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Abstract 

Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models 

for a large variety of probability density functions. In this paper we assume ICAMM to derive 

new MAP and LMSE estimators. The first one (MAP-ICAMM) is obtained by an iterative 

gradient algorithm, while the second (LMSE-ICAMM) admits a closed-form solution. Both 

estimators can be combined by using LMSE-ICAMM to initialize the iterative computation of 

MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG 

multichannel analysis. The experiments demonstrate the superiority of the new estimators with 

respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and 

Random Forest Regression. 

Keywords: ICA; nonlinear estimators; LMSE; MAP; EEG reconstruction. 

 

 

1. Introduction 

Estimation is one of the fundamental problems in statistical signal processing [1]. It is an 

essential part of many fields like spectral analysis, coding, time series analysis, prediction, 

interpolation, smoothing. Moreover, it appears in many areas of application. In spite of the huge 

amount of previous work in statistical estimation methods, new developments are still possible 

if new statistical models appear, so that new maximum a posteriori (MAP) or least mean square 

error (LMSE) solutions can be found. In this paper we consider the Independent Component 

Analyzers Mixture Model (ICAMM) [2-4] of the multivariate probability density function 

(MPDF) of the observations. ICAMM is a versatile model which encompasses most of the usual 

MPDF models, including both non-Gaussian and Gaussian Mixture Models. This generality 

implies that optimal estimators assuming an underlying ICAMM can be very attractive options 

in a large variety of scenarios. Therefore, we have derived the MAP and LMSE estimators of 

missing data, considering that the underlying MPDF is properly captured by ICAMM. The 

MAP estimator will be obtained by and iterative algorithm, and will be called MAP-ICAMM. 

On the other hand, the LMSE estimator is the expected value of the missing data conditioned to 

the available data, which we have calculated assuming ICAMM; the corresponding estimator 

will be called LMSE-ICAMM. The new estimator has been assessed in the reconstruction of 
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missing data of electroencephalographic (EEG) signals measured on subjects while performing 

a memory and learning task. They have been compared with the method of splines [5], a 

deterministic method which approximates complex function stepwise by local polynomials. In 

particular, we have considered the following state-of-the-art methods: Spherical Splines ([6]), 

which is the most commonly used method for interpolation in EEG processing in many EEG 

processing software, such as EEGLAB [7]; Hermite interpolation ([8]), which is a benchmark 

smoothing and interpolation method; Partial Least Squares ([9]), a preferred tool for ill-posed 

linear estimation problems; Support Vector Regression ([10]), one of the most popular machine 

learning tools for regression; and Random Forest Regression ([11]), which is a recent 

multidimensional interpolation technique with good performance across different applications 

(see [12] and the references within). 

In the next section we present the analytical derivation of the new proposed estimators (MAP-

ICAMM and LMSE-ICAMM). Then Section 3 is devoted to the mentioned EEG data 

application. Conclusion section ends the paper. 

 

2. Estimators based on ICAMM 

Let us consider an observation vector x of dimension (M × 1). Without loss of generality, this 

vector can be defined as being composed by a vector of known components, y, and a vector of 

unknown components, z, in the form 

 y z

 
   
 

y
x P y P z

z
 , (1) 

where z is a vector of size (Munk × 1) and therefore y is a vector of size ((M - Munk )× 1). yP and 

zP  are rectangular diagonal matrices respectively equal to the first M - Munk columns and the last  

Munk columns of the identity matrix of dimension (M×M) , so that 
unk

y
M

 
  
 

y
P y

0
 and 

unkM M

z

 
  
 

0
P z

z
, where i0 is a zero vector of size  (i × 1) . The goal is to estimate z from y. Let us 

assume that the MPDF  p x  is modeled with a K-class ICAMM. If x belongs to class kC  

1...k K , then  

 k k k x A s b  , (2) 

where ks  is a vector of size (M × 1) that contains statistically independent components (also 

known as “sources”); kA  is the mixing matrix; and kb is a bias vector. Notice that kA  is a 
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square matrix that can be inverted to obtain 1
k k

W A , the de-mixing matrix of class k. Hence 

 p x  can be expressed as a mixture of K components respectively corresponding to the K 

classes. 

            
1 1

, , | det
K K

k k k k k
k k

p p p C P C p P C
 

   x z y z y W s  , (3) 

where  kP C  is the prior probability of class k. 

Given a training set of observation vectors   1,...,n n Nx , we can estimate the model 

parameters ,k kW b  and  kP C , using one of the many existing methods (see [13] for a general 

procedure).  

