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Universidade da Coruña (University of A Coruña), CITIC Research Center
Campus de Elviña s/n, 15071 A Coruña, Spain

Abstract

Time-modulated arrays (TMAs) are able to improve the side-lobe level of the radiation pattern at the
fundamental mode but cannot steer the beam at such a mode towards a given direction. Beam-steering
is possible in a TMA, but only at the harmonic patterns and at the expense of a severe TMA efficiency
reduction. In this work we propose a TMA approach that simultaneously performs both features over the
same beam by using two sets of switches: (1) single-pole four-throw switches to generate periodic stair-step
pulses suitable for efficiently synthesizing a uniform steerable beam over the first positive harmonic, and (2)
single-pole single-throw switches to reconfigure the side-lobe level of the previous beam. Performance, small
size, cost-effectiveness, and performance invariability with the carrier frequency are features that make this
TMA approach a competitive solution for analog beamforming. Accordingly, the structure is an attractive
proposal for the design of multibeam transceivers.
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1. Introduction

Hybrid digital-analog beamforming architectures
reduce hardware cost and avoid the high energy
consumption exhibited by fully digital solutions
[14, 16, 27]. Nevertheless, since the analog part in
these hybrid solutions is in general based on vari-
able phase shifters (VPSs), there is still room for
further improvement not only in terms of cost, but
also in terms of phase resolution and insertion losses
[7]. Switched time-modulated arrays (TMAs) [20]
constitute an interesting alternative to VPS-based
analog beamforming networks (BFNs).
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Although the theoretical basis of the beam-
steering capabilities of TMAs was stated by the pio-
neering work in [31], it is not until the arrival of sys-
tematic optimization algorithms when TMA beam-
steering design is addressed with renewed vigor
[17, 32]. TMA adaptive beamforming was origi-
nally studied in [18] considering the radiation pat-
terns at the fundamental mode (static) and at the
first harmonics (steerable). Subsequent works ad-
dress the TMA harmonic beamforming by focus-
ing on the mitigation of interfering signals [29] and
on the exploitation of a key differential feature of
TMAs: the exchange of spatial and frequency di-
versity [23, 24, 28, 30, 33].

A common denominator among all the previous
works is that the efficiency of the technique (either
beam-steering or beamforming) is compromised by
two issues intrinsic to the TMA technique [21]:

1. The frequency behavior of conventional rect-
angular pulses, which are not the best ones to
efficiently distribute the spectral energy among
the multiple harmonic patterns to be exploited
[20, 24].

2. The duplicated-specular radiation diagrams,
which are a consequence of the presence of
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negative harmonics with the same magnitude
and opposite phase. Additionally, the scanning
inability of the fundamental mode beam and
the proportionality between the phases of har-
monics with different order apparently jeopar-
dize the versatility of beamforming with TMAs
[21]. A solution to the first issue is proposed in
[11] by using single-pole double-throw (SPDT)
switches —controlled by rectangular sequences
with a duty cycle of 50%— and fixed 180◦

phase shifters. Such a structure generates only
odd harmonics and removes the fundamental
pattern, but does not solve the problem of the
mirror-frequency diagrams.
A more efficient beam-steering architecture
(with two single-pole single-throw (SPST)
switches per antenna and some additional
hardware such as one-bit phase shifters) is pro-
posed in [34] to overcome the two aforemen-
tioned issues. Such a single-sideband (SSB)
time-modulated phased array architecture syn-
thesizes a steerable uniform beam in the first
positive harmonic, and is capable of removing
the third-order harmonics, being the highest
undesired harmonic that of fifth order. How-
ever, the amplitude of such a uniform radiated
pattern is still not reconfigurable.

Hence, if we want to reconfigure the amplitude
pattern topology (e.g., in terms of side-lobe level
(SLL)), while overcoming the aforementioned is-
sues, non-switched TMA beamforming solutions
provide excellent levels of power efficiency, but at
the expense of increasing their complexity and,
above all, with the handicap of the hardware im-
plementation at high frequencies [21].
The motivation of this paper is the innovation in

the design of switched TMAs towards the following
directions:

1. The proposal of an SSB switched TMA scheme
—based on the novel application of stair-step
periodic pulses— to efficiently perform both
beam-steering and beamforming, thus showing
the ability of reconfiguring the radiated pat-
tern amplitude.

2. The proposal of a hardware structure for such
a switched TMA scheme, attractive in terms of
cost, size, and complexity.

