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Abstract

The maximum correntropy criterion (MCC) methodology is recognized to be a robust filtering strategy with respect to outliers and

shown to outperform the classical Kalman filter (KF) for estimation accuracy in the presence of non-Gaussian noise. However, the

numerical stability of the newly proposed MCC-KF estimators in finite precision arithmetic is seldom addressed. In this paper, a

family of factored-form (square-root) algorithms is derived for the MCC-KF and its improved variant, respectively. The family tra-

ditionally consists of three factored-form implementations: (i) Cholesky factorization-based algorithms, (ii) modified Cholesky, i.e.

UD-based methods, and (iii) the recently established SVD-based filtering. All these strategies are commonly recognized to enhance

the numerical robustness of conventional filtering with respect to roundoff errors and, hence, they are the preferred implementations

when solving applications with high reliability requirements. Previously, only Cholesky-based IMCC-KF algorithms have been

designed. This paper enriches a factored-form family by introducing the UD- and SVD-based methods as well. A special attention

is paid to array algorithms that are proved to be the most numerically stable and, additionally, suitable for parallel implementations.

The theoretical properties are discussed and numerical comparison is presented for determining the most reliable implementations.

Keywords: Maximum correntropy filtering, square-root algorithms, Cholesky factorization, singular value decomposition.

1. Introduction and problem statement

Consider a linear discrete-time stochastic system

xk =Fk−1xk−1 +Gk−1wk−1, k ≥ 1 (1)

yk =Hk xk + vk (2)

where Fk ∈ R
n×n, Gk ∈ R

n×q, Hk ∈ R
m×n. The vectors xk ∈ R

n

and yk ∈ R
m are the unknown dynamic state and the available

measurements, respectively. The random variables {x0,wk, vk}

have the following properties:

E











x0
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[
xT

0 wT
j vT
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]
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
=
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Π0 0 0 x̄0

0 Qkδk j 0 0

0 Rkδk j 0





where Qk ∈ Rq×q, Rk ∈ Rm×m and δk j denotes the Kronecker

delta function.

The goal of any filtering method is to recover the unknown

random sequence {xk}
N
1 from the observed one {yk}

N
1 . The clas-

sical Kalman filter (KF) yields the minimum linear expected

mean square error (MSE) estimate x̂k|k of the state vector xk,

given measurementsYk
1 = {y1, . . . , yk}, i.e.

arg min
x̂k|k∈span(Yk

1
)
E
{
‖xk − x̂k|k‖

2
}
. (3)

If the examined state-space model is Gaussian, i.e. wk, vk

and the initial state x0 are jointly Gaussian, then estimator (3)
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coincides with the minimum expected MSE estimator [1].

arg min
x̂k|k

E
{
‖xk − x̂k|k‖

2
}
. (4)

In other words, although the classical KF is a linear esti-

mator, in Gaussian settings it yields the minimum expected

MSE estimate. In general (non-Gaussian case), the classical

KF produces only sub-optimal solution for estimation prob-

lem (4). To deal with non-Gaussian uncertainties and out-

liers/impulsive noise in state-space model (1), (2), various “dis-

tributional robust” filtering/smoothing methods have been de-

veloped in engineering literature. For detecting outliers, the

Huber-based and M-estimator-based KF algorithms suggest to

construct weight matrices (or scalars) and utilize them for in-

flating the innovation or measurement noise covariances for re-

ducing the estimation error [2, 3, 4]. The unknown input fil-

tering (UIF) methodology suggests to model unknown external

excitations as unknown inputs and, next, to derive the robust

observer [5, 6]. Meanwhile, the most recent and comprehen-

sive survey of existed Kalman-like smoothing methods devel-

oped for non-Gaussian state-space models can be found in [1].

In this paper, an alternative strategy called the maximum cor-

rentropy criterion (MCC) filtering is in the focus. It becomes

an important topic for analysis in the past few years, both for

linear [7, 8, 9, 10, 11, 12] and nonlinear systems [13, 14, 15].

The correntropy represents a similarity measure of two ran-

dom variables. It can be used as an optimization cost in related

estimation problem as discussed in [16, Chapter 5]: an estima-

tor of unknown state X ∈ R can be defined as a function of

observations Y ∈ Rm, i.e. X̂ = g(Y) where g is solved by maxi-
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mizing the correntropy between X and X̂ that is [17]

gMCC = arg max
g∈G

V(X, X̂) = arg max
g∈G

E
{

kσ

(

X − g(Y)
)}

(5)

where G stands for the collection of all measurable functions

of Y, kσ(·) is a kernel function and σ > 0 is the kernel size

(bandwidth). One of the most popular kernel function utilized

in practice is the Gaussian kernel given as follows:

kσ(X − X̂) = exp
{
−(X − X̂)2/(2σ2)

}
. (6)

It is not difficult to see that the MCC cost (5) with Gaussian

kernel (6) reaches its maximum if and only if X = X̂.

In [8, 11], the MCC estimation problem (5) with kernel (6) is

combined with the minimum linear expected MSE estimation

problem related to the classical KF in (3). The resulted esti-

mator is called the MCC-KF method. Taking into account that

only a finite number of data points k = 1, . . .N is available in

practice, the sample mean is utilized in corresponding formu-

las. The problem of estimating xk for state-space model (1), (2)

is equivalent to maximizing J(k) given by

x̂k|k = arg max J(k) (7)

where

J(k) = kσ(‖x̂k|k − Fk−1 x̂k−1|k−1‖P−1
k|k−1

) + kσ(‖yk − Hk x̂k|k‖R−1
k

) (8)

with the Gaussian kernel functions defined as follows [11]:

kσ(‖x̂k|k− Fk−1 x̂k−1|k−1‖P−1
k|k−1

)= exp
{

−
‖x̂k|k − Fk−1 x̂k−1|k−1‖

2
P−1

k|k−1

2σ2

}

,

kσ(‖yk − Hk x̂k|k‖R−1
k

)= exp
{

−
‖yk − Hk x̂k|k‖

2
R−1

k

2σ2

}

.

The optimization condition ∂J(k)/∂x̂k|k = 0 yields the non-

linear equation that should be solved with respect to x̂k|k

x̂k|k = Fk−1 x̂k−1|k−1

+
kσ

(

‖yk − Hk x̂k|k‖R−1
k

)

kσ

(

‖x̂k|k − Fk−1 x̂k−1|k−1‖P−1
k|k−1

)HT
k(yk − Hk x̂k|k). (9)

In [8, 11], a fixed point rule (with one iterate) is utilized for

solving (9) where the initial approximation x̂
(0)
k|k is set to x̂k|k−1,

i.e. x̂
(0)
k|k = x̂k|k−1 is substituted at the right-hand side of equa-

tion (9). Thus, we get

x̂k|k = Fk−1 x̂k−1|k−1 + λkHT
k (yk − Hk x̂k|k−1) (10)

where λk stands for

λk =
kσ(‖yk − Hk x̂k|k−1‖R−1

k
)

kσ(‖x̂k|k−1 − Fk−1 x̂k−1|k−1‖P−1
k|k−1

)
. (11)

Finally, the recursion for the state estimate in (10) is utilized

with the KF-like estimation and the related error covariance

propagation [11]. The resulted estimator is called the maximum

correntropy criterion Kalman filter (MCC-KF) and summarized

as follows [11, p. 503]. For readers’ convenience, it is presented

here in the form of Algorithm 1.

Algorithm 1. MCC-KF (original MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and P0|0 = Π0.

Time Update: (k = 1,N)

1 x̂k|k−1 = Fk−1 x̂k−1|k−1;

2 Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Gk−1Qk−1GT

k−1;

Measurement Update: (k = 1,N)

3 Compute λk by formula (11);

4 Kk = λk

(
P−1

k|k−1 + λkHT
k R−1

k Hk

)−1
HT

k R−1
k ;

5 Pk|k = (I − KkHk)Pk|k−1(I − KkHk)T + KkRkKT
k ;

6 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

It is worth noting here that the MCC-KF coincides with the

classical KF when λk = 1. Thus, similar to the classical KF

equations presented in [18, p. 128-129], the following formulas

have been obtained for the MCC-KF method in [19, Lemma 1]:

Kk = λkPk|k−1HT
k

(
λkHkPk|k−1HT

k + Rk

)−1
(12)

= λkPk|kHT
k R−1

k (13)

where Re,k := λkHkPk|k−1HT
k + Rk, and Pk|k satisfies

Pk|k =
(
P−1

k|k−1 + λkHT
k R−1

k Hk

)−1
(14)

= (I − KkHk)Pk|k−1 (15)

= (I − KkHk)Pk|k−1(I − λkKkHk)T + KkRkKT
k . (16)

It is not difficult to see that the gain matrix Kk in the

MCC-KF implementation (see line 4 in Algorithm 1) is com-

puted by formula (13) where the error covariance matrix Pk|k

obeys equation (14), i.e. the following formula holds: Pk|k =

λk

(
P−1

k|k−1 + λkHT
k R−1

k Hk

)−1
HT

k R−1
k . Next, having compared

equation (16) for computing Pk|k with the equation in line 5

of Algorithm 1, we conclude that the suggested MCC-KF im-

plementation (Algorithm 1) neglects the scalar parameter λk

in (16) in order to keep the symmetric form. In the KF com-

munity, the symmetric equation (see line 5 of Algorithm 1)

is called the Joseph stabilized form. It is recognized to be

the preferable implementation strategy for the classical KF, be-

cause it ensures the symmetric form of error covariance matrix

Pk|k in the presence of roundoff errors and, hence, improves the

numerical robustness [18, 20]. In summary, the MCC-KF im-

plies the simplified error covariance computation strategy (λk

is omitted) in order to keep the reliable Joseph stabilized form.

