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Abstract

We consider designing a robust structured sparse sensing matrix consisting of a sparse matrix with a few non-
zero entries per row and a dense base matrix for capturing signals efficiently. We design the robust structured
sparse sensing matrix through minimizing the distance between the Gram matrix of the equivalent dictionary and
the target Gram of matrix holding small mutual coherence. Moreover, a regularization is added to enforce the
robustness of the optimized structured sparse sensing matrix to the sparse representation error (SRE) of signals
of interests. An alternating minimization algorithm with global sequence convergence is proposed for solving the
corresponding optimization problem. Numerical experiments on synthetic data and natural images show that the
obtained structured sensing matrix results in a higher signal reconstruction than a random dense sensing matrix.

Keywords: Compressive sensing, structured sensing matrix, sparse sensing matrix, mutual coherence, sequence

convergence.

1. Introduction

Compressive sensing (CS) supplies a paradigm of
joint compression and sensing signals of interest [1, 2].
A CS system contains two main ingredients: a sensing
matrix ® € RN (M < N) which compresses a sig-
nal x via y = ®x and a dictionary ¥ € RV (L > N)
that captures the sparse structure of the signal. In par-
ticular, we say x € R" is sparse if it can be represented
with a few columns of ¥:

x=Ws+e= Z‘i‘(:,f)s(f) fe, (1
€

where |s]lp < K with K < N < L' The term e is
referred to as the sparse representation error (SRE) of
x under . If e is nil, we say x is exactly sparse.

The choice of dictionary ¥ depends on the sig-
nal model and traditionally it is chosen to concisely
capture the structure of the signals of interest, e.g.,
the Fourier matrix for frequency-sparse signals, and a
multiband modulated Discrete Prolate Spheroidal Se-
quences (DPSS’s) dictionary for sampled multiband
signals [3]. Furthermore, we can also learn a dictio-
nary from a set of representative signals (training data)
called dictionary learning [4-6].
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'Throughout this paper, MATLAB notations are adopted: Q(m, :
), O, k) and Q(i, j) denote the mth row, kth column, and (i, j)th entry
of the matrix Q; ¢g(n) denotes the nth entry of the vector ¢. || - [|o is
used to count the number of nonzero elements.
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In CS, the sensing matrix ® is used to preserve
the useful information contained in the signal x such
that it is possible to recover x from its low dimensional
measurements y = ®x. It has been shown that if the
equivalent dictionary ®W satisfies the restricted isom-
etry property (RIP), the sparse vector s in (1) can be
exactly recovered from y [1, 7]. Although random ma-
trices satisfy the RIP with high probability [7], con-
firming whether a general matrix satisfies the RIP is
NP-hard [8]. Alternatively, mutual coherence, another
measure of sensing matrices that is much easier to ver-
ify, has been introduced in practice to quantify and de-
sign sensing matrices [9—19].

Structured sensing matrices (e.g., Toeplitz matri-
ces and sparse matrices) have been proposed [20-26]
to reduce the computational complexity of sensing sig-
nals in hardware (such as digital signal processor and
FPGA) [27, 28], or applications like electrocardiogra-
phy (ECG) compression [29] and data stream comput-
ing [30]. A Toeplitz matrix can be implemented effi-
ciently to a vector by the fast Fourier transform (FFT).
The advantage of sparse sensing matrix over a regular
one is that it contains fewer non-zero elements per row
and thus can significantly reduce the number of mul-
tiplication units for practical applications. However,
similar to a random sensing matrix, a random sparse
one is less competitive than an optimized sensing ma-
trix regarding signal recovery accuracy.

Motivated by this, we consider the design of a struc-
tured sparse sensing matrix that can not only efficiently
compress signals but also has similar performance as
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Figure 1: (a) a random Gaussian matrix; (b) a structured sparse sensing matrix consists of a sparse sensing matrix and a base sensing matrix

the dense ones. Specifically, we attempt to design a
structured sparse sensing matrix via enhancing the mu-
tual coherence (defined in (2)) property of the equiva-
lent dictionary, ®¥. Our main contributions are stated
as follows:

e We propose a framework for designing a struc-
tured sparse sensing matrix by decreasing the
mutual coherence of the equivalent dictionary.
As shown in Figure 1, the structured sparse sens-
ing matrix consists of ®A where ® € RM*N jg
a row-wise sparse matrix while A € RV is
referred to a base sensing matrix that can be im-
plemented with linear complexity to a signal. In
general, the choice of A depends on the practi-
cal situations, e.g., we choose A as a DCT ma-
trix when used for natural images with a dictio-
nary learned by the KSVD algorithm [5]. For
some cases, one may simply set A as an iden-
tity matrix, giving a sparse sensing matrix. To
our knowledge, this work is the first attempt to
optimize a (structured) sparse sensing matrix by
minimizing the mutual coherence.

e We provide an alternating minimization algorithm
for solving the formulated nonconvex nonsmooth
optimization problem (see (11)). Despite the non-
convexity and nonsmoothness, we perform a rig-
orous convergence analysis to show that the se-
quence of iterates generated by our proposed al-
gorithm with random initialization converges to
a critical point.

e Experiments on natural images show that the ob-
tained structured sensing matrix—with or with-
out A—outperforms a random dense sensing ma-
trix. It is of interest to note that by setting A as
the DCT matrix, the optimized structured sens-
ing matrix has almost identical performance in
terms of Peak Signal to Noise Ratio (PSNR) as
the optimized dense sensing matrix, see Figure 8.

The outline of this paper is given as follows. We re-

view the previous approaches in robust sensing matrix
design in Section 2. In Section 3, a framework for de-
signing a structured sparse sensing matrix is proposed
with the mutual coherence behavior of the equivalent
dictionary and the SREs of the signals being consid-
ered simultaneously. An alternating minimization al-
gorithm for solving the optimal design problem with a

rigorous convergence analysis is provided in Section 4.
We validate the performance of the obtained structured
sensing matrix on both synthetic data and real images
in Section 5. Conclusions are given in Section 6.