1.1. MAP estimator (MAP-ICAMM) 

Let us consider the MAP estimator of z from y 

      max log max, ,MAP p L
z z

yz z z y  . (4) 

This maximization requires the calculation of the derivative of  ,L z y  with respect to z . By 

taking the log of (3) and considering that the components of ks are independent, we arrive to 

 

 
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

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 

  






 

 

sz y
W
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z

 ,  (5) 

where kms  is the -thm  source of class k . The value kms  can be obtained as  T
km km ks  w x b , 

with T
kmw  being the -thm row of kW . Thus, its derivative is equal to 

  TT Tkm
km z z km

s
 


w P P w

z
 . (6) 

The derivative of  log kmp s , also known as the score function, can be calculated explicitly for 

many common probability density functions. This requires prior knowledge of the source PDF 

which could limit the applicability of the algorithm. To reach general applicability, we will 

assume that the probability density of each source is to be estimated using a nonparametric 

kernel density estimator  with a Gaussian kernel. This requires labelling of the training samples 

which can be made, once the model parameters have been estimated, by selecting the class k 
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which maximizes the posterior probability          ' '
1

| | |
K

k n n k k n k k
k

P C P C P C P C P C


 x x x  

[3]. Let us call ( ) 1...l
k kl Lx to the subset of the training samples assigned to class k, and

 ( ) ( )l l
k k k k s W x b , the corresponding source vectors. The non-parametric estimator of ( )kmp s is 

given by 

 
 2( )

22

1

1

0

( )
1 l

k km
k

ms s
h

k

L

l
mp s e

a 

 
   , (7) 

where ( )l
kms  is the -thm  component of vector ( )l

ks , h  is called the bandwidth of the nonparametric 

estimator, and 0a  is a scaling constant calculated so that ( ) 1km kmp s ds



 . For the Gaussian 

kernel of (7), this scaling constant is 0 2 ka h L . The derivative of  log kmp s is 

 

 
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2
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1

1

2

1

log ( )

l
km km

l
km k

k

m
T

s sL l
km

s s

km h

lkm
N

km h

l

s s
e

hp s

s
e







 



 
   






 . (8) 

Hence, the derivative of  ,L z y can be calculated by replacing (6) and (8) into (5). Then, 

maximization of  ,L z y  could be achieved by using classical gradient algorithms, although 

Newton methods are preferable to get fast convergence. The problem of the Newton methods is 

that computation of the second derivative is required. To overcome this inconvenience, a family 

of quasi-Newton methods have been proposed. In particular, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [14] is generally accepted as the quasi-Newton method yielding the 

best compromise between fast convergence and computational payload, even for non-smooth 

optimization. That is the option that we have selected to obtain   max ,MAP L
z

zz y . We have 

named this estimator as MAP-ICAMM. A pseudocode summary of the algorithm is included in 

the following: 
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Algorithm 1. Computation of the MAP-ICAMM. 

Input: Training set of complete vectors   1...n n Nx , vector of known components y , initial value for 

the unknown components  0z  

Output: MAP prediction, MAPz  

1: Estimate ICAMM parameters   , 1...k k kP C k Kb W  from the training set [13] 

2: Label training samples [3] and compute  ( ) ( ) 1... 1...l l
k k k k kl L k K   s W x b  

3: for i = 1…I 

4: Compute 
  
 

1 ,

1

L i

i

 

 

z y

z
   (5)-(8) 

5: end for 

6:  MAP Iz z  

 

1.2. LMSE estimator (LMSE-ICAMM) 

The general solution to the LMSE criterion is the conditional expectation of unknown data with 

respect to known data, that is, 

    LMSE E p d  z z | y z | y zz  . (9) 

Considering the mixture model in (3) and using the chain rule, LMSEz  can be expressed as 

          
1 1

| | , | | , |
K K

k k kLMSE k
k k

p d p C d P C E C P C
 

      z z y z z z z y y yz y z  . (10) 

So we need to compute  | , kE Cz y and  |kP C y . Regarding  | , kE Cz y , let us first compute the 

conditional expectation of the sources  | ,k kE Cs y . Considering (1) and (2)  we may write 

      | , | , ,k k k k k k y k z k ky z kE C E C E C      s y W b y W P y W PP y z | y WP bz  , (11) 

then we can solve for  | , kE Cz y  by using the pseudoinverse  k z


W P  

     , | ,k k z k k k y k kE E CC
      W P s y W P y W bz | y                    .           (12) 

Application of (12) to estimate  , kE Cz | y requires knowledge of  | ,k kE Cs y . This later can be 

estimated using a variety of existing methods for interpolation in multidimensional irregular 

grids. Particularly simple is the nearest neighbours (NN) method of interpolation [15]. Given the 

observed vector y, we select kR L samples of the training subset ( ) 1...l
k kl Lx  assigned to class 



6 

 

k, let us call these selected samples    1 ... R
k ky yx x , whose corresponding    1 ... R

k ky yy y , as defined in (1), 

are the R-NN to y. Then, we can compute sample estimates of  | ,k kE Cs y in the form 

      
1 1

1 1ˆ | ,
R R

r r
k k k k k k

r r

E C
R R 

   y ys y s W x b                                                 (13) 

Regarding calculation of  |kP C y , this is just a problem of computing class posterior 

probabilities, so we can use any classifier trained with the vectors    , 1,...,n n Ny

corresponding to the original training set   , 1,...,n n Nx , as defined in (1). In particular an 

ICAMM classifier [3] could be tried. The estimator deduced from (10)-(13) will be called 

LMSE-ICAMM. A pseudocode resume of the algorithm is included in the following: 

Algorithm 2. Computation of the LMSE-ICAMM. 