However, a loss in estimation quality is the price to be paid;

see the numerical results and the improved MCC-KF (IMCC-

KF) variant developed in [19]. For readers’ convenience, the

IMCC-KF is summarized in Algorithm 2.

Algorithm 2. IMCC-KF (improved MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and P0|0 = Π0.

Time Update: (k = 1,N)

1 x̂k|k−1 = Fk−1 x̂k−1|k−1;

2 Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Gk−1Qk−1GT

k−1;

Measurement Update: (k = 1,N)

3 Compute λk by formula (11);

4 Kk = λkPk|k−1HT
k

(
λkHkPk|k−1HT

k + Rk

)−1
;

5 Pk|k = (I − KkHk)Pk|k−1;

6 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).
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As can be seen, the IMCC-KF (Algorithm 2) implies equa-

tion (12) for the gain matrix Kk computation (line 4 in Algo-

rithm 2) and formula (15) for the error covariance matrix Pk|k

calculation (line 5 in Algorithm 2). Both the MCC-KF and

IMCC-KF are shown to outperform the classical KF for esti-

mation accuracy in case of non-Gaussian uncertainties and out-

liers [8, 11, 19]. Meanwhile, to deal with the numerical insta-

bility problem and robustness with respect to roundoff errors,

we derive the so-called factored-form implementations [21]:

“It was recognized in the KF community that the factored-

form (square-root) algorithms are the preferred implementa-

tions when a high operational reliability is required”.

The key idea of the factored-form methodology for imple-

menting linear and nonlinear KF-like estimators is to factorize

the error covariance matrix P in the form of P = S S T and,

then, re-formulate the underlying filtering equations in terms of

these factors, only. Thus, the square-root algorithms recursively

update the factors S instead of entire matrix P at each filter-

ing step. It ensures the theoretical properties of any covariance

matrix, i.e. its symmetric form and positive semi-definiteness,

in the presence of roundoff errors. Indeed, when all measure-

ments are processed, the full matrix P is re-constructed from

the updated factors S by backward multiplication S S T = P.

Although, the roundoff errors influence the factors S , the prod-

uct S S T = P is a symmetric and positive semi-definite matrix.

It is worth noting here that the factorization P = S S T

can be implemented in various ways. This yields a vari-

ety of the factored-form (square-root) strategies: (i) Cholesky

factorization-based algorithms, e.g. in [22, 23, 24]; (ii) UD-

based implementations in [25], and (iii) SVD-based methods

published recently in [26]. We stress that all cited square-root

methods have been derived for the classical KF. Meanwhile for

the MCC methodology the Cholesky-based IMCC-KF imple-

mentation has been proposed, only [19]. The goal of this pa-

per is to proceed our recent research and suggest a complete

factored-form family for both the MCC-KF (Algorithm 1) and

IMCC-KF (Algorithm 2) estimators. Finally, it is important for

further derivation that the scalar λk in the MCC-KF and IMCC-

KF methods is a nonnegative value and, hence, a square root

exists (for real nonnegative numbers).

2. The Cholesky factored-form implementations

The Cholesky factorization-based approach is the most pop-

ular strategy for designing factored-form implementations and,

hence, traditionally used in engineering literature. It implies

factorization of a symmetric positive definite matrix A in the

form A = (A1/2)(A1/2)T where the factor A1/2 is an upper or

lower triangular matrix with positive diagonal elements. The

resulted filtering methods belong to factored-form (square-root)

family because the matrix square root S (i.e. P = S S T ) can

be defined as S := P1/2. All algorithms derived in this paper

utilize the Cholesky decomposition in the form A = AT/2A1/2

where A1/2 is an upper triangular matrix with positive diagonal

elements1.

1Notation to be used: AT/2 ≡ (A1/2)T , A−1/2 ≡ (A1/2)−1, A−T/2 ≡ (A−1/2)T .

Previously, the array Cholesky-based implementations have

been developed for the IMCC-KF (Algorithm 2), only [19].

Thus, they are not presented here in details, but their key prop-

erties are discussed. The so-called array form is the preferable

filtering implementation because of the following reasons [24]:

(i) it makes algorithms convenient for practical use and suitable

for parallel implementation; (ii) utilization of stable orthogonal

transformation at each iteration step improves numerical sta-

bility. In summary, the array Cholesky-based filters utilize QR

factorization for updating the corresponding Cholesky factors

as follows: the filter quantities are compiled into the pre-array

A and, next, an orthogonal operator V is applied VA = R in

order to obtain the required triangular form of the post-array

R. The updated filter quantities are simply read-off from the

post-array R. To summarize, the Cholesky-based IMCC-KF al-

gorithm implies the following factorizations for updating P
1/2
k|k−1

and P
1/2
k|k at the time and measurement steps [19, Algorithm 2]:

V

[
P

1/2
k−1|k−1FT

k−1

Q
1/2
k−1GT

k−1

]

︸               ︷︷               ︸

Pre-array A

=

[
P

1/2
k|k−1

0

]

︸      ︷︷      ︸

Post-array R

(17)

W

[
R

1/2
k 0

λ
1/2
k P

1/2
k|k−1HT

k P
1/2
k|k−1

]

︸                           ︷︷                           ︸

Pre-array A

=

[
R

1/2
e,k K̄T

k

0 P
1/2
k|k

]

︸             ︷︷             ︸

Post-array R

(18)

where K̄k = λ
−1/2
k KkR

T/2
e,k = λ

1/2
k Pk|k−1HT

k R
−1/2
e,k is the “normal-

ized” feedback gain and Re,k = λkHkPk|k−1HT
k + Rk.

Formulas (17), (18) are algebraic equivalent to correspond-

ing equations in the conventional IMCC-KF implementation

(Algorithm 2). It is not difficult to prove, if we note that the

orthogonal transformations set up a conformal (i.e. a norm-

and angle-preserving) mapping between the (block) columns

of the pre-array A and the columns of the post-array R. More

precisely, let us consider equation (18) in detail. Because of a

norm-preserving mapping, the first inner product is

< [R
1/2
k λ

1/2
k P

1/2
k|k−1HT

k ], [R
1/2
k λ

1/2
k P

1/2
k|k−1HT

k ]>=< [X 0], [X 0]>.

Hence, we get XT X = λkHk P
T/2
k|k−1P

1/2
k|k−1

︸          ︷︷          ︸

Pk|k−1

HT
k + R

T/2
k R

1/2
k

︸      ︷︷      ︸

Rk

= Re,k,

i.e. X := R
1/2
e,k . At the same way, we define

< [R
1/2
k λ

1/2
k P

1/2
k|k−1HT

k ], [0 P
1/2
k|k−1]> =< [R

1/2
e,k 0], [Y Z]>,

< [0 P
1/2
k|k−1], [0 P

1/2
k|k−1]> =< [Y Z], [Y Z]>

and obtain the set of equations

λkHkPk|k−1 = R
T/2
e,k Y, Pk|k−1 = ZT Z + YT Y.

Thus, we get Y := λ
1/2
k R

−T/2
e,k HkPk|k−1 = K̄T

k and, hence,

ZT Z = Pk|k−1 − YT Y = Pk|k−1 − K̄kK̄T
k

= Pk|k−1 − λkPk|k−1HT
k R−1

e,kHkPk|k−1

= Pk|k−1 − KkHkPk|k−1 = (I − KkHk)Pk|k−1 = Pk|k,

3



i.e. from (15) we conclude Pk|k = ZT Z and, hence, Z := P
1/2
k|k .

Thus, factorization (18) implies formulas in lines 4 and 5 of

Algorithm 2. Meanwhile equation (17) yields formula in line 2

of Algorithm 2. Indeed,

< [P
1/2
k−1|k−1FT

k−1 Q
1/2
k−1GT

k−1], [P
1/2
k−1|k−1FT

k−1 Q
1/2
k−1GT

k−1]>

=< [X 0], [X 0]>,

i.e. we get XT X = Fk−1Pk−1|k−1FT
k−1+Gk−1Qk−1GT

k−1 and, hence,

we conclude X := P
1/2
k|k−1.

The array Cholesky-based MCC-KF implementation (Algo-

rithm 1) can be derived at the same way. Indeed, the time

update stage in Algorithms 1 and 2 is the same and, hence,

these parts coincide in the Cholesky-based counterparts as

well. We conclude that formula (17) holds for the MCC-KF.

