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a b s t r a c t 

The well known Logan’s theorem asserts that, under some assumptions, a one octave bandpass signal is 

recoverable, modulo a multiplicative constant, from its zero crossings only. However, such recovery is nu- 

merically problematic and the theorem is not applicable to general bandlimited signals. In this paper, we 

demonstrate that the additional timing information sufficient for recovery of general band limited signals 

can be provided in the form of the zero crossings of several of its derivatives and propose novel numer- 

ically robust algorithms for such timing extraction and for signal reconstruction, both with high fidelity. 

We tested the proposed algorithms extensively, with both synthetic and audio signals. In particular, we 

numerically demonstrate that the timing of the zero crossings of a typical speech signal and of its first 

two derivatives are not sufficient for a numerically robust recovery of such a signal, but that a robust 

recovery becomes possible by adding the timing of the zero crossings of the third order derivative. 

© 2019 Published by Elsevier B.V. 
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. Introduction 

The well know Logan’s theorem [1] asserts that if a bandpass

ignal has no zeros of even multiplicity, never vanishes simultane-

usly with its Hilbert transform and is of bandwidth less than an

ctave, then such a signal is uniquely determined (up to a scaling

actor) by its zero crossings (ZCs) only. However, signal recovery

rom ZCs is numerically problematic and, as detailed in [2] , prac-

ical algorithms are either unstable or require additional informa-

ion about the signal to stabilize the reconstruction, as it is done

n [2–5] . 

In [6] , we showed that for a robust recovery of signals satis-

ying the conditions of Logan’s theorem, the timing of the ZCs of

he signal and the ZCs of its first derivative are sufficient. In this

aper, we empirically study when a general band limited (rather

han bandpass) signal can be reconstructed from purely timing in-

ormation in the form of ZCs of the signal and the ZCs of several

f its derivatives. The contributions of this paper are as follows.

) We present a novel algorithm for the extraction of the ZCs of

 BL signal and the ZCs of its derivatives, up to a relatively high

rder , which conventional approximations, such as splines, cannot

chieve. ii) We present an algorithm for a highly accurate and nu-

erically robust reconstruction of a BL signal from ZCs of the sig-
∗ Corresponding author. 

E-mail address: ignjat@cse.unsw.edu.au (A. Ignjatovic). 
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al and ZCs of several of its higher order derivatives, for cases

hen information available suffices. iii) We empirically demon-

trate that for long speech signals consisting of tens of thousands

f samples, which contain several silent intervals between words,

he ZCs of the signal and of its first two derivatives are insuffi-

ient for a robust reconstruction obtained by operating on data

rom sections of the signal of size of several hundred Nyquist rate

ampling intervals. However, if in addition the ZCs of the third

erivative are known, such a reconstruction becomes possible and

s very robust, with an average signal to error ratio (SER) close to

0 dB, see Fig 2. To the best of our knowledge, the proposed algo-

ithm achieves much higher reconstruction accuracy from purely

iming information compared to the state of the art (e.g. [3] ). The

ame observation applies to a wide variety of audio signals from

he Google Audioset. iv) We also demonstrate a case of a synthetic

ignal where the ZCs of the signal and ZCs of its first six derivatives

re insufficient for a robust reconstruction, but addition of the ZCs

f its seventh derivative allows a robust reconstruction with a SER

f 48 dB. v) Finally, motivated by the empirical results obtained,

e argue that the failure of our reconstruction from the first six

erivatives in the example from iv) is not due to a shortcoming

f our method, but is intrinsically impossible, and we formulate a

ompelling conjecture on conditions for a reconstruction of a sig-

al from non uniform samples of the outputs of several linearly

ndependent filters applied to such a signal. 

We note that i) and ii) above are relevant to research on

vent-driven sampling, which unlike the usual uniform sampling,

https://doi.org/10.1016/j.sigpro.2019.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2019.02.002&domain=pdf
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encodes a signal using purely timing information, such as the zero

crossings or level crossings instants of the signal. Extracting such

timing information is useful in a number of applications; see, e.g.,

[3,7–11] . On the other hand, iii) and iv) represent an empirical in-

vestigation on the conditions when a general band limited signal

is recoverable from purely timing data. The empirical results from

iii) and iv) are used to lend credibility to our conjecture mentioned

above, which has a clear theoretical significance and which, if true,

can be seen as a generalization of the Papoulis’ generalized sam-

pling theorem to non-uniformly sampled filterbanks. 

