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a b s t r a c t 

The estimation of the coordinates of nodes their proximity (or distance) measurements, is a principal

challenge in numerous fields. Conventionally, when localizing a static network of immobile nodes, non- 

linear dimensionality reduction techniques are applied on the measured distances to obtain the relative

coordinates up to a rotation and translation. In this article, we consider an anchorless network of mo- 

bile nodes, where the distance measurements between the mobile nodes are time-varying. In such an

anchorless framework, where the absolute knowledge of any node position, motion or reference frame is

absent, we aim to estimate the relative positions using the measured time-varying distances. To this end,

we derive a data model which relates the time-varying distances to the time-varying relative positions

of an anchorless network. Given this data model, we estimate the relative (position, velocity) and higher

order derivatives, which are collectively termed as the relative kinematics of the anchorless network. The

derived data model is inherently ill-posed, however under certain immobility constraints, we propose

closed-form solutions to recursively estimate the relative kinematics. For the sake of completeness, we

also estimate the absolute node kinematics, given reference anchors. Theoretical bounds are derived, and

simulations are conducted to benchmark the performance of proposed solutions.

© 2018 Published by Elsevier B.V.
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1. Introduction

The estimation of the relative coordinates of N points (or

nodes) in a P -dimensional Euclidean space using proximity mea-

surements (or pairwise distances) is a fundamental problem span-

ning a broad range of applications. These applications include,

but are not limited to, psychometric analysis [2] , perceptual map-

ping [3] , range-based anchorless localization [4] , combinatorial-

chemistry [5] , polar-based navigation [6] , sensor array calibration

[7] and in general exploratory data analysis [8] . In anchorless lo-

calization scenarios for instance, nodes heavily rely on co-operative

estimation of relative coordinates. Such anchorless networks nat-

urally arise when nodes are inaccessible or only intermittently

monitored, as is the case in space-based satellite arrays [9] , un-

derwater networks [10] or indoor wireless sensor networks [11] .

In such reference-free scenarios, the proximity information, often

measured as pairwise distances between the nodes, form a key in-

put in estimating the relative coordinates of nodes. These relative

coordinates are typically estimated using non-linear dimensional-

ity reduction algorithms (such as multidimensional scaling (MDS)),

which have been studied rigorously over the past decades [8,12] .
� A part of this work is published in the doctoral dissertation [1] .
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owever, considerably less attention has been directed towards an-

horless mobile scenarios. 

Our primary focus in this article is on an anchorless network

f mobile nodes, where we use the term anchorless to indicate

o absolute knowledge of the node positions, motion or reference

rame. Furthermore, since the nodes are mobile, both the node

ositions and the pairwise distance measurements between the

odes are time-varying in nature. Our motive is to relate the time-

arying pairwise distance measurements to time-derivatives of the

ode coordinates. For an anchorless network, these include the rel-

tive position, relative velocity, relative acceleration and higher-

rder derivatives which we cumulatively refer to as relative kine-

atics in this article. It is worth noting that the universally ac-

epted definition of relative kinematics inherently relies on the in-

ormation in the absolute reference frame. For example, the non-

elativistic relative velocity between two objects is rightly defined

s the difference between their respective absolute velocity vectors

13] . In an anchorless framework however, a natural question arises

n whether the relative kinematics can be estimated, given only

ime-varying distance measurements. Ergo, we wish to understand

he relationship between the time-varying distance measurements

nd the relative kinematics of mobile nodes, which is the prime fo-

us of this article. The estimated relative kinematics can be readily

sed to find the time-varying relative positions of the nodes. 

https://doi.org/10.1016/j.sigpro.2018.11.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.11.005&domain=pdf
mailto:rtrajan@ieee.org
mailto:g.j.t.leus@tudelft.nl
mailto:a.j.vanderveen@tudelft.nl
https://doi.org/10.1016/j.sigpro.2018.11.005
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.1. Previous work 

A key challenge in our pursuit is that both the time-varying

istance and the time-varying relative positions are non-linear in

ature. In particular, the Euclidean distance between a pair of mo-

ile nodes is almost always a non-linear function of time, even if

he nodes are in linear independent motion [14] . Therefore, it is

erhaps not surprising that traditional methods to solve such chal-

enges have been to employ state-space based approaches, with

he assistance of known anchors [15] . The initial position of the

odes is estimated using MDS-like algorithms, which use the Eu-

lidean distance matrix (EDM) at a single time instant to estimate

he relative node positions. Given this initial estimate, the relative

ositions are tracked over a period of time with Doppler measure-

ents and known anchors [16] , or via subspace tracking methods

17] . Unfortunately, Doppler measurements and anchor information

re not always available. Secondly, subspace tracking is applicable

nly for small perturbations in motion and therefore offers little

nsight on the kinematics of the motion itself. 

In our previous study, we proposed a two-step solution to es-

imate relative velocities of the nodes from time-varying distance

easurements [18] . Firstly, the derivatives of the time-varying

istances were estimated by solving a Vandermonde-like system

f linear equations. The estimated regression coefficients (called

ange parameters) jointly yield the relative velocities and the rel-

tive positions, using MDS-like algorithms. However, the proposed

olution is valid only for linear motion, which is not always prac-

ical. Furthermore, the previously proposed MDS-based relative ve-

ocity estimator heavily relies on the second-order time-derivative

f distance, and under Gaussian noise assumptions, it performs

orse than the relative position estimator. Thus, designing more

ptimal estimators for the relative velocity is one of the key mo-

ivations for the pursuit of a generalized framework presented

n this article. Moreover, understanding the higher order relative

inematics of motion in Euclidean space via time-varying distance

easurements is crucial for next-generation localization technolo-

ies. 

.2. Contributions 

Our key contributions are summarized as follows. 

1. We derive a generalized relative kinematics model for a net-

work of mobile nodes, relating the derivatives of the time-

varying distance measurements between the respective pairs of

mobile nodes to their individual relative kinematics. Unlike our

previous work [18] , where we limited our study to relative po-

sition and relative velocity, the proposed model in this article is

more generally applicable for relative position, velocity, acceler-

ation and higher-order kinematics. 

2. We propose algorithms to estimate the relative kinematics, un-

der relative immobility conditions of a few nodes. The proposed

algorithms are novel for relative acceleration estimation, and

simulations reveal that the proposed relative velocity estima-

tors outperform our previous MDS-like algorithm [18] . 

3. For the sake of completion, in the presence of anchor informa-

tion, we show that the absolute kinematics of the nodes can

also be estimated using the derived model. 

4. Given the relative (and absolute) kinematic estimates up to the

desired order, we show that the time-varying relative (and ab-

solute positions) of the nodes can be subsequently obtained.

Simulations show that the proposed kinematics-based time-

varying position estimation, offers significant improvement in
position accuracy around the time-period of interest. i
.3. Overview 

We present the data model in Section 2 , which relates the time-

arying distances to the kinematics of the mobile nodes. More

oncretely, this relationship is established via the derivatives of

he time-varying distance (called range parameters), which is es-

imated in Section 3 using dynamic ranging. In Section 4 we show

hat the relationship between the range parameters and the rel-

tive kinematics takes the form of a Lyapunov-like set of equa-

ions, which is inherently ill-posed. In pursuit of unique solu-

ions, we propose least squares algorithms, which can be solved

nder certain assumptions. In Section 5 , we also propose similar

lgorithms for estimating the absolute kinematics of the nodes,

iven known reference parameters in the cluster. To benchmark the

erformance of our estimators, we derive constrained Cramér-Rao

ounds (CRBs), under a Gaussian noise assumption on the data. An

ptimal choice of the weighting matrix ensures the proposed es-

imator is the best linear unbiased estimator (BLUE) for the given

ata model. In addition, unconstrained oracle bounds are also de-

ived in Section 6 , as a benchmark for next generation estimators.

n Section 7 , we conduct experiments to validate the performance

f the proposed estimators. 

.4. Notation: 

The element-wise matrix Hadamard product is denoted by �

nd ( · ) �N denotes element-wise matrix exponent. The Kronecker

roduct is indicated by �, the transpose operator by ( · ) T and
ˆ (·) denotes an estimated value. A vector of ones is denoted by

 N ∈ R 

N×1 , I N is an N × N identity matrix, 0 M , N is an M × N matrix

f zeros and ‖ · ‖ is the Euclidean norm. For any vector a , diag( a )

s a diagonal matrix containing the elements of a along the diag-

nal. The block diagonal matrix A = bdiag (A 1 , A 2 , . . . , A N ) consists

f matrices A 1 , A 2 , . . . , A N along the diagonal and zeros elsewhere.

he first and second derivatives are indicated by ˙ (·) and 

¨(·) respec-

ively, and more generally the m th order derivative is represented

y ( · ) ( m ) . Unless otherwise noted, ( · ) is use d to indicate param-

ters of the relative kinematic model. For matrices of compatible

imensions, we will frequently use the following properties 

ec (ABC ) = (C 

T 
� A ) vec (B ) , (1) 

ec (A ) = J vec (A 

T ) , (2) 

here J is an orthogonal permutation matrix. We define an N di-

ensional centering matrix as P = I N − N 

−1 1 N 1 
T 
N . For a set of n el-

ments, the number of k -combinations is given by the binomial

oefficient, which is defined as 

n 

k 

)
= 

n (n − 1) · · · (n − k + 1) 

k (k − 1) · · · 1 

. (3) 

 list of frequently used notations is given in Table 1 . 