The difference is in the measurement update stage. Having

analyzed the equation for gain Kk computation in line 4 of

the MCC-KF (Algorithm 1), we conclude that the error co-

variance matrix is also computed at the same line. Indeed,

Kk = λk

(
P−1

k|k−1 + λkHT
k R−1

k Hk

)−1
HT

k R−1
k in the MCC-KF (Al-

gorithm 1) where (P−1
k|k−1 + λkHT

k R−1
k Hk)−1 = Pk|k according to

equation (14). However, at the last line of Algorithm 1, matrix

Pk|k is re-computed by the Joseph stabilized form derived for the

classical KF, i.e. with the skipped λk value; see formula (16)

and the discussion in Section 1. This means that Pk|k in the

MCC-KF implementations should be always re-computed at the

end. Besides, the equations for computing Kk and Pk|k in Al-

gorithm 1 should be processed separately. These formulas are

incompatible for combining them into unique array (because of

the skipped λk), in contrast to the IMCC-KF (Algorithm 2) and

equation (18). This results into the following implementation.

Algorithm 1a. SR MCC-KF (Cholesky-based MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and P
1/2
0|0 = Π

1/2
0 where

Cholesky decomposition is applied: Π0 = Π
T/2
0 Π

1/2
0 .

Time Update: (k = 1,N)

1 x̂k|k−1 = Fk−1 x̂k−1|k−1;

2 Build the pre-array and apply QR factorization:

V

[
P

1/2
k−1|k−1FT

k−1

Q
1/2
k−1GT

k−1

]

︸               ︷︷               ︸

Pre-array A

=

[
P

1/2
k|k−1

0

]

︸      ︷︷      ︸

Post-array R

read-off
=⇒

[

P
1/2
k|k−1

]

;

Measurement Update: (k = 1,N)

3 Compute λk by formula (11);

4 Build the pre-array and apply QR factorization:

W

[
P
−T/2
k|k−1

λ
1/2
k R

−T/2
k Hk

]

︸               ︷︷               ︸

Pre-array A

=

[
P
−T/2
k|k

0

]

︸     ︷︷     ︸

Post-array R

read-off
=⇒

[

P
−T/2
k|k

]

;

5 Compute Kk = λk

(

[P
−T/2
k|k ]T [P

−T/2
k|k ]

)−1

HT
k R−1

k ;

6 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

7 Build the pre-array and apply QR factorization:

Q

[
P

1/2
k|k−1(I − KkHk)T

R
1/2
k KT

k

]

︸                      ︷︷                      ︸

Pre-array A

=

[
P

1/2
k|k

0

]

︸    ︷︷    ︸

Post-array R

read-off
=⇒

[

P
1/2
k|k

]

.

Remark 1. The values appeared in square brackets in all algo-

rithms in this paper denote the blocks that are directly read-off

from the corresponding post-arrays.

Following our previous analysis, it is not difficult to validate

formulas in lines 4 and 7 of Algorithm 1a. Indeed, the following

set of equations holds:

< [P
−T/2
k|k−1 λ

1/2
k R

−T/2
k Hk] >< [P

−T/2
k|k−1 λ

1/2
k R

−T/2
k Hk] >

=< [X 0], [X 0]>,

< [P
1/2
k|k−1(I − KkHk)T R

1/2
k KT

k ], [P
1/2
k|k−1(I − KkHk)T R

1/2
k KT

k ]>

=< [Y 0], [Y 0]>,

i.e. XT X = P−1
k|k−1+λkHT

k R−1
k Hk and YT Y = (I−KkHk)Pk|k−1(I−

KkHk)T + KkRkKT
k . Taking into account formula (14), we con-

clude X := P
−T/2
k|k and, next, Y := P

1/2
k|k .

As discussed above, although the inverse P
−1/2
k|k is already

available from line 4 of Algorithm 1a, we cannot avoid line 7

for computing P
1/2
k|k according to the Joseph stabilized equation.

In fact, if the second orthogonal transformation at the measure-

ment update step in Algorithm 1a is skipped (i.e. we simply

inverse the already computed P
−1/2
k|k to obtain P

1/2
k|k ), then the

resulted algorithm is algebraic equivalent to the IMCC-KF (Al-

gorithm 2), but not to the MCC-KF (Algorithm 1). Indeed, the

matrix P
−1/2
k|k calculation in line 4 is, in fact, formula (14) that

is equivalent to equation (16), but not to the symmetric Joseph

stabilized form of the classical KF recursion utilized in line 7 of

the MCC-KF (Algorithm 1). Thus, to ensure algebraic equiv-

alence between all MCC-KF implementations, the extra com-

putations related to the symmetric classical KF formula for Pk|k

update are not avoidable and should be performed in any case.

3. The UD-based factored-form implementations

The first UD-based KF algorithms have been developed by

Thornton and Bierman [27, 28]. The key idea of this strategy

is to avoid square-rooting. Due to the computational complex-

ity reasons, the square-root-free methods were preferable for

practical implementations in 1970s; see also filtering methods

in [29]. For modern computational devices the square root oper-

ation is not a problem because it can be implemented efficiently.

However, the UD-based filters still deserve some merit. One

of possible reasons is utilization of square-root-free orthogonal

rotations that might be more numerically stable than usual QR

decomposition; see the discussion in [30, 31, 32, 33]. Thereby,

the UD-based estimators’ quality and robustness are enhanced

in ill-conditioned situations [26, 28]. It is also worth noting

here that the first UD-based KF implementations were derived

in sequential form, i.e. when the available measurement vector

yk is processed in a component-wise manner. Nowadays, the

advantageous array form is preferable for practical implemen-

tation. For the classical KF, such array implementations have

been suggested in [20, 34] as well as the extended array algo-

rithms have been derived in [35, 36]. In this section, the array

UD-based methods are derived for both the MCC-KF (Algo-

rithm 1) and IMCC-KF (Algorithm 2) estimators.
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Consider the modified Cholesky decomposition P =

ŪPDPŪT
P where DP denotes a diagonal matrix and ŪP is an

upper triangular matrix with 1’s on the main diagonal [25]. The

UD-based implementations belong to factored-form (square-

root) family because the matrix square root S (i.e. P = S S T )

can be defined as S := ŪPD
1/2
P . As usual, the underlying fil-

ter recursion should be re-formulated for updating the resulted

ŪP and DP factors instead of full matrix P. In this paper, the

modified weighted Gram-Schmidt (MWGS) orthogonalization

is utilized for updating the resulted UD factors as follows [25,

Lemma VI.4.1]: given A ∈ Rr×s, r ≥ s and diagonal DA ∈ R
r×r

(DA > 0), compute an unite upper triangular matrix B ∈ Rs×s

and diagonal matrix DB ∈ R
s×s, i.e.

A = WB
T with W

T
DAW = DB (19)

whereW ∈ Rr×s is the MWGS orthogonalization.

Taking into account properties of orthogonal matrices, from

equation (19) we obtain

A
T
DAA = BW

T
DAWB

T = BDBB
T . (20)

The first equation in (19) can be re-written as follows: AT =

BWT , i.e. the orthogonal transformation sets up a conformal

mapping between the (block) rows of the pre-array AT and the

rows of the post-array B where a diagonally weighted norms

are utilized and preserved. Thus, we derive the following UD-

based implementations.

Algorithm 1b. UD MCC-KF (UD-based MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and ŪP0|0
= ŪΠ0

, DP0|0
= DΠ0

where UD-decomposition is applied: Π0 = ŪΠ0
DΠ0

ŪT
Π0

.

Time Update: (k = 1,N)

1 x̂k|k−1 = Fk−1 x̂k−1|k−1;

2 Build pre-arrays A, DA and apply MWGS algorithm:
[
Fk−1ŪPk−1|k−1

Gk−1ŪQk−1

]

︸                                ︷︷                                ︸

Pre-array A
T

=
[
ŪPk|k−1

]

︸     ︷︷     ︸

Post-array B

V
T

read-off
=⇒

[
ŪPk|k−1

]
;

V
T
[
diag

{
DPk−1|k−1

, DQk−1

}]

︸                            ︷︷                            ︸

Pre-array DA

V =
[
DPk|k−1

]

︸     ︷︷     ︸

Post-array DB

read-off
=⇒

[
DPk|k−1

]
;

Measurement Update: (k = 1,N)

3 Compute λk by formula (11);

4 Build pre-arrays A, DA and apply MWGS algorithm:
[

Ū−T
Pk|k−1

λ
1/2
k HT

k Ū−T
Rk

]

︸                          ︷︷                          ︸

Pre-array A
T

=
[
Ū−T

Pk|k

]

︸   ︷︷   ︸

Post-array B

W
T

read-off
=⇒

[

Ū−T
Pk|k

]

;

W
T
[

diag
{

D−1
Pk|k−1
, D−1

Rk

}]

︸                         ︷︷                         ︸

Pre-array DA

W =
[
D−1

Pk|k

]

︸   ︷︷   ︸

Post-array DB

read-off
=⇒

[

D−1
Pk|k

]

;

5 Compute Kk = λk

(

[Ū−T
Pk|k

][D−1
Pk|k

][Ū−T
Pk|k

]T
)−1

HT
k R−1

k ;

6 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

7 Build pre-arrays A, DA and apply MWGS algorithm:
[
(I − KkHk)ŪPk|k−1

KkŪRk

]

︸                                  ︷︷                                  ︸

Pre-array A
T

=
[
ŪPk|k

]

︸   ︷︷   ︸

Post-array B

Q
T

read-off
=⇒

[
ŪPk|k

]
;

Q
T
[
diag

{
DPk|k−1

, DRk

}]

︸                       ︷︷                       ︸

Pre-array DA

Q =
[
DPk|k

]

︸   ︷︷   ︸

Post-array DB

read-off
=⇒

[
DPk|k

]
.

