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Abstract

Distributed multi-target tracking (DMTT) is addressed for sensors having different fields of view (FoVs). The proposed approach
is based on the idea of fusing the posterior Probability Hypotheses Densities (PHDs) generated by the sensors on the basis of the
local measurements. An efficient and robust distributed fusion algorithm combining the Generalized Covariance Intersection (GCI)
rule with a suitable Clustering Algorithm (CA) is proposed. The CA is used to decompose each posterior PHD into well-separated
components (clusters). For the commonly detected targets, an efficient parallelized GCI fusion strategy is proposed and analyzed
in terms of L1 error. For the remaining targets, a suitable compensation strategy is adopted so as to counteract the GCI sensitivity
to independent detections while reducing the occurrence of false targets. Detailed implementation steps using a Gaussian Mixture
(GM) representation of the PHDs are provided. Numerical experiments clearly confirms the effectiveness of the proposed CA-GCI
fusion algorithm.

Keywords: Multi-target tracking, multi-view sensors, fields-of-view, GCI fusion, clustering algorithm, GM-PHD filter.

1. Introduction

Multitarget tracking (MTT) is a problem of great practical
relevance in many different contexts, from traffic monitoring
and defense to robotics. In many cases, the information col-
lected from multiple sensors has to combined so as to im-
prove performance. In this context, distributed MTT algorithms
have recently gained a considerable attention because of their
fault tolerance, flexibility, and reduced computational burden
as compared to a centralized fusion framework [1–5]. In the
single-target case, many efficient distributed tracking solutions
have been developed over the years both in linear and non-
linear settings. In the former case distributed Kalman filters
(KF) are usually adopted [6, 7], while in the latter case solu-
tions are usually based either on nonlinear variant of the KF
[8] or on the particle filter (PF) [9]. In the multi-target case,
the problem is substantially more challenging due to the many
reasons, above all the unknown association between targets and
measurements. Traditional solutions include Joint Probabilistic
Data Association Filter (JPDAF) [10] and Multiple Hypothe-
sis Tracker (MHT) [11, 12]. However, the JPDAF requires the
number of targets to be known a priori while the MHT involves
explicit association between targets and measurements, which
can involve a large computational load. An alternative solu-
tion is the so-called Probability Hypothesis Density (PHD) fil-
ter [13, 15], which is based on the theory of Random Finite Sets
(RFSs) [13, 14]. The PHD filter can avoid explicit data associ-
ation and can deal with an unknown and time-varying number
of targets. The PHD filter is usually implemented by resorting

to either Gaussian Mixtures (GMs) [27] or Sequential Monte
Carlo (SMC) approximations [28, 29].

The state of the art approach to distributed multi-sensor MTT
is Generalized Covariance Intersection (GCI) [16, 17], also
called Exponential Mixture Density (EMD) [18]. The GCI
fusion amounts to computing the density that minimizes the
sum of the information gains (Kullback-Leibler divergences
[7, 19], KLD) from local posteriors, thus avoiding the problem
of double-counting of common information [25]. In the past
years, any distributed RFS filters based on the GCI fusion rule
have been proposed [20–25].

While the GCI fusion rule performs well in many settings,
it has been observed that this fusion rule can be sensitive to
a high miss-detection rate [26]. In fact, the GCI fusion rule
tends to preserve only tracks that are present in all the local
posteriors. This pitfall is exacerbated when the sensors have
different fields of views (FoVs). For this reason, recently, some
techniques have been proposed for dealing with the problem of
different FoVs within the GCI fusion framework. For instance,
two possible solutions are proposed in [30] for the SMC-PHD
filter. In the first method, particles of different sensors are com-
bined only when they are believed to represent the same target.
In the second method, particles corresponding to the same tar-
get are hierarchically clustered and used to perform state ex-
traction. However, both methods are prone to estimation er-
rors and can underestimate the target number when nearby tar-
gets appear. A distributed fusion algorithm based on the SMC-
PHD filter, abandoning the limitation of fully overlapping FoV,
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is proposed in [31], which classifies the received particles into
common particle set and external particle set. As for the GM-
PHD filter, [32] proposes a solution to handle different FoVs in
the context of simultaneous localization and mapping (SLAM).
Specifically, the approach of [32] is based on the idea of using a
uniform intensity over the whole region of interest to initialize
all the local PHDs, in order to model the total uncertainty on
the target (landmark) positions in the unexplored region of the
map. A different solution was proposed in [33], which amends
the traditional GCI fusion algorithm by considering the distance
between Gaussian components (GCs). However, this method
cannot solve the false alarm problem and meanwhile the car-
dinality is overestimated. Similar ideas have recently been ex-
ploited to extended the labeled-RFS filter to multi-view sensors
[34–36].

In this paper, we focus on the problem of distributed multi
sensor MTT using the GM-PHD filter for a sensor network with
different FoVs. An efficient fusion strategy is developed that
makes use of a clustering algorithm (CA) to improve robustness
and performance of GCI fusion rule.

The main contributions of this paper are summarized as fol-
lows.

1. We analyse the GCI fusion mismatch phenomenon caused
by the limited sensor FoVs both from the theoretical point
of view and via a simulation experiment.

2. Motivated by the aforementioned analysis, we propose an
effective and robust solution for GCI fusion of PHDs gen-
erated from sensors with different FoVs that is immune to
the effect of fusion mismatch. The solution includes two
parts: a parallelized GCI fusion in the commong FoV, and
a compensation strategy outside the common FoV.

3. We provide an error analysis in terms of L1-norm between
the parallelized GCI fusion and the traditional GCI fusion
algorithm. Specifically, we show that the error tends to
zero when the partial intensities generated by the cluster-
ing algorithm are well separated.

4. We implement the proposed fusion algorithm based on the
GM-PHD filter with adaptive birth model. In the imple-
mentation, the union find set (UFS) [37, 38] algorithm is
adopted to ensure that the GC subsets generated during
clastering are disjoint, and Optimal SubPattern Assign-

ment (OSPA) metric [39] is used to compute the similarity
between different subsets. In addition, Murty’s algorithm

[41] is utilized to obtain the association pairs effectively.

The remainder of the paper is organized as follows. Sec-
tion II introduces the main background notions including the
multi-target Bayes filter, the PHD filter, and the GCI fusion rule.
The mismatch of the GCI fusion for multi-view sensors is ana-
lyzed in Section III. The proposed fusion algorithm is described
in Section IV, including a detailed description of the proposed
GM implementation. Section V is dedicated to the simulations,
while conclusions and perspectives for future work are given in
Section VI.

Table 1: Notations

• Small letters, e.g., x and z, respectively, denote single-
target states and single-target observations.

