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Abstract

In this paper, a new signal processing framework is proposed, in which the ar-
ray time samples are represented in DOA-frequency domain through a single
stage problem. It is shown that concatenated array data is well represented
in a G dictionary atoms space, where G columns correspond to pixels in the
DOA-frequency image. We present two approaches for the G formation and
compare the benefits and disadvantages of them. A mutual coherence guaran-
teed G manipulation technique is also proposed. Furthermore, unlike most of
the existing methods, the proposed problem is reversible into the time domain,
therefore, source recovery from the resulted DOA-frequency image is possible.
The proposed representation in DOA-frequency domain can be simply trans-
formed into a group sparse problem, in the case of non-multitone sources in a
given bandwidth. Therefore, it can also be utilized as an effective wideband
DOA estimator. In the simulation part, two scenarios of multitone sources with
unknown frequency and DOA locations and non-multitone wideband sources
with assumed frequency region are examined. In multitone scenario, sparse
solvers yield more accurate DOA-frequency representation compared to some
noncoherent approaches. At the latter scenario, the proposed method with
group sparse solver outperforms some existing wideband DOA estimators in
low SNR regime. In addition, sources’ recovery simultaneous with DOA esti-
mation shows significant improvement compared to the conventional delay and
sum beamformer and without prerequisites required in sophisticated wideband
beamformers.
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1. Introduction

Wideband signal processing is an active area of research in array processing.
It has been studied extensively in areas such as radar, seismology, sonar, radio
astronomy, speech acquisition and, acoustics [1, 2]. Although, the problem of
direction-of-arrival (DOA) estimation has attracted considerable attention in ar-
ray processing, representation of array data in DOA-frequency domain has not
been directly examined. Certainly, any narrowband or wideband DOA estima-
tion or source localization method without knowledge of the source’s frequency
contents is impossible [3]. Furthermore, in real situations, a passive wideband
array receives multiple sources with different bandwidths and center frequen-
cies. Therefore, in non-cooperative scenarios, estimating the DOA-frequency
distribution of the array data seems an inevitable pre-processing.

DOA estimation of wideband sources are essentially categorized into two dif-
ferent approaches; noncoherent and coherent. In noncoherent wideband process-
ing, each subband is processed separately and the results are combined nonco-
herently. While in the coherent solution, DOA estimation is performed in a sin-
gle center frequency. It combines the subbands covariance matrices coherently
via a focusing matrix and the final covariance is used for DOA estimation[4].
Some advantages and drawbacks of them are listed below:

• Noncoherent approach suffers from intrinsic noncoherent losses.

• Increasing focusing errors with the bandwidth expansion makes the perfor-
mance of coherent method worse than noncoherent one in ultra-wideband
scenarios.

• The prerequisite of both solutions is the knowledge of frequency contents
of the signal and dramatic performance degradation occurs in the case of
incorporating noise only subbands in overall combination.

• Coherent methods require initial focusing angles, therefore, utilizing non-
coherent pre-processing or DOA-frequency estimation is vital as the first
step.

Some recent methods tried to overcome these problems. R-CSM [5] proposed
an iterative auto-focusing procedure to relax the requirement for initial DOA
estimation. Test of orthogonality of projected subspaces (TOPS) [6] completely
removed prerequisites of focusing procedure. It tests the orthogonality of the
projected signal subspace and the noise subspace at each DOA and frequency
subband, and, therefore, can be categorized in the noncoherent class. TOPS
shows poor performance at high SNR levels and often leads to spurious peaks at
all SNRs. Other algorithms were developed to improve TOPS, such as ETOPS
[7], Squared-TOPS [8] and, WS-TOPS [9].

In parallel, some wideband array processing techniques exploiting the special
structure of the antenna array have been developed. For example, [10] addresses
frequency-invariant techniques for uniform concentric circular arrays (UCCAs)

2



with omni-directional sensors and authors in [11] extended that results for di-
rectional elements and with simpler array design procedure.

Sparse representation (SR) framework has also found new applications in
DOA estimation during [12]. The fundamental work of Malioutov et al [13]
named `1−SVD and two recent works [14, 15] are categorized in sparsity-based
solution for DOA estimation of the wideband signals. Although, `1−SVD is
basically a narrowband solution, but have been extended to wideband situation
by exploiting joint-sparsity in frequency-DOA domain. Authors in[14] used the
idea proposed in [16] for approximating the band-limited signals with prolate
spheroidal wave functions. It represented the array observations in a dictionary
and applied block orthogonal matching pursuit (BOMP) to impose the sparsity
only among bases with different delays. Recently, two time-domain solutions
[17, 18] for wideband DOA estimation employing SR have been proposed. They
represent array covariance matrix in temporally delayed versions of source cor-
relation function. This correlation function is assumed known in [18] and can
be estimated from observations in [17].

In this paper, we propose a general framework to represent the array time
samples directly in the space-frequency domain. It is named direct DOA-
frequency representation (DDFR). The key difference between the proposed
framework and most of the existing solutions in the wideband array processing
is that unlike a two-phase approach (DOA estimation and then beamforming),
DDFR solves the whole problem in a single stage, i.e., sources’ frequency con-
tent, spatial locations, and recovery coefficients are obtained by solving a single
under-determined linear system. In other words, it is simultaneously an estima-
tor and also a wideband beamformer.