Our algorithms are based on chromatic approximations (CAs),

briefly reviewed below, which possess a property not shared by

the traditional methods based on splines [12] and other interpo-

lation techniques: not only do the CAs provide extremely accurate

approximations of BL signals, but also the derivatives of CAs are ac-

curate approximations of the corresponding derivatives of the sig-

nal, up to relatively high orders. Next, we briefly review the ba-

sics of CAs relevant to this work; with extensive details found in

[13,14] . 

2. Chromatic derivatives and approximations 

Let w( ω) be any symmetric, piece-wise continuous, non-

negative weight function in the frequency domain, supported on

[ −π, π ] , such that 
∫ π
−π w(ω) dω = 1 and let p n ( ω) be the fam-

ily of polynomials orthonormal with respect to w( ω). Chromatic

derivatives (CDs) associated with polynomials p n ( ω) are defined as

K 

n = (− j ) n p n 
(

j d 
d t 

)
, where p n ( j d 

/ d 

t ) are obtained from p n ( ω) by

replacing powers ω 

k with j k d 

k / d 

t k ; see [13 , Eq. (3)], [14] . A well

known fact that families of symmetric orthonormal polynomials

satisfy a three term recurrence implies that the corresponding CDs

satisfy the recurrence of the form K 

n +1 = 

1 
γn 

(
d 
d t 

◦ K 

n 
)

+ 

γn −1 
γn 

K 

n −1 

for some positive coefficients γ n [13] . Typically, such CDs are ob-

tained in practice by using either a least squares fit on sampled

data or by using a front-end filter bank [14] which can also be

implemented in the analog domain [15,16] . Let B 0 ( t ) be the in-

verse Fourier transform of the weight function w( ω), i.e., B 0 (t) =∫ ∞ 

−∞ 

w(ω) e j ωt d ω and let B n (t) = (−1) n K 

n [ B 0 ](t) . Chromatic ex-

pansion of a BL signal f ( t ) centered at t = u is defined as f (t) =∑ ∞ 

n =0 K 

n [ f ](u ) B n (t − u ) ; its truncations lead to CAs of degree M of

the form f (t) ≈ app [ f, M, u ](t) := 

∑ M 

n =0 K 

n [ f ](u ) B n (t − u ) ; for an

estimate of the error of such an approximation see [14 , Theo-

rem 2.1]. For most practical applications and in this paper, CDs cor-

respond to the polynomials p n (ω) = 

√ 

2 n + 1 P L n (ω/π ) , orthonor-

mal with respect to the constant weight function w(ω) = 

1 
2 π ; they

are obtained by normalizing and rescaling the Legendre polynomi-

als P L n (ω) . For such polynomials the recursion coefficients γn are

given by γn = π(n + 1) / 
√ 

4(n + 1) 2 − 1 and the expansion func-

tions B n ( t ) are given by B n (t) = 

√ 

2 n + 1 j n (πt) , where j n ( x ) is the

spherical Bessel function of the first kind and of order n ; thus, in

particular, B 0 (t) = sinc (t) . The recursion formula for operators K 

n 

mentioned above implies that the derivatives B 
(p) 
k 

(t) of the expan-

sion functions B k ( t ) can be obtained by the following recursion 

B 

(p) 
k 

(t) = γk −1 B 

(p−1) 
k −1 

(t) − γk B 

(p−1) 
k +1 

(t) . (1)

Importantly, not only app[ f, M, u ]( t ) accurately ap-

proximates f ( t ), but also its derivatives app 

(p) [ f, M, u ](t) =∑ M 

n =0 K 

n [ f ](u ) B (p) 
n (t − u ) ≈ f (p) (t) over an interval around u

whose length depends on M and p ; for a detailed estimates of

the error of such an approximation see [14 , Theorem 4.2]. Further,

[14 , Fig. 8] demonstrates that the CA of a BL signal is far superior

to the Taylor’s approximation (TA) which, unlike the CA, employs

noise sensitive standard derivatives and monomials t n / n ! that are

not BL functions. Moreover, unlike the TA which is unbounded,

CAs are bounded on the whole set of reals and converge both
niformly and in the sense of the corresponding norm, see [14 ,

ection 4 ]. CAs are also superior to truncations of the Shannon

xpansion which are well known to have poor local fidelity due to

xtremely slow rate of convergence; see [17] . 