. Time-varying distances and node kinematics 

We begin by modeling the relationship between the time-

arying distances, the time-varying positions and the node kine-

atics. In Section 2.1 , we expand the time-varying position using

 Taylor series, the coefficients of which yield the absolute node

inematics. As an extension, we present a novel relative kinemat-

cs model in Section 2.2 . In Sections 2.3 and 2.4 , the relationship

etween the time-varying distances and the node kinematics is de-

ived. Using these definitions, we formalize the problem statement

n Section 2.5 . 
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Table 1 

Notations. 

Notation Description 

P Number of dimensions 

N Number of nodes ( N > P ) 

D (t) ∈ R N×N Euclidean distance matrix at time t 

S (t) ∈ R P×N Absolute positions at time t 

S (t) ∈ R P×N Relative positions at time t 

X ∈ R P×N Absolute instantaneous positions at time t 0 
X ∈ R P×N Relative instantaneous positions at time t 0 
Y m ∈ R P×N m th order absolute kinematics at t 0 
Y m ∈ R P×N m th order relative kinematics at t 0 
H m ∈ R P×P Rotation matrix of the m th order kinematics 

h m ∈ R P×1 Translational vector of the m th order kinematics 
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2.1. Absolute kinematics 

Consider a cluster of N mobile nodes in a P -dimensional Eu-

clidean space ( N > P ), whose positions at time t are given by S (t) ∈
R 

P×N . For a small time interval �t = t − t 0 around t 0 , we assume

that the time-varying position is continuously differentiable and

that the derivative exists in the interior of this interval. Therefore,

the time-dependent position vectors of the respective nodes can

be expanded using a Taylor series, 

S (t) = S (t ) | t= t 0 + 

˙ S (t ) | t= t 0 (t − t 0 ) + 0 . 5 ̈S (t) | t= t 0 (t − t 0 ) 
2 + . . . (4)

where (S (t) , ˙ S (t) , ̈S (t) , . . . ) are the derivatives of the time-varying

position vectors. Now let X � S (t) | t= t 0 be a P × N matrix containing

the initial coordinates of the mobile nodes at time t = t 0 . Further-

more, let the instantaneous velocities of the nodes i.e., the first-

order derivatives of the position vectors ˙ S (t) | t= t 0 be denoted by

Y 1 ∈ R 

P×N , and in general the higher-order derivatives as Y m 

∀ m ≥
1 . Then, the above equation simplifies to 

S (t) = X + 

∞ ∑ 

m =1 

(m !) −1 Y m 

(t − t 0 ) 
m . (5)

2.2. Relative kinematics 

The absolute instantaneous positions at t = t 0 are an affine

transformation of the relative positions, i.e., 

X = H 0 X + h 0 1 

T 
N , (6)

where X ∈ R 

P×N is the relative position matrix up to a rotation and

translation, H 0 ∈ R 

P×P is the unknown rotation and h 0 ∈ R 

P×1 is

the unknown translation of the network [8] . Now, we extend this

well-known relative position definition to the higher-order deriva-

tives. For instance, the velocity of the nodes can be written as 

Y 1 = H 1 ̃
 Y 1 + h 1 1 

T 
N , (7)

where ˜ Y 1 represents the instantaneous relative velocities of the

network at t = t 0 . The translational vector h 1 is the group veloc-

ity and H 1 is the unique rotation matrix of the relative velocities

[18] . More generally, the m th order derivative is an affine model

defined as 

Y m 

= H m ̃

 Y m 

+ h m 

1 

T 
N . (8)

We now define the relative time-varying position as S (t) =
H 

T 
0 

S (t) P , and substituting the affine expressions (6) and (8) in

(5) we have 

S (t) = H 

T 
0 X P + 

∞ ∑ 

m =1 

(m !) −1 H 

T 
0 H m ̃

 Y m 

P (t − t 0 ) 
m , (9)

where we exploit the property P1 N = 0 N to eliminate the transla-

tion vectors, and enforce the orthonormality of the rotation matrix
.e., H 

T 
0 

H 0 = I N . Observe that the translation vector h 0 does not af-

ect the above equation. Secondly, for a meaningful interpretation

f the relative time-varying position, a reference coordinate system

ust be chosen e.g., H 0 = I P . In summary, without loss of general-

ty, we assume 

 0 = I P and h 0 = 0 P . (10)

nd subsequently (9) simplifies to 

 (t) = X + 

∞ ∑ 

m =1 

(m !) −1 Y m 

(t − t 0 ) 
m , (11)

here Y m 

is the relative kinematics matrix of the m th order de-

ned up to a rotation. In deriving (11) , we use the following prop-

rties 

 = X P = XP , (12a)

 m 

= H m ̃

 Y m 

= Y m 

P , (12b)

 (t) = S (t) P . (12c)

Note that (11) represents the relative counterpart of the ab-

olute Taylor expansion (5) , where the ( X , Y 1 , Y 2 , . . . ) denote

he relative kinematics of the corresponding absolute kinematics

(X , Y 1 , Y 2 , . . . ) . Our quest in this article is to estimate the relative

nd absolute kinematic matrices, given time-varying pairwise dis-

ance measurements between the nodes. Consequently, the abso-

ute position S ( t ) and relative position S ( t ) can then be estimated

sing (5) and (11) respectively. 

.3. Time-varying distances 

Similar to the node positions, the pairwise distances are also

ime-varying which we denote by the time-varying Euclidean dis-

ance matrix (EDM) D (t) � [ d i j (t)] ∈ R 

N×N where d ij ( t ) is the pair-

ise Euclidean distance between the node pair ( i , j ) at time instant

 . More explicitly 

(D (t)) �2 = ζ(t) 1 

T 
N + 1 N ζ

T (t) − 2 S T (t) S (t) , (13)

here ζ(t) = diag (S T (t ) S (t )) . Observe that D ( t ) is a non-linear

unction of time t , even when the nodes are in independent lin-

ar motion and hence D ( t ) is a continuously differentiable function

n time. Now, based on the time-varying EDM D ( t ), we define the

ouble centered matrix B ( t ) 

 (t) � −0 . 5 P 

(
D (t) 

)
�2 P , (14a)

nd the time derivatives of the double centered matrix as, 

˙ 
 (t) � −P 

(
D (t) � ˙ D (t) 

)
P , (14b)

¨
 (t) � −P 

(
D (t) � D̈ (t) + ( ̇ D (t)) �2 

)
P , (14c)

here ( ̇ D (t) , D̈ (t) , . . . ) are the derivatives of the time-varying EDM,

hich indicate the radial velocity and other higher-order deriva-

ives. Now, let the EDM and the corresponding derivatives at t = t 0 
e denoted by D (t) | t= t 0 � R = [ r i j ] , ˙ D (t) | t= t 0 � 

˙ R = [ ̇ r i j ] , D̈ (t) | t= t 0 �
¨
 = [ ̈r i j ] , ∀ { i, j} ≤ N, then with an abuse of notation (14) becomes 

 

(0) � B (t) | t= t 0 = −0 . 5 PR 

�2 P , (15a)

 

(1) � 

˙ B (t) | t= t 0 = −P 

[ 
R � ˙ R 

] 
P , (15b)

 

(2) � B̈ (t) | t= t 0 = −P 

[ 
R � R̈ + 

˙ R 

�2 
] 

P , (15c)
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nd higher-order derivatives can be defined along similar lines.

n general, given the distance derivatives at t 0 , i.e., the range pa-

ameters (R , ˙ R , ̈R , . . . ) , the double centered matrix B 

(0) and the

orresponding higher-order derivatives ( B 

(1) 
, B 

(2) 
, . . . ) can be con-

tructed. In a mobile network, the range parameters may not be

vailable, however given all the nodes are capable of two-way

anging, the range parameters can be estimated using dynamic

anging [14] . 