• Capital letters, e.g., X and Z, respectively, denote multi-
target states and multi-target observations.

• Blackboard bold letters, e.g., X and Z, respectively, denote
the state and measurement spaces.

• Each single target state x = [p⊤ v⊤]⊤ ∈ R
2v, comprises

position pi
k
∈ Rv and velocity vi

k
∈ Rv, where ‘⊤’ denotes

transpose.

• The multi-target state at time k can be represented as

Xk = {x1
k , x

2
k, ..., x

nk

k
}

where xi
k

is the state of the i-th target and nk is the number
of targets.

• The multi-target observations from sensor l at time k can
be represented as

Zl
k = {zl,1

k
, zl,2

k
, ..., z

l,ml
k

k
}

where z
l, j

k
is the j-th observation data from sensor l and ml

k

is the number of observations.

• For a given target state set Xk, each target xi
k
∈ Xk either

survives at time k + 1 with survival probability pS

(
xi

k

)
or

disappear with probability 1 − pS

(
xi

k

)
.

• A target having state x is detected by sensor l with proba-
bility pl

D
(x).
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2. Background

This section provides an overview of the background mate-
rial relevant to our work. Some of the related notations are
summarized in Table I.

2.1. Multi-target Bayes filter

In this paper, the multi-target state is modelled as a RFS, i.e.
a variable which is random in both the number of elements (i.e.
the number of targets) and the values of the elements (i.e. the
target states). From a probabilistic point of view, the RFS Xk is
completely characterized by the multi-object posterior πk (Xk),
corresponding to the multi-object density of Xk conditional to
all the observations collected up to and including time k.

Given the multi-target posterior at time k − 1 and the obser-
vation set Zk at time k, the multi-target Bayes filter propagates
the multi-target posterior in time via the Chapman-Kolmogorov
prediction

πk|k−1 (Xk) =

∫
fk|k−1(Xk |Xk−1)πk−1(Xk−1)δXk−1 (1)

and then updates the density using the Bayes formula

πk (Xk)=
gk (Zk |Xk) πk|k−1 (Xk)∫

gk (Zk |Xk) πk|k−1 (Xk) δXk

(2)

where fk|k−1(Xk|Xk−1) and gk(Zk |Xk) are the multi-target transi-
tion density and the multi-target likelihood, respectively. The
integrals in (1)-(2) are to be intended in the set-integral sense
[14].

2.2. The PHD filter

The multi-target Bayes filter described in the previous section
is in general intractable from the computational point of view.
A possible approximation is the so-called PHD filter [13, 15]
that is based on the idea of representing the multi-target set as a
Poisson RFS. The multi-object density π(X) of a Poisson RFS
X takes the form

π(X) = exp

(
−

∫

X

v(x) dx

) ∏

x∈X

v(x) (3)

where v(x) is the so-called PHD or intensity function. The PHD
v(x) can be interpreted as the local density of the number of
targets in the single-target state space. In fact, given a region
X ⊆ X, the expected number of targets inside such a region
can be computed as

∫
X

v(x) dx , and the total number of ex-
pected targets in the whole state space is given immediately by∫
X

v(x) dx . The PHD filter propagates in time the PHD vk(x) of
the multi-target state conditioned to all the collected observa-
tions. The detailed PHD filter recursions are given as follows.

vk|k−1(x) =

∫
pS (ζ) fk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) (4)

vk(x) =[1 − pD(x)]vk|k−1(x)

+
∑

z∈Zk

pD(x)gk(z|x)vk|k−1(x)

κk(z) +
∫

pD(ζ)gk(z|ζ)vk|k−1(ζ)dζ

(5)

where γk(x) is the prior PHD of target births at time k, and κk(z)
is the clutter density.

From (4) and (5), we can see that the PHD filter operates in
the single-target state space and avoids data associations. In
practice, instead of propagating the multi-target posterior den-
sity, the PHD filter chooses to propagate the first-order moment
of the true posterior by approximating the multi-target set as a
Poisson RFS. The most typical implementations of the PHD fil-
ter are based either on GMs or SMC. In this paper, we mainly
focus on the GM implementation. Accordingly, the posterior
PHD vk(x) is represented as

vk(x) =
N∑

i=1

αk,iN(x; xk,i,Pk,i) (6)

whereN(x; xk,i,Pk,i) denotes the Gaussian PDF with mean mk,i

and covariance Pk,i.
Concerning the birth model it can be either predefined [27,

28] using prior information or adaptive [42–46]. The adaptive
birth model (ABM) is based on the idea of using the measure-
ments to initialize new components in the PHD, and is prefer-
able when new targets can born in the whole state space. As
discussed in [42–46], the ABM makes use of a uniform (or par-
tially uniform) birth intensity so as to reflect the uncertainty on
the location of newborn targets.

2.3. GCI fusion rule

Consider two multi-target posteriors π1
k

(X) and π2
k

(X) con-
ditioned on measurement set sequences from two different sen-
sors. When the correlation between the two measurement set
sequences is unknown, the two multi-target posteriors can be
fused by resorting to the so-called GCI fusion rule [16]. Under
the GCI fusion rule, the two multi-target posteriors are fused
into the multi-target posterior

π
1,2
k

(X) =
π1

k
(X)ω1 π2

k
(X)ω2

∫
π1

k
(X)ω1 π2

k
(X)ω2 δX

(7)

where the positive scalars ω1, ω2, with ω1+ω2 = 1, are weights
determining the relative importance of each multi-target poste-
rior. The fusion rule (7) was originally proposed for the fusion
of PDFs in the statistics literature [47], and then generalizes
to the case of RFS densities by Mahler [16]. As discussed in
[48], the fused density given in (7) is the one minimizing the
weighted sum of the KLD with respect to the densities to be
fused

π
1,2
k
= arg inf

π

(
ω1DKL(π‖π1

k) + ω2DKL(π‖π2
k)
)

(8)

where

DKL(π‖πi)
∆
=

∫
π(X) log

π(X)

πi(X)
δX. (9)

See [20] for a proof in the case of RFS densities. While, for the
sake of simplicity, only the case of two densities is considered,
all the above considerations apply also in the case of more than
two sensors.
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Let now the multi-target posteriors to be fused be Poisson
RFSs with PHDs v1

k
(x) and v2

k
(x), respectively, as it happens

when each sensor runs locally a PHD filter. Then, application
of the GCI fusion rule yields again a Poisson RFS with fused
PHD given by [17]

v
1,2
k

(x) =
[
v1

k(x)
]ω1

[
v2

k(x)
]ω2
. (10)

While the result of the above cannot be computed in closed-
form when the PHD is represented by a GM, because the ex-
ponentiation of a GM is in general not a GM, various approxi-
mation strategies exist. For instance, one possible way of over-
coming this drawback amounts to approximating each power[
vl

k
(x)