. Algorithms for timing extraction and signal reconstruction 

We now present two algorithms based on CAs by generalizing

he specific algorithms we presented in [6 , case study II] (for the

andpass case). 

(A) Timing extraction. To extract highly accurate ZCs of a BL

ignal f ( t ) and its derivatives f ( p ) ( t ) up to order p max , we parti-

ion the signal into 50% overlapping (rectangular) windows W k of

ength L k = 128 Nyquist rate sampling intervals (NRIs) and use the

amples f ( t i ) within each window W k to obtain a (Tychonov L 2 )

egularized least square fit (LSF) approximation of f ( t ), by using

 “generic” approximation app (X 0 , . . . , X M 

) = 

∑ M 

j=0 X j B j (t − u ) with

ariables X j in place of the unknown CDs and finding the values X ∗
j 

f these variables which minimize the expression 

(X 0 , . . . , X M 

) = 

N s ∑ 

i =1 

( 

M ∑ 

j=0 

X j B j (t i − u k ) − f (t i ) 

) 2 

+ ρ
M ∑ 

j=0 

X 

2 
j , (2)

here ρ is a small regularization factor, N s is the number of

amples within each window and M is chosen as described in

6] , i.e., M = 14 + � 1 . 67 L � where L is the length of the span of

he samples in NRIs; thus, for L = 128 NRI we obtain N = 227.

uch a LSF is solved by the standard Matlab LSF solver and is

ery tolerant with respect to the choice of the regularization con-

tant ρ , which can be set to 10 −14 , see [6 , Fig 2]. To make such

SF more accurate and robust the signal is first twice upsam-

led; see [6 , Fig. 1(b)]. Once the values X ∗
1 
, . . . , X ∗

M 

of the vari-

bles X 1 , . . . , X M 

are found, we obtain CA of the signal over W k 

s app [ f, M, u k ](t) = 

∑ M 

j=0 X 
∗
j 
B j (t − u k ) , where u k is the center of

indow W k . 

The length of the sub-window w k ⊂W k over which the deriva-

ives of a CA of orders up to p max , obtained through such a

SF, are accurate approximations of the corresponding derivatives

f the signal depends on the length of the window W k , on the

versampling factor, and on p max , and is hard to estimate ana-

ytically. Thus, we generated synthetic signals as linear combina-

ions of 1024 sinusoids with random amplitudes, frequencies and

hases, normalized such signals to a unit RMS and then sam-

led them at twice the Nyquist rate on an interval of length of

28 NRIs. We then applied a LSF as described above and com-

ared the values of the derivatives of orders up to p max = 7 of

he resulting CA with the analytically computed derivatives of the

riginal signal. The absolute values of the errors of approxima-

ion were averaged over 10 6 runs and are presented in Fig. 1 .

hese plots show a remarkable feature of CAs; i.e., the higher or-

er derivatives of the CA are accurate approximations of the cor-

esponding derivatives of the signal over the central sub-interval

f length more than half of the length of W k , with an error

maller than 10 −4 . 