To validate the algorithm above, we start with the MWGS

orthogonalization in line 2 of Algorithm 1b, i.e.

< [Fk−1ŪPk−1|k−1
Gk−1ŪQk−1

] >< [Fk−1ŪPk−1|k−1
Gk−1ŪQk−1

] >DA

= XDXXT where DA = diag
{

DPk−1|k−1
,DQk−1

}
,

i.e. the following equation holds

XDXXT = Fk−1 ŪPk−1|k−1
DPk−1|k−1

ŪT
Pk−1|k−1

︸                         ︷︷                         ︸

Pk−1|k−1

FT
k−1

+Gk−1(ŪQk−1
DQk−1

ŪT
Qk−1

)GT
k−1 = Pk|k−1

where the process covariance Qk−1 is UD-factorized as well, i.e.

Qk−1 = ŪQk−1
DQk−1

ŪT
Qk−1

. Hence, we conclude X := ŪPk|k−1
and

DX := DPk|k−1
.

At the same manner, the formulas in lines 4 and 7 of Algo-

rithm 1b are validated, i.e.

< [Ū−T
Pk|k−1

λ
1/2
k HT

k Ū−T
Rk

] >< [Ū−T
Pk|k−1

λ
1/2
k HT

k Ū−T
Rk

] >DA

= YDY YT where DA = diag
{

D−1
Pk|k−1
,D−1

Rk

}

,

< [(I − KkHk)ŪPk|k−1
KkŪRk

], [(I − KkHk)ŪPk|k−1
KkŪRk

] >

= ZDZZT where DA = diag
{

DPk|k−1
,DRk

}

and the measurement covariance matrix Rk is UD-factorized,

i.e. Rk = ŪRk
DRk

ŪT
Rk

. Thus, we get

YDYYT = Ū−T
Pk|k−1

D−1
Pk|k−1

Ū−1
Pk|k−1

︸                   ︷︷                   ︸

P−1
k|k−1

+λkHT
k Ū−T

Rk
D−1

Rk
Ū−1

Rk
︸           ︷︷           ︸

R−1
k

Hk.

Having compared equation above with formula (14), we con-

clude that Y := Ū−T
Pk|k

and DY := D−1
Pk|k

. Next,

ZDZZT = (I − KkHk)ŪPk|k−1
DPk|k−1

ŪT
Pk|k−1

︸                   ︷︷                   ︸

Pk|k−1

(I − KkHk)T

+ Kk(ŪRk
DRk

ŪT
Rk

)KT
k = Pk|k

and, hence, Z := ŪPk|k
and DZ := DPk|k

. This completes the

proof of algebraic equivalence between the original MCC-KF

(Algorithm 1) and its UD-based counterpart (Algorithm 1b).

Finally, we suggest the UD-based IMCC-KF implementation

in Algorithm 2. In fact, it requires one less MWGS orthogonal-

ization at each step because the re-calculation of Pk|k via the

Joseph stabilized equation is not required in the IMCC-KF.

Algorithm 2b. UD IMCC-KF (UD-based IMCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and ŪP0|0
= ŪΠ0

, DP0|0
= DΠ0

where UD-decomposition is applied: Π0 = ŪΠ0
DΠ0

ŪT
Π0

.

Time Update: (k = 1,N) Repeat lines 1,2 of Algorithm 1b;

Measurement Update: (k = 1,N)

1 Compute λk by formula (11);

2 Build pre-arrays A, DA and apply MWGS algorithm:
[

ŪPk|k−1
0

λ
1/2
k HkŪPk|k−1

ŪRk

]

︸                        ︷︷                        ︸

Pre-array A
T

=

[
ŪPk|k

K̄u
k

0 ŪRe,k

]

︸              ︷︷              ︸

Post-array B

Q
T

read-off
=⇒

[
ŪPk|k

]
;

=⇒ [ŪRe,k
], [K̄u

k ];

Q
T
[
diag

{
DPk|k−1

, DRk

}]

︸                       ︷︷                       ︸

Pre-array DA

Q =diag
{

DPk|k
, DRe,k

}

︸                    ︷︷                    ︸

Post-array DB

read-off
=⇒

[
DPk|k

]
;

3 x̂k|k = x̂k|k−1 + λ
1/2
k

[
K̄u

k

] [
ŪRe,k

]−1
(yk − Hx̂k|k−1).
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The method in Algorithm 2b can be validated at the same

manner as Algorithm 1b. More precisely, the time update step

of these implementations is the same and, hence, it has been

already proved. Let’s consider the transformation in line 2 of

Algorithm 2b. We have the following set of equations

< [ŪPk|k−1
0] >< [ŪPk|k−1

0] >
diag

{

DPk|k−1
, DRk

}

=< [X Y], [X Y]>diag{D1, D2},

< [ŪPk|k−1
0] >< [λ

1/2
k HkŪPk|k−1

ŪRk
] >

diag
{

DPk|k−1
, DRk

}

=< [X Y], [0 Z]>diag{D1, D2},

< [λ
1/2
k HkŪPk|k−1

ŪRk
], [λ

1/2
k HkŪPk|k−1

ŪRk
]>

diag
{

DPk|k−1
, DRk

}

=< [0 Z], [0 Z]>diag{D1, D2} .

From the last equation, we have

ZD2ZT = λkHk (ŪPk|k−1
DPk|k−1

ŪT
Pk|k−1

)
︸                     ︷︷                     ︸

Pk|k−1

HT
k + (ŪRk

DRk
ŪT

Rk
)

︸            ︷︷            ︸

Rk

= Re,k,

i.e. Z := ŪRe,k
and D2 := DRe,k

.

Having substituted the resulted Z and D2 values into the sec-

ond equation in the set above, we obtain

YDRe,k
ŪT

Re,k
= λ

1/2
k (ŪPk|k−1

DPk|k−1
ŪT

Pk|k−1
)HT

k .

Hence, Y := λ
1/2
k Pk|k−1HT

k Ū−T
Re,k

D−1
Re,k

. This value is denoted as

K̄u
k in Algorithm 2b, i.e. Y := K̄u

k . From formula (12), the

following relationship is obtained: Kk = λkPk|k−1HT
k R−1

e,k =

λ
1/2
k K̄u

k Ū−1
Re,k

. Next, we note that the block K̄u
k is directly read-off

from post-array in Algorithm 2b. Hence, it makes sense to use

it for computing state estimate, straightforward

x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1)

= x̂k|k−1 + λ
1/2
k K̄u

k Ū−1
Re,k

(yk − Hk x̂k|k−1),

i.e. the formula in line 3 of Algorithm 2b is validated.

Finally, we consider the last relationship that is

XD1XT + K̄u
k DRe,k

(K̄u
k )T = Pk|k−1,

i.e. we have

XD1XT = Pk|k−1 − λ
1/2
k Pk|k−1HT

k Ū−T
Re,k

D−1
Re,k

DRe,k
(λ
−1/2
k KkŪRe,k

)T

= Pk|k−1 − Pk|k−1HT
k KT

k = Pk|k−1(I − HT
k KT

k ) = PT
k|k.

Taking into account a symmetric form of any covariance matrix,

we conclude X := ŪPk|k
and D1 := DPk|k

. This completes the

proof of the UD-based IMCC-KF (Algorithm 2b).

4. SVD-based factored-form implementations

To the best of author’s knowledge, there exist only two clas-

sical KF methods based on the singular value decomposition

(SVD). The first SVD-based KF was developed in [37]. How-

ever, it was shown to be numerically unstable with respect to

roundoff errors. Thereby, the robust SVD-based KF algorithm

has been recently proposed in [26]. In this paper, the goal is to

extend the SVD-based filtering on the MCC-KF (Algorithm 1)

and IMCC-KF (Algorithm 2) techniques.

Each iteration of the new filtering methods is implemented by

using the SVD factorization [38, Theorem 1.1.6]: Every matrix

A ∈ Cm×n of rank r can be written as follows:

A = WΣV∗, Σ =

[
S 0

0 0

]

∈ Rm×n, S = diag{σ1, . . . , σr}

where W ∈ Cm×m, V ∈ Cn×n are unitary matrices, V∗ is the

conjugate transpose of V , and S ∈ Rr×r is a real nonnegative

diagonal matrix. Here σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are called the

singular values of A. (Note that if r = n and/or r = m, some of

the zero submatrices in Σ are empty.)