2. Preliminaries

In this section, we will brief the definition of mu-
tual coherence to CS and introduce the previous work
on designing robust sensing matrices.

2.1. Mutual Coherence

The mutual coherence of Q € RM*L is defined as

. [L-M
k= Ny @

where ¢; is the ith column of Q and u is the lower
bound of x(Q) called Welch Bound [31]. The connec-
tion between the mutual coherence and the RIP is given
in [32, Section 5.2.3]. Roughly speaking, the smaller
mutual coherence, the better the RIP.

With the measurements y = ®x and the prior infor-
mation that x is sparse in W, we can recover the signal
as x = ¥s where?

lg7 g,
1<z¢J<L llgillllg;ll. —

e

s =argmin [ly - ®¥s|); st [sh<K (3)
s

which can be exactly or approximately solved via con-

vex methods [1, 33, 34] or greedy algorithm [35], e.g.,

the orthogonal marching pursuit (OMP). It is shown

in [35] that OMP can stably find s (and hence obtain

an accurate estimation of x) if

1 1
K < 5 [1 + u—(ﬁ)‘i’)]. “4)

2.2. Optimized Robust Sensing Matrix [14, 16]

Motivated by (4), abundant efforts have been de-
voted to design the sensing matrix via minimizing the
mutual coherence u(®W¥), including a subgradient pro-
jection method [36], and the ones based on alternating
minimization. [9, 11, 12]. Experiments on synthetic
data indicate that the obtained sensing matrices give

2Here || - ||> denotes the I, norm of a vector.



much better performance than the random one when
the signals are exactly sparse, i.e.,e = 0 in (1).
However, it was recently realized that an optimized
sensing matrix obtained by minimizing the mutual co-
herence is not robust to SRE in (1) and thus the corre-
sponding CS system yields poor performance [14]. In
particular, the SRE always exists in the practical sig-
nals of interests, even representing them via a learned
dictionary [5]. Let X € R™ be a set of training
data and S consist of the sparse coefficients of X in

¥: X = ¥S + E where |ISC, o < K,Vj. Then, in
[14, 16], the SRE matrix
E:=X-YS ©)

is utilized as the regularization to yield a robust sensing
matrix.

Denote by G the set of relaxed equiangular tight
frame (ETF) Gram matrices:

Ge = {G €SP GGy = 1, Vi, max |GG, j)| < g},
: #]
(6)

where £ € [0, 1) is a pre-set threshold and usually cho-
senas Qoru[11, 12, 14, 16] and S™L denotes a set of
real Lx L symmetric matrices. Then the sensing matri-
ces proposed in [14, 16] are optimized by solving the
following optimization problem?:

min |G - ¥ OT®F|} + AUPEIF,  (7)

®,G<G;
where the first term is utilized to control the average
mutual coherence of the equivalent dictionary, the sec-
ond term || P E II% is aregularization to make the sensing
matrix robust to SRE, and A > 0 is the trade-off param-
eter to balance these two terms. Compared with pre-
vious work, simulations have shown that the obtained
sensing matrices by (7) achieve the highest signal re-
covery accuracy when the SRE exists [14].

3. Optimized Structured Sparse Sensing Matrix

In this section, we consider designing a structured
sensing matrix by taking into account the complex-
ity of signal sensing procedure, robustness against the
SRE and the mutual coherence of the equivalent dic-
tionary simultaneously.

As mentioned above, in applications like ECG com-
pression [29], data stream computing [30] and hard-
ware implementation [27], the classical CS system with
a dense sensing matrix ® encounters computational is-
sues. Indeed, merely applying a sensing matrix ® €
RM*N to capture a length-N signal has the computa-
tional complexity of O(MN). Moreover, in applica-
tions like image processing, one often partitions the

3 e represents the Frobenius norm.

image into a set of patches of small size (say 8 x 8
patches, hence N = 64) to make the problem computa-
tionally tractable. However, the recent work in dictio-
nary learning [37] and sensing matrix design [17] has
revealed that larger-size patches (say 64 X 64 patches,
hence N = 4096) lead to better performance for image
processing like image denoising and compression. All
of these enforce us to reduce the complexity of sensing
a signal.

An approach to tackle this computational difficul-
ties is to impose certain structures into the sensing ma-
trix ®. One of such structures is the sensing matrix
consisting of a sparse matrix and a base matrix that
both can be efficiently implemented to sensing signals:

O = DA, ®)

where A € RVV is referred to as a base sensing matrix
and ® € R is a row-wise sparse matrix.

To maintain the original purpose for reducing sens-
ing complexity of y = ®x, we restrict the choices of
the base sensing matrix A to be either identity matrix
or the one that admits fast multiplications like DCT
matrix. We also note that the choice of base sensing
matrix A should depend on specific applications, e.g.,
we can set A to be a DCT matrix in image processing
task [38]. Rewrite (8) as

T — AT(FBT (9)

and view ®T as the sparse representation of ®T in AT,
Thus, similar to (1) where we call x is sparse (in P)
though itself is not sparse, we also say that ® in (8) is
a sparse sensing matrix (in A).* Note that the struc-
ture of (9) also appears in the double-sparsity dictio-
nary learning task [38], the dictionary ¥ = AW with ¥
being overcomplete but column-wise sparse.

Note that the approach shown in [14, 16] requires
the explicit formulation of the SRE matrix E (defined
in (5)) which can be huge or need extra effort to ob-
tain in some applications, like image processing with a
wavelet dictionary that no typical training data is avail-
able [17]. Let us draw each column of E from an inde-
pendently and identically distributed (i.i.d.) Gaussian
distribution of mean zero and covariance L. Then
I J”F converges in probability and almost surely to

o?||®||Z. when the number of training samples J ap-
proaches to oo [17]. Thus we can get rid of the SRE
matrix E by minimizing ||®|| directly to yield a sens-
ing matrix that is robust to the SRE.