The significant innovation of DDFR is the introduction of a G dictionary,
by which the array multiple snapshots can be well represented in its atoms
space. In other words, each column of G stands for a (θ, f) pixel in two-
dimensional DOA-frequency image. Two approaches for G atoms arrangement
are proposed and compared. It is shown that the first approach leads to a
constant coherence among DOA-frequency atoms but their positions in DOA are
uncontrolled. The second approach arranges atoms at desired (θ, f) points but
there is no straightforward control over the dictionary coherence. We show that
in noiseless case, DOA-frequency representation is formulated as a linear system
in columns space of G . Regarding the problem size, number of snapshots and
required DOA-frequency resolution, this linear system would yield an under-
determined system, therefore has infinite solutions. Different solvers for this
linear system are examined, including conventional minimum `2-norm constraint
and also sparsity-based penalty functions `0 and `1.

The solution of this system contains the DOA-frequency contents of the
array data. One can use elements of the solution vector to reconstruct the
source at a particular region in frequency or DOA. It means extending super-
resolution capability into spatial filtering, which is absent in conventional and
modern array processing techniques. For example, in a passive sonar array, one
can listen to two adjacent sources and distinguish a marine mammal from a far
passing ship. Furthermore, it can be utilized to show the power density of the
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array signal in DOA-frequency domain and estimate sources’ frequency contents
for further processing.

Furthermore, in DDFR it is possible to impose sparsity only in the spatial
domain, rather than in both DOA and frequency. It is necessary, especially when
dealing with non-multitone wideband sources with known frequency band, such
as chirp signals or band-limited Gaussian processes. In this case, the degree of
freedom decreases and the problem reduces to group sparse form. Therefore,
DDFR can act as a wideband DOA estimator when multiple non-multitone
wideband sources with identical band exist. Briefly, DDFR framework does not
suffer from previously mentioned noncoherent and coherent drawbacks, makes
no assumption on the prior statistical information such as sources distribution
or incoherence, does not involve subband processing and multiple eigenvalue
decomposition (EVD), and in comparison with SR-based approaches enjoys
excellent performance at low SNR regime and low number of snapshots with
simultaneous beamforming feature. This special feature is obtained because
the signal phase information is not lost through the estimation algorithm using
DDFR.

The paper is organized as follows. Section 2 reviews the narrowband and
wideband array signal model. Section 3 presents a brief introduction to the
problem of sparse signal representation (SSR) and group sparse formulation.
The main idea of DDFR and its related issues are presented in Section 4, and
in Section 5 the simulation results are examined for two scenarios of wideband
signals. Finally, in Section 6 conclusions are drawn.

2. Signal Model

Let s(t) denote a signal impinging on a linear array with NS sensors, located
at θ. The signal is received by sensors with different delays τk. The delay τk
is a function of the k’th sensor position and the source angle of arrival θ. In
the far-field situation, the observation vector y(t) containing all sensors data
samples is,

y(t) =

 s(t− τ1)
...

s(t− τNS )

 , τk =
aTpk
c

(1)

where a is a unit vector describing source’s arrival direction, pk is the k’th
sensor position and c is the wave propagation velocity in the medium [3]. For a
uniform linear array aligned with z-axis and element distance d, the time delay
due to k’th sensor is τk = −(k − 1)d sin(θ)/c.

2.1. Narrowband case

In narrowband case, the source s(t) can be written as s(t) = u(t) exp(j2πf0t),
where u(t) is the baseband signal with a bandwidth much smaller than the car-
rier frequency f0. By this assumption, the delayed version of s(t) is approxi-
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mated with a phase shift.

s(t− τ) =u(t− τ) exp(j2πf0(t− τ)) (2a)

≈u(t) exp(j2πf0t) exp(−j2πf0τ) (2b)

=s(t) exp(−j2πf0τ) (2c)

By the equivalence of time delay to phase shift in (2), the measurement vector,
in (1), for a single snapshot is reformulated as,

y(t) = s(t)

 e−j2πf0τ1(θ)

...

e−j2πf0τNS (θ)

 = s(t)v(θ, f0) (3)

where v(θ, f0) is called steering vector (or array manifold). Denoting k’th en-
try of the array manifold by vk(θ, f0) = exp(jφk) for k ∈ {1, · · · , NS}, φk is
formulated as,

φk =


2πf0(pk/c) sin(θ) general linear array

2πf0(kd/c) sin(θ) uniform linear array (ULA)

kπ(f0/fH) sin(θ) ULA with d = (c/2fH)

(4)

where fH is the observations upper frequency limit, d is the elements distance,
and pk is the k’th sensor position aligned with z-axis. If rewrite (3) for K
sources and in the presence of additive noise we will have,

y(t) = [v(θ1, f0), · · · ,v(θK , f0)]

 s1(t)
...

sK(t)

+ n(t)

= VNS×K(Θ, f0)s(t)K×1 + n(t) (5)

where Θ = [θ1, · · · , θK ]T is the sources direction of arrival (DOA) vector and
V(Θ, f0) is the steering matrix at f0.

2.2. Wideband Case

In the wideband scenario, the equivalence between time delay and phase shift
is no longer valid. We know that time delayed version of the signal has a Fourier
transform pair as s(t−τ)↔ S(f)e−j2πfτ . In this situation, phase-shifts depends
on the frequency as well as the source’s DOA. Therefore, the observation model
(5) for the wideband case, is written at each frequency subband as,

y(f) = V(Θ, f)s(f) + n(f) (6)

where f ∈ {f1, · · · , fNF } and Θ = [θ1, · · · , θNθ ]T .
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3. Signal Sparse Representation (SSR)

The aim of sparse representation is to find a solution for a linear under-
determined system with the minimum number of non-zero elements. Given an
observation y ∈ CM , and a dictionary matrix D ∈ CM×N with M < N , we
would like to find x ∈ CN that satisfies the linear system y = Dx and has
minimum non-zero elements. Denoting ‖x‖0 as the number of non-zero entries
of a vector x, the sparsest solution of the above under-determined system is
formulated as,

min
x
‖x‖0 s.t. y = Dx (`0 problem) (7)

The `0 problem is combinatorial in nature, and the solution requires searching
through all subsets of indices of x. This is not tractable even for moderate
values of M and N [19]. The most common approximation is Basis Pursuit
(BP) [20], which replaces `0 with its closest convex norm `1 :

min
x
‖x‖1 s.t. y = Dx (`1 problem) (8)

Extending the problem to noisy measurements case we have:

min
x
‖x‖1 s.t. ‖y −Dx‖2≤ ε (9)

where ε is an upper bound for noise, such that ‖n‖2≤ ε.