]ωl

as a Gaussian mixture

[
vl

k(x)
]ωl

≈

Nl∑

i=1

α̃l
k,iN(x; x̃l

k,i, P̃
l
k,i) (11)

and, then, computing the fused PHD as

v
1,2
k

(x) =
N1∑

i=1

N2∑

j=1

α
1,2
k,i, j
N

(
x; x

1,2
k,i, j
,P

1,2
k,i, j

)
(12)

where

P
1,2
k,i, j

=

[(
P̃1

k,i

)−1
+

(
P̃2

k, j

)−1
]−1

(13)

m
1,2
k,i, j

= P
1,2
k,i, j

[
(P̃1

k,i)
−1x̃1

k,i + (P̃2
k, j)
−1x̃2

k, j

]
(14)

α12
k,i, j = α̃1

k,iα̃
2
k, jN (̃x1

k,i − x̃2
k, j; 0, P̃1

k,i + P̃2
k, j). (15)

As discussed in [20], when the Gaussian Components (GCs)
of each local PHD are well separated, the approximation in (11)
can be simply obtained as

x̃l
k,i = xl

k,i (16)

P̃l
k,i =

Pl
k,i

ωl

(17)

α̃l
k,i =

(
αl

k,i

)ωl

κ(ωl,P
l
k,i) (18)

where

κ (ω,P) ≈

√ ∣∣∣2π P
ω

∣∣∣
|2πP|ω

. (19)

More accurate approximations, like the one of [49] based on
sigma-points, must instead be used in the case of closely-spaced
Gaussian components.

It can be seen from (12) that, there will be N1N2 GCs after
fusion. In the general case of S sensors, centralized GCI fusion
[50] would yield

∏
s Ns GCs, thus requiring a high computa-

tional load. Hence, when S > 2 a sequential fusion strategy
[51] may be preferable in practice.

3. Analysis of the mismatch of GCI fusion for sensors with

different FoVs

In this section, we provide a brief overview of the behavior
of GCI fusion when applied to sensors with different FoVs, and
we discuss the reason why GCI fusion may fail in this case. To
this end, we make use of the following example.

Example 1: Consider a distributed sensor network with two
sensors, each one running a GM-PHD filter with adaptive birth
model (AB-GMPHD). The surveillance region is [0, 1500]m ×
[0, 1000]m. The dynamics and observation models are the same
as in [52]. The survival probability is pS ,k = 0.99. The positions
of the two sensors are

p1 = [400, 0]⊤, p2 = [800, 0]⊤

Each sensor has a limited FoV and, specifically, can detect only
targets with relative angle in the interval [−60◦, 60◦]. The de-
tection probability is pD = 0.98 within the FoV, and zero other-
wise. The true tracks are shown in Fig. 1 (a) and the simulation
results including OSPA errors [39] and cardinality estimates are
shown in Fig. 1 (b). The OSPA parameters are set equal to
c = 30m, p = 2.

It can be seen from Fig. 1 (a) that target 1 is detected only by
sensor 1, while target 2 is detected only by sensor 2. Accord-
ingly, the PHD of sensor 1 will not contain GCs representing
target 2, while the PHD of sensor 2 will not contain GCs repre-
senting target 1. Hence, the GCs of sensor 1 will be far from the
GCs of sensor 2. The result is that tracking performance after
fusion is substantially worse than that of a single sensor.
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Figure 1: (a) Simulation scenario used in Example 1; (b) performance of single-
sensor PHD filters and standard GCI fusion in terms of OSPA errors and cardi-
nality estimates.

The reason for the behavior highlighted in Example 1 is that
the essence of GCI fusion rule is the weighted multiplication
between target densities, and the fusion process will work well
only when both sensors detect the same targets. In fact, when a
sensor does not detect a target, its PHD will be close to zero in
the corresponding region of the state space. Hence, even if the
other sensor is able to detect the target and, hence, has GCs with
no-negligible weights in that region, application of the GCI fu-
sion rule will yield a substantial decrease of such weights. Con-
sequently, the target may be lost in the fused multi-target dis-
tribution, as it happens in Example 1. This state of affairs can
be also understood by looking at the GM-based implementation
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(12) of GCI fusion. In fact, we can see from (15) that a large
distance between GCs results in a small fused weight, since
N (̃x1

k,i
− x̃2

k, j
; 0, P̃1

k,i
+ P̃2

k, j
) tends to 0 when the distance x̃1

k,i
− x̃2

k, j

increases. .

4. The CA-GCI fusion algorithm

In order to overcome the drawbacks of the traditional GCI fu-
sion algorithm applied in multi-sensor fusion with partial over-
lapping FoVs, we propose a novel clustering-based GCI fusion
algorithm, named CA-GCI fusion algorithm. First, we describe
the basic ideas of the proposed fusion algorithm and analyse
the approximation error as compared to traditional GCI fusion.
Then, we discuss how the fusion rule can be modified so as to
deal with the different FoVs. Finally, detailed guidelines on the
implementation are provided.

For ease of presentation, the problem of fusing the PHDs
coming from two sensors is considered. All the presented tech-
niques can be readily generalized to sensor networks with mul-
tiple sensors (S > 2) by resorting to a sequential fusion strategy.

4.1. Fusion for overlapping FoVs

Let the two PHDs v1(x) and v2(x) to be fused be represented
in GM form as in (6). Suppose now that the GCs of each of
the two PHDs are grouped together in clusters so that the two
PHDs can be decomposed as

v1(x) =

M1∑

p=1

v̂1
p(x) (20)

v2(x) =

M2∑

p=1

v̂2
p(x) (21)

where each divided intensity function (DIF) v̂i
p(x) consists of

the linear combination of GCs. The clusters are constructed so
that:

(a) For each sensor l, clusters are well separated in the sense
that for any x ∈ X at most one of the DIFs v̂l

p(x) is substan-
tially different from zero, i.e.,

v̂l
p(x) v̂l

q(x) ≈ 0 (22)

for l = 1, 2 and for any p , q;

(b) The first Q DIFs of sensors 1 are matched with the first Q

DIFs of sensor 2. These DIFs correspond to the regions
of the state space in which both sensors have detected tar-
gets. Without loss of generality, we suppose that v̂1

p(x) is

matched with v̂2
p(x), for p = 1, . . . ,Q, so that

v̂1
p(x) v̂2

q(x) ≈ 0 (23)

for any p , q;

(c) The last M1 −Q DIFs of sensor 1 are not matched with any
DIF of sensor 2, i.e.,

v̂1
p(x) v̂2

q(x) ≈ 0 (24)

for any p = Q + 1, . . . ,M1 and for any q. These DIFs
correspond to targets detected only by sensor 1;

(d) The last M2 −Q DIFs of sensor 2 are not matched with any
DIF of sensor 1, i.e.,

v̂1
p(x) v̂2

q(x) ≈ 0 (25)

for any p and for any q = Q + 1, . . . ,M2. These DIFs
correspond to targets detected only by sensor 2.