Now our goal is to find a structured sensing ma-
trix @ = ®A such that it is robust to the SRE of the
signals and the equivalent dictionary ®¥ has a small
mutual coherence. So the corresponding sparse matrix

4Without any confusion, we call our sensing matrix ® as the
structured or sparse sensing matrix in the rest of the paper.



is obtained via solving

(@, G} =argmin||G — ¥TAT®T®AY|} + A DA
®,GeG;

s.t. [|®(m, )llo < &, ¥ m, (10)

where « denotes the number of non-zero elements in
each row of the sensing matrix.

__ Without the base matrix A, the complexity of ®x =
®x is O(Mk) which is the same as the one shown in
[23]. Thus, there is a tradeoff in adding the base matrix
A since the base matrix may improve the performance,
but also increase the computational complexity. Fortu-
nately, by choosing as a DCT matrix, it only slightly
increase the computation of O(N log N) which is small
or comparable to O(Mk). Moreover, in some cases,
Ax can be implemented with complexity O(N). For
example, if A is an orthogonal matrix and we decom-
pose it into a series of Givens rotation matrices [39].
This is a significant reduction of computational com-
plexity compared with a dense sensing matrix requir-
ing a complexity of O(MN) to sense a signal when N
is large and N > «. We show the difference between
O(MN) and O(N log N + M«) in Figure 2 with various
kand N.
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Figure 2: Illustration of the complexity O(MN) (the dotted black
line) and O(N log N + Mk) (the other three lines indicating different
k) with M = 10log N.

4. Proposed Algorithm for Designing Structured Sens-

ing Matrix

__ Aside from the facts that ® is parameterized by
®A and | ®E||% is replaced by [|®|%, (10) differs from
(7) in that the former has a sparse constraint on the
rows of @. Note that such a constraint makes (10)
highly nonconvex. In this section, we suggest utiliz-
ing alternating projected gradient method to address
(10). Moreover, we also provide a rigorous conver-
gence analysis of the proposed algorithm.

4.1. Proposed Algorithm for Designing Structured Sens-
ing Matrix
Assume A is not null and rewrite (10) as

min f(®,G) = |G - Y O O¥|2 + @2
0.6 (11)
s.t. |®@@m, o <k, Vm, GG

where ¥ = AW. Let Pg, : RPL — REE denote an
orthogonal projector onto the set G:

o 1, i=j
(Po©) . = {sign(G(i, Mmin(Ga, .6, i %

where sign(-) denotes the sign function. Firstly the so-
lution of minimizing f in terms of G with fixed @ is
given by

G = argmin f(®,G) = Pg,(¥TOT®Y).  (12)
GeGe

Now we consider solving (11) in terms of ® with
fixed G:

min /(®,G) s.t. 1@, )l <« ¥ m. (13)

Without the sparsity constraint, the recent works [40,
41] have shown that any gradient-based algorithms can
provably solve ming f(®, G). Thus, we suggest utiliz-
ing the projected gradient descent (PGD) to solve (13)
with the sparsity constraint. The gradient of f(®,G)
with respect to @ is:

Vo f(®,G) = 21® — 40¥YGYT + 40¥Y¥Y O TOYY'.

(14)
For convenience, let S, denote the set of matrices which
have at most k non-zero elements in each row:

S22 e RYY 1 Zm,)llo < &, ¥ m).

Denote P, : RN — RM*N a5 an orthogonal projec-
tor on the set of S,: for any M X N input matrix, that
keeps the largest « absolute values of each row. So, in
the kth step, we update @ as

@ € Ps, (O —nVf(Pr-1,Gr-1)).  (15)

we choose an arbitrary one if there exist more than one
projections.

We summarize the proposed alternating minimiza-
tion for solving (11) in Algorithm 1. Note that alternat-
ing minimization-based algorithm has been popularly
utilized for designing sensing matrix [9-12, 14, 16].
However, the convergence of these algorithms is usu-
ally neither ensured nor seriously considered. In the
following, we provide the rigorous convergence analy-
sis of the proposed Algorithm 1.



Algorithm 1 Algorithm for Designing Sparse Sensing
Matrix
Initialization:
Initial value @, the number of maximal iterations
Itery,y, step size 7, the sparsity level x and the
given trade-off parameter A.
Output:
Sparse sensing matrix @y, .
1 k1
2: while k < Iter,,, do
3: Update @: @, € PSK (@)1 —nVo f(Pr_1,Gr-1))

4. Update G: Gy = Pg,(¥Y'®, D, ¥)
50 ke—k+1
6: end while

4.2. Convergence Analysis

Transfer (11) into the following unconstrained prob-
lem

1(1;%1,0((1), G) ;= f(®,G) + 05, (P) + 65.(G), (16)

0, @ P ..
€S is the indicator func-
0, ®¢S,

tion (and similarly for 6g,(G)). Clearly, (16) is equiv-
alent to the original constrained problem (11). Com-
pared with (11), it is easier to take the subdifferential
for (16) since it has no constraints. Thus, in the se-
quel, we focus on (16) since the convergence analysis
mainly involves the subdifferential.

Note that by updating G with (12), p(®,Gy) <
(D, Gr_1).? Following, we show the objective func-
tion is decreasing by updating the sensing matrix ®@.
Denote py = p(®y, Gp) and consider the sublevel set
of p:

L, = {(®.6): p(®.G) < p0.G € Ge. D € S,

where 05, (®) =

It is clear that for any point (®,G) € L, lIG||F is fi-
nite since G € G; and ||®||r is finite since p — oo
when ||®||z — oco. Then with simple calculation, we
have that both Vg f(®, G) and V¢ f(®, G) are Lipshitz
continuous,

Vo f(®,G) ~ Vo f(®',G)lIF < L||® - @'||r
IV6f(®,G) -~ Ve f(®,G)lr < LG - Gl
for all (@,G), (?’,G),(®,G’) € L,,. Here L. > Ois

the corresponding Lipschitz constant. A direct conse-
quence of the Lipschitz continuous is as follows.

a7

Lemma 1. Forany L > L., denote by
hi(®, ', G) :=f(®',G) + (Vo f(?',G), P - D)

L ,
+ 5||<1> - |2

SThis inequality is shown in Appendix B.

