry
1
y
2

Ry
2
y
1

Ry
2
y
2



 . (17)

be block-diagonal, i.e., that the cross correlation matrices between outputs (di-

agonal blocks in Eq. (17)) are all null, where Ry
i
y
j

= E
[

y
i
(n)yT

j
(n)
]

, with

y
i
(n) = [yi(n), yi(n−1), · · · , yi(n−d)]

T
and y(n) = [yT

1
(n),yT

2
(n)]T . Hence,

we can write the block-diagonalization (BD) criterion as

JBD = min
W,G

blkoff(R
yy

), (18)

where blkoff(·) is the sum of squared elements in the off-block-diagonal of a

square matrix. Note that, as the number of delays d increases, the larger the

correlation matrices get and more information can be considered by the criterion.

Additionally, a norm constraint can be applied to force the main diagonal of

R
yy

to be unitary (assuming that yi(n) is stationary, for i = 1, . . . , N), e.g., by

summing to the cost (18) the following term:

Jc = min
N
∑

i=1

(

E
[

y2i (n)
]

− 1
)2

, (19)

This constraint is necessary in order to avoid – trivial – null solutions (as a con-

sequence, it is also useful for identifying an unique solution). Different weights170

can be applied to JBD and Jc, causing changes on local minima position –

gradient-based optimization methods may be more sensitive to these changes.

However, since we are using metaheuristics for parameters optimization (which

12



are intended to be more robust against local minima convergence), we assume

equal (unitary) weights for JBD and Jc.175

3.2. The Second-Order Mutual Information Measure

The mutual information allows an efficient manner of measuring the sta-

tistical independence. In order to extract the temporal information in a more

complete fashion and also to restrain our analysis to the SOS, we make the

following assumption: the sources are mutually independent and (zero-mean)180

jointly Gaussian distributed for all considered delays and also present a time

structure. This will lead to an alternative cost function, when compared to the

BD cost, as described bellow.

We start with the definition of mutual independence encompassing the tem-

poral structure of data, i.e.,

fy (v) =

N
∏

i=1

fy
i
(vi), (20)

where fy(v) and fy
i
(vi) are the multivariate probability density functions asso-

ciated with y(n) and y
i
(n), respectively. The temporal structure, in this case,185

is inherently taken into account by the multivariate densities.

To measure the independence, one can use the mutual information [1] :

I(y(n), . . . ,y(n−d)) = −H(y)+
∑N

i=1 H(y
i
), where H(·) is Shannon’s entropy,

defined as H(y) = −
∫

D
p(y) log(p(y))dy, with D ⊆ R

N(d+1), and H(y
i
) =

−
∫

Di
p(y

i
) log(p(y

i
))dy

i
, with Di ⊆ R

d+1, for the marginal entropies. The

mutual information is always non-negative and, when independence is reached

for all delays, I(y(n), . . . ,y(n−d)) = 0. In its strict form, I(y(n), . . . ,y(n−d)) is

difficult to be calculated since it demands the estimation of the densities (which

is critical in our case, where all densities are multivariate). However, under the

supposition of a successful separation, it is expected that the recovered sources

be jointly Gaussian as well, i.e., fy (v) ∼ N
(

0,R
yy

)

or

fy (v) =
1

√

|2πR
yy

|
exp

(

−1

2
vTR−1

yy
v

)

, (21)
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where R
yy

is as defined by Eq. (17) and | · | is the determinant operator.

It can be shown that, by combining Eq. (21) with I(y(n), . . . ,y(n−d)), the

separation criterion associated with the mutual information reduces to [21]

JSOMI = min
W,G

1

2
log





∏N
i=1

∣

∣

∣
Ry

i
y
i

∣

∣

∣

∣

∣

∣Ryy

∣

∣

∣



 . (22)

It is important to mention that a similar expression was already obtained

through the spectral density of Gaussian sources, being named Gaussian Mutual

Information (GMI) [1, 21, 22], and the temporal-extended covariance matrices190

were used in the convolutive mixing problem [15], but its application to the PNL

problem is novel. Hence, we refer to Eq. (22) as the Second-Order Mutual Infor-

mation (SOMI). As the BD cost, Eq. (22) uses only the SOS information, but

instead of using summation of quadratic terms (Eq. (18)), the determinants of

matrices Ry
i
y
i

and R
yy

are considered (note, however, that the computational195

complexity is increased by O(n3) due to the determinant operator).