An efficient algorithm for the construction of the matched clus-
ters based on the similarity between GCs will be provided later
on in Section IV.D.

Given the matched clusters and the corresponding DIFs for
the two PHDs, an approximate expression for the GCI fusion
rule can be easily derived. More specifically, in view of prop-
erty (a) the DIFs are well separated and, hence, the exponentia-
tions of the two PHDs can be approximated as

[
vl(x)

]ωl

=


Ml∑

p=1

v̂l
p(x)



ωi

≈

Ml∑

p=1

[
v̂l

p(x)
]ωl

(26)

for l = 1, 2 . Further, by exploiting properties (b)-(d), we also
have that

[
v1(x)

]ω1
[
v2(x)

]ω2
≈

Q∑

p=1

[
v̂1

p(x)
]ω1

[
v̂2

p(x)
]ω2
. (27)

This means that the matched DIFs can be fused in parallel and
the fused PHD v1,2(x) can be approximated by the intensity

v̂1,2(x) =
Q∑

p=1

[
v̂1

p(x)
]ω1

[
v̂2

p(x)
]ω2
. (28)

From the above equation, it is clear that only the DIFs corre-
sponding to targets detected by both sensors are preserved af-
ter fusion, while the DIFs corresponding to targets detected by
either sensor 1 or 2 (see points (c) and (d) above) disappear.
Hence, at a basic level, the GCI fusion rule can be interpreted
as performing an intersection of the DIFs (and hence of the
tracks) of the two sensors. This is consistent with the behav-
ior observed empirically in Section III. Hereafter, the approxi-
mated fusion rule (28) will be referred to as parallelized GCI.

Remark 1. We point out that, in the worst case where all tar-

gets are so close that it is impossible to partition the PHDs into

separated DIFs, there will be only one DIF for each sensor and

the parallelized GCI fusion (28) will reduce to the standard GCI

fusion algorithm.

4.2. Analysis of the approximation error

In this section, we analyze the error committed when the ap-
proximated fusion rule (28) is used. To this end, it is convenient
to partition the state space X into M = M1+M2−Q subsets X1,
. . ., XM so that

X = X1 ∪ X2 ∪ · · · ∪ XM (29)
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and
Xp ∩ Xq = ∅ (30)

for any p , q. The partition is built so that:

(i) for p = 1, . . . ,Q, the set Xp contains the tracks repre-
sented by the matched DIFs v̂1

p(x) and v̂2
p(x) in the sense

that
v̂l

p(x) ≈ 0 (31)

for l = 1, 2 and for any x ∈ X \ Xp;

(ii) for p = Q + 1, . . . ,M1, the set Xp contains the tracks rep-
resented by the unmatched DIF v̂1

p(x) of sensor 1 in the
sense that

v̂1
p(x) ≈ 0 (32)

for x ∈ X \ Xp;

(iii) for p = M1 + 1, . . . ,M, the set Xp contains the tracks
represented by the unmatched DIF v̂2

p−M1+Q
(x) of sensor 2

in the sense that
v̂2

p−M1+Q(x) ≈ 0 (33)

for x ∈ X \ Xp.

Notice that the above construction is possible in view of fact
that the DIFs are supposed to be well separated and matched as
discussed in points (a)-(d) above. Notice also that this partition
need not be actually determined, since it is just instrumental for
the analysis, but it is not used in the actual fusion rule.

Let us now decompose the two PHDs as

vl(x) =
M∑

p=1

vl
p(x) , (34)

for l = 1, 2 , where each partial intensity vl
p(x) is defined as

vl
p(x) = vl(x) 1Xp

(x) (35)

with 1Xp
(·) the indicator function

1Xp
(x) =

{
1 if x ∈ Xp

0 otherwise.
(36)

Notice that the partial intensities vl
p(x) satisfy properties (a)-(b)

exactly in that
vl

p(x) vr
q(x) = 0 (37)

for any l, r and any p , q. As a consequence, the fused PHD
v1,2(x) can be equivalently written as

v1,2(x) =
M∑

p=1

[
v1

p(x)
]ω1

[
v2

p(x)
]ω2
. (38)

Notice also that, since the DIFs are determined so as to approx-

imately satisfy properties (a)-(d), we have that

v1
p(x) ≈ v̂1

p(x) for p = 1, . . . ,M1

v1
p(x) ≈ 0 for p = M1 + 1, . . . ,M

v2
p(x) ≈ v̂2

p(x) for p = 1, . . . ,Q

v2
p(x) ≈ 0 for p = Q + 1, . . . ,M1

v2
p(x) ≈ v̂2

p−M1+Q
(x) for p = M1 + 1, . . . ,M

(39)

The above relationships can be quantified by bounding the dis-
crepancies in terms of a scalar δ

‖v1
p − v̂1

p‖∞ ≤ δ for p = 1, . . . ,M1

‖v1
p‖∞ ≤ δ for p = M1 + 1, . . . ,M

‖v2
p − v̂2

p‖∞ ≤ δ for p = 1, . . . ,Q

‖v2
p‖∞ ≤ δ for p = Q + 1, . . . ,M1

‖v2
p − v̂2

p−M1+Q
‖∞ ≤ δ for p = M1 + 1, . . . ,M

(40)

where, given a function f : X → R, ‖ f ‖∞ denotes its infi-
nite norm ‖ f ‖∞ = supx∈X | f (x)|. Clearly, the more well sepa-
rated are the matched DIFs v̂l

p(x) the smaller is the scalar δ. In
other words, δ can be interpreted as a quantitative measure of
how much each DIF v̂l

p(x) is concentrated in the corresponding
domain of the partition. For the readers’ convenience, Fig. 2
shows the difference between the DIFs (in blue) and the partial
intensities (in red) in a simple example.

The following result provides a quantification of the error
committed when the parallelized GCI fusion (28) is used in
place of the exact GCI fusion (10).

Proposition 1. Let the two PHDs
[
v1(x)

]ω1
and

[
v2(x)

]ω2
to be

fused be bounded, and let

K = max
{∥∥∥∥

[
v1

p

]ω1
∥∥∥∥

1
,

∥∥∥∥
[
v2

q

]ω2
∥∥∥∥

1

}
. (41)

for any p, q, where ‖·‖1 denotes the L1-norm, ‖ f ‖1 =
∫
| f (x)|dx.