Input: Training set of complete vectors  
 

 
1...

n
n

n
n N

 
  
  

y
x

z
, vector of known components y  

Output: LMSE prediction, LMSEz  

1: Estimate ICAMM parameters   , 1...k k kP C k Kb W  from the training set [13] 

2: Label training samples [3] and compute  ( ) ( ) 1... 1...l l
k k k k kl L k K   s W x b  

3: Compute   ˆ | ,k kE Cs y (13) and  , kE Cz | y  (12) 

4: Compute   |kP C y  from a classifier trained with   1...n n Ny  

5: Compute LMSEz  using (10) 

 

3. Real data experiments 

Electroencephalographic (EEG) signals are recordings of surface brain electrical activity taken 

at the scalp, where each sensor captures the combined signal from multiple neurons of the brain 

[16]. The study of EEG signals is a useful clinical tool because some illnesses, typically seizures 

and sleep disorders, produce abnormal electric patterns in the electrical activity of the brain that 

can be identified by an expert.  

There are several applications of independent component analysis (ICA) in EEG signal 

processing. The first applications introduced the assumption that each EEG channel is 

composed by a mixture of non-Gaussian sources [17]. Current applications of ICA for EEG 

signal processing include source extraction, noise and artifact removal, and dynamic modeling 

of brain oscillations (see [17]-[19] and the references therein).  

In the EEG application presented here, it was assumed that one or several channels have been 

partially corrupted or missing for some time and the proposed methods were used to recover the 

missing EEG samples. This kind of scenario is relatively common in EEG processing, for 
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instance, during artifact removal. In general, this data recovery step would benefit any 

application on EEG signals. As stated in the Introduction, we compared the performance of the 

proposed methods with five state-of-the-art methods: Spherical Splines [6], Hermite [8], Partial 

Least Squares (PLS) [9], Support Vector Regression (SVR) [10], and Random Forest 

Regression (RFR) [11]. As for our methods, we tested different initialization options for MAP-

ICAMM by exhaustive simulation, arriving to the conclusion that initializing with the solution 

given by LMSE-ICAMM was in general the best option. Thus, in the following we have used 

the term MAP+LMSE-ICAMM. 

The EEG signals used in this experiment were captured using an ActiveTwo system from 

BioSemi with active electrodes. The device recorded the signals while the subject was 

performing Sternberg memory task, a classical memory and learning neuropsychological test 

that measures multi-object short-term memory [20]. Electrodes were positioned following the 

10-10 system, and 64 EEG channels were recorded at 512 Hz. For this particular experiment, we 

considered the signals from two healthy subjects (one male, one female) that performed a set of 

120 trials of the experiment. The subjects answered correctly 98.60 % of the trials with an 

average response time of 1.23 s. The whole experiment lasted some 16 minutes per subject, 

during which 491520N   EEG samples were recorded. Figure 1 displays several seconds of 

the captured EEG during one trial of Sternberg’s memory task. 

The estimation process was set as follows. Following the definitions laid out in Section 2, we 

form observation vectors x of dimension 64M   by grouping the 64 samples (one for every 

channel) corresponding to a given instant n, hence we have a total of = 491520TN  observation 

vectors. First, we split the signal into 10-second epochs. For each epoch, the initial nine seconds 

of the data were used as a training set, i.e., N = 5120, and the remaining second was used as a 

testing set. Every experiment consisted in assuming that one or more of the electrodes were 

unusable during one second during recording of the testing set. Then the “missing second” was 

reconstructed with the proposed methods. ICAMM was trained considering the 2K  , which 

corresponds to the two stages of Sternberg’s task: presentation of the stimuli and response to the 

prompt, using the training set and the method described in [13].  

In every experiment we have computed two performance indicators: the signal-to-interference 

ratio (SIR), and the relative maximum error (RME): 
2

2

ˆ

maxˆ

max
, , 1...i i

i
unk

z z

z
SIR RME i M 






z

z z
                 ,                    (13) 

where ẑ  is the estimation of z provided by the corresponding method and  is the Euclidean 

norm. SIR is a typical measure of the quality of reconstruction of a signal from a mixture of 

signals plus noise (see for example [21]). It is equivalent to the inverse of the normalized 
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estimation error. Conversely, the relative maximum error is a measure of the maximum 

deviation that will be experienced from the actual data.  