.4. Model 

To understand the relationship between the time-varying dis-

ances and the relative kinematics of the nodes, we substitute the

efinition of the EDM from (13) in (14a) and differentiate recur-

ively to obtain 

 (t) = S T (t) S (t) , (16a) 

˙ 
 (t) = 

˙ S 
T 
(t) S (t) + S T (t) ̇ S (t) , (16b) 

¨
 (t) = S T (t) ̈S (t) + ̈S 

T 
(t) S (t) + 2 ̇

 S 
T 
(t) ̇ S (t) , (16c) 

here we use the definition (12c) and introduce ( ̇ S (t) , ̈S (t) , . . . ) as

he derivatives of S ( t ). Now, rearranging the terms and substituting

he definition of S ( t ) at t = t 0 from (11) , we have 

 0 � B 

(0) = X 

T X , (17a) 

 1 � B 

(1) = X 

T Y 1 + Y 

T 
1 X , (17b)

 2 � B 

(2) − 2 Y 

T 
1 Y 1 = X 

T Y 2 + Y 

T 
2 X , (17c)

here we introduce the matrices ( B 0 , B 1 , B 2 ). The joint left and

ight centering using the centering matrix P in (14) ensures that

he phase center of the relative kinematic matrices ( Y 1 , Y 2 ) is at

 P , similar to the definition of the relative position X . 

.4.1. Relative kinematics 

Now, combining (15a) and (17a) , we have 

 0 = X 

T X = −0 . 5 PR 

�2 P , (18)

nd more generally for a given M ≥ 1, (17) can be generalized to 

 M 

� B 

(M) −
M−1 ∑ 

m =1 

(
M − 1 

m 

)
Y 

T 
M−m 

Y m 

(19a) 

= X 

T Y M 

+ Y 

T 
M 

X , (19b) 

here B 

( M ) is the M th derivative of the double centered matrix at

 0 , which is given by (15) and Y M 

is the M th order relative kine-

atic matrix. 

emark 1. (Measurement matrix B M 

): We make two critical ob-

ervations on B M 

in (19a) . 

• Firstly, note that B M 

is dependent on the range parameters

(R , ˙ R , ̈R , . . . ) via the definition of B 

( M ) (15) . 
• Secondly, B 0 � B 

(0) and B 1 � B 

(1) can be constructed only based

on the range parameters (see (17) ). However for M ≥ 2, B M 

not

only depends on B 

( M ) , but also additionally relies on the relative

kinematic matrices of order less than M . Hence, if the lower

order kinematics Y m 

∀ 2 ≤ m < M are known, then the measure-

ment matrix B M 

can be reconstructed. 
s  
.4.2. Absolute kinematics 

In addition to the relative kinematics, (19b) can also be refor-

ulated to estimate the absolute kinematics Y M 

of the network.

ecall from (12b) , that the relative kinematics of the M th order is

 M 

= Y M 

P under the assumption (10) . Substituting this expression

n (19b) , we have 

 M 

= X 

T Y M 

P + PY 

T 
M 

X , (20)

hich is the absolute kinematic model. 

.4.3. Model summary 

In summary, if the range parameters (R , ˙ R , ̈R , . . . ) are available,

 

( M ) can be constructed from (15) . Given B 

(0) , we aim to solve for

he relative position X using the Eq. (18) , which we use to estimate

he higher order kinematics. For M ≥ 1, the measurement matrix

 M 

can be constructed using B 

( M ) and by substituting the lower

rder relative kinematic matrices Y m 

∀ 2 ≤ m ≤ M in (19a) . Finally,

iven the measurement matrix, B M 

and an estimate of X , our goal

s to estimate the M th order relative kinematics Y M 

and the ab-

olute kinematics Y M 

for M ≥ 1, using (19b) and (20) , respectively.

e now formulate the problem more concretely in the following

ection. 

.5. Problem statement 

Problem statement: Given the time-varying pairwise distances

 ( t ) between the N nodes in a P dimensional Euclidean space, es-

imate the relative kinematics ( X , Y 1 , Y 2 . . . ) and absolute kinemat-

cs ( Y 1 , Y 2 . . . ) of the mobile network. These estimates subsequently

ield the relative (and absolute) time-varying positions. 

Solution: We propose a two-step solution to the above estima-

ion problem. 

S1) Dynamic ranging and relative position : Given the time-varying

distance measurements D ( t ), we employ dynamic ranging to

obtain the range parameters ( R , ˙ R , ̈R , . . . ) in Section 3 , under

the assumption that all the nodes are capable of communi-

cating with each other. Secondly, we also estimate the initial

relative position X using (18) . 

S2) Kinematics : The measurement matrix B M 

can be constructed

using the estimated range parameters, and lower order kine-

matics (19a) . Given the relative position X and B M 

estimates,

we solve for the relative kinematics Y M 

(in Section 4 ), and

the absolute kinematics Y M 

(in Section 5 ), using (19b) and

(20) respectively. 

Finally, given the initial relative position and the node kinemat-

cs, the time-varying absolute and relative positions { S ( t ), S ( t )} can

e estimated using (5) and (11) respectively. 

. Dynamic ranging and relative position 

In this section, we aim to estimate the range parameters

(R , ˙ R , ̈R , . . . ) , given two-way communication between the nodes

n the mobile network. In Section 3.1 , we relate the time-varying

ropagation delay between the nodes and the range parameters.

iven this relationship, we present a dynamic ranging model in

ection 3.2 , and subsequently present a closed form algorithm to

stimate the range parameters in Section 3.3 . Finally, we apply the

DS algorithm to find the initial relative position of the nodes in

ection 3.4 . 

.1. Time-varying propagation delay 

Consider a pair of mobile nodes capable of communicating with

ach other. Let τi j (t 0 ) � τ ji (t 0 ) = c −1 d i j (t 0 ) be the propagation de-

ay of this communication between the node pair ( i , j ) at time in-

tant t 0 , where d ij ( t 0 ) is the corresponding pairwise distance and
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Fig. 1. Dynamic ranging: A generalized two-way ranging (GTWR) scenario between 

a pair of mobile nodes, where the nodes exchange K time stamps asymmetrically 

with each other [14] . The curved lines symbolize the non-linear motion of the mo- 

bile nodes with time. Unlike our previous models [18,19] which considered only 

linear motion of the nodes, in this article we consider non-linear motion of the 

nodes. 
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c is the speed of the electromagnetic wave in the medium. Now,

for a small interval �t = t − t 0 , we assume the relative distance to

be a smoothly varying polynomial of time which enables us to de-

scribe the propagation delay τ ij ( t ) at t as an infinite Taylor series

in the neighborhood of t 0 

τi j (t) = c −1 d i j (t) = r i j + 

˙ r i j (t − t 0 ) + ̈r i j (t − t 0 ) 
2 + . . . , (21)

where the Taylor coefficients are defined as [
r i j , ˙ r i j , ̈r i j , . . . 

]T = diag ( γ ) −1 
[
r i j , ˙ r i j , ̈r i j , . . . 

]T 
, (22)

and γ = c[0! , 1! , 2! , . . . ] T . Here, (r i j , ˙ r i j , ̈r i j , . . . ) are the derivatives

of the time-varying pairwise distance d ij ( t ) esimtated at t = t 0 ,

which are the elements of the matrices (R , ˙ R , ̈R , . . . ) , presented

earlier in Section 2.3 . The physical significance of these coefficients

is as follows. The pairwise distance at t 0 is r ij , which is convention-

ally obtained from time of arrival measurements. ˙ r i j is the radial

velocity, typically observed from Doppler shifts, and the second-

order range parameter r̈ i j is the rate of radial velocity between the

node pair at t 0 . We will now use this relation in a scenario where

mobile nodes are capable of two-way communication. 

3.2. Data model 

Consider a generalized two-way ranging scenario between a

pair of mobile nodes ( Fig. 1 ), where the nodes communicate asym-

metrically with each other, and record K timestamps on each node.

The timestamps recorded at the k th time instant ( k ≤ K ) at node i

and node j are given by T ij , k and T ji , k respectively. The nodes are

mobile during these timestamp exchanges, and therefore the prop-

agation delay between the nodes is unique at every time instant.

With an abuse of notation, let τ ij , k and d ij , k be the propagation

delay and the distance between the node pair ( i , j ) at the k th time

instant. Then assuming the distance is (approx) constant during the

propagation time of the message, the non-relativistic propagation

delay is τi j,k = c −1 d i j,k = | T i j,k − T ji,k | . Now, observe that the pair-

wise propagation delay for GTWR can also be written as (21) , by

replacing t with T ij , k (or T ji , k ). More concretely, the propagation

delay τ ij is given as 

τi j,k = | T i j,k − T ji,k | = r i j + 

˙ r i j (T i j,k − t 0 ) + ̈r i j (T i j,k − t 0 ) 
2 + . . . , (23)

where the range parameters are estimated at t 0 where

T ij , k ≤ t 0 ≤ T ij , K . 

Aggregating all the K timestamps for each node pair ( i , j ), and

populating all measurements from N̄ � 0 . 5 N(N − 1) unique pair-
ise links for a network of N nodes, we have 

V 
 ︸︸ ︷ 
I N̄ � 1 K T T 

�2 . . . 
]

θ︷ ︸︸ ︷ ⎡ 

⎢ ⎢ ⎣ 

r 
˙ r 
r̈ 
. . . 