Then, the following bound holds

∥∥∥v̂1,2 − v1,2
∥∥∥

1
≤ M2Kδω1 + (2Q + M1) Kδω2 . (42)

The proof of Proposition 1 is given in the Appendix A. It fol-
lows from Proposition 1 that the discrepancy

∥∥∥v̂1,2 − v1,2
∥∥∥

1
be-

tween the parallelized GCI fusion (28) and the exact GCI fusion
(10) is small when the scalar δ is small (i.e., when the matched
DIFs are well separated).

4.3. Fusion for different FoVs

When the sensors share the same FoV, the local PHDs con-
tain information on the same targets and the GCI fusion per-
forms well. However, as discussed in Section III, when different
sensors have different FoVs, the GCI fusion of local posteriors
can lead to unsatisfactory results. This is because, at a basic
level, GCI fusion can be interpreted as performing an intersec-
tion among the tracks of different sensors. In fact, recalling that
GCI fusion of two PHDs can be approximated as (28)), there
will be M1 − Q DIFs for sensor 1, namely v̂1

Q+1(x), . . . , v̂1
M1

(x),
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and M2 −Q DIFs for sensor 2, namely v̂2
Q+1(x), . . . , v̂2

M2
(x), that

do not participate in the fusion process so that the correspond-
ing tracks disappear after fusion. Hereafter, we will refer to
these DIFs as unconfirmed DIFs. Then, the idea is to modify
the fusion rule so as to preserve, at least partially, the informa-
tion contained in these unconfirmed DIFs, in order account for
the fact that each sensor has only a partial view of the over-
all surveillance area. Of course, special care has to be taken
in this operation since the unconfirmed DIFs, corresponding to
tracks present in only one of the sensors, may actually be false
targets. With this respect, it is important to distinguish the un-
confirmed DIFs contained in the intersection of the FoVs from
those contained only in the FoV of one sensor. In fact, while it
is reasonable to think that the former ones correspond to false
alarms, no similar conclusion can be drawn on the latter ones.
To this end, it is convenient to introduce the following concept.

Definition 1. Given an unconfirmed DIF v̂l
p(x), we say that

v̂l
p(x) is observed by sensor r if

∫

FoVr

v̂l
p (x) dx > γ

∫

X

v̂l
p (x) dx (43)

where γ ∈ (0, 1) is a threshold.

Let us now introduce, for each DIF of sensor l, a binary vari-
able βlr

p taking value 1 if v̂l
p(x) is not observed by sensor r, and

value 0 otherwise. Then, the idea is to preserve all the DIFs of
one sensors that are not observed by the other. Accordingly, we
define the preserved PHDs of sensors 1 and 2 as

v̄1(x) =

M1∑

p=Q+1

β12
p v̂1

p(x) (44)

v̄2(x) =

M2∑

p=Q+1

β21
p v̂2

p(x). (45)

We have now to distinguish two cases: namely complete
trust, and partial trust. The complete trust case refers to the
situation in which the sensor FoVs are time-invariant, and the
sensors do not receive any feedback after fusion so that the local
PHDs only contain information on the targets detected within
the local constant FoV. In this case, it is clear that it makes
sense to perform fusion only in the intersection FoV1 ∩ FoV2,
whereas the fusion center has to completely trust sensor 1 in its
exclusive field of view FoV1 \ FoV2 (and, similarly, a complete
trust should be given to sensor 2 in FoV2 \ FoV1). Hence, in
this case, the total fused intensity can be taken equal to

ṽ1,2(x) = v̂1,2(x) + v̄1(x) + v̄2(x). (46)

On the other hand, in many situations, local PHDs also contain
information outside the local FoV. For instance, this can happen
when the FoV is time-varying, like in the case of mobile sen-
sors, or when there is a feedback from the fusion center to the
local nodes1, or when the fusion is distributed/decentralized.

1Even in a centralized setting, feedback is important. In fact, thanks to the

Clearly, in these cases, it would be inappropriate to completely
trust a DIF that is present in one sensor but is not present in
the other. In this case, we follow a different approach by in-
troducing a compensation intensity in the PHDs to be fused (a
similar idea was proposed in [36] in the context of GCI fusion
of labelled RFS densities). This amounts to adding a new term
to each local PHD that models the birth of new targets outside
the current FoV. The new term, which corresponds to a uniform
(uninformative) intensity outside the current FoV, makes it pos-
sible for each sensor to initialize new tracks from those of the
other sensor (similarly to what happens in adaptive birth model
wherein a uniform birth density within the FoV is used to ini-
tialize new tracks from the measurements). The value ∆ > 0 of
this additional intensity plays the role of a confidence factor and
can be also interpreted as the expected target intensity. Then,
the fused intensity can be written as

ṽ1,2(x) = v̂1,2(x) + [v̄1(x)]ω̄1∆1−ω̄1 + [v̄2(x)]ω̄2∆1−ω̄2 (47)

where the two additional terms arise from the fusion of the pre-
served PHD v̄i(x) of one sensor with the uniform (uninforma-
tive) intensity ∆ of the other, and ω̄1 ∈ [0, 1] and ω̄2 ∈ [0, 1]
are fusion weights for non-overlapping areas, which can be dif-
ferent from ω1 and ω2. Notice that ∆, ω̄1, ω̄2 can be tuned ac-
cording to the actual sensor network under consideration. For
instance, by setting ∆ = 1, ω̄1 = 1 and ω̄2 = 1 we retrieve
the case of complete trust (46), whereas by choosing ∆ = 0 we
consider only the information pertaining to the intersection of
the FoVs.

4.4. The implementation of the proposed algorithm

In this section, the detailed GM implementation of the pro-
posed CA-GMPHD-GCI algorithm is provided, including the
construction of DIFs. The GCI fusion between matched DIFs
is efficiently implemented in a parallelized way, while the pre-
served DIFs are fused using the compensation intensity intro-
duced in the previous section.

Given the PHDs of the two sensors in GM form (6), the fol-
lowing eight implementation steps are carried out.

1) Grouping by pre-clustering: Considering that the number
of clusters is unknown, we choose the GCs whose weight α
satisfies

α > Tα (48)

as candidate cluster centers, where Tα is a pre-specified thresh-
old. Specifically, Tα is suitably tuned so as to ensure that new-
born targets can be quickly detected while avoiding that the
number of groups becomes too large. The corrected Maha-

lanobis distance

(x1 − x2)⊤
(
P1
−1 + P2

−1
)

(x1 − x2) (49)

information fed back from the fusion center, each sensor node is able to keep
track of all the targets currently present in the total surveillance area. For in-
stance, this means that when a target already detected by one sensor first enters
the FoV of another sensor, no initialization is required because the predicted
density already contains a GC corresponding to that target.