Then, f(®,G) < h(®, ', G) for all (®,G),(®',G) €
"EPO'

The proof of lemma 1 is given in Appendix A. With
lemma 1, we first establish that the sequence generated
by Algorithm 1 is bounded and the limit point of any
its convergent subsequence is a stationary point of p.

Theorem 1 (Subsequence convergence). Let {W; =
(@, Gp)liso be the sequence generated by Algorithm
1 with step size n < Ll Then the sequence {Wy} is
bounded and obeys the following properties:

(P1) sufficient decrease:

1

p(Wp) = p(®441,Gy) > - 5

P @1, Gi) = pWei1) 2 [IGi = Gl (18)

(4

2
|®y — P17,

(P2) the sequence {p(®y, Gy)}is0 is convergent.

(P3) convergent difference:

klim (IWEL — WA = 0. (19)

(P4) for any convergent subsequence {Wy}, its limit
point W is a stationary point of p and

Jim p(Wy) = lim p(Wi) = p(W). (20)

The proof of Theorem Theorem 1 is given in Ap-
pendix B. In a nutshell, Theorem Theorem 1 implies
that the sequence generated by Algorithm 1 has at least
one convergent subsequence, and the limit point of any
convergent subsequence is a stationary point of p. The
following result establishes that the sequence gener-
ated by Algorithm 1 is a Cauchy sequence and thus
the sequence itself is convergent and converges to a
stationary point of p. Clearly, if the step size is cho-
sen to satisfy (18), the convergence still holds. Thus,
we suggest a backtracking method in Appendix D to
practically choose 7.

Theorem 2 (Sequence convergence). The sequence of
iterates {(®y, Gy)li=0 generated by Algorithm 1 with
step size n < Ll converges to a stationary point of p.

The proof of theorem 2 is given in Appendix C. A
special property named Kurdyka-Lojasiewicz (KL) in-
equality (see Definition 2 in Appendix C) of the objec-
tive function is introduced in proving Theorem Theo-
rem 2. We note that the KL inequality has been utilized
to prove the convergence of proximal alternating mini-
mization algorithms [42—44]. Our proposed Algorithm
1 differs from the proximal alternating minimization
algorithms [42-44] in that we update G (see (12)) by
exactly minimizing the objective function rather than



utilizing a proximal operator (which decreases the ob-
jective function less than the one by exactly minimiz-
ing the objective function). Updating G by exactly
minimizing the objective function is popularly utilized
in [9-12, 14, 16]. We believe our proof techniques for
Theorems 1 and 2 will also be useful to analyze the
convergence of other algorithms for designing sensing
matrices [9-12, 14, 16].

Both Theorems 1 and 2 hold for any fixed ¥, and
hence any A and P. In terms of the step size for updat-
ing @, Algorithm 1 utilizes a simple constant step size
to simplify the analysis. But we note that the conver-
gence analysis in Theorems 1 and 2 can also be estab-
lished for adaptive step sizes (such as obtained by the
backtracking method), which may give faster conver-
gence.

When & = 0, G consists of a single element (i.e.,
G = {I}) and the problem (16) is equivalent to

min v(®) := T-YTOTDY|2 + 2| @ +55 (). (21)

Then, Algorithm 1 reduces to the projected gradient
descent (PGD), which is known as the iterative hard
thresholding (IHT) algorithm for compressive sensing
[45]. As a direct consequence of Theorems 1 and 2,
the following result establishes convergence analysis
of PGD for solving (21).

Corollary 1. Let {®}i>0 be the sequence generated
by the PGD method with a constant step size n < Ll

D@1 = Ps (P — 1V o f(Dy, 1)),

where Vo f(®r, 1) is given in (14). Then

l_r.
o V(D)) — V(Dpy1) = 5| D) — P17
o the sequence {v(®y)}r>0 converges.

o the sequence {®;} converges to a stationary point

of v.

We note that Corollary 1 can also be established
for PGD solving a general sparsity-constrained prob-
lem if the objective function is Lipschitz continuous.
We end this section by comparing Corollary 1 with [46,
Theorem 3.1], which provides convergence of PGD for
solving a general sparsity-constrained problem. Corol-
lary 1 reveals that the sequence generated by PGD is
convergent and converges to a stationary point, while
[46, Theorem 3.1] only shows subsequential conver-
gence property of PGD, i.e., the limit point of any con-
vergent subsequence converges to a stationary point.

We end this section by noting that an alternative
approach is to pose the sparsity for the entire sensing
matrix instead of each row. Algorithm 1 can be di-
rectly utilized for designing such sparse sensing matrix
by simply revising the projection operator in updating
the sensing matrix ®. But we empirically observe that

such sensing matrix has slightly inferior performance
than the one obtained by imposing sparsity on each
row. Also, the reason that we do not impose sparsity in
each column is because M is usually small as M << N,
largely restricting the sparsity level of the sensing ma-
trix ®. For example, when M = 10 and N = 100
and if we want to design a sensing matrix with only
10% nonzero elements. Then if we impose the sparsity
to each column, then each column can only have one
nonzero element which is not easy to optimize with,
whereas each row can have ten nonzero elements if we
impose the sparsity on each row.

5. Simulations

A set of experiments on synthetic data and real im-
ages are conducted in this section to illustrate the per-
formance of the proposed method for designing sparse
sensing matrix. We compare with several existing meth-
ods for designing sensing matrices [12, 17, 29]. For a
given dictionary ¥, different sensing matrices result-
ing in various CS systems, we list below all possible
CS systems that are utilized in this paper.