The objective of the SOMI criterion is to minimize the cost JSOMI so that

JSOMI = 0. However, the norm constraint given by Eq. (19) is necessary to

avoid null (trivial) solutions.

3.3. The Quadratic SOMI Cost200

A closer observation on Eq. (22) reveals that, in fact, a matching between

the determinant terms
∏N

i=1 |Ry
i
y
i

| and |R
yy

| would lead the cost JSOMI to

be equal to zero (i.e., the mutual information is null). In that sense, a similar

cost can be written without relying on the logarithm properties, but on the

simplicity of a quadratic difference:

JSOMIq = min
W,G

(

N
∏

i=1

|Ry
i
y
i

| − |R
yy

|

)2

, (23)

where the minimal (and desired) cost value is zero. Note that the norm con-

straint (Eq. (19)) is also necessary to avoid null solutions. This cost is named

SOMIq due to its quadratic term.
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For SOMI and SOMIq, when the correlation matrix R
yy

is block-diagonal,

we have that |R
yy

| =
∏N

i=1 |Ry
i
y
i

| and the costs are both null. In that sense,205

we expect that the solutions for SOMI and SOMIq be the same. However, the

quadratic relation in SOMIq may be able to provide a desirable cost shape in

the optimization process – we will discuss this point in more detail ahead.

3.4. The Analytical Calculation of the Cost Functions

As usual in SOS-based approaches, the main entity is the correlation matrix

and, if one considers the mixing and separating model given by Eq. (16), the

expanded correlation matrix R
yy

can be computed analytically:

R
yy

= E
[

y(n)yT (n)
]

= E
[

WAHr(n)rT (n)HTATWT
]

+ E
[

WAHr(n)ρT (n)ΘTΓTWT
]

+ E
[

WΓΘρ(n)rT (n)HTATWT
]

+ E
[

WΓΘρ(n)ρT (n)ΘTΓTWT
]

= WAHRrrH
TATWT +WAHRrρΘ

TΓTWT +WΓΘRρrH
TATWT

+WΓΘRρρΘ
TΓTWT ,

(24)

where Rrr = E
[

r(n)rT (n)
]

, Rrρ = E
[

r(n)ρT (n)
]

, Rρr = E
[

ρ(n)rT (n)
]

and210

Rρρ = E
[

ρ(n)ρT (n)
]

are the correlation matrices as a function of r(n) and ρ(n)

– in which ρ(n) is the Volterra expansion of r(n). Since r(n) is an i.i.d. vector,

these covariance matrices have, as non-null elements, only the terms involving

E
[

r2i (n)
]

, E
[

r4i (n)
]

and E
[

r6i (n)
]

, which can be easily obtained. This reveals

that some HOS are directly encompassed by the correlation matrices, which215

might be essential to the nonlinear separation process.

In the BD cost function, only the off-block-diagonal elements are considered,

so that the matrices Ry
i
y
j

, for i 6= j, are the ones effectively used. For the SOMI

and SOMIq costs, the block-diagonal elements Ry
i
y
i

are considered. Based on

Eq. (24), we can write:

Ry
i
y
j

= Wi

(

AHRrrH
TAT +AHRrρΘ

TΓT

+ ΓΘRρrH
TAT + ΓΘRρρΘ

TΓT
)

WT
j ,

(25)
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where Wi is the ith block with d+1 rows of W . It is possible to note that each of

the (d+1)2 elements of Ry
i
y
j

are quadratic polynomials in function of Γ and Wi

– the separation coefficients – and can contribute with additional information

for solving the system. However, there might be redundant equations, since,220

under the assumption of stationary discrete-time stochastic processes, Ry
i
y
i

is

Toeplitz, and Ry
i
y
j

= RT
y
j
y
i

by definition.