3.1. Group Sparsity

In some applications, sparsity exists among clusters of the x entries. It
means the x vector is partitioned into GN groups with either all zeros or all
nonzeros elements, x = [xTG1 ,x

T
G2 , · · · ,x

T
GN ]T . The group sparsity of x can be

measured by an `p,q norm defined as [21],

‖x‖p,q,

(
N∑
i=1

‖xGi‖qp

)1/q

(10)

where p is the norm inside a group and q is the norm among distinct groups.
(9) can be expressed as a group sparse problem as,

min
x
‖x‖p,q s.t. ‖y −Dx‖2≤ ε (`p,q problem) (11)

4. Direct DOA-Frequency Representation (DDFR)

First, direct representation of the array data in a G dictionary column space
will be formulated. This acts as a t 7→ [f, θ] transform, which gets the array
time samples and results in a 2D image in frequency-DOA through a single stage
formulation. Meanwhile, a simple solution for construction of the G dictionary,
named constant ∆δ approach, is derived. Then, a closed-form expression for the
G atoms is found. This leads to a second dictionary design approach, named
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direct synthesis. In the next part, the mutual coherence of the G dictionary
is calculated and a guaranteed G manipulation method is proposed. Finally,
source reconstruction procedure is presented.

Let M be the number of snapshots and t = [t1, · · · , tM ]
T

denote the sampling
time vector. By arranging the array snapshots y(t), defined in (1), in a matrix
form, the array observation matrix YM×NS is obtained as,

Y = [y(t1), · · · ,y(tM )]
T

(12)

where the columns of Y correspond to sensors’ temporal samples. Denoting
Y(:, n) as the n’th column of Y, Y(:, n) can be linearly represented in the
Fourier bases space as follows:

Y(:, n) =

NF∑
k=1

xkdk = D(F)xn (13)

where xn is the signal representation coefficients of the n’th sensors observations
and D = [di,k] is Fourier dictionary containing NF bases selected from F =
{f1, · · · , fNF } where

di,k =
1√
M

exp (j2πfkti) (14)

Rewriting (13) in matrix form we have,

Y = D(F)X (15)

where xi,j is the coefficient corresponding to the frequency fi in the representa-
tion of the j-th sensor signal. Therefore, the k’th row of X is the array snapshot
in the fk frequency. Accordingly, (6) holds for each row of the matrix X. By
denoting X(k, :) as the k’th row of X,

X(k, :)T = V(Θ, fk)Z(k, :)T k ∈ {1, · · · , NF } (16)

where Z(k, :) denotes the array snapshot in the k’th subband. Since the array
manifold matrix V(Θ, fk) is a function of frequency as well as DOA, (16) is
always examined separately in different subbands. This is the main hindrance
that forces wideband array processing techniques to apply subband processing
as a prerequisite. To resolve this problem, we rewrite steering vector as function
of δ , f sin(θ) rather than θ or f . Assume fL ≤ |f |≤ fH and θ ∈ [−90◦,+90◦],
then |δ|≤ fH . By this change of variable, we can rewrite steering matrix as a
function of δ as,

V(∆) = [v(δ1), · · · ,v(δND )]NS×ND (17)

where ∆ = [δ1, · · · , δND ]
T

, ND is the number of δ grid points and each steering
vector v(δi) isdefined as,

v(δi) = exp
{
j2πδi

p

c

}
, i ∈ {1, · · · , ND} (18)
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(f, δ) → (f, θ): gray(Invalid region)
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Figure 1: (f, δ) mapping to (f, θ). f ∈ [−1,+1], δ ∈ [−1,+1]. The labeled dashed lines
illustrate the iso-θ cells.

For linear array, p is array element position vector p = [p1, · · · , pNS ]
T

. Note
that although ∆ set leads to different DOA grid points at each fi, it forms an
identical steering vector matrix for the whole band. In other words, exploiting
V(∆) in lieu of V(Θ, fi), would generate DOA grid points with identical steering
matrix at all bands but with different spatial grid map. Rewriting (16) in matrix
form and with replacing new steering matrix V(∆), we have,

XT = V(∆)ZT (19)

and substituting (19) in (15) yields,

Y = D(F)ZV(∆)T (20)

where ZNF×ND = [zi,j ] is the DOA-frequency representation matrix and zi,j
corresponds to (fi, δj) which is uniquely mapped to (fi, θj):

(fi, δj)⇒ θj = sin−1(
δj
fi

) (21)

obviously, if | δjfi |> 1 the corresponding zi,j does not map to a real θj . Let S be

the set of all invalid (i, j) pairs as,

S =

{
(i, j)

∣∣∣∣∣∣∣∣δjfi
∣∣∣∣ > 1

}
⇒ zi,j∈S = 0 (22)

Fig. 1 shows the mapping from (f, δ) to (f, θ). The θ values are labeled and iso-
θ contour are shown with dashed lines. Indices belonging to S are illustrated
with gray area. With uniform δ sampling, the invalid region possesses more
grid points at lower frequencies, and this will lead to a frequency dependent
resolution in DOA. This issue is examined in succeeding sections.
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Vectorizing (20), can simplify the equations. Since half of the Z matrix’s ele-
ments are zero, unacceptable entries would be removed simply in the vectorized
form. For a given matrix A ∈ Cm×n, vec(·) operator is defined as,

ãmn×1 , vec(Am×n) =
[
aT1 , · · · ,aTn

]T
(23)

where ak denotes k’th column of A. Applying vec(·) to (20), we have,

ỹ = vec(Y) = vec(DZVT ) = (V ⊗D)vec(Z) = G′z̃ (24)

where ⊗ stands for Kronecker Product. For A ∈ Cl×n and B ∈ Cp×m the
Kronecker Product is defined as,

Bp×m ⊗Al×n ,

 b11Al×n · · · b1mAl×n
...