The SVD-based filtering methods belong to the factored-

form (square-root) family, because the covariance P is factor-

ized in the form P = VDVT where V is an orthogonal matrix

and D is a diagonal matrix with singular values of P. Hence,

one can set the matrix square root as follows: P = S S T where

S := VD1/2. It is also worth noting here that in the SVD-based

filtering, the square-root factor S is a full matrix, in general.

This is in contrast to the upper or lower triangular factor S in

the Cholesky-based implementations discussed in previous sec-

tions. Additionally, the SVD factorization provides the users

with extra information about the matrix structure and proper-

ties and, hence, it might be used in various reduced-rank filter-

ing design strategies.

The following SVD-based variant for the MCC-KF estimator

(Algorithm 1) is proposed.

Algorithm 1c. SVD MCC-KF (SVD-based MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and VP0|0
= VΠ0

, D
1/2
P0|0
= D

1/2
Π0

where SVD-decomposition is applied: Π0 = VΠ0
DΠ0

VT
Π0

.

Time Update: (k = 1,N)

1 x̂k|k−1 = Fk−1 x̂k−1|k−1;

2 Build pre-array A and apply SVD factorization
[

D
1/2
Pk−1|k−1

VT
Pk−1|k−1

FT
k−1

D
1/2
Qk−1

VT
Qk−1

GT
k−1

]

︸                         ︷︷                         ︸

Pre−array A

=W

[
D

1/2
Pk|k−1

0

]

V
T

︸             ︷︷             ︸

Post−arrays

read-off
=⇒

[

D
1/2
Pk|k−1

]

;

=⇒ [VPk|k−1
= V];

Measurement Update: (k = 1,N)

3 Compute λk by formula (11);

4 Build pre-array A and apply SVD factorization
[

λ
1/2
k D

−1/2
Rk

VT
Rk

HkVPk|k−1

D
−1/2
Pk|k−1

]

︸                            ︷︷                            ︸

Pre−array A

=W

[
D
−1/2
Pk|k

0

]

V
T

︸             ︷︷             ︸

Post−arrays

read-off
=⇒

[

D
−1/2
Pk|k

]

;

=⇒ [V];

5 Calculate the SVD factor VPk|k
= VPk|k−1

V;

6 Compute Kk = λk[VPk|k
][D

−1/2
Pk|k

]−2[VPk|k
]T HT

k R−1
k ;

7 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

8 Build pre-array A and apply SVD factorization
[

D
1/2
Pk|k−1

VT
Pk|k−1

(I − KkHk)T

D
1/2
Rk

VT
Rk

KT
k

]

︸                               ︷︷                               ︸

Pre−array A

=W

[
D

1/2
Pk|k

0

]

V
T

︸           ︷︷           ︸

Post−arrays

read-off
=⇒

[

D
1/2
Pk|k

]

;

=⇒ [VPk|k
= V].
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Remark 2. In the algorithm above, the SVD is applied to the

process and measurement noise covariances as well, i.e Qk =

VQk
DQk

VT
Qk

and Rk = VRk
DRk

VT
Rk

. However, as discussed in [26,

Remark 2], the Cholesky decomposition might be used for Qk

and Rk instead of the SVD factorization.

To prove the algebraic equivalence between the new SVD-

based implementation (Algorithm 1c) and the original MCC-

KF (Algorithm 1), we note that AT A = (VΣWT )(WΣVT )T =

VΣ2VT . Having compared both sides of the resulted equality

AT A = VΣ2VT , one may validate the formulas in Algorithm 1c.

Indeed, from the factorization in line 2, we obtain

Fk−1 VPk−1|k−1
DPk−1|k−1

VT
Pk−1|k−1

︸                        ︷︷                        ︸

Pk−1|k−1

FT
k−1 +Gk−1 VQk−1

DQk−1
VT

Qk−1
︸                ︷︷                ︸

Qk−1

GT
k−1

= VDPk|k−1
V

T = Pk|k−1, i.e. V := VPk|k−1
.

Next, in line 4 of Algorithm 1c we have

λkVT
Pk|k−1

HT
k VRk

D−1
Rk

VT
Rk

︸         ︷︷         ︸

R−1
k

HkVPk|k−1
+ D−1

Pk|k−1
= VD−1

Pk|k
V

T . (21)

Having multiplied both sides of equation (21) by VPk|k−1
(at

the left) and by VT
Pk|k−1

(at the right), we get

λkHT
k R−1

k Hk+VPk|k−1
D−1

Pk|k−1
VT

Pk|k−1
︸                  ︷︷                  ︸

P−1
k|k−1

= VPk|k−1
VD−1

Pk|k
V

T VT
Pk|k−1
. (22)

Having compared formula (22) with equation (14), i.e. Pk|k =
(
P−1

k|k−1 + λkHT
k R−1

k Hk

)−1
, we conclude that VPk|k

= VPk|k−1
V.

This validates formula in line 5 of Algorithm 1c.

Next, formula for computing the gain Kk in line 6 is the same

as in the original MCC-KF (Algorithm 1) where the SVD is

used for matrix Pk|k. Finally, factorization in line 8 of Algo-

rithm 1c implies the symmetric Joseph stabilized equation of

the classical KF utilized in the MCC-KF (Algorithm 1), i.e.

AT A = KkRkKT
k + (I − KkHk) VPk|k−1

DPk|k−1
VT

Pk|k−1
︸                  ︷︷                  ︸

Pk|k−1

(I − KkHk)T

= VDPk|k
V

T = Pk|k, i.e. V := VPk|k
.

This concludes the proof of Algorithm 1c.

Similar, the SVD-based IMCC-KF is derived and summa-

rized in Algorithm 2.

Algorithm 2c. SVD IMCC-KF (SVD-based IMCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and VP0|0
= VΠ0

, D
1/2
P0|0
= D

1/2
Π0

where SVD-decomposition is applied: Π0 = VΠ0
DΠ0

VT
Π0

.

Time Update: (k = 1,N) Repeat lines 1,2 of Algorithm 1c;

Measurement Update: (k = 1,N)

1 Compute λk by formula (11);

2 Build pre-array A and apply SVD factorization
[

λ
1/2
k D

−1/2
Rk

VT
Rk

HkVPk|k−1

D
−1/2
Pk|k−1

]

︸                            ︷︷                            ︸

Pre−array A

=W

[
D
−1/2
Pk|k

0

]

V
T

︸             ︷︷             ︸

Post−arrays

read-off
=⇒

[

D
−1/2
Pk|k

]

;

=⇒ [V];

3 Calculate the SVD factor VPk|k
= VPk|k−1

V;

4 Compute Kk = λk[VPk|k
][D

−1/2
Pk|k

]−2[VPk|k
]T HT

k R−1
k ;

5 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

As in all previous methods, the time update steps in Algo-

rithms 1c and 2c coincide. Next, the IMCC-KF requires one

less SVD factorization at each filtering step because it does not

demand the re-computation of Pk|k by the symmetric Joseph sta-

bilized equation at the end of each iterate. Thus, the IMCC-KF

implementation (Algorithm 2c) is, in fact, the MCC-KF Algo-

rithm 1c without the last Pk|k re-calculation, i.e. all formulas of

Algorithm 2c have been already proved in this section.

Our final remark concerns the robust variant of the SVD-

based implementations. Both Algorithm 1c and Algorithm 2c

require two matrix inversions that are related to D−1
Pk|k−1

and D−1
Pk|k

calculation. For numerical stability and computational com-

plexity reasons, it is preferable to avoid this operation. Follow-

ing [26], we can suggest the robust SVD-based implementation

for the MCC-KF as follows.

Algorithm 1d. rSVD MCC-KF (robust SVD-based MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and VP0|0
= VΠ0

, D
1/2
P0|0
= D

1/2
Π0

where SVD-decomposition is applied: Π0 = VΠ0
DΠ0

VT
Π0

.

Time Update: (k = 1,N) Repeat lines 1,2 of Algorithm 1c;

Measurement Update: (k = 1,N)

1 Compute λk by formula (11);

2 Build pre-array A and apply SVD factorization
[

λ
1/2
k D

1/2
Pk|k−1

VT
Pk|k−1

HT
k

D
1/2
Rk

VT
Rk

]

︸                        ︷︷                        ︸

Pre−array A

=W

[
D

1/2
Re,k

0

]

V
T

︸            ︷︷            ︸

Post−arrays

read-off
=⇒

[

D
1/2
Re,k

]

;

=⇒ [VRe,k
= V];

3 Compute Kk = λkPk|k−1HT
k [VRe,k

][D
1/2
Re,k

]−2[VRe,k
]T ;

4 x̂k|k = x̂k|k−1 + Kk(yk − Hk x̂k|k−1).