Using the relations (24) and (25), the costs BD, SOMI and SOMIq can be

analytically obtained, i.e., the cost functions can be exactly evaluated without

any estimation errors. Note that this approach requires the knowledge of the225

matrices H, A, Θ and Γ, which, in practice, are not known. However, under a

theoretical perspective, it may contribute to a better understanding of the PNL

mixtures behavior, as shown next.

4. Identifiability and Bounds on Number of Delays

The three aforementioned criteria share a common feature when a solution230

is found: the extended correlation matrix of the output signals R
yy

is precisely

a block-diagonal matrix, i.e., all the off-block-diagonal elements are null. This

observation allows us to point out some general aspects involving the SOS-based

costs in the context of the particular PNL mixture case considered.

4.1. Blind Identifiability235

In the linear BSS problem, the study of the blind identification conditions

for the SOS-based approaches is a well studied topic [6]: it is known that the

linear mixing matrix A can be identified, up to permutation and scale factors, if

the source signals have different spectral shapes. Generally, the demonstration

is done by ensuring that the diagonalization process of the correlation matrix240

for different delays yields eigenvalues that are distinct [4, 1]. In the temporal-

extended formulation, this means that R
yy

should be block-diagonal and that

each block of the main diagonal – i.e., Ry
i
y
i

, for i = 1, . . . , N – present, at least,

two distinct eigenvalues.
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The extension of this idea to the general PNL problem becomes more com-245

plex, since the identification conditions must be valid for A and f(·). In the

studied case, the problem may be posed in a simpler manner, since we are able

to express the nonlinear mixing functions by means of a linear matrix multipli-

cation (Eq. (16)). In that sense, similarly to the linear case, it is possible to

verify the the conditions for identification [1] through the block-diagonalization250

of R
yy

in function of W and Γ. To solve this problem, we consider two cases:

(i) Γ is null and (ii) Γ has a non-null value.

In case (i), when Γ is null, i.e., the case in which the nonlinear part is solved,

W must block-diagonalize only AHRrrH
TAT and the conditions are the same

as for the linear case [1]: the source signals must have different spectral shapes.255

For case (ii), Γ is a non-null diagonal matrix (i.e., there remains a nonlinear

residual error), the matrices Rrρ, Rρr and Rρρ are not block-diagonal (due to

inherent HOS encompassed in the process), and W is unable to compensate

Θ by itself. Since the matrices Rrρ, Rρr and Rρρ are not block-diagonal, the

diagonalization of R
yy

would result in non-orthogonal WAH or WΓΘ, with260

eigenvalues not unique, which is not a desired solution [1].

Regarding the impossibility of the compensation of Θ by W , we have that

W will not be able to jointly diagonalize the linear term as well as the nonlinear

ones. For instance, if the linear term (AHRrrH
TAT ) is block-diagonalized and

WAHRrrH
TATWT is orthogonal (i.e., W = A−1), then,

R
yy

= HRrrH
T +HRrρΘ

TΓTWT +WΓΘRρrH
T +WΓΘRρρΘ

TΓTWT ,

(26)

and the nonlinear terms are not block-diagonal for non-null Γ. On the opposite,

if the nonlinear terms are made block-diagonal, the linear term will not be block-

diagonal. Hence, the possible orthogonal solution (with distinct eigenvalues) is

that with null Γ. The only exception happens when A = I, i.e., when the linear265

mixing part is reduced to identity (and all the terms will be block-diagonal).

However, this case is not considered, since there is no mixture [19].