3. The application of the proposed structure
to multibeam transceivers employing a single
radio-frequency front-end and showing a per-
formance conditioned by the signal bandwidth

Figure 1: Periodic odd waveforms: (a) two-state square
waveform with only odd harmonic components, (b) tri-state
odd square periodic waveform which inverts the phase of
the two harmonics in the middle out of every group of four
harmonics, and (c) the sum of the previous waveforms that
removes the aforementioned harmonics.

rather than the carrier frequency (as in the
case of beamformers based on VPSs or non-
switched TMAs).
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2. Characterization of Periodic Stair-Step
Pulses

Since our objective is to efficiently exploit the
first positive harmonic of a TMA, odd periodic rect-
angular pulses are particularly suitable (apart from
its easy and cost-effective implementation) for the
following reasons:

• Their direct current (DC) component is zero.
Hence, the limitation of having radiation pat-
terns with no steering capability, such as the
fundamental one centered at the carrier fre-
quency ωc, is overcome [24].

• Their even harmonic components are also zero,
thus providing an advantageous starting point
in terms of efficiency with respect to other al-
ternatives.

In the following, we look into more detail at these
properties. Our point of departure is the simplest
odd periodic pulse: the bipolar two-state square
waveform u(t) plotted in Fig. 1a. The Fourier co-
efficients of the periodic extension of such a signal,
with fundamental period T0, are given by

Uq =
1

T0

∫ T0/2

−T0/2

u(t)e−jqω0t =

{
0 q even

− 2j
πq q odd,

(1)

with ω0 = 2π/T0. We observe that the spectral in-
formation is entirely contained in the odd harmon-
ics. Notice also that U−q = U∗

q , because u(t) ∈ R.
Since the modulus and the argument of Uq are
|Uq| = 2/(πq) and ∢Uq = −π/2, respectively, we
can easily express the Fourier series expansion of
u(t) as (see Fig. 1a)

u(t) =
4

π

∞∑
q=1,3,5,...

1

q
sin(qω0t). (2)

Notice that when we apply this kind of pulses to
a uniformly excited TMA [11, 10], we find that the
peak level of the first undesired harmonic (the third
one) is too high (−9.54 dB) with respect to the first-
order harmonic peak, making these pulses very in-
efficient for our purposes. Hence, it would be de-
sirable for our target pulses to eliminate the third
and even the fifth order harmonics. To construct
pulses with such features, we turned our attention
to the tri-state odd square waveform v(t) in Fig. 1b,

whose Fourier series coefficients are

Vq =
j
√
2

qπ

[
cos

(
3πq

4

)
− cos

(πq
4

)]
=

{
0 q even

(−1)
(q+1)(q−1)

8

(
− 2j

πq

)
q odd,

(3)

in which the sign of Vq is derived in Appendix A.1.
Analogously to the pulse u(t), the Fourier series
expansion is easily derived from (3), arriving at (see
also Fig. 1b)

v(t) =
4

π

∞∑
q=1,3,5,...

(−1)
(q+1)(q−1)

8
1

q
sin(qω0t). (4)

As a result, the pulse w(t) = u(t)+v(t) (see Fig. 1c)
is a four-state stair-step odd waveform with Fourier
series coefficients

Wq = Uq + Vq =

{
− 4j

πq |q| ∈ Υ

0 otherwise,
(5)

with Υ = {4α + (−1)α − 2;α ∈ N∗} =
{1, 7, 9, 15, 17, 23, 25, 31, . . . }, and therefore

w(t) =
8

π

∑
q∈Υ

1

q
sin(qω0t). (6)

Additionally, and in order to steer the exploited
TMA harmonic pattern, we must consider a time-
shifted version of w(t), wn(t) = w(t−Dn), with Dn

being the corresponding time-delay variable, lead-
ing to

wn(t) =
8

π

∑
q∈Υ

1

q
sin(qω0(t−Dn)). (7)

In the following sections, we consider the pulse
wn(t) to efficiently design a flexible SSB TMA
beamformer.

3. SSB TMA Beamformer Using Periodic
Stair-Step Pulses

Let us consider a linear array with N isotropic
elements with unitary static excitations In = 1,
n ∈ {0, 1, . . . , N − 1}, whose n-th element feeding
scheme is illustrated in Fig. 2. The phase and the
amplitude of the n-th dynamic excitation of the ar-
ray are controlled separately. More specifically, the
phase is controlled with a two-branch structure: one
branch is time-modulated by a stair-step periodic
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Figure 2: Feeding scheme for the n-th antenna element of the proposed SSB TMA beamformer, being wn(t) a periodic stair-step
pulse, cn(t) a periodic rectangular pulse, and τ a time-delay. The phase and the amplitude of the corresponding time-modulated
excitation are controlled separately.

(T0) waveform wn(t), whereas the other one is time-
modulated by wn(t− τ), with τ being a previously
fixed time delay, followed by a π/2 fixed phase shift-
ing. On the other hand, the amplitude is controlled
by a periodic (T0) rectangular pulse cn(t) generated
by means of an SPST switch.