⎤ 

⎥ ⎥ ⎦ 

= τ, (24)

here for an L th order polynomial approximation, θ ∈ R 

N̄ L ×1 

s a vector of unknown coefficients. The N̄ dimensional vec-

or r = [ r ij ], ∀ 1 ≤ i ≤ N , j ≤ i contains all the pairwise dis-

ances at t 0 , and vectors containing the higher-order derivatives

( ̇ r , ̈r , . . . ) are similarly defined. The matrix V is a Vandermonde-

ike matrix defined as V = [ I N̄ � 1 K T T �2 . . . ] ∈ R 

N̄ K×N̄ L ,

here T = bdiag (t 12 , t 13 , . . . t 1 N , t 23 , . . . ) ∈ R 

N̄ K×N̄ and t i j =
 T i j, 1 − t 0 , T i j, 2 − t 0 , . . . , T i j,K − t 0 ] 

T ∈ R 

K×1 contain all the time

tamps. All the unique pairwise propagation delays are collected

n τ = [ τT 
12 , τ

T 
13 , . . . τ

T 
1 N , τ

T 
23 , . . . ] 

T ∈ R 

NK×1 where τ i j = | t ji − t i j | .
ur goal in the following section, is to estimate the values

 r i j , ˙ r i j , ̈r i j , . . . ] from (24) , which will help us construct the range

atrices ( R , ˙ R , ̈R , . . . ). 

.3. Dynamic ranging algorithm 

In reality, the propagation delay is erroneous and hence, more

ractically (24) is 

ˆ = V θ + η, (25)

here ˆ τ is the noisy propagation delay, and the noise param-

ters plaguing the data model are populated in η= [ ηT 
12 , η

T 
13 ,

 . . ηT 
1 N , η

T 
23 , . . . ] 

T ∈ R 

N̄ K×1 , where ηi j = [ ηi j, 1 , ηi j, 2 , . . . , ηi j,K ] is the

rror unique to the node pair ( i , j ). In practice, the noise is on the

ime markers T ij , k and subsequently on the Vandermonde matrix,

hich has been simplified under nominal assumptions to arrive

t the model (25) . The approximations involved are discussed in

ppendix-A . 

Now, suppose the covariance of the noise on the normal equa-

ions 

� E { ηηT } , (26)

s known and invertible, then the weighted least squares solution
ˆ is obtained by minimizing the following l 2 norm, 

ˆ = argmin 

θ
‖ �−1 / 2 (V θ − ˆ τ) ‖ 

2 

= (V 

T �−1 
V ) −1 V 

T �−1 ˆ τ, (27)

hich is a feasible solution, if K ≥ L for each of the N̄ pairwise

inks. More generally, when L is unknown, an order recursive least

quares can be employed to obtain the range coefficients [18] .

iven θ, estimates of the range parameter matrices ( ̂  R , ̂  ˙ R , ̂  R̈ , . . . ) can

e constructed using (22) and subsequently, from (15) we have the

ollowing estimates 

ˆ 
 

(0) = −0 . 5 P ̂

 R 

�2 P , (28a)

ˆ 
 

(1) = −P 

[ 
ˆ R �

ˆ ˙ R 

] 
P , (28b)

ˆ 
 

(2) = −P 

[ 
ˆ R �

ˆ R̈ + 

ˆ ˙ R 

�2 
] 

P . (28c)

.4. Relative position 

Give the initial pairwise distances at t 0 i.e., R , the initial relative

ositions X can be determined via MDS. Given 

ˆ R , let ˆ B 0 be an es-

imate of B � B 

(0) , obtained using (28a) . A spectral decomposition
0 
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f this matrix yields ˆ B 0 = V x �x V 

T 
x , where �x is an N dimensional

iagonal matrix containing the eigenvalues of the ˆ B 0 and V x the

orresponding eigenvectors. An estimate of the relative position es-

imate using MDS is then given by 

ˆ 
 = argmin 

X 

‖ ̂

 B 0 − X 

T X ‖ s.t. rank ( X ) = P 

= �1 / 2 
x V 

T 
x , (29) 

here �x contains the first P nonzero eigenvalues from �x and V x 

s a subset of V x containing the corresponding eigenvectors [8] . 

. Relative kinematics 

In the previous section, we estimated the range parameters

iven time-varying distance measurements D ( t ), which was the

rst step (S1) in our problem statement described in Section 2.5 .

sing these range parameters, we constructed the double centered

atrices ( ̂  B 

(0) 
, ̂  B 

(1) 
, ̂  B 

(2) 
, . . . ) (28) and estimated the relative po-

ition 

ˆ X using MDS (29) . Given these estimates, we now aim to

olve the unknown relative kinematic matrices Y M 

using (19) , as

roposed in (S2) of Section 2.5 . 

.1. Linearized multidimensional scaling (LMDS) 

Prior to investigating the general kinematic model (19) , we re-

isit a special case when the nodes are mobile under linear inde-

endent motion [18] . In such a scenario, the acceleration and other

igher order derivatives are absent i.e., Y m 

= 0 , ∀ m ≥ 2 . Therefore,

nder a constant velocity assumption, (17b) and (17c) simplify to 

 

(1) = X 

T Y 1 + Y 

T 
1 X , (30a) 

 

(2) = 2 Y 

T 
1 Y 1 , (30b) 

nd for m ≥ 3 { B m 

, B 

( m ) } defined in (19) does not exist [18, Ap-

endix B] . Now substituting the definition of relative velocity from

12b) and exploiting the property H 

T 
1 

H 1 = I , we have 

 

(1) = X 

T H 1 ̃
 Y 1 + 

˜ Y 

T 

1 H 

T 
1 X , (31a) 

 

(2) = 2 ̃

 Y 

T 

1 ̃
 Y 1 . (31b) 

The LMDS algorithm to estimate the relative velocity (up to a

ranslation) is then a two step method as decribed below. 

.1.1. MDS-Based relative velocity estimator 

Firstly, the relative velocity up to a rotation and translation is

btained by minimizing the strain function using (31b) . Let ˆ B 

(2) 
be

n estimate of B 

(2) from (28c) , with an eigenvalue decomposition

ˆ 
 

(2) � V y �y V 

T 
y , then the relative velocity estimate is given by 

ˆ ˜ 
 1 = argmin 

˜ Y 1 

‖ ̂

 B 

(2) − 2 ̃

 Y 

T 

1 ̃
 Y 1 ‖ s.t. rank ( ̃  Y 1 ) = P 

= �1 / 2 
y V 

T 
y , (32) 

here �y and V y contain the first P nonzero eigenvalues and cor-

esponding eigenvectors of �y and V y respectively. 

.1.2. Estimating the unknown rotation 

The MDS-based solution (32) yields the relative velocity up to a

otation and translation, which is not sufficient to reconstruct the

ime-varying relative position using (9) . To estimate the unique ro-

ation matrix, we vectorize (31a) , apply the transformation (1) , and

olve the following constrained cost function 

rgmin 

H 1 

‖ ̂

 	vec (H 1 ) − vec ( ̂  B 

(1) 
) ‖ 

2 s.t H 

T 
1 H 1 = I P , (33)
here ˆ 	 = (I N 2 + J )( ̂  ˜ Y 

T 
1 �

ˆ X 

T 
) , { ̂  X , ̂  ˜ Y 1 } are estimates obtained from

29) and (32) respectively and, J is a permutation matrix such that

2) holds. 

Thus, under a linear motion assumption, the relative velocity

 1 = H 1 ̃
 Y 1 up to a translation can be reconstructed for a general

 -dimensional scenario using the estimators (32) and (33) . It is

orth noting that the LMDS solution is feasible, only under the

onstant velocity assumption. In general, the assumption on linear

otion is not always valid and hence we address the more general

inematic motion in the following sections. 

.2. Lyapunov-like equations 

More generally, when the nodes are in non-linear motion, the

inematics Y m 

, ∀ m ≥ 1 exist and must be estimated. To solve for

he relative kinematics in this scenario, we refer back to our rela-

ive kinematic model (19) . For any M ≥ 1, the model (19b) 

 M 

= X 

T Y M 

+ Y 

T 
M 

X , (34) 

s the relative Lyapunov-like equation [20,21] , where B M 

is the

−dimensional measurement matrix and Y M 

is the M th order

inematics to be estimated. As pointed out in Remark 1 in

ection 2.4 , B M 

can be constructed by B 

( M ) and lower order rel-

tive kinematics { Y m 

} M−1 
m =1 

. The above equation is very similar, but

ot the same as the following equations, 

 

H Y + YA = B , 

AY + YA = 0 , 

AY + YC = E , 

hich are the (continuous) Lyapunov equation , commutativity equa-

ion [22 , chapter 4] and Sylvester equation [23,24] respectively,

here the unknown matrix Y has to be estimated, given A , B , C ,

 . The solutions to these equations exist and dummyTXdummy-

re extensively investigated in control theory literature [25] . How-

ver the Lyapunov-like Eq. (34) has received relatively less atten-

ion. The Lyapunov-like equation has a straight forward solution

or P = 1 . But, for P ≥ 2, although a general solution was proposed

y Braden [26] , a unique solution to (34) does not exist which we

iscuss in Appendix-B . 