7



-10 -5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

x

(x
)

-4.4-4.2 -4-3.8-3.6

0.104

0.106

3.63.8 4 4.24.4

0.104

0.106

Part 2Part 1

1
(x)l
v

1
ˆ (x)l
v

2
(x)l
v

2
ˆ (x)l
v

Figure 2: The discrepancy between the approximated partial intensity and the
true partial intensity for sensor l.

is used to measure the distance between two GCs having
mean/covariance (x1,P1) and (x2,P2), respectively. For each
sensor, clusters are formed by grouping together all GCs whose
distance from a cluster center is less than a given threshold Td.
The same distance criterion is used for the two sensors. After
the clustering process is finished, the GCs of the two sensors
are decomposed into the following subsets

L1 =
{
L1

1, L
1
2, · · · , L

1
a

}
(50)

L2 =
{
L2

1, L
2
2, · · · , L

2
b

}
(51)

where a and b are the numbers of subsets for sensor 1 and 2,
respectively. Due to the different FoVs, a and b are in general
different.

2) Making the clusters disjoint: The subsets resulting from
the above-described procedure need not be disjoint, i.e. each
GC is in general can be assigned to more than one subset Li

l
.

This usually happens when there are targets at close distance.
In order to ensure that each GC is associated with a single sub-
set, we resort to the union find set (UFS) algorithm [37, 38].
After application of UFS, a new decomposition is obtained for
the GCs of the two sensors

L1 =
{
L1

1, L
1
2, · · · , L

1
M1

}
(52)

L2 =
{
L2

1, L
2
2, · · · , L

2
M2

}
(53)

where M1 ≤ a and M2 ≤ b are the new numbers of subsets
for sensor 1 and 2, respectively, and where, by construction,
Ll

p ∩ Ll
q = ∅ for any p , q. Hence, denoting by Nl

p the number

of GCs in the subset Ll
p and by Nl the total number of GCs of

sensor l, we have Nl =
∑Ml

p=1 Nl
p. Notice that each of the subset

Ll
p defines a DIF v̂l

p(x) obtained as combination of the GCs in

Ll
p.

3) Matching subsets: In order to find a matching between the
subsets of sensor 1 and those of sensor 2, i.e. between the DIFs
of sensor 1 and those of sensor 2, we use the OSPA distance [39]
in order to measure the distance (dissimilarity) between subsets.
Then, the following M1 × M2 distance matrix is constructed

D =



d1,1 · · · d1,M2

...
. . .

...

dM1,1 · · · dM1,M2


(54)

where dp,q denotes the OSPA distance between L1
p and L2

q.

Then an optimal matching between the subsets L1 and L2 is
found by solving a linear assignment problem [40]. Specifi-
cally, Let us denote by S the binary assignment matrix defined
so that S p,q = 1 if L1

p is associated to L2
q, and S p,q = 0 oth-

erwise. Further let us suppose, without loss of generality, that
M1 ≥ M2. Then, we use Murty’s algorithm [41] to find the
matrix S ∗ that minimizes

tr(S ⊤D) =
M1∑

p=1

M2∑

q=1

dp,q S p,q. (55)

under the constraint
∑M1

p=1 S p,q = 1.

Afterwards, for every associated pair (p, q) such that S p,q =

1, we check whether the distance dp,q is below or above a given
threshold Tr. In the former case, the association is considered
valid. Conversely, if the distance is too large, the association
is discarded. As a result, in general only Q ≤ min{M1,M2}

pairs (p, q) are considered valid associations (these are the DIFs
corresponding to the targets detected by both sensors), while
M1 − Q subsets of sensor 1 and M2 − Q subsets of sensor 2 are
not associated (these are the unconfirmed DIFs corresponding
to the targets detected only by one of the sensors). Finally, the
subsets of the two sensors are reordered so that the first Q pairs
(L1

p, L
2
p), p = 1, . . . ,Q, correspond to matched subsets/DIFs.

5) Selecting the preserved DIFs: After the match procedure
is finished, we resort to (43) to determine which of the uncon-
firmed DIFs should be preserved and which, instead, should
be deleted. Specifically, each unmatched subset L1

p, p = Q +

1, . . . ,M1 of sensor is preserved (i.e. β12
p = 1) if and only if

∑N1
p

i=1
αl

p,i

∫

FoV2

N
(
x; x1

p,i,P
1
p,i

)
dx ≤ γ

∑N1
p

i=1
α1

p,i. (56)

If, instead, the above condition is not satisfied, the GCs belong-
ing to the subset L1

p are deleted. An analogous procedure is

followed for the unmatched subsets L2
p, p = Q + 1, . . . ,M2 of

sensor 2.

6) Fusion of the matched DIFs: For each association pair(
L1

p, L
2
p

)
, p = 1, . . . ,Q, GM approximations of the powers

[v̂1
p(x)]ω1 and [v̂2

p(x)]ω1 of the corresponding DIFs as described
in Section II-C. Then, given the GMs

[v̂l
p(x)]ωl ≈

Nl
p∑

i=1

α̃l
p,iN(x; x̃l

p,i, P̃
l
p,i) (57)
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for p = 1, . . . ,Q and l = 1, 2, the parallelized GCI fusion struc-
ture is adopted. Accordingly, the fused PHD for the matched
DIFs is obtained as

v̂1,2(x) =
Q∑

p=1

N1
p∑

i=1

N2
p∑

j=1

α
1,2
p,i, j
N

(
x; x

1,2
p,i, j
,P

1,2
p,i, j

)
(58)

where

P
1,2
p,i, j
=

[(
P̃1

p,i

)−1
+

(
P̃2

p, j

)−1
]−1

x
1,2
i, j,m
= P

1,2
p,i, j

[
(P̃1

p,i)
−1x̃1

p,i + (P̃2
p, j)
−1x̃2

p, j

]

α
1,2
p,i, j
= α̃1

p,i α̃
2
p, jN (̃x1

p,i − x̃2
p, j; 0, P̃1

p,i + P̃2
p, j).

Remark 2. In terms of computational burden, the traditional

GCI fusion would require to compute and store
(∑Q

p=1 N1
p

)
·(∑Q

p=1 N2
p

)
GCs. On the other hand, the parallelized GCI fu-

sion only requires the computation of
∑Q

p=1

(
N1

p · N
2
p

)
GCs, thus

significantly reducing the computational burden when Q > 1.