CS,unan: ¥ + A dense random matrix

CSyr: ¥ + Sensing matrix [17]

CSyr-grF: ¥ + Sensing matrix [17]

CS;zvca: ¥ + Sensing matrix [12]

CSpispar: ¥ + A binary sparse sensing matrix [29]

CSparse-a: ¥ + Output of Algorithm 1 with
£§=0(e., G =1{I})) and A = DCT

CS;parse: ¥ + Output of Algorithm 1 with

£=0G@e,G:={I})and A =1
¥ + Output of Algorithm 1 with
E=p and A =1

Cs.vpar.ve—ETF:

5.1. Synthetic Data

We generate an N X L dictionary ¥ with normally
distributed entries and an M X N random matrix @,
for CS,4n4,- The training and testing data are built as
follows: with the given dictionary ¥, generate a set of
J K-sparse vectors {s; € R}/ |, where the index of the
non-zero elements in s; obeys a normal distribution;
then obtain the sparse signals {x,'}l.J:1 through

x; =¥s; +e, 22)

where e; denotes the Gaussian noise with mean zero
and covariance o®. Denote SNR as the signal-to-noise
ratio (in dB) of the signals in (22).

The performance of a CS system is evaluated via
the mean squared error (MSE)

J
1
MSE £ —— % |Ix; — &3, (23)
NxJ ;



where &; = ¥§; denotes the recovered signal and §; is
obtained through

§; = argmin [|®x; - ®Ws;|; s.t. [Isillo < K, Vi.

Now, we examine the convergence of Algorithm 1.
Figure 4 shows the objective function value f(®y, Gy)
and the values of ||®;,; —®||r and |Gy 1 —Gi||F versus
number of iteration. We see f(®y, G;) decays steadily
and ||®;,; — ®i||F and ||Gry1 — Gil|F decrease to O lin-
early. This coincides with our theoretical analysis.

Next, we discuss the choice of 1. As we mentioned
in Section 2, A is used to balance the importance of mu-
tual coherence and the robustness of SRE. In Figure 3,
we show the optimal value of A for CS; with dif-
ferent SNR.® We observe that the optimal A becomes
large when the SNR is low coinciding with our expec-
tation.

0.8 R

Fosf E

0.4t 1

5 10 15 20 25 30 35 40 45
SNR

Figure 3: The value of optimal A versus varying SNR for CSparse.
Here, we set M = 25, N = 60, L = 80, K = 4, J = 2000, and « = 20.

‘We then compare the performance of each CS sys-
tem with varying SNR level in (22). The results are dis-
played in Figure 5.7 This experiment indicates CS 7,
CSuyr-errs CSsparse and CSgpapse—prr outperform the
others when SNR < 25dB. We also see CSyr—grr and
CS;parse-erF outperforms CS yr and CS;4,5. when SNR
is high, respectively. Despite the high performance of
CSLryzcp when SNR > 25dB, it decays fast as SNR de-
creases, which reveals CS;yzcp is not robust to SRE.
Interestingly, the corresponding sparse sensing matri-
ces CSyparse and CS;pyrse-£rr have comparable perfor-
mance as CSyr and CSyr_grr, and are much better
than CS,4nq, and CSpispar.

Finally, we investigate the change of signal recov-
ery accuracy with varying M and K. In Figures 6 and 7,
we show the recovery accuracy versus various M and
K. We observe that our approach almost works the
same as the dense one, CSy7 and CSyr_grF.

The optimal A means the corresponding sensing matrix yielding
a highest recovery accuracy.

"For synthetical experiments, we set the base matrix A as an
identity matrix. We will exploit the performance of adding the DCT
matrix as the base matrix for natural images.
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Figure 4: Convergence of Algorithm 1 in terms of (a) objective
value, (b) the change of iterates {®}; (blue line) and {G}; (red line).
Here, we set M = 25, N = 60, L = 80,1 = 0.25 and « = 20.

N cs randn

——CS

bispar
X ——CSyp

—e—CS
—-=2Cs

——CS

MT-ETF
LzYCB

sparse

25

45

SNR

Figure 5: MSE versus different SNR (dB) for the signals in (22).
Here, we set M = 25N = 60,L = 80,K = 4,J = 2000,4 = 0.25
and k = 20. Disappearance from this figure means MSE is less than
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Figure 6: MSE versus different M with SNR= 20dB. Here, we set
N =60,L=80,K=4,J=2000,1=0.25 and « = 20.
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Figure 7: MSE versus different K with SNR= 20dB. Here, we set
M =25,N =60,L = 80,J = 2000, A = 0.25 and x = 20.

5.2. Real Images

We now apply these CS systems to real image re-
construction from their sensing measurements. We ex-
amine the performance of the CS systems with two



different sizes of dictionaries, a low dimensional dic-
tionary ¥ € R*1% and a high dimensional one ¥ €
‘RZSMSOO.

The low dimensional dictionary W is learnt through
KSVD algorithm [5] with a set of VN x VN non-
overlapping patches by extracting randomly 15 patches
from each of 400 images in the LabelMe [47] training
data set. With each patch of VN x VN re-arranged
as a vector of N x 1, a set of N x 6000 signals are
obtained. Similarly, for learning a high dimensional
dictionary, we extract more patches from the training
dataset and obtains nearly 10° signals since a high di-
mensional dictionary has much more parameters that
need to be trained than a low dimensional dictionary.
To address such a large training dataset, we choose the
online dictionary learning algorithm [48] to learn this
dictionary.

The performance of each CS system for real im-
ages is evaluated through Peak Signal to Noise Ratio
(PSNR),

@ -1y
MSE

where r = 8 bits per pixel and MSE is defined in (23).

We choose several test images to demonstrate the
reconstruction performance in terms of PSNR. Since
patch-based processing of images will introduce the
artifact on boundary called blockiness, the deblock-
ing techniques can be introduced here to act as a post-
processing step to reduce such an artifact. To this end,

PSNR £ 10 x log 10[ ](dB)

is small. This demonstrates the effect of utilizing the
auxiliary DCT matrix for designing a structured sparse
sensing matrix to increase the reconstruction accuracy.

It is not surprising to note that CS;zycp yields very
low PSNR for real image experiments. This coincides
with Figure 5 and further demonstrates that the sensing
matrix in CS;zycp is not robust to the SRE. But we ob-
serve that the proposed sparse sensing matrices are ro-
bust to the SRE and hence the CS;,45c and CSy4r5e-a
have higher PSNR.