Now, vectorizing (34) and using (1) , we aim to solve 

ˆ 
 

M 

= argmin 

y 
M 

‖ (I N 2 + J )(I N � X 

T ) y 
M 

− b M 

‖ 

2 

= argmin 

y 
M 

‖ A y 
M 

− b M 

‖ 

2 , (35) 

here 

 = (I N 2 + J )(I N � X 

T ) ∈ R 

N 2 ×NP , (36a) 

 

M 

= vec ( Y M 

) ∈ R 

NP×1 , (36b) 

 M 

= vec (B M 

) ∈ R 

NP×1 , (36c) 

nd J is an orthogonal permutation matrix (2) . The matrix (I N �

 

T ) ∈ R 

N 2 ×NP is full column rank, since X is typically non-singular.

owever, the sum of permutation matrices (I N 2 + J ) ∈ R 

N 2 ×N 2 is al-

ays rank deficient by at least 
(

N 
2 

)
. Hence, the matrix primary ob-

ective function A is not full column rank, but is rank deficient by

t least P̄ � 0 . 5 P (P − 1) , which is discussed in Appendix B . In (34) ,

ince the translational vectors of both X and Y M 

are projected out

sing the centering matrix P , the P̄ dependent columns in A in-

icate the rotational degrees of freedom in a P -dimensional Eu-

lidean space. 
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4.3. Lyapunov-like least squares (LLS) 

A unique solution to the Lyapunov-like equation is not feasible

without sufficient constraints on the linear system (35) . Let ˆ A be

an estimate of A , obtained by substituting the estimated relative

position 

ˆ X (29) . Similarly, let ˆ b M 

be an estimate of b M 

obtained

by substituting the range parameters and appropriate relative kine-

matic matrices up to order M − 1 . Then the constrained Lyapunov-

like least squares (LLS) solution to estimate the relative kinematic

matrices is given by minimizing the cost function 

ˆ y 
M,l l s 

= argmin 

y 
M 

‖ ̂

 A y 
M 

− ˆ b M 

‖ 

2 s.t. C̄ y 
M 

= d̄ , (37)

where C̄ is a set of non-redundant constraints. The above optimiza-

tion problem has a closed-form solution, given by solving the KKT

equations [27 , Section 10.1.1]. 

4.4. Weighted lyapunov-like LS (WLLS) 

In reality, both A and b are plagued with errors and hence the

solution to the cost function (37) is sub-optimal. Let W̄ be an ap-

propriate weighting matrix on the Lyapunov-like equation, then

the weighted Lyapunov-like least squares (WLLS) solution is ob-

tained by minimizing the cost function 

ˆ y 
M,wl l s 

= argmin 

y 
M 

‖ W̄ 

1 / 2 
M 

( ̂  A y 
M 

− ˆ b M 

) ‖ 

2 s.t. C̄ y 
M 

= d̄ , (38)

which, similar to (37) , can be solved using the constrained KKT so-

lutions [27 , Section 10.1.1]. An appropriate choice of the weighting

matrix W̄ M 

will be discussed in Section 6.4 . 

4.5. Choice of constraints: Relative immobility 

In the absence of absolute location information, a unique solu-

tion is feasible if the relative motion of at least P nodes or features

are invariant (or known) over a small time duration �t . In an an-

chorless framework, a set of given nodes would have equivalent

relative kinematics, if they are identical in motion up to a transla-

tion or if they are immobile for the small measurement time �t .

Such situations could arise, for example, in underwater localiza-

tion, when a few immobile nodes could be fixed with unknown

absolute locations, which in turn could assist the relative localiza-

tion of the other nodes. For P = 2 , if the first P nodes are relatively

immobile for the small measurement time, a valid constraint for

(37) and (38) is 

C̄ 1 = 

[
I 2 −I 2 0 

]
, d̄ 1 = 0 , (39)

which can be extended for P > 2 and if required, for a larger num-

ber of immobile nodes. In essence, the relative immobility con-

straint reduces the parameter space in pursuit of a unique solution

for the ill-posed Lyapunov-like equation. 

4.6. Time-varying relative position 

In this section, we solved for the relative kinematics of motion,

using the range parameters and relative position estimates. When

the nodes are in linear motion, the first-order relative kinematics

can be estimated using the LMDS algorithm ( 32,33 ). More gener-

ally, for estimating the relative kinematics in a non-linear scenario,

we solve the Lyapunov-like Eq. (34) using constrained least squares

( 37,38 ). Substituting these estimates in (11) , an estimate of the rel-

ative time-varying position is 

ˆ S (t) = 

ˆ X + 

ˆ Y 1 (t − t 0 ) + 0 . 5 ̂

 Y 2 (t − t 0 ) 
2 + . . . (40)

where ˆ X is a relative position estimate from (29) and { ̂ Y 1 , ̂
 Y 2 , . . . }

are the estimates from (37) or (38) . In the following section, we

aim to estimate the absolute kinematics of the nodes and subse-

quently the time-varying absolute position. 
. Absolute kinematics 

In this section, we solve for the absolute kinematics Y M 

, given

 M 

and the relative position X . We have from (20) , 

 

T Y M 

P + PY 

T 
M 

X = B M 

. (41)

he above equation is similar, but not the same, to the generalized

continuous-time) Lyapunov equation 

 

T YC + C 

T YA = B , 

here A , B , C are known square matrices [28] . We now vectorize

41) and aim to minimize the following cost function 

ˆ 
 M 

= argmin 

y M 

‖ Ay M 

− b M 

‖ 

2 , (42)

here 

 = (I N 2 + J )(P � X 

T ) ∈ R 

N 2 ×NP , (43a)

 M 

= vec (Y M 

) ∈ R 

NP×1 , (43b)

nd b M 

is given by (36c) . In comparison to (35) , the matrix ( I N �X 

T )

s replaced with ( P �X 

T ) in (43a) . The rank of the centering ma-

rix P is N − 1 and since X is typically full row rank, the Kro-

ecker product is utmost of rank NP − P . This rank-deficiency of

 is also reflected in the matrix A . Unlike A which has P̄ depen-

ent colomns, A is rank-deficient by 
(

P+1 
2 

)
= P̄ + P . The additional

 dependent columns are perhaps not surprising, as they indicate

he lack of information on the translational vector, i.e., the group

enter of the M th order kinematic matrix. 

.1. Generalized lyapunov-like least squares (GLLS) 

In pursuit of a unique solution to the rank-deficient system

42) , we propose a constrained generalized Lyapunov-like least

quares (GLLS) to estimate the absolute kinematic matrices which

s obtained by minimizing the cost function 

ˆ 
 M,gl l s = argmin 

y M 

‖ ̂

 A y M 

− ˆ b M 

‖ 

2 s.t. Cy M 

= d , (44)

here ˆ A and 

ˆ b M 

are estimates of A and b M 

respectively. The matrix

 is a set of non-redundant constraints, which will be discussed in

ection 5.3 . 

.2. Weighted generalized lyapunov-like LS (WGLLS) 

The performance of the estimator can be improved by weight-

ng the cost function (44) , i.e., 

ˆ 
 M,wgl l s = argmin 

y M 

‖ W 

1 / 2 
M 

( ̂  A y M 

− ˆ b M 

) ‖ 

2 s.t. Cy M 

= d , (45)

hich yields the weighted generalized Lyapunov-like least squares

WGLLS) solution [27 , Section 10.1.1], where W M 

is an appropriate

eighting matrix (see Section 6.4 ). 

.3. Choice of constraints: Anchor-aware network 

For an anchored scenario, if the M th order absolute kinematics

f a few nodes are known, then the absolute velocity, acceleration

nd higher-order derivatives can be estimated. A straightforward

inimal constraint for the feasible solution is then 

 1 = 

[
I P̄ + P , 0 

]
, (46)

here without loss of generality, we assume the first P̄ + P param-

ters are known. 
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.4. Time-varying absolute position 

In ( 44,45 ), we solved for the absolute kinematics given the

easurement matrix B M 

and the relative position, using con-

trained least squares estimators. Given these estimates, we have

rom (5) 

ˆ 
 (t) = 

ˆ X + 

ˆ Y 1 (t − t 0 ) + 0 . 5 ̂

 Y 2 (t − t 0 ) 
2 + . . . , (47) 

here ˆ S (t) is an estimate of the time-varying absolute position, ˆ X

s an estimate of the relative position (29) , and { ̂ Y 1 , ̂  Y 2 , . . . } are the

bsolute kinematic estimates obtained by solving (44) or (45) . 