7) Fusion of the preserved DIFs: For each unmatched subset

Ll
p corresponding to a preserved DIF (as determined in step 5),

a GC approximation of the power [v̂l
p(x)]ω̄l is computed as in

(57). Then, the total fused density takes the form

ṽ1,2(x) =
Q∑

p=1

N1
p∑

i=1

N2
p∑

j=1

α
1,2
p,i, j
N(x; x

1,2
p,i, j
,P

1,2
p,i, j

)

+

M1∑

p=Q+1

N1
p∑

i=1

∆1−ω̄1β12
p α̃

1
p,iN

(
x; x̃1

p,i, P̃
1
p,i

)

+

M2∑

p=Q+1

N2
p∑

j=1

∆1−ω̄2β21
p α̃

1
p, jN

(
x; x̃2

p, j, P̃
2
p, j

)

(59)

where clearly the terms corresponding to the subsets deleted at
step 5 need not be computed because βlr

p = 0.
8) Target estimate extraction: Following [27], after the fused

density has been obtained, the extraction of multi-target state
estimates can be executed in a straightforward way by choosing
the GCs whose weight α is greater than a given threshold, e.g.,
0.5.

5. Simulation results

In this section, we test the tracking performance of the pro-
posed fusion algorithm (CA-GCI) using the GM-PHD filter
with adaptive birth model. The proposed algorithm is compared
to the C-GM-PHD filter of [33] using the OSPA error (i.e. the
OSPA distance [39] between the true and the estimated target
sets) as performance index. The OSPA distance parameters are
set to be c = 30m and p = 2. The errors are averaged over 200
independent Monte Carlo runs.

Tracking model and scenario: Consider the problem of track-
ing an unknown and time-varying number of targets observed

in clutter. The single-target state is

xk = [px,k, ṗx,k, py,k, ṗy,k]⊤

where (px,k, py,k) and ( ṗx,k, ṗy,k) represent the target position
and, respectively, velocity in Cartesian coordinates at time k.
Each target moves according to the following dynamic model

xk+1 = Fxk + wk

F =

[
I2

02

T sI2

I2

]
, Q = σ2

w


T 4

s

4 I2
T 3

s

2 I2
T 3

s

2 I2 T 2
s I2



where In and 0n denote, respectively, the n× n identity and zero
matrices. T s = 1s is the sampling period, Q is the process noise
covariance and σw = 2m/s2 is the standard deviation of the
process noise.

The considered scenario is depicted in Fig. 3. Overall, 11
targets enter the scenario at different time instants as detailed in
Table II. Two sensors located at (400m, 0m) and (800m, 0m), re-
spectively, provide measurements of the unknown targets. Each
sensor has a limited FoV as depicted in Fig. 3. Within the FoV
the probability of detection is constant, i.e.

pl
D(x) =

{
0.95, x ∈ FoVl

0, x < FoVl

for l = 1, 2. When a target is detected, a measurement is gener-
ated according to the linear noisy model

zk =

[
1 0 0 0
0 0 1 0

]
xk+vk

R = σ2
ε

[
1 0
0 1

]

where R is the measurement noise covariance and σε = 10m

is the standard deviation of the measurement noise. Clutter fol-
lows a uniformly distributed Poisson RFS with an average of
20 clutter points per scan (λc = 20).

For the PHD filters, the survival probability ps is constant
and equal to 0.99. Following [43], the covariance of newborn
targets is set to a large value so as to ensure they can cover the
surveillance area as much as possible. For the CA-GCI fusion
algorithm, the pre-clustering threshold and the weight thresh-
old are set equal to Td = 15 and Tα = 0.02, respectively. The
matching threshold is Tr = 15. The fusion weights for the pre-
served DIFs are ω̄1 = ω̄2 = 0.8 and the confidence factor is
∆ = 0.9. The weights for the fusion of the matched DIFs are
ω1 = ω2 = 0.5, which on average achieves nearly optimal re-
sults [53].

Simulation results: To assess the effectiveness of the pro-
posed algorithm, we examine the fusion performance in a sit-
uation. Comparisons in terms of OSPA errors and cardinality
estimates for the considered filters are shown in Figs. 4 and 5,
respectively. From Fig. 4, we can see that both the proposed
method and the C-GM-PHD filter are able to improve the lo-
cal sensor performance. Furthermore, the proposed algorithm
significantly outperforms the C-GM-PHD filter, especially in
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Table 2: Target birth and death

Target Init. Loc.(m) Init. Velo.(m/s) Birth/Death(s)
T1 [1000, 400] [−14, 0] 1/80
T2 [1250, 400] [−4,−2.5] 1/80
T3 [500, 100] [−8, 10] 10/60
T4 [0, 600] [0,−4] 10/80
T5 [1000, 200] [−9, 9] 10/70
T6 [1250, 505] [−14,−7] 20/60
T7 [1000, 600] [−12,−7] 20/60
T8 [250, 200] [8, 10] 20/70
T9 [1250, 300] [−16, 0] 30/70
T10 [−150, 500] [32, 0] 30/70
T11 [400, 600] [12, 3] 40/80
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Figure 3: True target trajectories considered in the scenario. The start/end point
of each trajectory is denoted, respectively, by �|N.
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Figure 4: Performance comparison in terms of OSPA errors among sensor
1, sensor 2, the C-GM-PHD filter and the proposed fusion algorithm (CA-
GMPHD-GCI).
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Figure 5: Performance comparison in terms of target cardinality among sen-
sor 1, sensor 2, the C-GM-PHD filter and the proposed fusion algorithm (CA-
GMPHD-GCI).

terms of cardinality estimate (Fig. 5). In fact, the C-GM-PHD
filter substantially overestimates the true cardinality during the
time interval [30, 70]s, because the weights of the fused GCs
are computed using the weights of multiple GCs. In contrast,
the proposed algorithm is able to closely follow the true car-
dinality, a part from a small delay in the detection of newborn
targets.

In order to verify the robustness of the proposed algorithm,
Monte Carlo simulations have been performed with different
detection probabilities and clutter rates. A comparison for dif-
ferent pD and same λc is given in Table III. As expected for
all the considered filters, the OSPA error increases as the pD

increases, but the proposed algorithm provides the best perfor-
mance. Further, in Table IV a comparison for different λc and
same pD is given. Also in this case, the proposed algorithm
turns out to be more robust with respect to an increase in the
clutter rate.
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Table 3: OSPA errors with different detection probabilities and same clutter rate
(λc = 20).

PD Sensor 1 Sensor 2 C-GM-PHD Proposed

0.75 23.8612 24.0699 21.6949 21.1739
0.85 21.9649 22.0665 19.4878 19.0956
0.90 20.6366 20.5620 17.2009 16.5622
0.95 19.4173 19.1632 15.5130 14.4411
0.98 18.9021 18.3692 14.3381 13.7560

Table 4: OSPA errors with different clutter rates and same detection probability
(pD = 0.95).