. . .
...

bp1Al×n · · · bpmAl×n


pl×mn

(25)

In (24), ỹ is named the concatenated measurement vector, z̃ is the resulting
representation coefficients and G′ = V ⊗D is DOA-frequency dictionary. The
vec(·) operator should also be applied to S matrix as s̃ = vec(S). Therefore,
(22) converts to z̃k∈s̃ = 0. This constraint is trivial since it can be applied
directly to G′, by removing its invalid columns. Algorithm 1 shows a simple
procedure to generate G from G′. In Algorithm 1, G is the final DOA-frequency
dictionary and ṽf and ṽθ are frequency and DOA grid points corresponding to
columns of G , respectively. Thus, with G dictionary, the final DOA-frequency
representation can be expressed as a linear system,

ỹ = Gz̃ (26)

The relation (26) is a fundamental result in wideband array processing. It shows
that the concatenated measurement vector ỹ, lies in the columns space of the
G dictionary. This can also be regarded as an extension of the narrowband
model for wideband systems, since different frequencies can be incorporated
in the array time signal recovery without any explicit Fourier analysis. This
eliminates the subband processing for wideband signals and leads to a unified
approach for narrowband and wideband scenarios.

4.1. G atoms formulation

In (26), it is shown that concatenated array time samples can be represented
in the G columns space. In this section, we seek for the structure of G dictionary
in more details. A closed-form relation for g(f, θ) is found, consequently, in
contrast to Algorithm 1 that there was no control on θ grid points, a direct G
construction is presented in which arbitrary arrangement of g(f, θ) atoms in θ
and f is provided.

To investigate the G matrix more closely, we refer to its definition in (24) and
the Kronecker product (25). Assume gq is the q’th column of G corresponding
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Algorithm 1 Make G dictionary with constant ∆δ approach

1: function make g dic delta(fL,fH ,NF ,ND)

2: vf ← [f1, · · · , fNF ]
T

. fL ≤ f ≤ fH
3: ∆← [δ1, · · · , δND ]

T
. |δ|≤ fH

4: make DM×NF dictionary
5: make V(∆)NS×ND . see (18)
6: G′MNS×NFND ← V ⊗D
7: initialize S with NF ×ND zero matrix
8: initialize ṽf and ṽθ with empty vector
9: for i← 1, NF do

10: for j ← 1, ND do
11: if | δjfi |≤ 1 then

12: S(i, j)← 1
13: ṽf ← [ṽf , fi]

14: ṽθ ←
[
ṽθ, sin

−1
(
δj
fi

)]
15: end if
16: end for
17: end for
18: Initialize G with empty matrix
19: s̃← vec(S)
20: for k ← 1, NFND do
21: if s̃k = 1 then
22: G← [G , g′k] . concatenate valid atoms
23: end if
24: end for
25: Return ṽf , ṽθ,G
26: end function

to j’th entry of F , symbolized as fj , and r’th element of ∆, denoted as δr.
Denoting G, D and V entries with g, d and v respectively, we have,

GMNS×NFND = [gk,q] (27a)

DM×NF = [di,j ] (27b)

VNS×ND = [ve,r] (27c)

Obviously,
gk,q = ve,r · di,j (28)

Due to definition of the Kronecker product, the following relations hold for
subscripts,

i = mod(k − 1,M) + 1 i ∈ {1, · · · ,M} (29a)

j = mod(q − 1, NF ) + 1 j ∈ {1, · · · , NF } (29b)

e = bk − 1

M
c+ 1 e ∈ {1, · · · , NS} (29c)
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r = bq − 1

NF
c+ 1 r ∈ {1, · · · , ND} (29d)

Substituting (14) and (18) in (28) yields,

gk,q = exp

{
j2π

δr
c
pe

}
× 1√

M
exp {j2πfjti}

=
1√
M

exp

{
j2πfj

(
sin(θr)

c
pe + ti

)}
(30)

It shows that the q’th column of G matrix is a pixel located at (fj , θr) in DOA-
frequency image, where j and r are calculated from (29b) and (29d) respectively.
Now for a given (f, θ) we have the following step by step formulation for the
DOA-frequency dictionary atom, denoted by g(f, θ),

p̃MNS×1 = vec
(

(pNS×1 × 11×M )
T
)

(31)

t̃MNS×1 = vec (tM×1 × 11×NS ) (32)

g(f, θ) =
1√
M

exp

{
j2πf

(
sin(θ)

c
p̃ + t̃

)}
(33)

where p = [p1, · · · , pNS ]
T

is the array elements position vector, t = [t1, · · · , tM ]
T

is the time samples vector and vec(·) operator is defined in (23).