. Cramér-Rao bounds 

The Cramér-Rao lower bound (CRB) sets a lower bound on the

inimum achievable variance of any unbiased estimator. In this

ection, we derive the CRBs for the estimated parameters based on

he presented data models. In the following section, we will use

hese bounds to benchmark the performance of the proposed esti-

ators. 

.1. Range parameters 

We begin by stating the lower bounds for the range parameters

ased on (25) . Let ψ = [ r T , ̇ r T , ̈r T , . . . ] T , then the covariance of the

ange parameters ψ and the corresponding estimate ˆ ψ i.e., �ψ 

�

 

{ 

( ̂  ψ − ψ )( ̂  ψ − ψ ) T 
} 

, is bounded by 

ψ 

≥ �(V 

T �−1 
V ) −1 � = 

⎡ 

⎢ ⎢ ⎣ 

�r ∗ ∗ ∗
∗ � ˙ r ∗ ∗
∗ ∗ �r̈ ∗
∗ ∗ ∗ . . . 

⎤ 

⎥ ⎥ ⎦ 

, (48)

here � is the covariance of the noise on the timestamps de-

ned in (26) . Here, the covariance matrices { �r , � ˙ r , �r̈ , . . . } are

he lowest achievable bounds for the corresponding range param-

ters { r , ̇ r , ̈r , . . . } . The entries not of interest are denoted by ∗ and

= diag ( γ ) � I N̄ is a transformation matrix, where γ is given by

22) . It is worth noting that our proposed solution (27) achieves

his lower bound for an appropriate L . 

.2. Relative position 

The CRB on the relative positions y 0 � vec( X ) is given by the in-

erse of the Fisher Information Matrix (FIM) i.e., 

x � E 

{
( ̂ y 0 − y 0 )( ̂ y 0 − y 0 ) 

T 
}

≥ F † x , (49) 

here ˆ y 0 is an estimate of the unknown relative position y 0 , �x is

he covariance of ˆ y 0 [18] and the FIM F x ∈ R 

N P×N P is 

 x = J T x �̄
−1 

r J x , (50)

here �̄r � bdiag ( �r , �r ) , J x is the Jacobian [18, Appendix C] and

r is obtained from (48) . In the absence of known anchors in the

etwork, the FIM is inherently nonlinear and hence we employ the

oore-Penrose pseudoinverse in (49) . 

.3. Kinematics 

We now derive the lower bounds on the variance of the esti-

ates of the relative kinematics y 
M 

= vec ( Y M 

) and absolute kine-

atics y M 

= vec (Y M 

) . The Gaussian noise vectors plaguing the cost

unctions (35) and (42) are modeled as 

M 

∼ N ( A y 
M 

− b M 

, �ρ,M 

) , (51) 
M 

∼ N (A y 
M 

− b M 

, �ρ,M 

) , (52) 

here ρM 

, ρM 

are N 

2 dimensional noise vectors, and the corre-

ponding covariance matrices are of the form 

ρ,M 

� E { ρ
M 

ρT 
M 

} ≈ A y,M 

�̄x A 

T 
y,M 

+ �b,M 

, (53a) 

ρ,M 

� E { ρM 

ρT 
M 

} ≈ A y,M 

�̄x A 

T 
y,M 

+ �b,M 

, (53b) 

here 

 y,M 

= (I N 2 + J )(I N � Y 

T 
M 

) ∈ R 

N 2 ×NP , (54a) 

 y,M 

= (I N 2 + J )(P � Y 

T 
M 

) ∈ R 

N 2 ×NP , (54b) 

nd an expression for �b , M 

is derived in Appendix C . 

.3.1. Unconstrained CRBs 

The lowest achievable variance by an unbiased estimator is

iven by 

y,M 

� E 

{
( ̂ y 

M 

− y 
M 

)( ̂ y 
M 

− y 
M 

) T 
}

≥ F † 
y,M 

, (55a) 

y,M 

� E 

{
( ̂ y M 

− y M 

)( ̂ y M 

− y M 

) T 
}

≥ F † 
y,M 

, (55b) 

here the corresponding FIMs are given by 

 y,M 

= A 

T �† 
ρ,M 

A , (56a) 

 y,M 

= A 

T �† 
ρ,M 

A . (56b) 

It is worth noting that the Moore-Penrose pseudoinverse is em-

loyed since the FIM is rank-deficient, and consequently the de-

ived bounds (55) are oracle-bounds. 

.3.2. Constrained CRBs 

When the FIM is rank-deficient, a constrained CRB can be de-

ived given differentiable and deterministic constraints on the pa-

ameters [29] . Let Ū , U be an orthonormal basis for the null space

f the constraint matrices C̄ , C , then the constrained Cramér-Rao

ound (CCRB) on the M th order kinematics are given by 

C 
y,M 

� E 

{
( ̂ y 

M 

− y 
M 

)( ̂ y 
M 

− y 
M 

) T 
}

≥ Ū ( ̄U 

T F y,M ̄

U ) −1 Ū 

T , (57a) 

C 
y,M 

� E 

{
( ̂ y M 

− y M 

)( ̂ y M 

− y M 

) T 
}

≥ U (U 

T F y,M 

U ) −1 U 

T , (57b) 

here the FIMs are given by (56) . 

.4. Choice of weighting matrices W̄ M 

, W M 

To admit a BLUE solution, we use the inverse of the covariance

atrices �ρ , M 

, �ρ , M 

as weights to solve the regression problems

38) and (45) , i.e., 

¯
 M 

� 

ˆ �
† 

ρ,M 

= ( ̂  A y 
ˆ �̄x ̂

 A 

T 

y + 

ˆ �b,M 

) † , (58a) 

 M 

� 

ˆ �
† 

ρ,M 

= ( ̂  A y 
ˆ �̄x ̂

 A 

T 
y + 

ˆ �b,M 

) † , (58b) 

here the estimates ˆ A y , ̂
 A y are obtained by substituting ˆ Y M 

from

LS [ (37) and (44) ], in (54) , ˆ �̄x is an estimate of (49) and 

ˆ �b,M 

s derived in Appendix C from appropriate range parameter esti-

ates. 
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X = 

[
−244 385 81 −19 −792 −554 −965 −985 −
−588 −456 −992 −730 879 970 155 318 −

Y 1 = 

[
−5 −5 −6 6 −1 2 1 −5 9 −5 

−8 −8 −7 −9 −3 −2 −2 −10 2 −1 

]
ms −1 

Y 2 = 

[
−0 . 17 −0 . 17 0 . 22 −0 . 07 0 . 21 −0 . 15 0 . 55 −0 . 72 

0 . 42 0 . 42 0 . 98 0 . 73 0 . 48 0 . 08 −0 . 43 −0 . 14 

7. Simulations 

In this section, we conduct experiments to validate the pro-

posed data model, and the solutions against their respective de-

rived lower bounds. A network of N = 10 nodes is considered in

P = 2 dimensional space, with instantaneous position, velocity and

acceleration values arbitrarily chosen as in (59) , such that the con-

straint (39) holds. All the nodes communicate with each other

within a small time-interval of �T = [ T i j,k , T ji,k ] = [ −1 , 1] seconds,

wherein the transmit time markers are chosen to be linearly

spaced without loss of generality, we are interested in the instan-

taneous kinematics of the nodes at time instant t 0 = 0 . 

We assume that all the pairwise communications are indepen-

dent of each other, i.e., � = σ 2 I N̄ K . The metric used to evaluate the

performance of the range parameters is the root mean square error

(RMSE), given by 

RMSE (z ) = N 

−1 
z 

√ 

N 

−1 
exp 

N exp ∑ 

n =1 

‖ ̂

 z (i ) − z ‖ 

2 , (60)

where ˆ z (i ) is the estimate of the unknown vector z ∈ R 

N z ×1 re-

lated to the i th run of N exp = 500 Monte Carlo runs. To evaluate

the estimates of the relative and absolute kinematic matrices, we

use z = vec (U ) , where U is the matrix under evaluation. To qualify

these estimates, the square root of the Cramér-Rao bound (RCRB)

is plotted along with the respective RMSE. It is worth noting that

the theoretical lower bounds for the range parameters (48) , and

subsequently the bounds for relative position (50) and node kine-

matics ( 55,57 ) are dependent on the covariance of the noise on the

markers i.e., �. 

For all the proposed estimators in Sections 7 A-C, we conduct

two types of experiments. Firstly, for (a) varying number of pair-

wise communications K from 0 to 100, with constant noise of

σ = 0 . 1 m, and secondly for (b) varying SNR from [ −10 , 10] dB me-

ter with a fixed K = 10 time-stamp exchanges. The noise consid-

ered on the time-markers is typical of TWR based fixed localiza-

tion experiments [30] . It is worth noting that the chosen number

of time-markers K = 10 is conservative, in comparison to our pre-

vious simulation setup where we used K = 500 [18] . Along similar

lines, other parameters such as N and �T are also selected mod-

erately. Therefore, the results from our current simulation, partic-

ularly for dynamic ranging, could be different in contrast to our

previous work [18] . 