5 Build pre-array A and apply SVD factorization
[

D
1/2
Pk|k−1

VT
Pk|k−1

(I − KkHk)T

D
1/2
Rk

VT
Rk

KT
k

]

︸                               ︷︷                               ︸

Pre−array A

=W

[
D

1/2
Pk|k

0

]

V
T

︸           ︷︷           ︸

Post−arrays

read-off
=⇒

[

D
1/2
Pk|k

]

;

=⇒ [VPk|k
= V].

The difference between Algorithms 1c and 1d is in the

gain matrix Kk calculation. Algorithm 1c utilizes equa-

tion (13) while Algorithm 1d implies formula (12), i.e. Kk =

λkPk|k−1HT
k

(
λkHkPk|k−1HT

k + Rk

)−1
. The matrix that needs to

be inverted is denoted as Re,k, i.e. Re,k = λkHkPk|k−1HT
k +Rk. Its

SVD factors are computed in line 2 of Algorithm 1d, i.e.

AT A = λkHk VPk|k−1
DPk|k−1

VT
Pk|k−1

︸                  ︷︷                  ︸

Pk|k−1

HT
k +VRk

DRk
VT

Rk
︸         ︷︷         ︸

Rk

= VRe,k
DRe,k

VT
Re,k
.

When factors VRe,k
and DRe,k

are computed, the gain matrix

can be found as follows:

Kk = λkPk|k−1HT
k R−1

e,k = λkPk|k−1HT
k [VRe,k

][D
1/2
Re,k

]−2[VRe,k
]T .

This validates the computation in line 3 of Algorithm 1d. Fi-

nally, the underlying formula for the Pk|k calculation is the sym-

metric Joseph stabilized equation, i.e. it is the same as in Algo-

rithm 1c. This completes the proof of Algorithm 1d.

As discussed in [26], such organization of computations (see

Algorithm 1d) improves numerical stability of SVD-based fil-

tering with respect to roundoff errors, because less matrix in-

versions are required. More precisely, only D−1
Re,k

is involved in

Algorithm 1d, while D−1
Pk|k−1

and D−1
Pk|k

are not required.

7



Table 1: Theoretical comparison of the factored-form implementations developed for the MCC-KF (Algorithm 1) and IMCC-KF (Algorithm 2) estimators.

Property Cholesky-based methods UD-based methods SVD-based methods

MCC-KF IMCC-KF MCC-KF IMCC-KF MCC-KF IMCC-KF

Alg. 1a [19, Alg. 2] Alg. 1b Alg. 2b Alg. 1c Alg. 1d Alg. 2c

1. Type Covariance Covariance Covariance Covariance Covariance Covariance Covariance

2. Decomposition Cholesky Cholesky modified Cholesky SVD SVD SVD

3. Restriction Π0 > 0, Qk > 0, Rk > 0 Π0 > 0, Qk > 0, Rk > 0 no no no

4. Pre-array TU: any QR(1) any QR(1) MWGS(1) MWGS(1) SVD (1) SVD (1) SVD (1)

factorization MU: any QR(2) any QR(1) MWGS(2) MWGS(1) SVD (2) SVD (2) SVD (1)

5. Matrix P
−1/2
k|k−1, P

−1/2
k|k R

−1/2
e,k Ū−1

Pk|k−1
, Ū−1

Pk|k
, Ū−1

Re,k
D
−1/2
Pk|k−1

, D
−1/2
Pk|k

D
−1/2
Re,k

D
−1/2
Pk|k−1

, D
−1/2
Pk|k

inversions D−1
Pk|k−1

, D−1
Pk|k

6. Extended form – [19, Alg. 3] – ? – – ?

Unfortunately, it is not possible to design the similar robust

SVD-based variant for the IMCC-KF (Algorithm 2). More pre-

cisely, the goal is to avoid D−1
Pk|k−1

and D−1
Pk|k

operations in Algo-

rithm 2c. Clearly, the gain computation Kk can be performed

at the same way as it is done in Algorithm 1d, i.e. it requires

D−1
Re,k

computation, additionally. Having computed Kk, the SVD

factors of the error covariance matrix Pk|k should be updated

through SVD factorization of the related pre-array, say A. For

that, the underlying equation for Pk|k should have a symmetric

form, because any covariance matrix is symmetric, i.e. the re-

lated SVD is apllied to the symmetric pre-arrays product AT A

or AAT . For the IMCC-KF method, there are three possibili-

ties for computing Pk|k, given by equations (14) – (16). Only

formula (14) has the required symmetric form and it is already

used in Algorithm 2c implying the calculation of D−1
Pk|k−1

and

D−1
Pk|k

. Equation (16) might be symmetric if one skips the scalar

parameter λk. However, in this case the Joseph stabilized equa-

tion is obtained, i.e. we get the MCC-KF implementation (Al-

gorithm 1 and its SVD-based variant in Algorithm 1d), but not

the IMCC-KF method in Algorithm 2. The author still does not

know how to balance equation (16), i.e. to express it in sym-

metric form that is appropriate for deriving the robust SVD-

based implementation of the IMCC-KF (Algorithm 2). This is

an open question for a future research.

5. Discussion and comparison

5.1. Theoretical comparison

Table 1 illustrates some theoretical aspects of the suggested

factored-form filters’ families. The following notation is used:

sign “+” means that the corresponding property is available,

sign “–” implies missing corresponding feature, and “?” means

that the factored-form implementation with the related property

might be derived in future.

Having analyzed the information presented in Table 1, we

make the following conclusions. First, all filtering algorithms

developed in this paper are of covariance-type. This means that

the error covariance matrix Pk|k (or its factors) are updated ac-

cording to the underlying filter recursion. An alternative class

of methods implies Λk|k = P−1
k|k propagation (called the infor-

mation matrix) rather than Pk|k. Such algorithms are known

as information-type implementations and they have some ben-

efits over the covariance recursions. One of the main reason

to derive such implementations is a need to solve the state es-

timation problem without a prior information. In this case the

initial error covariance matrix Π0 is too “large” and, hence, the

initialization step Π0 := ∞ yields various complications for co-

variance filtering, while the information algorithms simply im-

ply Λ0 := 0. Additionally, the information filtering suggests

a possible solution to numerical instability problem caused by

influence of roundoff errors at the measurement update stage as

discussed in [20, p. 356-357]. Further argument for deriving in-

formation filter recursion under the MCC approach is the matrix

inversion P−1
k|k−1 required at each iterate while computing the in-

flation parameter λk. To avoid this operation, it might be useful

to derive the algebraic equivalent counterpart that updates the

inverse (information) matrices (or their factors) automatically.

It is worth noting here that similar motivation was used for de-

veloping information filtering for the classical KF in [39]. All

these facts make the information-type implementations attrac-

tive for practical use. To the best of the author’s knowledge,

the information MCC KF-like methods still do not exist. Their

derivation could be an area for a future research.

The second row in Table 1 summarizes the decomposition

of covariance matrices involved in each implementation under

examination. The type of factorization may impose restrictions

on their properties. For instance, the Cholesky decomposition

is known to exist and to be unique when the symmetric matrix

to be decomposed is positive definite [40]. These conditions are

presented in the third row of Table 1. In general, covariance is a

positive semi-definite matrix and the Cholesky decomposition

still exists for such matrices, however, it is not unique [41]. In

this case, the Cholesky-based implementations are unexpect-

edly interrupted by the procedure performing the decomposi-

tion. From this point of view, the SVD-based filtering might

be preferable because no restrictions are implied for perform-

ing SVD; see [38, Theorem 1.1.6]. Additionally, the SVD is the

most accurate method to factorize the error covariance matrix

(especially when it is close to singular), although it is more time

consuming than the Cholesky decomposition.

Concerning the computational time, we conclude that the

factored-form IMCC-KF implementations (Algorithms 2b, 2c

and the previously published Algorithm 2 in [19]) are ex-

pected to work faster than the factored-form MCC-KF coun-

terparts (Algorithms 1a, 1b, 1c, 1d), because they require less

QR/MWGS/SVD factorizations at each filtering step. The pre-
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cise number of computations required by each implementation

depends on a particular QR, square-root-free QR (QRD algo-

rithms, e.g. [31, 32]) and SVD methods utilized in practice.

While deriving the factored-form implementations, no restric-

tion on the pre-array transformations is imposed, i.e. the rota-

tions can be implemented in various ways and, hence, the com-

putational complexity analysis heavily depends on the users’

choice and QR/MWGS/SVD method implemented.

Next, the required matrix inversions are outlined for each

filtering algorithm in Table 1. As it has been already men-

tioned, it is preferable to avoid this operation in practice, for

numerical and computational complexity reasons. The matrix

R−1
k required in calculating λk are not presented in Table 1, be-

cause this part is the same for all implementations, i.e. we

take it out of the consideration. Having analyzed the informa-

tion presented in Table 1, we conclude that the Cholesky- and

UD-based IMCC-KF (see [19, Algorithm 2] and Algorithm 2b)

are expected to possess a better numerical behavior than their

MCC-KF counterparts (Algorithms 1a and 1b), because they

require the inverse of Re,k ∈ Rm×m factors, only. Meanwhile

Algorithms 1a and 1b involve the inverse of the error covari-

ances Pk|k−1, Pk|k ∈ Rn×n factors. Besides, if n >> m, then the

Cholesky- and UD-based IMCC-KF algorithms are expected to

be faster than the MCC-KF analogues (Algorithms 1a and 1b).