4.2. Dictionary Mutual Coherence

One criterion for the uniqueness and stability of the sparsest solution in
compressive sensing (CS) theory is the mutual coherence, µ(G). This is defined
as the largest normalized inner product between dictionary columns [22]. For
G ∈ Cn×m,

µ(G) , max
1≤k,j≤m, k 6=j

|〈gk,gj〉 |
‖gk‖2·‖gj‖2

(34)

where 〈·, ·〉 denotes the inner product. In fact, smaller mutual coherence leads
to uniqueness and stability guarantee for solutions with more non-zero entries
[23]. Consider two atoms from G at (f1, θ1) and (f2, θ2), then substitution of
(33) in (34) results in a summation on real and imaginary part of the inner
product as,

(35)

〈gk,gj〉 =
1

NS

(
<(gH1 g2) + j=(gH1 g2)

)
=

1

MNs

MNs∑
k=1

(ρk + jζk)

where ρk and ζk can be written as,

(36a)ρk = cos

(
2π

∆δ

c
· p̃k
)

cos(2π∆f t̃k)− sin

(
2π

∆δ

c
· p̃k
)

sin(2π∆f t̃k)

(36b)ζk = sin

(
2π

∆δ

c
· p̃k
)

cos(2π∆f t̃k)− cos

(
2π

∆δ

c
· p̃k
)

sin(2π∆f t̃k)

11



and ∆δ = f2 sin(θ2)−f1 sin(θ1) , ∆f = f2−f1. Utilizing the structure of p̃ and
t̃ in (31) and (32) and by assuming uniform time steps with sampling frequency
fs, for a linear array the relation (35) can be written as,

(37a)

MNS∑
k =1

ρk =

NS−1∑
i=0

cos

(
2π

∆δ

c
· pi
)
· IM

(
2π

∆f

fs

)
− sin

(
2π

∆δ

c
· pi
)
· JM

(
2π

∆f

fs

)

(37b)

MNS∑
k =1

ζk =

NS−1∑
i=0

sin

(
2π

∆δ

c
· pi
)
· IM

(
2π

∆f

fs

)
− cos

(
2π

∆δ

c
· pi
)
· JM

(
2π

∆f

fs

)
where IK(x) and JK(x) are defined as follows,

IK(x) ,
K−1∑
k=0

cos(kx) =
sin
(
K
2 x
)

cos
(
K−1

2 x
)

sin
(
x
2

) (38)

JK(x) ,
K−1∑
k=0

sin(kx) =
sin
(
K
2 x
)

sin
(
K−1

2 x
)

sin
(
x
2

) (39)

In the case of a uniform linear array with element spacing d, coherence can be
computed as,

µ(G) =
1

MNS

∣∣∣∣∣∣
sin
(
πNS

∆δ
c d
)

sin
(
πM ∆f

fs

)
sin
(
π∆δ

c d
)

sin
(
π∆f
fs

)
∣∣∣∣∣∣ (40)

Since (37) for iso-frequency atoms (i.e. ∆f = 0), leads to a sum on exp
(

2π
c ∆δ · pi

)
sequence, therefore adjacent atoms pairs having the same frequency and iden-
tical ∆δ have similar coherence values. In this regard, G construction via Al-
gorithm 1 automatically controls DOA grid points density to equalize mutual
coherence. This will reduce density of grid points at lower frequencies and DOAs
close to ±90◦.

Let Gδ be a DOA-frequency dictionary obtained by a constant δ grid interval
∆δ = cδ. Assume ∆θ(f) = θ2(f) − θ1(f) is the distance between two atoms
pointing to θ2 and θ1 directions at frequency f . Using (21) we have,

∆θ(f) = sin−1

(
δ2
f

)
− sin−1

(
δ1
f

)
(41)

Dividing both sides by ∆δ and for small values of ∆δ, we can write,

∆θ(f)

∆δ
u

d

dδ

(
sin−1(δ/f)

)
=

1/f√
1− (δ/f)2

(42)
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Figure 2: Atoms position of G dictionary in DOA-frequency plane, (a) for constant δ and
(b) for direct synthesis approach. The total number of atoms are the same, f ∈ [5Hz, 50Hz]
with ∆f = 2.5Hz. ∆δ = 2.5 for constant ∆δ and ∆θ = 8o for direct approach. (c) compares
coherence versus frequency for the two proposed approaches.

Then for a constant and small ∆δ we have the following dictionary grid resolu-
tion in DOA at frequency f ,

∆θ(f) =

(
cδ
f

)
1√

1− sin2(θ)
(43)

The relation (43) certifies our previous reasoning on resolution deterioration
at lower frequencies and DOA borders. Fig. 2 shows atom’s position in the f−θ
plane for two dictionaries Gδ (using constant ∆δ approach, see Fig. 2a) and Gd

(using direct synthesis approach, see Fig. 2b) with identical atoms number. In
Fig. 2a for the constant ∆δ approach, density of points decreases at borders of θ
to guarantee constant atoms coherence as mentioned before. On the other hand
constant ∆δ approach, density of points increases at higher frequencies near
the array boresight in comparison with direct synthesis. In Fig. 2c maximum
coherence among iso-frequency atoms versus frequency is shown. As expected,
we see a frequency independent coherence for Gδ versus a frequency decreasing
correlation for Gd.

4.3. Gδ construction with guaranteed coherence

As mentioned in the previous section, Gδ enjoys the interesting property
of constant mutual coherence among iso-frequency atoms. But µ(G) refers
to maximum coherence among all existing atoms. In this section we propose
a simple procedure to design a Gδ dictionary with guaranteed coherence µ0

over all existing atoms. We present the algorithm for ULA, but it is simply
extendable for any general linear array.