Comparing the results in Table 1 and Table 2, we
observe that with a high dimensional dictionary, higher
PSNR can be obtained. It is of great interest to note
that the proposed sparse sensing matrix becomes ex-
tremely efficient for high dimensional patches since it
can significantly reduce the sensing costs.

35 T T T T T
y
34r ?: 1
- Csrandn
% 33r ——CS b
o 32r ™ CSbispar 1
a1l M —— CSsparse-A /\w
—— cssparse
30 L L L
0 50 100 150 200 250
K

Figure 8: PSNR(dB) versus sparsity « for different CS systems with-
out post-processing on image Lena. Here, M = 80,N = 256,L =
800,K = 16,4 =0.5.

we utilize the BM3D denoising algorithm as post-processing

to tackle the blockiness [49]. We observe that such a
post-processing step not only improves the visual ef-
fect, but also increases the PSNR for each method. To
illustrate the improvement of the PSNR, we list the
amount of increased PSNR by the post-processing in
Tables 1 and 2 and Figure 10.

With image Lena, we show the PSNR versus the
sparsity « (the number of non-zero elements in each
row of the sparse sensing matrix) in Figure 8. And
furthermore, we list the performance statistics on other
images including Couple, Barbara, Child, Plane, and
Man in Tables 1 and 2. Figure 10 displays the visual
result of “couple”.

As expected, CS;parse-a and CS;pqrg yield higher
PSNR when increases the sparsity «. It is interesting to
see that although the sparsity is very low, for example,
k = 10, CS;parse-a is only 0.53dB inferior to CSr and
still has more than 3dB better than CS,,,,4, Which is a
dense sensing matrix. We note that the gap between
CSparse—a and CSyr is almost negligible (with 0.15
dB) when « > 30. This meets our argument that we
can design a sparse sensing matrix instead of a dense
matrix resulting in similar performance so that we can
reduce the computational cost for sensing signals.

Figure 8 and Tables 1 and 2 indicate CS;,4/5.-4 has
better performance than CSy,,, because of A when «

6. Conclusions

We proposed a framework for designing a struc-
tured sparse sensing matrix that is robust to sparse rep-
resentation error that widely exists for practical signals
and can be efficiently implemented to sense signals.
An alternating minimization-based algorithm is used
to solve the optimal design problem, whose conver-
gence is rigorously analyzed. The simulations demon-
strate the promising performance of the proposed struc-
tured sparse sensing matrix in terms of signal recon-
struction accuracy for synthetic data and real images.

Figure 9: The Original test image: “Couple”.



Table 1: Statistics of PSNR (dB) for six images with M = 20, N = 64, L = 100, K = 4, A = 1.4 using different . The performance of each
CS system is described in two rows: the first row is the PSNR without post processing, while the second row is the amount of improved PSNR
by post processing.

Lena Couple Barbara Child Plane Man
k=10 [ k=20 || k=10 [ k=20 [ k=10 [ k=20 [| k=10 [ «=20 [| x=10 [ «=20 [[ «k=10 [ k=20
cs 29.69 27.01 22.44 31.20 28.57 27.41
randn +1.12 +0.95 +0.52 +1.27 +1.08 +1.04
CSur 32.75 30.01 25.36 34.22 31.60 30.39
+1.31 +1.05 +0.45 +1.72 +0.78 +0.32
CSizven 12.74 10.38 4.19 15.93 14.51 9.75
+1.58 +2.08 +7.32 +1.76 +1.33 +3.20
CSpis 29.36 29.27 26.85 26.87 22.42 22.49 30.80 30.87 28.13 28.28 27.19 27.14
1spar +1.23 +1.24 +0.97 +1.03 +0.65 +0.61 +1.56 +1.46 +0.78 +0.90 +1.07 +1.09
cs 32.38 32.65 29.63 29.88 2491 25.19 33.84 34.12 31.28 31.52 30.01 30.27
sparse=A +1.86 | +1.34 +1.31 | +1.07 +1.04 | +0.47 +2.03 | +1.70 +0.85 | +1.64 +0.44 | +0.38
cs 32.26 32.56 29.47 29.79 24.76 25.11 33.75 34.07 31.15 31.48 29.83 30.15
sparse +1.26 +1.33 +1.01 +1.02 +0.54 +0.47 +1.71 +1.68 +0.86 +1.21 +0.61 +0.40
Table 2: Similar to Table 1, but with M = 80, N = 256, L = 800, K = 16, 2 =0.5.
Lena Couple Barbara Child Plane Man
k=10 [ k=30 [[ k=10 [ «=30 [| «=10 [ «=30 || k=10 [ x=30 [[ k=10 [ «=30 [| k=10 [ k=30
cs 30.73 27.40 22.76 31.99 29.57 27.94
randn +0.69 +0.51 +0.21 +0.59 +0.48 +0.48
CSur 34.38 30.90 26.04 35.60 33.34 31.50
+0.14 +0.23 +0.13 +0 +0.24 +0.20
CS,. 30.23 30.72 27.33 27.36 22.57 22.64 31.70 31.94 29.29 29.49 27.59 27.82
bispar +0.67 +0.67 +0.50 +0.52 +0.21 +0.20 +0.58 +0.59 +0.48 +0.48 +0.46 +0.47
cs 33.89 34.24 30.47 30.75 25.44 25.82 35.09 35.36 32.92 33.15 30.95 31.22
sparse=A +0.34 +0.22 +0.37 +0.29 +0.18 +0.16 +0.25 +0.08 +0.38 +0.29 +0.35 +0.27
cs 33.17 33.50 29.69 29.94 24.26 24.60 34.38 34.66 3241 32.61 30.06 30.39
sparse +0.45 +0.43 +0.42 +0.40 +0.15 +0.16 +0.24 +0.21 +0.38 +0.38 +0.35 +0.36
As shown in Section 5, utilizing the base matrix Acknowledgment

A can improve the performance of the obtained sparse
sensing matrix, especially when the number of non-
zeros in @ is very small. Thus, it is of interest to utilize
a base matrix A which has a few degrees of freedom
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Appendix A. Proof of lemma 1