Let us see in detail how wn(t) and wn(t− τ) are
applied to the n-th array excitation (Fig. 2). The
four levels of the stair-step pulse are generated by
means of a single-pole four-throw (SP4T) switch
controlled by the periodic (T0) binary signals an(t)
and bn(t) whose states are specified in Table 1.

More specifically, the switch terminals are con-
nected physically to the antenna according to:

• Terminal 1: direct connection.

• Terminal 2: connection through a fixed ra-
dio frequency (RF) attenuator of −20log(1 +√
2) dB.

• Terminal 3: connection through a fixed 180◦

phase shifter.

• Terminal 4: connection through a fixed phase
shifter followed by a fixed RF attenuator, both
with the same characteristics as those em-
ployed in Terminal 3 and Terminal 2 branches,
respectively.

The second SP4T switch is used to apply the de-
layed periodic pulse wn(t − τ) to the n-th array
excitation. Such a switch is controlled by the cor-
responding delayed versions of an(t) and bn(t).

According to Fig. 2, the time-varying array factor
will be given by

F (θ, t) =
N−1∑
n=0

cn(t)

[
wn(t)√

2
+ j

wn(t− τ)√
2

]
ejβzn cos θ,

(8)
where zn represents the n-th array element position
on the z axis, θ is the angle with respect to such
a main axis, β = 2π/λ represents the wavenum-
ber for a carrier wavelength λ = 2πc/ωc, where c
is the speed of light and ωc is the carrier frequency
of the communication signal s(t) shown in Fig. 2.
Notice that ωc is not explicitly included in the ar-
ray factor in (8) as in previous works [22, 25]. We
begin the analysis of (8) by evaluating the term
wn(t) + jwn(t − τ). For the sake of simplicity, we
will analyze the Fourier transform (FT) of such a
term, i.e., FT[wn(t)] + jFT[wn(t − τ)] where, by
virtue of (7),

FT[wn(t)] =

=
8

j

∑
q∈Υ

1

q
[e−jqω0Dnδ(ω − qω0)− ejqω0Dnδ(ω + qω0)],

and

FT[wn(t− τ)] = e−jωτFT[wn(t)] =

=
8

j

∑
q∈Υ

1

q
[e−jqω0τe−jqω0Dnδ(ω − qω0)−

− ejqω0τejqω0Dnδ(ω + qω0)], (9)

where δ(ω) is the unit impulse in the frequency do-
main. If we select a delay τ verifying that ω0τ =
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π/2, then e−jqω0τ = (−j)q and ejqω0τ = jq, and
hence we have that

FT[wn(t)] + jFT[wn(t− τ)] =

=
8

j

∑
q∈Υ

1

q

[
(1− (−j)q+1)e−jqω0Dnδ(ω − qω0)+

+ (−1− jq+1)ejqω0Dnδ(ω + qω0)

]
. (10)

Considering the sets of indexes Υ1 = {8α − 7;α ∈
N∗} = {1, 9, 17, . . . } and Υ2 = {8α − 1;α ∈ N∗} =
{7, 15, 23, . . . }, verifying Υ = Υ1 ∪ Υ2, we realize
that

1− (−j)q+1 =

{
2 q ∈ Υ1

0 q ∈ Υ2,
;

−1− jq+1 =

{
−2 q ∈ Υ2

0 q ∈ Υ1.
(11)

Hence, we rewrite (10) as

FT[wn(t)] + jFT[wn(t− τ)] =

=
16

j

∑
q∈Υ1

1

q
e−jqω0Dnδ(ω − qω0)+

+
(−16)

j

∑
q∈Υ2

1

q
ejqω0Dnδ(ω + qω0), (12)

and we realize that the harmonics with order
−1, 7,−13, 19, . . . are removed. By applying the
inverse FT to (12), we have

wn(t) + jwn(t− τ) =

=
∑
q∈Υ1

8

jπq
e−jqω0Dnejqω0t

+
∑
q∈Υ2

(−8)

jπq
ejqω0Dne−qω0t. (13)

Table 1: Control of an SP4T switch (during one period T0) to
time-modulate the array excitations with the stair-step peri-
odic signal wn(t) in Fig. 1c. The position of the SP4T switch
is determined by the corresponding levels of the switch con-
trol periodic (T0) signals an(t) and bn(t).

an(t) bn(t) SP4T output wn(t)