Thus, in short, the SOS identifiability conditions are that the signals must
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present different spectral shapes and that the linear mixing part of the PNL

model must effectively occur. However, there is a crucial condition in the sepa-270

rating model: the SOS-based approach requires that R
yy

encompasses a linear

part, which is equivalent to requiring that the combined nonlinear function

G ◦F yields a z(n) with at least one linear term (similarly to Eq. (9)). In other

words, G must admit at least one term that compensates the nonlinearities F –

yielding the linear term – but can also present a nonlinear residual. The linear275

term must not vanish, even during the coefficients adaptation. This may be a

strong constraint on the PNL separating model, since the choice of G must have

a fixed term that compensates F ; but note that, when it is known that F is

composed of polynomial functions, G can be easily constructed by composing

several compensating polynomial terms and fixing the promising ones. This280

general polynomial case, however, will be treated in future works, since, for the

moment, the cubic case will be sufficient to provide insightful perspectives.

4.2. Bounds on the Number of Delays

As previously mentioned, each element in the off-block-diagonal ofR
yy

forms

a quadratic polynomial as a function of Γ and W, which may compose a system285

of quadratic equations. The number of unknown variables, k, in our studied

case, is k = N(N+1), which are the coefficients of Γ and W.

Some elements (or equations) of R
yy

, however, are redundant. For instance,

the elements of the main diagonal of Ry
i
y
j

form the same equation in function

of the unknown variables and, hence, they only contribute as a single equation290

(new information) to the system. In addition, we have that Ry
i
y
j

= RT
y
j
y
i

,

i.e., the sub-diagonals are equivalent, which also reduces the effective number

of equations in the system. In that sense, by removing the redundancy, we

have N(N−1)/2 matrices Ry
i
y
j

, in which the number of effective equations are

d(d+1)+1 each one, resulting in a total of N(N−1)(d(d+1)+1)/2 equations in295

the system. Besides, the normalization given by Eq. (19) also performs a role

as a constraint, and can contribute to the system with N equations. Finally,

it is possible to state that the number of effective equations in the system is
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N(N−1)(d(d+1)+1)/2 + N . Hence, to obtain valid solutions, it is necessary

that d be chosen so that N(N−1) (d(d+1)+1) /2+N ≥ k.300

Notwithstanding, it is also possible that some of the off-diagonal elements

of Ry
i
y
j

be equivalent, depending on the temporal structure of the mixtures

(i.e., yi(n) and yj(n) have similar or equal spectral densities) and, in that case,

the number of valid equations might be reduced. In that sense, the expression

N(N−1) (d(d+1)+1) /2+N ≥ k is only a lower bound for choosing d.305

In order to illustrate the system of equations, we consider a 2-source and

2-mixture case in which the linear mixing part of the PNL model is a rotation

matrix, i.e., A = [cos(φa),− sin(φa); sin(φa), cos(φa)]. For the separation, based

on Eq. (16), we have 2 unknown variables for the joint nonlinear part, γ1 and

γ2, and 1 unknown variable, φw, for the linear separating matrix W (which is310

a rotation matrix, similar to A). Thus, we have that, for N=2 and d=1, the

number of equations is, at most, N(N−1)(d(d+1)+1)/2 + N = 5. Fig. 2(a)

shows the surface of each equation for given temporally colored sources, with

φa = 1.02 rad. In this case, the off-diagonal elements of Ry
1
y
2

are coincident

and we only have 4 valid equations, resulting in 4 surfaces (plotted with different315

colors) in Fig. 2(a). The intersection points of the surfaces will determine the

regions where all equations are satisfied (their intersection occurs for γ1 = γ2 = 0

and φw = kπ−φa, k = 0,±1,±2, . . . – not observable in Fig. 2(a)). Indeed, any

of these points will be a valid solution for the BD, SOMI and SOMIq criteria.

Although the SOS-based criteria are intended to present the same solution,320

their cost shapes may differ. Consider the previous example but assume that

the linear part is has already been solved, leaving just γ1 and γ2 to be adjusted.