With a given ULA and a desired coherence µ0, ∆δ is obtained through
solving iso-frequency atoms coherence equation (40) at ∆f = 0:

µ(G) |∆f=0 = µ0 =
1

NS

∣∣∣∣∣∣
sin
(
πNS

∆δ∗

c d
)

sin
(
π∆δ∗

c d
)
∣∣∣∣∣∣ (44)
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Algorithm 2 Source extraction using DDFR results in a rectangular region.

function src ext rect(ṽf ,ṽθ,z̃,TR,FR,η,fnews ,t1,tM )
Indices in rectangle region f ∈ F and θ ∈ T and with amplitude greater than
arbitrary threshold η are counted.

K← {k | |z̃|k≥ η, ṽf,k ∈ F, ṽθ,k ∈ T}
. generate a new time vector with fnews

t′ ←
[
t1, t1 + 1

fnews
, t1 + 2

fnews
, · · · , tM

]T
ŝ← 0
for all k ∈ K do

ŝ = ŝ + z̃k√
M

exp {j2πṽf,kt′}
end for
if real data then . Consider negative frequencies

ŝ = 2Re {ŝ}
end if
Return ŝ

end function

and for setting ∆f , coherence between iso-δ atoms is considered, where ∆δ = 0
is replaced in (40),

(45)µ(G) |∆δ=0 = µ0 =
1

M

∣∣∣∣∣∣
sin
(
πM ∆f∗

fs

)
sin
(
π∆f∗

fs

)
∣∣∣∣∣∣

Finally, Algorithm 1 constructs a dictionary with uniform δ- spacing ∆δ∗ and
uniform frequency interval ∆f∗.

4.4. Source Reconstruction

A noteworthy property of the direct DOA-frequency representation is that
it preserves the time domain data and therefore, source recovery is possible.
On the contrary, in the regular array processing techniques based on signal and
noise subspace properties [24] or singular value decomposition (SVD) [13], the
source time domain information is lost and super-resolution capability in DOA
estimation can not be extended to source extraction.

For a general complex measurement ỹ ∈ CMNS for linear system (26), Al-
gorithm 2 explains how to recover signal for a given rectangular region in θ− f .
In Algorithm 2, ṽf and ṽθ denote frequencies and DOAs corresponding to G
columns, resulted from Algorithm 1. z̃ is the solution of the linear system (26).
TR and FR are the desired intervals in DOA and frequency respectively. η is a
threshold determining the minimum amplitude of atoms incorporated in recon-
struction process. fnews is an arbitrary recovery sampling frequency and t1 and
tM are the starting and ending times.
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Figure 3: Using DDFR in the group sparsity formation with partitioning G columns and z̃
entries into GNθ groups.

4.5. Wideband DOA estimation with DDFR

To employ the DDFR framework in DOA estimation problems, a naive solu-
tion is to non-coherently average z̃k at each DOA to obtain a spatial spectrum.
But as discussed in Section 3.1, in the case of non-multitone sources, the group
sparsity formulation can be applied to the linear system (26). Since the sources
are not sparse in frequency domain but are located at sparse DOA angles, the G
dictionary atoms are partitioned into Nθ groups, in such a way that atoms with
identical DOA lie in the same group. In this regard, G dictionary construction
with constant ∆δ method (explained in Algorithm 1) cannot be used, because it
does not control the position of DOA grid points. Therefore, `p,q−problem (11)
can be applied and spatial spectrum at θi is equal to ‖z̃Gi‖2. Fig. 3 illustrates
this partitioning.

About the computational complexity of the algorithm it should be noted
that, on the one hand, it depends on the numerical solver selection, and on
the other hand, it increases with the size of the problem. The linear system
ỹ = Gz̃ dimensions increase linearly with the number of snapshots, i.e. O(M),
it has also a linear relation with the number of grid points in DOA or frequency
and also the number of sensors. In the next Section, a numerical example is
presented to investigate the computational cost of the proposed method versus
the number of snapshots.

5. Numerical Simulation

In this section, numerical examples are presented to examine the perfor-
mance of the proposed method. Two scenarios for the observations are consid-
ered. In the first scenario, there are multiple multitone sources impinging on the
array from unknown directions and with unknown frequency contents. In this
scenario, the sparsity assumption simultaneously holds at DOA and frequency
domain and either of `0−problem (7) and `1−problem (8) can be applied. In
the second scenario, there are multiple wideband Gaussian distributed sources
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at unknown directions but with known and identical frequency contents. This
assumption is almost always applied in wideband DOA estimation methods. In
this situation, the group sparsity approach is used, since the sources are not
sparse at frequency domain but are located at sparse DOA angles. Therefore,
`p,q−problem (11) can be exploited with indexing the atoms at identical DOA
in the same group. In this regard, G dictionary manipulation with constant ∆δ
method (explained in Algorithm 1) cannot be used in the second scenario, since
it does not control the position of DOA grid points. As before, G dictionary
with constant ∆δ approach is denoted by Gδ and Gd stands for G dictionary
constructed with direct synthesis approach (33).

5.1. Wideband multitone sources

As mentioned above, any sparse solver can be applied in this scenario. We
use CVX [25] and YALL1 [26] solvers for the `1−problem, Orthogonal Matching
Pursuit (OMP) [27] for `0−problem and truncated singular value decomposition
(TSVD) [28] and simple correlator estimator as a solution to `2-problem objec-
tive function. Although `2-problem approaches are not categorized as sparse
solutions, but are illustrated for comparison. For a linear system y = Dm×nx
with rank(D) < min{m,n}, TSVD removes the near-zero singular values of D
and the corresponding eigenvectors, then finds the solution by pseudo-inverse,
xTSV D = D†TSV Dy, where D = USVH is the singular value decomposition of
D and pseudo-inverse is computed as,

D†TSV D = V(:, 1 : T )diag([1/σ1, · · · , 1/σT ])U(:, 1 : T )H (46)

In the correlator estimator, x∗ = DHy is given as the solution of the linear
system.