Proof. We parametrize the function value through the
line passing [®@’, @] by ¢, i.e., define v(¢) = f(® +
HD - @),G). Itis clear that v(0) = f(D’,G), v(l) =



(f) +0.51 (g) +0.50 (h) +0.42 (i) +0.37 (j) +0.23

Figure 10: The PSNR (dB) of reconstructed images for different CS systems with M = 80, N = 256, L = 800, K = 16, 2 = 0.5,« = 10. Up:
the PSNR without deblocking. Bottom: the amount of improved PSNR with deblocking.

f(®,G). Then we have foranyu € domo and dpo(u) = 0 ifu ¢ domo.
| The subdifferential 0o (u) of o at u € dom o is de-
o) = v(0) = f(@.6) - f@.6) = [ (s fined as follows
1 ’ 90 = {2 Fup > u,0(w) > o@), 2 € Irouy) — z)

= fo Vo (@ +1(® - D),G), @ - D)t We say u a critical point (a.k.a. stationary point) if
1 subdifferential at u is 0. The set of critical points of o
= f Vo f(® +1(® - @"),G) — Vo f(P',G), ® — @ )dtis denoted by C(o).
0

+ (Vo f(D',G),® - ') Proof of Theorem 1. We prove Theorem 1 by individ-

1 ually proving the four arguments.
< f Vo f(® +t{® - ®'),G) — Vo f(®,G)|rdt Show (P1): It is clear that for any k € N, ®; € S,
0 and G € G¢. Thus we have p(®y, G,) = f(®x, G¢) for
@ - @||r + (Vo f(P',G), ® - D) any k,¢ € N. Let B = ¥T®] @, ,'¥. Noting that G¢

is a closed convex set, we have

1
< L||® - @'|? f tdt + (Vo [(®',G),® — D)
" Jo ® (G - Ps.(B).Pg.(B) - B) > 0, VG € G,

L
= EH(I) — @2 + (Vo f(P,G),® - D), which directly implies
where in the last inequality we have used (17). O P(®is1, Gi) = p(Pper1, Gier1)
= G = Bl = lIGys1 — Bl
Appendix B. Proof of theorem 1 = Gy — P, (B) + Pg,(B) - Bl ~ Pg.(B) - Bl
_ 2
We first state the following definition of subdif- =Gk = P (Bl +2 <Gk = Pg.(B),Pg.(B) ~ B >
ferential for a general lower semicontinuous function, > |Gy — Gis II% > 0.

which is not necessarily differentiable. .
On the other hand, we rewrite (15) as

Definition 1. (Subdifferentials [42]) Let o : R? —
( I 142) D@y € Ps (Pr — nVf(Py, Gr))

(=00, ] be a proper and lower semicontinuous func-

tion, whose domain is defined as = argmin ||Z — (®; — nVf(®y, Gp) Iz
ZeS, (B.1)
domo := {u eRY: o(m) < oo}. € argmin hy/,(Z, ®y, Gy)
ZeS,
by The Fréchet subdifferential 0o of o at u is defined which implies that
1 (@1, @, Gi) < hy (D, B, G
W) o) - (ay—u) 1/7(®is1, Pr, Gi) < hy (P, By, Gi)
Orpo(u) = 4z : liminf = >0 = f(®y, Gy).
v—ou -

10



This along with Lemma 1 gives

f( @, Gy) — f(Pry1,Gr)
> f(®r, Gp) — hy (Ppy1, Py, Gy)
2 hy(®@ps1, O, Gr) — hy, (Ppy1, Py, Gi)

L1

,] C
= @) — Dy 13-

Show (P2): It follows from (18) that

po = p(®@1,Gy) = p(P1,Gy) > - - - p(Py, Gi)
2 p(®r11,Gr) 2 p(Ppy1,Gry1) 2 -+

which together with the fact that p(®;, ¥;) > 0 gives
the convergence of sequence {o(®y, Gy)}r>o. This also
implies that (@, Gi) € L, and hence {(®, Gy)}iso is
a bounded sequence.

Show (P3): Utilizing (18) for all k € N and sum-
ming them together, we obtain

e

<po-— /}Lfgop((bk, Gy < po,

1
n

|(I)k (I)k+1||%;~) + “Gk _ Gk+1”%~

which implies that the series {}};_, || D —r+! |I§+I|Gk -

G"*1||2}, is convergent. This together with the fact that

|[®F — @112 > 0 and |G — GF||Z > 0 gives (19).
Show (P4): We rewrite (B.1) as

@, € argmin h1 (P, Dy, Gy) + 65, (P),
(I)ERMXN

(B.2)

which implies (by the optimality of ®;.; in (B.2) and
letting @ = @, i.e. the limit of a convergent subse-
quence {@p }-)

(Vo f(®, Gy), Py — D) +
< (Vo (@G, ® — B) + | — O} + 5s, ().
This further gives (take limit on subsequence {®y };-)

lim sup 65, (®y ) — I, (P)

k' —>o0
< limsup(Ve f(®r_1,Gr-1), ® — ®p)
k' —c0 (B.3)
+ Ny - @I - Ly - 12
2 2
= (),

where the last line follows from (19), the fact that scalar
product is continuous and limy e [|®x_1 — @|Ir = 0
since

0< klim [P — DI
= kh_IEo Dy — P + Dy — Dl
- @[ + ||y

< lim || @ - Dy _llF=0
k' — o0

11

T it = D} + 3, (@)

From the fact that 65 (®) is lower semi-continuous, we
have
0s, (@) < h,f,n inf 55 (Pp ).

Utilizing (B.3) gives

limsup 65, (@) < s, (P) < 11m 1nf63 (D),

k>0
which together with the fact

hm 1nf 0s, (@) < limsupds, (Py)

k' >0
gives

0s, (@) = hm 1nf 0s, (@) = limsup s, (Py ),

k' —o0

and hence
lim 65,(y) = 35, (@),

Since G; is a compact set and Gy € G, V k' € N,
we have the limit point G € G. Therefore, we obtain
kllilgo p( @, Gyp) = kll_I}(}o f(@r,Gp) + 65, (Pr) + 06,(Gy)

= p(@,G).