However, for the SVD-based implementations this is not the

case. Indeed, both Algorithm 1c and 2c are expected to be of the

same robustness with respect to roundoff errors, because they

imply the scalar divisions by square roots of the same singu-

lar values; see the terms D
−1/2
Pk|k−1

, D
−1/2
Pk|k

in Algorithms 1c and 2c.

In contrast, Algorithm 1d demands the inversion of diagonal

matrix D
1/2
Re,k

, only. Thus, it is expected to be more numerically

stable with respect to roundoff errors than other SVD-based im-

plementations, i.e. Algorithms 1c and 2c. In summary, only

one SVD-based implementation has been found for the IMCC-

KF estimator (Algorithm 2c). Meanwhile, two SVD-based im-

plementations have been developed for the MCC-KF estimator

(Algorithms 1c and 1d). Among these two methods, one im-

plementation (Algorithm 1d) is expected to be the most numer-

ically robust with respect to roundoff errors.

The final remark concerns the state vector x̂k|k computation.

We stress that the so-called extended array form is practically

feasible for Cholesky-based IMCC-KF and it has been recently

published in [19, Algorithm 3]. The key idea of such meth-

ods comes from the KF community where the extended ar-

ray implementations exist for the Cholesky-based filtering [24]

and for the UD-based methods [35, 36] while for the SVD-

based algorithms this problem is still open [26]. The extended

form implies an orthogonal transformation of augmented pre-

array [A | b]. As a result, instead of explicit formula x̂k|k =

x̂k|k−1 + Kk(yk − Hk x̂k|k−1) for computing the state estimate, one

utilizes a simple multiplication x̂k|k =

[

P
T/2
k|k

] [

P
−T/2
k|k x̂k|k

]

of the

blocks
[

P
1/2
k|k

]

and
[

P
−T/2
k|k x̂k|k

]

that are directly read-off from the

corresponding extended post-array [R | b̃]. This trick is intended

to avoid any matrix inversion in the underlying filter recursion.

In particular, in [19, Algorithm 2] the Cholesky factor R
−1/2
e,k is

required for calculating x̂k|k, meanwhile the extended version

in [19, Algorithm 3] does not involve it. Readers are referred

to [19] for more details and proof. Here we would like to dis-

cuss the possibility to design such methods for other factored-

form MCC KF-like estimators. Our first question is whether

or not the extended array implementations are practically fea-

sible for the original MCC-KF recursion (Algorithm 1). We

answer negatively for this question, because as mentioned in

Section 2, the equations for computing Kk and Pk|k in Algo-

rithm 1 are taken from two different sources: the error covari-

ance Pk|k is computed by the classical KF equation (Joseph sta-

bilized form), meanwhile the filter gain Kk is calculated under

the MCC methodology with implicated λk parameter. In sum-

mary, these formulas have difference nature and cannot be col-

lected altogether into unique array that is a crucial point for

derivation of extended array implementations. Thus, the sign

“–” is mentioned in the last row of Table 1 for all factored-form

MCC-KF variants. Meanwhile for the IMCC-KF (Algorithm 2)

recursion the extended array algorithms seems to be possible

to derive. The Cholesky-based method has been recently sug-

gested in [19, Algorithm 3]. The question about existence of ex-

tended array UD- and SVD-based IMCC-KF implementations

is still open. This can be an area for future research.

5.2. Numerical comparison

To justify the theoretical derivation of the suggested factored-

form implementations, a linear stochastic state-space model for

electrocardiogram signal processing [42] is explored. In con-

trast to the cited paper, the filtering methods are examined in

the presence of impulsive noise/shot noise [11].

Example 1. The system state is defined as x(t) =

[s(t), ṡ(t), s̈(t)]T where s(t) is the displacement of the ob-

ject or signal at time t, the derivatives ṡ(t) and s̈(t) represent

the velocity and acceleration, respectively. The discrete-time

version of the model dynamic is given as follows:

xk =





1 ∆t (∆t)2

2

0 1 ∆t

0 0 1



xk−1 + wk−1, x0 ∼ N(x̄0,Π0)

where ∆t = 0.1 and x̄0 = [1, 0.1, 0]T , Π0 = 0.1 I3. The dynamic

is observed via the measurement scheme

yk =
[
1 0 0

]
xk + vk.

The entries of wk and vk are generated as follows:

wk ∼ N(0,Q) + Shot noise,

vk ∼ N(0,R) + Shot noise

where the covariances Q and R are

Q =





1
20

(∆t)5 1
8
(∆t)4 1

6
(∆t)3

1
8
(∆t)4 1

3
(∆t)3 1

2
(∆t)2

1
6
(∆t)3 1

2
(∆t)2 ∆t



 and R = 0.01.
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Table 2: The RMSE errors and average CPU time (s) for the MCC-KF and IMCC-KF implementations in Example 1, M = 500 Monte Carlo simulations.

MCC-KF Factored-form family for MCC-KF IMCC-KF Factored-form family for IMCC-KF

(conventional) Cholesky- UD- SVD- SVD- (conventional) Cholesky- UD- SVD-

Algorithm 1 (1a) (1b) (1c) (1d) Algorithm 2 [19, Alg. 2] (2b) (2c)

RMSEx1
7.4691 7.4691 7.4691 7.4691 7.4691 7.3569 7.3569 7.3569 7.3569

RMSEx2
12.4615 12.4615 12.4615 12.4615 12.4615 12.3938 12.3938 12.3938 12.3938

RMSEx3
13.8206 13.8206 13.8206 13.8206 13.8206 13.7631 13.7631 13.7631 13.7631

‖RMSExi
‖2 20.0521 20.0521 20.0521 20.0521 20.0521 19.9287 19.9287 19.9287 19.9287

CPU (s) 0.0344 0.0543 0.0567 0.0680 0.0624 0.0264 0.0435 0.0472 0.0566

To simulate the impulsive noise (shot noise), we follow the

approach suggested in [11]. The Matlab routine Shot_noise

recently published in [43, Appendix] can be used as follows:

(i) only 10% of samples are corrupted by the outliers; (ii) the

discrete time instants tk corrupted by the outliers are selected

randomly from the uniform discrete distribution in the inter-

val [11,N − 1], i.e. the first ten and last time instants are not

corrupted in our experiments; (iii) the outliers are all taken at

different time instants; (iv) the magnitude of each impulse is

chosen randomly from the uniform discrete distribution in the

interval [0, 3]. Following [11], our routine additionally returns

the sample covariances Q̂ and R̂ of the simulated random se-

quence. They are utilized by all estimators under examination.

To decide about estimation quality of each filtering method,

the following numerical experiment is performed for 500 Monte

Carlo runs: (1) the stochastic model is simulated for N = 300

discrete-time points to generate the measurements, (2) the in-

verse problem (i.e. the estimation problem) is solved by vari-

ous filtering methods with the same measurement history, the

same initial conditions, the same adaptive kernel size selection

approach published previously for the MCC-KF method in [11]

and the same noises’ covariances; (3) the root mean square error

(RMSE) is calculated over 500 Monte Carlo runs as follows:

RMSExi
=

√
√
√
√

1

MN

M∑

j=1

N∑

k=1

(

x
j
i,exact(tk) − x̂

j
i,k|k

)2

where M = 500 is the number of Monte-Carlo trials, N = 300

is the discrete time of the dynamic system, the x
j
i,exact(tk) and

x̂
j
i,k|k are the i-th entry of the “true” state vector (simulated) and

its estimated value obtained in the j-th Monte Carlo run, re-

spectively. The resulted ‖RMSExi
‖2 values are summarized in

Table 2 for each implementation under assessment. The aver-

aged CPU time (s) is also presented for each estimator.

Having analyzed the obtained results collected at the first

panel, we conclude that all MCC-KF implementation methods

derived in this paper are mathematically equivalent, i.e. the

correctness of their derivation is substantiated by numerical ex-

periments. The same conclusion holds for all IMCC-KF algo-

rithms. Next, we observe that the SVD-based implementations

are the most time consuming methods. As a benefit, we may

mention that SVD provides an extra information about the ma-

trix structure and, hence, these implementations might be used

in various reduced-filters design strategies. The conventional

algorithms are the most fast implementations, however, they

are the most numerically unstable in ill-conditioned situations

as we observe it in Example 2 below. Finally, having com-

pared the results in the first and the second panels, we note that

the IMCC-KF estimator (and all its factored-form implementa-

tions) outperforms the MCC-KF (and all its factored-form im-

plementations, as well) for estimation accuracy. Indeed, the

total RMSE of the IMCC-KF is less than the total RMSE of the

MCC-KF method. The difference between them is caused by

the neglected scaling parameter λk in equation (16), i.e. this is

the price to be paid for keeping the symmetric Joseph stabilized

formula for Pk|k calculation in the MCC-KF estimator.