In Fig. 2(b), we show the contours as functions of γ1 and γ2 and for d equal to

1, 2 and 4. In all cases, the global solution is γ1 = γ2 = 0 (denoted by an “X”

in Fig. 2(b)), which is the desired solution, but local minima also exist. Very325

interestingly, as d increases, the “weight” of the local optima is reduced, being

the global solution more evident (mainly for the SOMIq cost).

Next, we consider the case where Γ and W have no constraints – increasing

the space of candidate solutions – to evaluate the criteria performance.
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(a) Equations surfaces. (b) Cost Contours.

Figure 2: Number of delays: equations and solutions.

5. Performance Analysis330

So far, we have verified that the SOS-based criteria share some features, but

they might differ in their cost shapes. In fact, when an optimization task is

performed, the cost shape might cause a significant impact on the performance.

In order to test this effect, we consider simulation scenarios with N=M=2 and

N=M=3 and with cubic nonlinear mixing functions, i.e., fi(ui(n)) = u3
i (n), for335

i = 1, . . . , N , or, for the extended-temporal version, F(u(n)) = u⊙3(n).

As usual in BSS problems, s(n), A and f(·) are not known. Hence, it could

be difficult to define a separation structure. For our simulation tests, we as-

sume that the nonlinear compensating function was chosen to be of the form

gi(xi(n)) = gi,0sgn(xi(n))(|xi(n)|)
1/3 + gi,1xi(n), for i = 1, . . . ,M . With the340

objective of obtaining a linear term, which is a separation condition, it is nec-

essary to keep fixed one of the coefficients (gi,0 or gi,1). Thus, we assume that

gi,0 = 1 remains fixed and gi,1 = γi is allowed to vary (the suitable choice of the

fixed coefficients might require some heuristic tests). For the extended-temporal

notation, this is equivalent to G(x(n)) = sgn(x(n))⊙(|x(n)|)⊙1/3+Γx(n). Con-345

veniently, this model is exactly as proposed in Eq. (11), where Γ and W must

be adapted for performing separation.

For the optimization of the weights (linear and nonlinear), we adopt the

metaheuristics called Differential Evolution (DE) and Clonal Selection Algo-
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rithm (CLONALG), which are efficient techniques to explore the search space350

and to avoid convergence to local optima [16, 17]. The DE metaheuristic relies

on probabilistic vector operations, while CLONALG is based on an artificial

immune system inspired by the clonal selection theory and antigen-antibody

interactions [17]. Their main difference is the fact that, in DE, the candidate

solutions are adapted by mechanisms that exploit the information about the355

search space that is available in the current population, while, in CLONALG,

conventional operators based on random perturbations are used (for more de-

tails, please refer to [16, 17]). In simulations, the metaheuristics parameters

were adjusted to: the DE parameters were chosen to be F = 0.5 (adaptation

step) and CR = 0.9 (crossover constant), and the CLONALG parameters were360

Nc = 10 (number of clones), β = 5 (decay of mutation), 15% of new random

cells, T = 50 (period of cells insertion). For the N=M=2 case (6 weights: 2

for Γ and 4 for W), we set NP = 500 (population size/number of cells) and

5000 iterations for both DE and CLONALG, whereas, for the N=M=3 case

(12 weights: 3 for Γ and 9 for W), we used NP = 700 (the other parameters365

were kept the same). These parameters were constant for all simulation cases

(however, for scenarios with more sources and/or more complex nonlinearities,

it is recommended that the search power of the optimization strategy be in-

creased for a higher global convergence rate). In the end of the adaptation, the

individual with the best fitness (lower SOS-based cost) is selected to provide the370

solution. The general steps of the optimization method are as shown in Alg. 1

The performance of the found solutions can be measured in terms of the

Signal-to-Interference Ratio (SIR) (after permutation, sign and variance correc-

tion), which is defined as SIR = 10 log
(

E[yi(n)
2]/E[(si(n)− yi(n))