As pointed out in Section 1, most of the existing wideband DOA estimation
methods cannot estimate the DOA-frequency distribution of the array data. In
this regard, three non-coherent methods are also simulated; Incoherent MU-
SIC (IMUSIC) [29], Incoherent Capon (ICapon) and conventional beamforming
(CBF). These methods utilize the conventional subband processing shown in
Fig. 1. For CBF the spatial spectrum at fj sub-band is calculated as follows,

PCBF (fj , θ) =
1

W

W∑
k=1

∣∣vH(θ, fj)y
F
k,j

∣∣2 (47)

where v(θ, fj) stands for steering vector at fj and θ (see (4)), and yFk,j is the
discrete Fourier transform of measurement in k’th section and j’th frequency
subband, and the total samples are divided into W sections.

yFk,j =
[
yFk,j(1), · · · , yFk,j(NS)

]T
(48)

For IMUSIC the spatial spectrum at fj is computed as,

PIMUSIC(fj , θ) =
1∣∣∣vH(θ, fj)Ûn(fj)ÛH

n (fj)v(θ, fj)
∣∣∣ (49)
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Table 1: Properties of wideband multitone signals.

DOA SNR(dB) f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz)

s1(t) −20o 10 15 16 20 30 31

s2(t) −0o 10 20 21 22 30 31

s3(t) +30o 10 40 41 42 43 44

s4(t) +50o 10 10 20 30 40 50

and for ICapon:

PICapon(fj , θ) =
1

vH(θ, fj)Ŝ
−1
yFyF

(fj)v(θ, fj)
(50)

where Un(fj) is the estimated noise subspace at fj and ŜyFyF (fj) is the es-
timated covariance matrix at fj . Subband covariance matrix and the corre-
sponding noise subspace is calculated using eigenvalue decomposition (EVD) as
follows,

ŜyFyF (fj) =
1

W

W∑
k=1

yFk,jy
F
k,j

H
= Û(fj)D̂(fj)Û

H(fj) (51)

Û(fj) =
[
Ûs(fj), Ûn(fj)

]
(52)

D̂(fj) = diag([σ̂1
s , · · · , σ̂ps , σ̂1

n, · · · , σ̂NS−pn ]) (53)

σks and σkn stand for corresponding signal and noise eigenvalues respectively. For
IMUSIC, the number of sources at each subband is assumed known. Of course,
this assumption is not practical in real applications, but order estimation at
each subband with minimum description length (MDL) [30] criterion leads to
disappointing results for IMUSIC.

Assume a ULA with 8 elements and spacing d = λmin/2, where λmin =
c/fH and c = 1500m/s which is the underwater sound propagation velocity.
The received signal spectral content is in f ∈ [fL, fH ], where fL=10Hz and
fH=50Hz. Four multi-tone sources are assumed and each source contains 5
tones. There are M = 100 snapshots with sampling frequency fs = 120Hz.
Sources properties are summarized in Table 1. The resulting DOA-frequency
images are illustrated in Fig. 4. It shows that norm-`1 approach has more
accurate results in comparison with the other ones. Norm-`2 based results show
a blurred spot near real tones but suffer from low resolution and high sidelobe
level. The norm-`0 approach, which utilizes OMP solver, is orders of magnitude
faster than norm-`1 but has wrong peaks. As mentioned in section 4.4, DDFR
extends super-resolution into spatial filtering. To measure the performance of
source recovery, the output signal to interference and noise ratio (SINR) relative
to the input SINR is calculated. Since this improvement is obtained through an
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Table 2: Extracted source array gain in dB, for different methods and multitone wideband
signals of Table 1.
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s1(t) 10.9 15.4 17.1 16.4 18 0.7 -4.5 9.2 11.4
s2(t) 9.6 14.2 16.8 17.4 17.4 -2.1 -4.9 9.2 15.4
s3(t) 11.1 28.3 28.0 30.4 30.2 -2.0 -2.7 14.0 13.9
s4(t) 15.7 19.4 22.1 20.4 23.9 -1.8 -3.6 9.3 11.3

mean 12.5 23.1 23.5 25.2 25.5 -1.1 -3.8 11.0 13.4

array processing technique, it can be referred to as array gain,

Array Gain ,
SINRout

SINRin
=
‖y(t)− s(t)‖22
‖ŝ(t)− s(t)‖22

(54)

Array gain for all solvers and the conventional Delay&Sum beamformer is shown
in Table 2. It is assumed that Delay&Sum beamformer is steered to true source
locations at all subbands. For each source, array gain larger than that of de-
lay&sum beamformer is shown in bold characters. It is clear that `2-norm is
not a proper approach for this problem. OMP with Gd dictionary shows im-
provement on average compared to delay&sum beamformer, whereas OMP with
Gδ shows poorer performance compared to delay&sum. The best performance
belongs to `1-norm, where Gd shows a slight improvement over Gδ and also
YALL1 seems better than CVX.

5.2. Wideband Gaussian sources

In many practical situations, array receives none multitone wideband signals.
These signals cab be modeled as band-limited stochastic processes. In this sec-
tion, we apply DDFR to these sources. As mentioned before in Section 4.5,
unlike the multitone scenario, Gδ dictionary cannot be used here. Two group
sparse solvers are used in this section, group-lasso [31] and group gradient pur-
suit algorithm (group-gp) [32]. Group-lasso deals with `2,1-problem, rewritten
in the Lasso form, and group-gp is a greedy algorithm to solve `2,0-problem.
To examine the performance in the group sparsity scenario, the proposed algo-
rithm is compared with other wideband DOA estimators; namely `1-SVD [13],
W-CMSR [17], W-LASSO [18], coherent signal subspace method (CSSM) [4],
incoherent MUSIC [29], test of orthogonality of projected subspaces (TOPS) [6]
and, Squared-TOPS [8]. Note that, in CSSM a priori focusing angles are sup-
plied through an incoherent MVDR and rotational subspace focusing matrix
[33] is used.