7.1. Range parameters 

We employ the dynamic ranging algorithm (27) for L = 3 , to es-

timate the desired range coefficients from the time-varying propa-

gation delays. In comparison to our previous experiments [14,18] ,

we additionally consider acceleration in the current simulation.

Fig. 2 shows the RMSE and RCRB of the first 3 range coefficients,

for both varying K and varying SNR, where we observe that the

RMSEs achieve the corresponding derived RCRBs asymptotically.

Observe that in the Monte Carlo experiments, we consider the
−503 

419 

]
m (59a) 

(59b) 

9 −0 . 34 

 0 . 91 

]
ms −2 (59c) 

oise on the time makers, whereas the lower bounds are derived

n the data model with approximated noise (25) . Hence, the RM-

Es achieving the correponding RCRBs validates our noise approxi-

ation discussed in Appendix A for the given experimental setup.

or the linear model (25) , the proposed solution is the minimum

ariance unbiased estimator under Gaussian noise assumption. In

his simulation, without loss of generality, we assume that the or-

er of approximation L is known. Alternatively, iterative solutions

uch as iMGLS [14] can be employed to estimate L . For a detailed

iscussion on the effect of L on the distance estimation, particu-

arly for an asynchronous network, see [14] . 

.2. Relative kinematics 

The estimated relative range parameters yield the desired rel-

tive kinematics matrices. Fig. 3 shows the RMSEs (and RCRBs) of

ll the relative kinematic estimates. The MDS-based relative posi-

ion estimates presented in Fig. 3 (a) and Fig. 3 (d), perform well

gainst the derived oracle-bound, which was also observed in [14] .

n case of the relative velocity and acceleration, we assume the

inimal constraint C̄ 1 for analysis. Note that the unconstrained or-

cle bounds are lower as compared to the CCRB, for a fixed SNR

nd increasing K . The WLLS solution outperforms the LLS solutions

or both velocity and acceleration estimation, and asymptotically

chieve the derived respective CCRBs. 

To compare the performance of the proposed relative velocity

stimator against the MDS-based relative velocity estimation (32) ,

e perform another experiment. The MDS-based algorithm for rel-

tive velocity estimation assumes the nodes are in linear motion.

ence, we set Y 2 = 0 P,N in (59) and re-implement the dynamic

anging algorithm for L = 2 and plot the standard deviation of the

stimates in Fig. 4 . Under the constant velocity assumption, the

CRB is comparable to the oracle bound. The proposed WLLS so-

ution outperforms the MDS-based estimator, especially for higher

NR and lower number of pair-wise communications. This is per-

aps not surprising, since the MDS-based estimator relies on all

he R , ˙ R , ̈R where the noise variance on these regression coeffi-

ients typically increases with the range order for a Taylor basis

see Fig. 2 ). In comparison, the WLLS solution is dependent only

n the range R and range rates ˙ R . 

.3. Absolute kinematics 

Fig. 5 shows the RMSEs and the corresponding RCRBs of the

bsolute velocity Y 1 and acceleration Y 2 . We assume constraint

46) to solve the proposed GLLS (44) and WGLLS (45) algorithms.

he proposed estimators are seen to converge asymptotically to the

erived CCRBs, while the CCRB itself is an order higher than the

heoretical oracle-bound. The performance of the absolute kine-

atics is very similar to that of the relative kinematics (see Fig. 3 ),

hich is due to the fact that the FIMs in both scenarios are domi-

ated by the singular values of the relative position matrix. 
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Fig. 2. Range parameters: Varying K : RMSEs (and RCRBs) of relative range parameters (r , ̇ r , ̈r ) for varying number of communications ( K ) between the N = 10 mobile nodes 

for σ = 0 . 1 meters. Varying σ : RMSEs (and RCRBs) of relative range parameters (r , ̇ r , ̈r ) for a network of N = 10 nodes exchanging K = 10 timestamps, where the noise on 

the time markers ( σ ) is varied. Unlike our previous experiments [14,18] , we consider acceleration in the current setup. 

Fig. 3. Relative kinematics: Varying K : RMSEs (and RCRBs) of (a) Relative position ( X ), (b) Relative velocity ( Y 1 ) and (c) Relative acceleration ( Y 2 ) for varying number of 

communications ( K ) between the N = 10 mobile nodes for σ = 0 . 1 meters. Varying σ : RMSEs (and RCRBs) of (d) Relative position ( X ), (e) Relative velocity ( Y 1 ) and (f) 

Relative acceleration ( Y u 2 ), for a network of N = 10 exchanging K = 10 timestamps, where the Noise on the time markers ( σ ) is varied. 

Fig. 4. Comparison of relative velocity estimators: RMSEs (and RCRBs) of relative range parameters Y 1 for varying number of communications ( K ) for σ = 0 . 1 meters (top) 

and varying σ (bottom) between the N = 10 mobile nodes. 
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Fig. 5. Absolute kinematics: Varying K : RMSEs (and RCRBs) of (a) Absolute velocity ( Y 1 ) and (b) Absolute acceleration ( Y 2 ) for varying number of communications ( K ) 

between the N = 10 mobile nodes for σ = 0 . 1 meters. Varying σ : RMSEs (and RCRBs) of (c) Absolute velocity ( Y 1 ) and (d) Absolute acceleration ( Y 2 ), for a network of N = 10 

nodes exchanging K = 10 timestamps, where the noise on the time markers ( σ ) is varied. 

Fig. 6. Position over time: RMSEs of relative position S ( t ) and absolute position S ( t ) over time for K = [50 , 100 , 500] communications between a cluster of N = 10 mobile 

nodes, with σ = 1 meter. 
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7.4. Relative and absolute time-varying positions 

The estimation of the node kinematics enable us to reconstruct

the time-varying relative positions S ( t ) and time-varying absolute

positions S ( t ), from (40) and (47) respectively. We conduct ex-

periments to study the effect of the proposed estimators on the

time-varying positions. The RMSE plot for the absolute and rela-

tive time-varying positions around the region of interest at t 0 = 0

are shown in Fig. 6 , where the number of communications are var-

ied as K = [50 , 100 , 500] with a Gaussian noise on the distance of

σ = 1 meter. For K = 500 , the RMSE estimate of both the relative

and absolute position around t 0 shows an improvement by an or-

der of magnitude in comparison to the noise on the distance mea-

surement, for the given experimental setup. This gain is primarily
 d  
ontributed during dynamic ranging, where K data points are av-

raged using the Taylor basis which yields a factor 
√ 

K improve-

ent on the estimate of the range parameters. Secondly, the per-

ormance deteriorates as we move away from t 0 , which is a typi-

al characteristic of the Taylor approximation. However, if Doppler

easurements are available for radial velocities and other higher-

rder derivatives, then the standard deviation of the estimators can

e further reduced. 

.5. Choice of constraints 

In the previous sections, we evaluated the proposed algorithms

nder minimal constraints. Now, we perform experiments to un-

erstand the effect of incorporating additional constraints (or ref-
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Fig. 7. Effect of increasing constraints: Relative kinematics: RMSEs (and RCRB) of (a) Relative velocity ( Y 1 ) and (b) Relative acceleration ( Y 2 ) for varying number of relatively 

immobile nodes. Absolute kinematics: RMSEs (and RCRBs) of (c) Absolute velocity ( Y 1 ) and (d) Absolute acceleration ( Y 2 ) for varying number of known node kinematics. 
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rences) on the performance of the proposed estimators. These ad-

itional constraints implicitly reduce the parameter subspace, and

onsequently affect the overall RMSE of the proposed estimators.

n order to understand this variation, we set N z = 1 in our per-

ormance metric (60) for the following simulations. To estimate

he relative kinematics in a 2-dimensional scenario, a unique so-

ution is feasible if at least 2 nodes are relatively immobile (see

ppendix B ). If more nodes are immobile, then the constraints in

39) can be extended to incorporate this supplementary informa-

ion. Similarly, in case of absolute velocity and acceleration esti-

ation, a minimum of at least 2 node kinematics must be known.

herefore, in the following experiments we vary the number of

nown kinematics (or immobile nodes) from 2 to 6, for a fixed

umber of two-way communications K = 100 with σ = 0 . 1 meters.

ig. 7 shows the results of the GLL S and WGLL S algorithms for esti-

ating the absolute and relative kinematics, along with the respec-

ive CCRBs. Not surprisingly, we observe an improvement in the

erformance of the algorithms with the additional constraints. In

ddition, unlike the GLLS estimator, the WGLLS estimator asymp-

otically achieves the respective CCRBs. 