2]
)

. In that

sense, higher SIR values mean better performance solutions.375

5.1. Performance Using the Analytical Covariance Matrices

In the first scenario, we wish to investigate the effect of the number of delays

d in the SOS-based separation criteria using the analytical covariance matrices,

i.e., by obtaining R
yy

directly from Eq. (24), without estimation errors. For

21



Algorithm 1 SOS-based method for optimization using DE/CLONALG

Initialization of DE/CLONALG parameters;

Randomly initialize all NP individuals in the Γ and W search space;

while Maximum number of iterations is not reached do

for Each individual i ∈ NP do

if Using DE [16]: then

Generate mutated vector by randomly picking 3 different individuals;

Combination with the original individual (F ,CR);

end if

if Using CLONALG [17]: then

Generate Nc clones;

Mutation of the clones (β);

end if

Selection:

Obtain Ryy analytically (Eq. (25)) or via sample estimation;

Performance Evaluation, according to

BD (Eq. (18)), SOMI (Eq. (22)) or SOMIq (Eq. (23))

Keep the best (original or combination/mutated) individual;

if Using CLONALG: then

Insertion of new individuals at period T ;

end if

end for

Pick the best individual of the population and present as best found can-

didate for solution at this stage

end while
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N=2 sources, two i.i.d. Gaussian signals (r1(n) and r2(n)) are generated and380

temporally colored by the FIR filters h1 = [1, 0.6,−0.3, 0.1, 0.4, 0.3,−0.22, 0.18,

0.5] and h2 = [1,−0.2,−0.8, 0.2, 0.1,−0.41, 0.5, 0.1], separately. Note that the

temporal structures provided by h1 and h2 are of finite length and, hence, there

is a limited amount of temporal information to be extracted. The linear mixing

matrix isA = [0.25, 0.86;−0.86, 0.25] and we wish to adapt Γ andW. Supposing385

that r1(n) and r2(n) are zero-mean and unit variance Gaussian processes and

that h1 and h2 as well as the mixing coefficients are known, the covariance

matrices can be analytically computed with (24).

We considered that the number of delays d can vary from 1 to 7 and, for

each value of d, we performed 50 independent runs of the DE and CLONALG390

with the aim of minimizing the BD, SOMI and SOMIq costs (separately). The

found solutions were evaluated in terms of SIR for 700,000 test samples (used

only for evaluation). Fig. 3(a) shows the mean SIR values for each considered

delay, while Fig. 3(b) shows the SIR values for the best solution found by DE

and CLONALG throughout the 50 runs. From the mean SIR values, one can
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Figure 3: Mean and Best Performance - Analytical Costs.

395

note that the found solutions for the BD and SOMI criteria led to a low value of

SIR for all considered delays, for both DE and CLONALG, indicating that their

solutions might not be adequate for performing BSS. However, in terms of the

best found solution, the BD criterion shows an intriguing result: for d ≥ 4, the
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solutions for the BD are able to separate the sources with the highest level of400

SIR. This indicates that, although we have employed a huge search resource for

DE and CLONALG, they have presented difficulties in finding the best solution

for BD. For the SOMI criterion, the best found solution shows an improved

performance for d ≥ 4, but it remains around the 10 dB level. On the other

hand, for the SOMIq criterion, the DE and CLONALG found good solutions405

more easily, without great discrepancies between Figs. 3(a) and 3(b), and, from

a general perspective, it is possible to say that the solutions SIR level tends to

increase with d, being the sources successfully separated. Note that, for d < 2,

the SOMIq best solutions found by DE are not able to separate the sources,

which is in accordance with the bound on the number of delays (Section 4.2).410

In order to clarify the obtained results, we compare in Fig. 4(a) the lowest

attained costs values of BD, SOMI and SOMIq for a ‘regular’ solution (a ran-

domly picked solution) and the best solution throughout 50 runs of the DE, all

for d = 4. It is possible to note that, for the BD cost, the difference between

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−9

B
e
s
t 
S

o
lu

ti
o
n
 F

o
u
n
d
  
  
  
  
 R

e
g
u
la

r 
S

o
lu

ti
o
n

BD

−1.16

−1.15

−1.14

−1.13

−1.12

−1.11

−1.1
x 10

−15 SOMI

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

x 10
−14SOMIq

3.7738x10
−9

1.8848x10
−15

−1.1043x10
−15

−1.1635x10
−15

4.1615x10
−14

3.5635x10
−14

(a) Costs - Regular and best cases.