The remaining part is to prove that W = (®,G)
is a stationary point of p, which is equivalent to show
(0,0) € 0p(P, G). In what follows, we show a stronger

result that (0, 0) € lim;_,., dp(®y, Gy).
First note that

G = argmin p(®, G)
GeRIXL

The optimality condition gives [44]

0 = Vg [(®r, Gi) + Uy € dgp(Wy), (B.4)
—_ —

DGk

where Uy € 86g,(Gy). On the other hand, the optimal-
ity condition of (B.2) gives (by setting k «— k — 1 in
(B.2))

1
Vo f(®i_1,Gr-1) + ;](‘I)k - O )+ V=0,
where V € 065 (®;). Thus we have

1
Vo f(Wi) = Vo [(Wi1) - ﬁ(q)k - ®y_1) € dop(Wi),

Da’k



which along with (B.4) gives
“(D*Dk’ DGk)“F = ”D‘l’k”F
1
= Vo f(Wi) = Vo fF(Wi_1) — ;]((Dk - @ )llF

<|IVof(Wi) — Vo [(®r, Gl
+ Vo (@, Gi-1) — Vo fF(Wi)Il

1
+ —||®x — Py_(llF
n
1
< LGk = Giillp + (Le + E)“(Dk - @ llF
1
<@L+ ;)”Wk = Wiillr, (B.5)

where we have used the Lipschitz gradient (17) in the
second inequality.
Applying (19), we finally obtain

lim (Da,, Dg,) = 0,0

since
tim (Do D) = 0.

Thus (0, 0) € limy_,., do(®y, G;) and we conclude that
any convergent subsequence of {W;} converges to a sta-
tionary point of (16).

Finally, the statement

lim p(Wy) = p(W).

directly follows from (P2) that the objective value se-
quence {p(W)}en is convergent.
O

Appendix C. Proof of theorem 2

We first state the definition of Kurdyka-Lojasiewicz
(KL) inequality, which is proved to be useful for con-
vergence analysis [42—44].

Definition 2. A proper semi-continuous function o-(u)
is said to satisfy Kurdyka-Lojasiewicz (KL) inequality,
if u is a stationary point of o(u), then 16 > 0, 8 €
[0,1), C; >0, s.t.

o) — c@)| < CiIvll, ¥ u € B@.s), Vv € do)

It is clear that our objective function p(®,G) is
lower semi-continuous and it satisfies the above KL
inequality since the three components f(®, G), 6s, (P)
and og, (G) all have the KL inequality [43, 44].

Proof of Theorem 2. Theorem 1 reveals the subsequen-
tial convergence property of the iterates sequence {Wj =
(@, Gp)li, i.e., the limit point of any convergent sub-
sequence converges to a stationary point. In what fol-
lows, we show the sequence {W; = (@, Gy)}; itself is

12

indeed convergent, and hence it converges to a certain
stationary point of W = (®, G).

It follows from (20) that for any § > 0, there exists
an integer n such that W, € B(W,9), V k > n for some
stationary point W € C(p). From the concavity of the
function A(y) = '~ with domain y > 0, we have®

[oWee) — o)) ™ (C.1)

- W) — p(W,
< [pwo) —p(E)]l ‘ra- Q)ILP(%
[eWi) - pW)]

We now provide lower bound and upper bound for p(W;,)—

p(Wii1) and [p(Wk) - p(ﬂ)]g, respectively. It follows
from (18) that

P(Wy) = p(Wis1) = CallWist — Willz,

1_
where C, = min{”TL(, }. On the other hand, from

(B.5) and the KL inequality we have

0
[eWi) - pW)]| < €1 ||(Da,. De)|,
< G3|lWi = WillF,
where C3 = C{(2L, + 1/5). Plugging the above two
inequalities into (C.1) gives
1-6 1-6
[oWo) = pW)| " = [p(Wier) = pW))

Col Wit — Wil

>(1-0)———.
Gsl|Wy — Wiillp

(C.2)

Let C4 = (1 — 6)C,/C3. Repeating the above equation
for k from 1 to co and summing them gives
1 -6 1 1-9
& [ —p] = = [oWe) - o))
N [[Wieer — Will2.
> - - @ —r
= ||Wie = Wil
= [IWx = Wiillr

+ Wi — Wiillr

0~ -
> 23" Wit = Wil = > IWe = Wil
k=1 k=1

= > Wit = Wille = W1 = Wollr,
k=1

where (i) is from the arithmetic inequality, i.e., a> +
b*> > 2ab. The proof is completed by applying the
above result with the boundedness of {W;}; and (20):

(o)
DU IWea = Wil < o0
k=1

which implies that the sequence {W; }ien is Cauchy [44]
in a compact set and hence it is convergent. O

8If a differential function f(x) is concavity, the following in-
equality holds: f(y) — f(x) < (Vf(x),y — x).



Appendix D. The Choice of Step Size With Unknown

Lipschitz Constant L,

In practice, it is challenge to choose an appropriate

step size since it is not easy to compute the Lipschitz
constant L.. According to the given convergence anal-
ysis in Section 4, we know if the step size is chosen to
satisfy (18), the convergence is still guaranteed. Thus,
we can utilize the backtracking method [52] with in-
equality (18) to search an appropriate step size without
knowing L.. The procedure is detailed in Algorithm 2.

Algorithm 2 Backtracking Procedure

Initialization:

Initial value: (179, y, @) where 1 is the initial guess
step size, y € (0,1) and @ € (0, 1).

Output:

Step size 7 and Updated @y ;.

L. neno
2: @pyy — Ps (P — NV f(Dy, Gi))

while p(®;, G;) — p(®Py11, Gy) < %7||<I)k+1 - @2
do

ne—an

Update @y, : ®pyy  Ps, (Pr—1Va f(Px, Gi))

- end while
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