. Conclusions 

Understanding the relative kinematics of an anchorless network

f mobile nodes is paramount for reference-free localization tech-

ologies of the future. We presented a novel data model which

elates the time-varying distance measurements to the M th order

elative kinematics for an anchorless network of mobile nodes. The

erived data model takes the form of a Lyapunov-like equation,

hich under certain constraints, can be recursively solved for esti-

ating the relative velocity, acceleration and higher-order deriva-

ives. Closed form constrained estimators, such as the L S and WL S

re proposed, which are also the BLUE for the given data model.

ramér-Rao lower bounds are derived for the new data model

nd the performance of the proposed algorithms is validated using
imulations. Although our focus is on relative localization, the pro-

osed model and solutions can be broadly applied to understand

eature variations in Euclidean space, with applications in general

xploratory data analysis. 

In our future work, we are keen in addressing two research

hallenges. Firstly, our focus in this article has been on finding

nique solutions to time-derivatives of the relative position matrix.

o this end, unbiased constrained estimators are proposed to solve

he under-determined Lyapunov-like equation. However, more gen-

rally, regularized algorithms can be employed, such as Ridge re-

ression [31] , subset selection [32] or Lasso [33] , without the need

or equality constraints on the cost function. The estimates of such

nconstrained algorithms can be corroborated against the uncon-

trained Cramér-Rao bound derived in this article. Furthermore,

he algorithms are inherently centralized in nature, which could

e distributed for resource constrained implementation. Finally, the

roposed framework is particularly helpful for cold-start scenarios

hen there is no apriori information on the position or higher-

rder kinematics. In practice, given the cold-start solution on rela-

ive velocity and higher-order kinematics, a state-space model nat-

rally emerges for dynamic tracking of the relative positions over

ime, which can be solved using adaptive filters. 

ppendix A. Approximate noise model 

To estimate the range parameters from time-varying propaga-

ion delays, we presented the dynamic ranging model in (25) , with

dditive Gaussian noise i.e., 

 θ = τ + η, (61) 

here V is the Vandermonde-like matrix, θ contains the un-

nown range coefficients, τ contains all the propagation delays and

is the noise vector plauging the propagation delays. In prac-

ise, the noise is on the time markers and subsequently on the
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Vandermonde matrix. However, under certain nominal assump-

tions, the above model is valid, which we discuss in this section. 

We begin with the noiseless pairwise time-varying dynamic

ranging model, which we recollect from (23) as below 

r i j + 

˙ r i j �T k + ̈r i j �T 2 k + . . . = | T i j,k − T ji,k | = τi j,k , (62)

where we introduce �T k = (T i j,k − t 0 ) for notational simplicity. In

reality, there is noise plaguing the time markers and hence we

have, 

r i j + 

˙ r i j (�T k + ηi,k ) + ̈r i j (�T k + ηi,k ) 
2 + . . . = τi j,k + ηi j,k , (63)

where { ηi , k , ηj , k } are the noise terms on the time markers at node

i and node j respectively, and ηi j,k = ηi,k − η j,k is the pairwise noise

error of the node pair ( i , j ). Expanding the polynomial and rear-

ranging the terms, we have 

r i j + 

˙ r i j �T k + ̈r i j �T 2 k + . . . + η̄i,k = τi j,k + ηi j,k . (64)

Here η̄i,k is the cumulative noise error from the Taylor approxima-

tion, which is expressed as 

η̄i,k = ηi,k 

(
˙ r i j,k + 2 ̈r i j,k �T k + . . . 

)
+ η2 

i,k 

(
r̈ i j,k + . . . 

)
+ . . . ≈ 0 , 

(65)

and approximated to 0. This approximation is valid under two as-

sumptions. Firstly, we assume that the time stamps are measured

with high SNR, i.e., we consider standard deviations of ≤ 10 −7 sec-

onds on the time stamps, which is necessary to achieve meter

level accuracies is conventional two-way ranging based localization

solutions [34,35] . As a consequence, we ignore the second order

noise term η2 
i,k 

, and other higher order noise terms in (65) . Sec-

ondly, observe from definition (22) that the coefficients { ̇ r , ̈r , . . . }
are scaled by c −1 , where c = 3 × 10 8 m/s for free space. Therefore,

the Taylor coefficients are significantly small and subsequently, the

term ( ̇ r i j,k + 2 ̈r i j,k �T k + . . . ) is negligible for a measurement pe-

riod of up to a few seconds. This is a pragmatic assumption, since

we are only interested in the instantaneous relative kinematics of

the nodes around a small time interval. In summary, for small

measurement periods in high SNR scenarios, the noise parameter

η̄i,k ≈ 0 , and under these assumptions (25) holds. 

Appendix B. Underdetermined Lyapunov-like equation 

Theorem 1 (Underdetermined Lyapunov-like equation) . Given X ∈
R 

P×N and B ∈ R 

N×N for N > P , the Lyapunov-like equation 

X 

T Y + Y 

T X = B , (66)

is rank-deficient by at least P̄ = 

(
P 
2 

)
. 

Proof. Let the singular value decomposition of X be 

X = U x 

[
�x 0 

]
V 

T 
x , (67)

where �x ∈ R 

P×P is a diagonal matrix containing the singular val-

ues and U x ∈ R 

P×P , and V x ∈ R 

N×N are the corresponding singular

vectors. Then, (66) is [
�x 0 

]T 
˜ Y + 

˜ Y 

T 
[
�x 0 

]
= 

˜ B , (68)

where 

˜ B = 

[
˜ B 11 

˜ B 12 

˜ B 

T 
12 

˜ B 22 

]
= V 

T 
x B x V x , (69)

˜ Y = 

[
˜ Y 1 

˜ Y 2 

]
= U 

T 
x YV x , (70)

where ˜ Y 1 ∈ R 

P×P , ˜ Y 2 ∈ R 

P×N−P and 

˜ B 22 = 0 for the equation to be

consistent. A solution to the system (66) is obtained by solving for
˜ Y the set of equations, 
x ̃  Y 1 + 

˜ Y 

T 
1 �x = 

˜ B 11 , (71)

x ̃  Y 2 = 

˜ B 12 . (72)

An estimate for ˜ Y 2 is straightforward and is given by ˆ ˜ Y 2 =−1 
x 

˜ B 12 . Let ˜ �x , ̃  Y 1 and 

˜ B 11 be partitioned into 

σ1 0 

0 �x, 1 

]
, 

[
y 11 ˜ y 12 

˜ y 21 
˜ Y 1 , 1 

]
, 

[
˜ b 11 

˜ b 12 

˜ b 

T 
12 

˜ B 11 , 1 

]
, (73)

hen (71) is equivalent to solving 

 11 = 

˜ b 11 / 2 σ1 , (74)

1 ̃  y 12 + ̃

 y T 21 �x, 1 = 

˜ b 12 , (75)

x, 1 ̃
 Y 1 , 1 + 

˜ Y 

T 
1 , 1 �x, 1 = 

˜ B 11 , 1 . (76)

ote that the solution to y 11 in (74) is straightforward, however

he solution to off-diagonal terms ˜ y 12 , ̃  y 21 is underdetermined. Fur-

hermore, since (76) is in form similar to the (71) , ˜ Y 1 , 1 can be es-

imated recursively [36] . Thus, the diagonal terms of the P dimen-

ional matrix ˜ Y 1 , 1 can be estimated, however to resolve the am-

iguity of the off-diagonal terms at least P̄ = 

(
P 
2 

)
constraints are

equired. �

ppendix C. Expression for �b , M 

We present an explicit expression for the covariance matrix

b , M 

, which is obtained by ignoring higher order noise terms

.e., for sufficiently large SNR. For M = 1 , i.e., relative velocity, we

ave 

b, 1 ≈ ˜ P 

(
r �̄ ˙ r r +  ˙ r �̄r  ˙ r 

)
˜ P , (77)

nd for M = 2 , i.e., relative acceleration, we have 

b, 2 ≈ ˜ P 

(
r �̄r̈ r + r̈ �̄r r̈ + 4  ˙ r �̄ ˙ r  ˙ r 

)
˜ P 

+4 y ̄� ˙ x y , (78)

here we ˜ P � P � P , r � diag ( vec (R )) ,  ˙ r � diag ( vec ( ̇ R )) and

r̈ � diag ( vec ( ̈R )) . The matrix y = A y, 1 for absolute kinematics

nd y = A y, 1 for relative kinematics. Observe that the diagonal el-

ments of the range parameters R , ˙ R , ̈R , . . . contain zeros and con-

equentially the matrices r ,  ˙ r , r̈ , . . . are singular. Hence the co-

ariance matrix �b , M 

is in general rank deficient. Furthermore, A y 

n ( 54 b) is rank deficient by definition and subsequently �ρ (53) is

ll-conditioned and therefore, we use the Moore-Penrose pseudo-

nverse in (56) and (58) . An expression for higher-order M > 2 can

e similarly derived. 
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