2 4 6 8 10

R
ss

 - Source

2

4

6

8

10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

R
yy

 - BD

2

4

6

8

10

2 4 6 8 10

R
yy

 - SOMI

2

4

6

8

10

2 4 6 8 10

R
yy

 - SOMIq

2

4

6

8

10

(b) Extended Correlation Matrices

Figure 4: Cost Comparison and Correlation matrices.

the two cases is larger, being clear that DE is presenting difficulties to find the415

global optima, differently from the other costs, where the differences were rela-

tively small. This indicates that the BD cost shape may impose some difficulties

in finding the global optima, being necessary to increase the search power of the

DE metaheuristic. For SOMI, the minimization of Eq. (22) led to small values
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of the cost, but, due to precision issues, the cost values were negative (ideally420

positive), which contributed to its poorer performance in comparison with the

other criteria. The SOMIq cost, on the other hand, solves the SOMI drawback

and converges to close and positive small values.

A more intuitive comparison can be obtained from Fig. 4(b), where we illus-

trate a colored version of the extended correlation matrix of the sources R
ss

and425

of the outputs R
yy

for the BD, SOMI and SOMIq solutions in one of the exe-

cutions (the same solution picked as ‘regular’) of the DE metaheuristic, all for

d=4. It is possible to note that, for R
ss
, the main diagonal blocks are colored in

different patterns, which reveals the temporal structure of the sources, whereas

the off-diagonal blocks correspond to uncorrelated values and present a single430

color. Ideally, the objective is to obtain R
yy

as close as possible to R
ss
. For

the BD solution found by DE, the temporal structure of only one of the sources

was preserved, while the other source presented small temporal correlation. A

similar result also applies to SOMI, whereas, for the SOMIq output, the found

solution was the desired one, whose sources are mutually uncorrelated and with435

their temporal structure preserved. The observations outlined here were sim-

ilar to the results found by the CLONALG, hence, we decided to omit them.

These results reveal that, although encompassing different searching mecha-

nisms, both metaheuristics were able to identify better solutions with SOMIq,

indicating that its cost is able to express the required SOS more efficiently.440

5.2. Performance Using Estimated Covariance Matrices

For real-world problems, the covariance matrices are generally estimated

from samples (via sample mean), which certainly leads to approximated values

with reduced accuracy. This could be of major importance for the algorithms

performance with tendency of converging to local solutions, which, as indicated445

in the previous analysis, is the case of the BD cost. This issue will be investigated

now along with the cases in which the sources are Gaussian and non-Gaussian.

We consider theN=M=2 andN=M=3 cases. ForN=M=2, the mixing ma-

trix isA = [0.55,−0.92;−0.82, 0.38], while, forN=M=3,A = [0.55,−0.92, 0.20;
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−0.82, 0.38,−0.24;−0.52,−0.27, 0.79]. For both, the nonlinearity is the cubic450

function, given by Eq. (9), as adopted throughout this paper. The temporal col-

oration is obtained through FIR filters, chosen to be h1 = [1, 0.6,−0.3, 0.1, 0.4],

h2 = [1,−0.2,−0.8, 0.2, 0.1] and h3 = [1, 0.4,−0.7, 1.3, 0.2] (for N=2, only h1

and h2 are used). Now, we assume two types of distributions for ri(n): in the

first case, for all i=1, . . . ,N , ri(n) is an i.i.d. Gaussian signal with zero mean455

and variance equal to 2 and, in the second case, for all i=1, . . . ,N , ri(n) is an

i.i.d. signal uniformly distributed between −1 and +1. We consider that the

number of samples of yi(n), may vary from 250 up to 700,000 for the covariance

matrices estimation, being used, in the sequel, for obtaining BD, SOMI and

SOMIq costs. A test set with 700,000 samples will be used for SIR estimation.460

The number of considered delays is d = 4.