Thus, continuing with our algorithm, we approximate the ZCs

f the signal f ( t ) and of its derivatives f ( p ) ( t ) of orders up to 7, con-

ained in the central sub-intervals w k = [ u k − 32 , u k + 32] ⊂ W k of

ength l k = 64 NRI, with the ZCs of app[ f, M, u k ]( t ) and app 

( p ) [ f, M,

 k ]( t ), respectively. This is accomplished by looking for ZCs which

re within each interval [ t m 

, t m +1 ] , where t m 

are the Nyquist rate

nstants contained within w k , in the following way. We use (1) to

valuate derivatives B 
(p) 
j 

(t m 

+ 1 / 2) up to order 15 and then re-

lace functions B j (t − u k ) in the formula for app[ f, M, u k ]( t ) with

heir TAs of degree N = 15 , centered at the midpoint t m 

+ 1 / 2 of

he interval [ t m 

, t m +1 ] . As shown in [13] , for functions associated
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Fig. 1. The error between higher order derivatives of a CA and f ( p ) ( t ) for 0 ≤ p ≤ 7 

demonstrating high local fidelity of CAs. 
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ith the Legendre polynomials ‖ B n (t) ‖ = 1 for all n ; thus, us-

ng the Lagrange formula for the error of the Taylor expansion of

rder N , we obtain that there exists ξ ∈ [ t m 

, t m +1 ] such that the

rror of approximation err T ( t ) over the unit interval [ t m 

, t m +1 ] is

ounded by 

 err T (t) | ≤ | B 

(N+1) 
n (ξ ) | | t − (t m 

+ 1 / 2) | N+1 

(N + 1)! 

≤
1 

2 π

∫ π
−π | ω 

N+1 ̂ B n (ω) | d ω 

2 

N+1 (N + 1)! 

≤ 1 

2 

N+1 (N + 1)! 

(
1 

2 π

∫ π

−π
ω 

2(N+1) d ω 

)1 / 2 

‖ B n ‖ 

= 

1 

2 

N+1 (N + 1)! 

πN+1 

√ 

2 N + 3 

. 

or N = 15 we obtain err T (t) < 1 . 15 × 10 −11 ; this ensures that, if

e replace B j in app [ f, M, u k ](t) = 

∑ M 

j=0 X 
∗
j 
B j (t − u k ) by the corre-

ponding TAs of order 15, we obtain a polynomial approximation

pp 

∗[ f, M, u k ]( t ) highly accurate in the interval [ t m 

, t m +1 ] . We now

nd the real roots x ∗ of the algebraic equation app 

∗[ f, M, u k ](x ) = 0

hich are within the interval [ t m 

, t m +1 ) ; the corresponding ZCs are

hen of the form t m 

+ 1 / 2 + x ∗. To obtain ZCs of f ( p ) ( t ), we use (1) to

eplace the derivatives of the basis functions by linear combina-

ions of the basis functions which we again approximate by their

As over each of the intervals [ t m 

, t m +1 ] , again obtaining algebraic

quation satisfied by the ZCs of f ( p ) ( t ). The above procedure can be

erformed in parallel for all windows W k . 

(B) Signal reconstruction. To reconstruct the signal from such

iming information, we partition the ZCs of both the signal and

ts derivatives up to order p max into partially overlapping pro-

essing windows W n of length L w 

= 256 NRIs, each contain-

ng N 

p 
n many ZCs of f ( p ) ( t ), for 0 ≤ p ≤ p max . Overlap between

wo consecutive processing windows is 3 L w 

/ 4 = 192 NRIs. Let

 n be the center of the processing window W n containing ZCs

t 
p 
i 

: 1 ≤ i ≤ N 

p 
n , 1 ≤ p ≤ p max 

}
. We now obtain an approximation

f the CDs of a waveform which has the required ZCs, by solving
he following regularized LSF: 

inimize σ (X 1 , . . . , X M 

) = ρ
M ∑ 

j=0 

X 

2 
j + 

N 0 n ∑ 

i =1 

( 

M ∑ 

j=0 

X j B j (t 0 i − u n ) 

) 2 

+ 

p max ∑ 

p=1 

N p n ∑ 

i =1 

( 

M ∑ 

j=0 

X j B 

(p) 
j 

(t p 
i 
− u n ) 