The average results for both subjects are shown in Figure 2. Every point in this figure shows the 

obtained value of SIR averaged over 1000 repetitions of the experiment, for a given number 

unkM of missing channels. The axis on the RME plot (Figure 2.b) was inverted so that both 

indicators are better with higher values. All methods experienced a decrease in interpolation 

performance as the number of missing electrodes increased. This worsening was more marked 

for lower numbers of missing channels (<5) and then leveled off, with the exception of 

Spherical Splines, which degraded quickly as the number of missing channels increased. The 

worst results were returned by Spherical Splines, Hermite and RFR, with SVM and PLS 

yielding intermediate results. On the other hand, the proposed methods achieved the best results 

by a wide margin, with MAP+LMSE-ICAMM improving the result of LMSE-ICAMM. These 

trends were consistent across both indicators, with the results for the RME being more unstable 

due to the nonlinear nature of the indicator. The only exception was Hermite, whose RME 

results were better than its SIR results (yet still worse than those of the proposed methods). 

It is also relevant to mention that in the computation of LMSE-ICAMM in the experiment of 

Figure 2 we considered kR L  in (13). This simply implies computing the sample mean of all 

the training sources  ( ) ( ) 1...l l
k k k k kl L  s W x b  corresponding to class k, (    ˆ ˆ| ,k k k kE C E Cy s |s ), 

i.e., there is no need for searching the R-NN, and computational load is significantly reduced. 

Actually, we have performed experiments to compare the results obtained for kR L  with those 

ones of kR L . The results for R=10 and kR L  are showed in Figure 3, where SIR has been 

averaged over 100 repetitions. It can be seen that the curves are practically identical and even 

slightly better if kR L . This is because the whole training subset ( ) 1...l
k kl Ls  is considered to 

obtain the sample estimate in (13), thus reducing the variance of the estimate. Similar results 

were obtained with other values of R. 

Finally, Figure 4 shows the estimation for a given time instant from a case with 32 missing 

channels, and Figure 5 shows the estimation error for the same time instant. The results are 

plotted as “scalp maps,” topographical maps of EEG data over the scalp of the subject. 

Electrodes are indicated by dots and missing channels are indicated by stars. In concordance 

with the results in Figure 2, LMSE-ICAMM and MAP+LMSE-ICAMM achieved a much lower 

estimation error than the rest of the methods. For instance, RFR, SVR and PLS all had a 

positive peak near the right occipital region that was much larger than that of the actual data, 

while LMSE-ICAMM and MAP+LMSE-ICAMM both correctly predicted that peak. 

Furthermore, the general distribution of the channel amplitudes (as indicated by the contour 

lines) with the proposed methods is different from that of the other considered method, with 
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MAP+LMSE-ICAMM achieving a distribution of amplitudes very similar to that of the true 

data. 

 

4. Conclusions 

We have presented two new statistical estimators. Both are derived assuming a non-Gaussian 

mixture model for the joint probability density of the observations (ICAMM). The versatility 

and generality of ICAMM allows a wide scope of applications were the new estimators, which 

are optimal for the assumed conditions, can outperform other methods. MAP-ICAMM requires 

an iterative algorithm, while LMSE-ICAMM admits a closed form solution. A natural way to 

combine both methods is to initialize MAP-ICAMM with LMSE-ICAMM, which has come to 

be the best option in the performed experiments. The experimental comparison has been made 

in the context of recovering missing EEG channels. The superiority of the new estimators with 

respect to several methods (Spherical Splines, Hermite, Random Forest Regression, Support 

Vector Regression and Partial Least Squares) has been evidenced. These results and the 

generality of the underlying model encourage the experimentation of the proposed methods in 

other areas of application. 
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Figure 1. An example of seven seconds of EEG data from one trial of the experiment. 

 
 
 
Figure 2. Average performance indicators for the different estimators in the EEG experiments. The axis 
on the RME plot is inverted so that both indicators are better with higher values. 

 
 
 

Figure 3. SIR indicator for LMSE-ICAMM considering kR L and 10R  in (13) 

 
 
 
 
 
 

0 1 2 3 4 5 6 7
Time (s)

E
E

G
 c

ha
nn

el
S

IR
 (

dB
)

R
el

at
iv

e 
m

ax
im

um
 e

rr
or

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of missing channels

14

14.5

15

15.5

16

16.5

17



12 

 

Figure 4. Scalp maps  for a case with 32 missing channels. Missing channels are indicated by stars (*), 
while known channels are marked by dots (•). 

 
Figure 5. Estimation error for the same case with 32 missing channels shown in Figure 4. Missing 
channels are indicated by stars (*), while known channels are marked by dots (•). 
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