To adapt the coefficients Γ and W , we use the DE metaheuristic with the

same previously defined parameters and perform 100 independent runs (CLON-

ALG was not considered in this case, since its performance is similar to DE).

For each number of samples considered in the covariance matrices estimation,465

the resulting mean SIR performance for the BD, SOMI and SOMIq solutions

found by the DE are exhibited in Fig. 5 for the Gaussian and uniform sources

(solid lines for the N=2 case and dotted lines for the N=3 case). It is possible
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Figure 5: Mean SIR [dB] vs. Number of Samples (log).

to note that the BD and SOMI solutions found by the DE presented similar but
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lower values of SIR in all cases, while the SOMIq solutions achieved the best re-470

sults: for the Gaussian sources, the higher the number of samples, the higher the

SIR level obtained; however, for uniform sources, the number of samples causes

less impact on the SIR performance (this limitation might be a consequence

of the Gaussianity assumption in the SOMIq cost derivation). In addition, in

comparison with the N=2 case, SOMIq is still able to perform separation for475

N=3 but with lower SIR values – since, with 12 adjustable coefficients, the DE

convergence to local solutions is higher.

6. Conclusion

In this work, the problem of BSS was investigated in the context of PNL mix-

tures from an SOS-based perspective. In order to identify the constraints and480

conditions for the SOS-based approach, a temporal-extended formulation and a

PNL model with cubic polynomial nonlinear functions were considered. Within

this context, the classical SOS-based SOBI and GMI criteria were written under

this temporal-extended standpoint, being named BD and SOMI, respectively.

Moreover, to reduce the mathematical complexity of SOMI, a quadratic-like485

expression was proposed and named SOMIq.

Due to the simplicity of the SOS-based methods and the assumed cubic

nonlinear functions (and also their Volterra expansion), the covariance matrices

could be analytically computed. Based on this, a theoretical analysis on the

costs defined the identifiability conditions and a lower bound on the number of490

delays that must be considered for separation: the number of delays will depend

on the degrees of freedom of the separation system, from which a resulting linear

term must always exist. Interestingly, the analysis might be extended to any

polynomial functions. To evaluate the performance of the criteria in the consid-

ered PNL model, some simulations were held in scenarios using analytical and495

estimated versions of the covariance matrices, being the optimization process

made by the DE and CLONALG metaheuristics. In the analytical case, the

results indicated that the BD cost shape caused some difficulties for the meta-
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heuristics to find the global optima; the SOMI criterion presented some issues

in its cost minimization, which led to solutions that were not able to establish500

mutual independent sources with the desired precision; on the other hand, the

SOMIq criterion presented higher global convergence than BD, with solutions

that preserved the mutual independence (from an SOS point of view) and the

temporal structure of data – also, by increasing the number of delays above

the lower bound, we observed an improvement of the performance in terms505

of SIR. For the case with estimated covariance matrices, the SOMIq criterion

again presented the best SIR performance for scenarios with Gaussian and uni-

formly distributed sources. However, a better performance can be achieved in

the Gaussian case, since the SOMIq assumes Gaussian sources.

Although the present analysis focuses on a specific case of the PNL mixtures,510

it can be viewed as a relevant step towards the use of the SOS framework in

the nonlinear BSS problem. In that sense, for future works, we consider the

extension of this analysis to other polynomial nonlinearities, other nonlinear

mixing models and the investigation of possible computational improvement

based on the covariance matrices structure.515
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