λc Sensor 1 Sensor 2 C-GM-PHD Proposed

10 19.1457 18.6978 14.8450 13.3432
20 19.4173 19.1632 15.5130 14.4411
30 19.7298 19.5954 15.8714 15.1374
40 20.2337 19.9615 16.4390 16.0174
50 20.5805 20.8820 17.5043 17.1127

6. Conclusions and future work

In this paper, an effective and robust fusion algorithm has
been proposed in a distributed setting by combining the GCI
fusion rule with a suitable CA. Starting from an analysis of the
pitfalls of the GCI fusion rule in the case of sensors with dif-
ferent FoVs, a solution to this problem based on the decompo-
sition of the local PHDs into well-separated components have
been presented. Then, two different fusion strategies have been
presented: a parallelized GCI fusion strategy for combining the
components in the common FoV and detected by all sensors;
and a suitable compensation strategy to preserve the compo-
nents outside the common FoV and, hence, not present in all
the local PHDs. The effectiveness of the proposed approach has
been analyzed by means of simulations in a challenging track-
ing scenario. An extension of the method to the GM-CPHD
filter [20] considering both intensity function and cardinality
distribution, is a relevant topic for future research.
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7. Appendix

Proof. Combining (28) with (38), we can derive the bound on∥∥∥v̂1,2 − v1,2
∥∥∥

1
. For convenience, the following shorthand nota-

tion will be used

ε1
p =

[
v̂1

p

]ω1
−

[
v1

p

]ω1
(60)

ε2
p =

[
v̂2

p

]ω2
−

[
v2

p

]ω2
. (61)

By applying the triangular inequality, the L1-norm
∥∥∥v̂1,2 − v1,2

∥∥∥
1

can be decomposed into two parts as shown in (62). Next, two
parts are discussed separately.
Part 1 in (62): The following upper bound can be obtained

Q∑

p=1

∥∥∥∥
[
v̂1

p

]ω1
[
v̂2

p

]ω2
−

[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1
(63)

=

Q∑

p=1

∥∥∥∥
[
v1

p

]ω1
ε2

p +
[
v2

p

]ω2
ε1

p + ε
1
pε

2
p

∥∥∥∥
1

(64)

≤

Q∑

p=1

(∥∥∥∥
[
v1

p

]ω1
ε2

p

∥∥∥∥
1
+

∥∥∥∥
[
v2

p

]ω2
ε1

p

∥∥∥∥
1

)

+

Q∑

p=1

∥∥∥ε1
pε

2
p

∥∥∥
1

(65)

≤

Q∑

p=1

(∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1

∥∥∥ε2
p

∥∥∥
∞
+

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥

1

∥∥∥ε1
p

∥∥∥
∞

)

+

Q∑

p=1

∥∥∥ε1
p

∥∥∥
1

∥∥∥ε2
p

∥∥∥
∞

(66)

≤

Q∑

p=1

(∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1

∥∥∥ε2
p

∥∥∥
∞
+

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥

1

∥∥∥ε1
p

∥∥∥
∞

)

+

Q∑

p=1

(∥∥∥∥
[
v̂1

p

]ω1
∥∥∥∥

1
+

∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1

) ∥∥∥ε2
p

∥∥∥
∞

(67)

≤ QK (3δω2 + δω1) (68)

where

1. (64) holds because

ab − cd = (a − c + c)(b − d + d) − cd

= (a − c)(b − d) + d(a − c) + c(b − d).

2. (65) is obtained by applying the triangular inequality;

3. (66) holds because ‖ f g‖1 ≤ ‖ f ‖∞ ‖g‖1;

4. (67) can be ontained in a similar way as (64);

5. As to (68), in view of (40) and (41), we have
∥∥∥v̂1

m − v1
m

∥∥∥
∞
≤ δ (69)

∥∥∥v̂2
m − v2

m

∥∥∥
∞
≤ δ (70)

∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1
≤ K (71)

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥

1
≤ K (72)

∥∥∥∥
[
v̂1

p

]ω1
∥∥∥∥

1
≤ K (73)
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∥∥∥v̂1,2 − v1,2
∥∥∥

1

=

∥∥∥∥∥∥∥∥

Q∑

p=1

[
v1

p

]ω1
[
v2

p

]ω2
−

M∑

p=1

[
v1

p

]ω1
[
v2

p

]ω2

∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥

Q∑

p=1

[
v1

p

]ω1
[
v2

p

]ω2
−


Q∑

p=1

[
v1

p

]ω1
[
v2

p

]ω2
+

M∑

p=Q+1

[
v1

p

]ω1
[
v2

p

]ω2



∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥

Q∑

p=1

([
v1

p

]ω1
[
v2

p

]ω2
−

[
v1

p

]ω1
[
v2

p

]ω2
)
+

M∑

p=Q+1

[
v1

p

]ω1
[
v2

p

]ω2

∥∥∥∥∥∥∥∥
1

≤

Q∑

p=1

∥∥∥∥
[
v̂1

p

]ω1
[
v̂2

p

]ω2
−

[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1︸                                      ︷︷                                      ︸
part 1

+

M∑

p=Q+1

∥∥∥∥
[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1︸                     ︷︷                     ︸
part 2

(62)

Then, since ω1 ≤ 1 and ω2 ≤ 1, we have
∥∥∥∥
[
v̂1

p

]ω1
−

[
v1

p

]ω1
∥∥∥∥
∞
≤ δω1 (74)

∥∥∥∥
[
v̂2

p

]ω2
−

[
v2

p

]ω2
∥∥∥∥
∞
≤ δω2 . (75)

As a result, (68) is obtained.

Part 2 in (62): Similarly to part 1, the following upper bound
can be obtained

M∑

p=Q+1

∥∥∥∥
[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1

=

M1∑

p=Q+1

∥∥∥∥
[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1
+

M∑

p=M1+1

∥∥∥∥
[
v1

p

]ω1
[
v2

p

]ω2
∥∥∥∥

1

≤

M1∑

p=Q+1

∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥
∞

+

M∑

p=M1+1

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥

1

∥∥∥∥
[
v1

p

]ω1
∥∥∥∥
∞

(76)

=

M1∑

p=Q+1

δω2

∥∥∥∥
[
v1

p

]ω1
∥∥∥∥

1
+

M∑

p=M1+1

δω1

∥∥∥∥
[
v2

p

]ω2
∥∥∥∥

1
(77)

≤ (M1 − Q) Kδω2 + (M − M1) Kδω1 . (78)

Combining (68) and (78) and recalling that M = M1 + M2 − Q,
the upper bound

∥∥∥v̂1,2 − v1,2
∥∥∥

1
≤ M2Kδω1 + (2Q + M1) Kδω2 (79)

can be readily obtained. Hence, Proposition 1 holds.
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