The probability of separation is one of the common parameters to com-
pare different methods. Two Gaussian distributed sources at −5◦ and +5◦ are
considered. Sources’ frequency content f ∈[150Hz-450Hz] and a ULA with 8
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omni-directional sensors and sampling frequency 2KHz is considered. Elements
inter-spacing d = λmin/2, where λmin = c/fH , fH=450Hz and c=1500m/s. All
algorithms work with 200 temporal samples and a successful result is defined
as that corresponding to a spectrum with peaks that their error is less than
±2.5◦. The probability of separation versus SNR is illustrated in Fig. 5. The
proposed label in Fig. 5 refers to group-lasso applied to `2,1−problem and DOA
spectrum is obtained through norm-`2 at each group. Gd is constructed with
∆θ = 1◦ and ∆f = 10Hz. According to Fig. 3, there are 181 groups (i.e.
{−90◦,−89◦, · · · ,+90◦}) and 31 group’s members (i.e. {100, 110, · · · , 400}).
The proposed solution shows superior performance at low SNR regime. A slight
drop in performance is seen for `1-SVD at SNR≥10dB, which is due to SNR-
dependent behavior of the noise boundary in the `1-SVD method (see page 7
and section VIII.B in [13] for more details).

In the next simulation, array gain versus sources spatial distance is exam-
ined. The purpose of this example is to highlight the unique capability of source
recovery simultaneous with DOA estimation of the proposed method in com-
parison with other methods. Simulation parameters are the same as before, but
one source is fixed at 0◦ and the second is placed at ∆θ. Array gain for de-
lay&sum, group-gp and group-lasso are calculated at each run. The simulation
results are shown in Fig. 6. At low SNR scenario, the array gain is dominated
by omni-directional noise rejection ratio. Fig. 6a shows that group-lasso has
superior performance for closely located sources and all three methods tend to
show identical array gain for well separated sources.

As the sources’ SNR increases, array gain enhancement is dominated by
interference rejection ratio. In this case, the simultaneous beamforming ca-
pability of the proposed DOA estimator has superior performance. Moreover,
group-lasso is outperforming group-gp solver, although at the expense of more
computational complexity.

Finally, a simulation is done to compare the computational load of the pro-
posed method. The simulation parameters are similar to the second example
(probability of resolution versus SNR shown in Fig. 5). The number of snap-
shots M is set to 100 and 400 and the runtime is calculated for computation
time of spatial spectrum in -90◦ to +90◦ with grid size 1◦. This simulation is
run on a PC with specifications: Windows 10 (64bit version), Intel Core i7-920
3.4 GHz and 8GB RAM. Results are listed in Table 3.

As previously mentioned, the runtime in the DDFR framework is heavily
dependent on the selection of the numerical solver, but as shown in Table 3 a
general incremental trend of the runtime is observed for both solvers (namely
group-lasso and group-gp) with increasing the number of snapshots. In brief,
the proposed framework computational cost rapidly increases with the number
of snapshots as well as grid points and number of sensors.

6. Conclusion

A mathematical framework for representing the array temporal samples in
the DOA-frequency domain, named DDFR, is proposed. This representation is
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Table 3: Comparison of the normalized averaged runtime for different number of snap-
shots.

Number of
snapshots

group-
lasso

group-
gp

CSSM IMUSIC TOPS
Squared
TOPS

`1-
SVD

W-
CSMR

W-
LASSO

M=100† 131 6 4 1 5 5 333 64 47

M=400† 306 21 4 1 5 5 305 63 41

† All values are normalized to the minimum runtime 11.1(msec) for M=100 and 11.6(msec)
for M=400, which corresponds to the IMUSIC method.

formulated as a linear system, in which the concatenated observation vector lies
in column space of a G dictionary.

Then, two approaches for construction of G were proposed; constant ∆δ
and direct synthesize schemes. It is shown that G dictionary generation with
constant ∆δ method, enjoys the property of constant mutual coherence in iso-
frequency atoms. In this regard, a dictionary design procedure was proposed
that ensures a given mutual coherence. On the other hand, G with constant ∆δ
method has no control over DOA grid points, which may be undesirable in some
applications. DDFR does not require any subband processing or covariance es-
timation since it directly processes array time samples. Furthermore, it enjoys
the unique property of source reconstruction simultaneous with DOA-frequency
representation.
Furthermore, it was shown that DDFR with imposing group sparsity constraint
results in a wideband DOA estimator for non-multitone signals. This also enjoys
the exclusive feature of simultaneous beamforming with DOA estimation, since
it provides sources’ reconstruction coefficients without any additional compu-
tations. Accordingly, DDFR is an appealing framework for further studies on
simultaneous wideband DOA estimation and beamforming solutions.
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Figure 4: Comparison of different approach to the space-frequency analysis of 4 Multi-tone
wideband signals(see Table 1 for signal’s details). Simulation is for a ULA with 8 sensors and
100 number of snapshots. True sources’ tones are plotted with red + markers.
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Figure 5: Separation probability versus SNR. 500 runs is used to calculate each probability.
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Figure 6: Array gain versus sources ∆θ for four SNR values (a)-5dB, (b)0dB, (c)10dB and,
(d)20dB. 100 runs are used for simulation.
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