) 2 

+ 

( 

M ∑ 

j=0 

X j B j 

(
t 0 1 + t 0 2 

2 

− u n 

)
− 1 

) 2 

;

he fourth term ensures that the value of the waveform at the

idpoint between the first two ZCs is equal to 1 thus ensuring

hat the solution to the above LSF is non-trivial. Once the val-

es X ∗
1 ,n 

, . . . , X ∗
M,n 

of variables X 1 , . . . X M 

are found for each window

 n , we obtain waveforms which are piece-wise CAs of the sig-

al, modulo a scaling factor, centered at u n , as app [ f, M, u n ](t) =
 M 

j=0 X 
∗
j,n 

B j (t − u n ) . Thus obtained piece-wise CAs are then evalu-

ted within the central sub intervals w n = [ u n − L w 

/ 4 , u n + L w 

/ 4) ⊂
 n at the Nyquist rate to obtain sequences r n , each containing 128

amples, with r n and r n +1 overlapping over 64 sampling instants.

hese sequences are now recursively rescaled and concatenated, as

escribed in detail in [6 , case study II]. 

. Experimental results 

We now experimentally validate our CA based timing extraction

nd reconstruction algorithms with synthetic and speech/audio

ignals. 

(A) Synthetic signals: Here, we demonstrate the requirement of

Cs of higher order derivatives for a robust reconstruction. For this

xample, the input signal is a twice oversampled linear combina-

ion of 1024 sinusoids with equally spaced frequencies in [ −π, π ] ,

andomly generated phases, and amplitudes tapered by a Gaussian

ith zero mean and variance of 0.138, producing 1024 samples in

otal. The variance has been chosen so that resulting signal has

 total density of the ZCs of the signal and its first 6 derivatives

considered together) equal to 0.9969 ZCs per NRI and for such a

ignal, with p max = 6 , our reconstruction fails, producing a signal

ith the same ZCs, but substantially different to the original signal.

owever, addition of ZCs of the derivative of order seven of such

 signal brings the total density of all ZCs taken together to 1.3051

Cs per NRI and our algorithm reconstructs the same signal with

ER exceeding 47 dB. We claim that the failure of our algorithm

o reconstruct the signal with p max = 6 is not due to a shortcom-

ng of our method, but that such a reconstruction is intrinsically

mpossible, because the mean density of the data points provided

y the first 6 derivatives is lower than the Landau mean density

18] of non uniform samples of a BL signal which is necessary to

niquely determine such a signal. Obviously, Landau’s theorem is

ot directly applicable here, so we formulate the following com-

elling conjecture which would generalize the Landau theorem in

 manner similar to how the Papoulis theorem [19] generalizes the

hannon sampling theorem: Assume that we are given non uniform

amples of the outputs of several linearly independent filters applied

o an arbitrary bandlimited signal. Then such a signal is uniquely de-

ermined by these samples just in case their mean total density ex-

eeds the Landau mean density of one sample per Nyquist rate inter-

al. 

(B) Audio signals: The standard TIMIT database consists of 0–

 kHz signals ( https://catalog.ldc.upenn.edu/LDC93S1 ) which are

ampled at 16 kHz, consisting on average of about 64,0 0 0 sam-

les. We twice upsampled such signals and normalized them to

nity RMS. To handle the silent periods between words, a white

oise dither signal of small RMS (about 0.08) is added prior to ob-

aining timing data and is removed after the reconstruction. Our

https://catalog.ldc.upenn.edu/LDC93S1
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Fig. 2. (a) Reconstruction of an entire speech signal from ZCs of the signal and ZCs of its first 3 derivatives. (b) Reconstruction accuracy vs p max considering 30 speech 

signals. 
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experiments 1 reveal that an accurate reconstruction would require

p max = 3 (see Fig. 2 (a)), while p max = 2 proved to be insufficient 2 

for a robust reconstruction, due to insufficient total mean density

of the ZCs of the signal and its first two derivatives which was of-

ten barely above the Landau density, as well as in occasional large

gaps between consecutive ZCs ( > 4 NRIs). Our extensive simula-

tions with more than a hundred test cases verify that for robust

reconstruction of long speech signals having silent periods, our CA

based reconstruction algorithm requires a mean density of ZCs of

about 1.5 ZCs per NRI. Fig. 2 (b) shows the reconstruction accuracy

vs. p max across 30 speech waveforms from the TIMIT database. The

same observations apply to various sound files from the Google

Audioset. 
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