Unfortunately, Example 1 does not allow for exploring nu-

merical insights of the examined implementations. To do so, a

set of ill-conditioned test problems is considered in Example 2.

Example 2. The dynamic equation in Example 1 is observed

via the following ill-conditioned scheme:

yk =

[
1 1 1

1 1 1 + δ

]

xk + vk, R ∼ N(0, δ2I2)

with the initial state x0 ∼ N(0, I3) and in the presence of Gaus-

sian uncertainties, only. Additionally, the ill-conditioning pa-

rameter δ is used for simulating roundoff and assumed to be

δ2 < ǫroundo f f , but δ > ǫroundo f f where ǫroundo f f denotes the unit

roundoff error2.

The set of numerical experiments described above for Ex-

ample 1 is performed for Example 2 as well, except that the

covariance matrix of measurement noise R remains the same,

i.e. the process covariance Q is replaced by the sample covari-

ance Q̂, only. The resulted ‖RMSExi
‖2 values are summarized

in Table 3 for each implementation under assessment and each

value of parameter δ while it tends to machine precision limit.

Having analyzed the numerical results collected in Table 3,

we conclude that all filters produce accurate estimates of the

state vector while the estimation problem is well-conditioned,

i.e. for large values of δ. The resulted accuracy of the MCC-KF

and IMCC-KF techniques is quite similar, until the problem be-

comes ill-conditioned and all implementations start to diverge.

Recall, the difference in the original MCC-KF and the IMCC-

KF is in the equation for Pk|k, only.

It is important to compare the factored-form implementations

within the MCC-KF and IMCC-KF techniques, separately. For

2Computer roundoff for floating-point arithmetic is often characterized by

a single parameter ǫroundo f f , defined as the largest number such that either 1 +

ǫroundo f f = 1 or 1 + ǫroundo f f /2 = 1 in machine precision.
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Table 3: The effect of roundoff errors on the factored-form implementations designed for the MCC-KF (Algorithm 1) and IMCC-KF (Algorithm 2) estimators.

Ill-conditioning MCC-KF Factored-form family for MCC-KF IMCC-KF Factored-form family for IMCC-KF

parameter (conventional) Cholesky- UD- SVD- SVD- (conventional) Cholesky- UD- SVD-

δ Algorithm 1 (1a) (1b) (1c) (1d) Algorithm 2 [19, Alg. 2] (2b) (2c)

10−1 0.1192 0.1192 0.1192 0.1192 0.1192 0.1209 0.1209 0.1209 0.1209

10−2 0.1000 0.1000 0.1000 0.1000 0.1000 0.1023 0.1023 0.1023 0.1023

10−3 0.1040 0.1040 0.1040 0.1040 0.1040 0.1066 0.1066 0.1066 0.1066

10−4 0.1049 0.1049 0.1049 0.1049 0.1049 0.1069 0.1069 0.1069 0.1069

10−5 0.1018 0.1018 0.1018 0.1018 0.1018 0.1047 0.1047 0.1047 0.1047

10−6 0.0981 0.0981 0.0981 0.0981 0.0981 0.1008 0.1008 0.1008 0.1008

10−7 0.0997 0.0996 0.0996 0.0997 0.0997 0.1025 0.1026 0.1026 0.1029

10−8
NaN NaN NaN NaN 0.1016 NaN 0.1046 0.1046 72.7067

10−9
NaN NaN NaN NaN 0.1004 NaN 0.1032 0.1032 Inf

10−10
NaN NaN NaN NaN 0.0915 NaN 0.0936 0.0937 NaN

10−11
NaN NaN NaN NaN 0.0868 NaN 0.0890 0.0788 NaN

10−12
NaN NaN NaN NaN 0.0997 NaN 0.1024 0.1021 NaN

10−13
NaN NaN NaN NaN 0.1003 NaN 0.1027 0.1026 NaN

10−14
NaN NaN NaN NaN 0.0985 NaN 0.1010 0.1009 NaN

10−15
NaN NaN NaN NaN 0.2341 NaN 0.1012 0.1011 NaN

large δ, we observe that the factored-form algorithms produce

absolutely the same results compared with their conventional

counterparts in Algorithm 1 or 2, respectively. Again, this

substantiates the algebraic equivalence between the suggested

factored-form implementations and the corresponding conven-

tional algorithms. While δ tends to machine precision limit,

some numerical insights can be explored. More precisely, start-

ing from δ = 10−7 and less, the factored-form implementations

behave in different manner. The SVD-based Algorithms 1c

and 2c suggested in this paper produce a slightly less accu-

rate estimates than the Cholesky- and UD-based implementa-

tions until their divergence at δ = 10−8. This outcome was

expected and discussed in details in previous section. Re-

call, both Algorithms 1c and 2c imply the scalar divisions by

square roots of the same singular values; see the terms D
−1/2
Pk|k−1

and D
−1/2
Pk|k

involved. Thus, their numerical behaviour is simi-

lar. Meanwhile, among all suggested SVD-based implementa-

tions, Algorithms 1d is the most robust (with respect to round-

off errors) and it was anticipated in the previous section, as

well. Indeed, the SVD-based MCC-KF implementation in Al-

gorithm 1d maintains similar estimation accuracy as all other

factored-form IMCC-KF implementations, i.e. the Cholesky-

based Algorithm 1a and the UD-based Algorithm 1b. We also

conclude that the SVD-based implementation (Algorithm 1d)

is the only one method in the MCC-KF factored-form family

that manages the examined ill-conditioned situations in Exam-

ple 2. In contrast, the Cholesky-based Algorithm 1a and UD-

based Algorithm 1b are the most robust implementations in the

factored-form family derived for the IMCC-KF estimator. Re-

call, the question whether or not it is possible to design sim-

ilar robust SVD-based IMCC-KF variant is still open and to

be investigated in future. As discussed in previous section, a

non-symmetric form of equation (16) in the IMCC-KF estima-

tor prevents the derivation.

Finally, we remark that all conventional implementations di-

verge at δ = 10−8. This conclusion holds for both the MCC-

KF (Algorithm 1) and IMCC-KF (Algorithm 2). The term NaN

in Table 3 means that the estimator cannot solve the filtering

problem since it produces no correct digits in the obtained state

vector estimate. Furthermore, the obtained numerical results

demonstrate divergence of all factored-form implementations

of the MCC-KF (Algorithm 1), except the SVD-based variant

in Algorithm 1d. Meanwhile, we observe an accurate solution

produced by the Cholesky- and UD-based implementations of

the IMCC-KF (Algorithm 2). In total, there are only three im-

plementations that manage the ill-conditioned state estimation

problem while δ → ǫroundo f f . In summary, the family of ro-

bust factored-form MCC-KF implementations (with respect to

roundoff errors) consists of only SVD-based method in Algo-

rithm 1d, while the robust IMCC-KF implementations are the

Cholesky- and UD-based Algorithms 2a and 2b.

6. Concluding remarks

In this paper, complete families of the factored-form imple-

mentations are derived for both the MCC-KF and the IMCC-KF

estimators. The theoretical discussion and the results of numer-

ical experiments indicate that only Cholesky- and UD-based

IMCC-KF implementations solve the ill-conditioned state esti-

mation problem accurately. For the MCC-KF estimator, the ro-

bust SVD-based implementation exists and only this algorithm

accurately treats the ill-conditioned cases.

A number of questions are still open for a future research.

First, for the MCC-KF estimator, only one robust implemen-

tation was found in the factored-form family of reliable algo-

rithms. This is the SVD-based implementation. Thus, the pro-

posed Cholesky- and UD-based MCC-KF implementations are

to be improved in future research, if possible. In contrast, for

the IMCC-KF estimator, the robust Cholesky- and UD-based

implementation are derived in the factored-form family. Mean-

while, the derivation of robust SVD-based implementation for

the IMCC-KF estimator is still an open question. Recall, the

11



problem is how to balance the equation for error covariance ma-

trix calculation in order to derive a symmetric form that is sim-

ilar to the Joseph stabilized equation proposed for the classical

Kalman filter. Next, all algorithms derived in this paper are of

covariance type. Meanwhile, the information filtering under the

MCC approach still does not exist, i.e. neither the conventional

recursion nor the factored-form implementations have been de-

rived, yet. The adaptive kernel size selection strategy is an-

other importance problem for all MCC KF-like filtering meth-

ods. The small kernel size might induce the instability prob-

lem, as well. Hence, the related stability issues (with respect to

kernel size selection) should be investigated. Furthermore, the

extended array implementations are of special interests for a fu-

ture research, because of improved numerical stability caused

by utilization of stable orthogonal rotations as far as possible.

Finally, the derivation of stable factored-form implementations

for solving nonlinear filtering problem under the maximum cor-

rentropy criterion via the accurate extended continuous-discrete

KF approach presented recently in [45, 46, 47, 48, 49] is also

planned for a future research.
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