0 0 1 1 +
√
2

0 1 2 1

1 0 3 −1−
√
2

1 1 4 −1

On the other hand, the Fourier series expansion of
cn(t) is given by

cn(t) =
∞∑

k=−∞

Cnke
jkω0t, (14)

with Cnk = ξn sinc(kπξn)e
−jkπξn [13]. In this ex-

pression, sinc(x) = sin(x)/x, and ξn ∈ (0, 1] ⊂ R
are the normalized pulse time durations. By con-
sidering (13) and (14), we can rewrite (8) as

F (θ, t) =

=
1√
2

N−1∑
n=0

[
∞∑

k=−∞

Cnke
jkω0t

( ∑
q∈Υ1

8

jπq
e−jqω0Dnejqω0t

+
∑
q∈Υ2

(−8)

jπq
ejqω0Dne−jqω0t

)]

=
1√
2

∞∑
k=−∞

∑
q∈Υ1

ej(k+q)ω0t

·
N−1∑
n=0

Cnk
8

jπq
e−jqω0Dn︸ ︷︷ ︸

=(In)kq

ejkzn cos θ

+
1√
2

∞∑
k=−∞

∑
q∈Υ2

ej(k−q)ω0t

·
N−1∑
n=0

Cnk
(−8)
jπq

ejqω0Dn︸ ︷︷ ︸
=(I

′
n)kq

ejkzn cos θ. (15)

We now define

F1(θ, t)
k
q = ej(k+q)ω0t

N−1∑
n=0

(In)
k
q · ejkzn cos θ,

F2(θ, t)
k
q = ej(k−q)ω0t

N−1∑
n=0

(I
′

n)
k
q · ejkzn cos θ, (16)

where the dynamic excitations (In)
k
q and (I

′

n)
k
q are

given by

(In)
k
q =

8Cnk

jπ
√
2q

e−jqω0Dn , q ∈ Υ1, k ∈ Z,

(I
′

n)
k
q =

−8Cnk

jπ
√
2q

ejqω0Dn , q ∈ Υ2, k ∈ Z, (17)

to finally obtain

F (θ, t) =

∞∑
k=−∞

∑
q∈Υ1

F1(θ, t)
k
q +

∑
q∈Υ2

F2(θ, t)
k
q

 .

(18)
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Notice that we must consider the normalized ver-
sion of the pulses in Fig. 1c since we are not con-
sidering a voltage gain of 1 +

√
2 at the input of

the SP4Ts. Consequently, the normalized dynamic
excitations are

(In)
k
q =

8Cnk

j
√
2(1 +

√
2)πq

e−jqω0Dn , q ∈ Υ1, k ∈ Z,

(I ′
n)

k
q =

−8Cnk

j
√
2(1 +

√
2)πq

ejqω0Dn , q ∈ Υ2, k ∈ Z,

(19)

and therefore, |(In)kq |2 = |(I ′
n)

k
q |2 = 32|Cnk|2/((1 +√

2)πq)2. Notice that Cnk will be selected in the
conventional way of TMA design, i.e., using sys-
tematic optimization algorithms to maintain the
side-lobe zone of the radiated power of the funda-
mental mode k = 0 under a certain and previously
stipulated level, whereas the radiated power over
the undesired harmonics is minimized. Hence, only
Cn0 = ξn will be meaningful in the SSB TMA pat-
tern design. Once k = 0 is considered, the two
most significant |(In)kq |2 are those for q = 1 ∈
Υ1 and for q = 7 ∈ Υ2, hence satisfying that
20 log |(In)07/(In)01| = −16.9 dB. Therefore, the aim
of the technique is to guarantee a single useful har-
monic beam pattern: the one given by |F1(θ, t)

0
1|2.

4. Efficiency of the Time Modulation

In this section we determine the efficiency of the
time modulation operation in the proposed SSB
TMA beamformer. For the sake of simplicity, but
without any relevant loss of generality, we will
consider a uniform linear array with λ/2 of inter-
element distance transmitting a single carrier with
normalized power. Such an efficiency can be split
into two separate efficiencies

η = ηTMA · ηBFN, (20)

whose interpretations are described below. The
term ηTMA accounts for the ability of the TMA
technique to radiate only over the useful harmonics.
It is determined by

ηTMA =
PTM
U

PTM
R

, (21)

where PTM
U and PTM

R are the useful and the to-
tal mean powers, respectively, radiated by the SSB
TMA beamformer. It is remarkable that the SSB

operation at least doubles the value of this efficiency
with respect to that of a conventional TMA.

Most of the works available in the literature an-
alyzing the TMA efficiency limit themselves to the
study of ηTMA. The second component of the effi-
ciency, ηBFN, accounts for the reduction of the to-
tal mean power radiated by a uniform static array
caused by the insertion of the TMA BFN. ηBFN is
of critical importance due to its high impact on the
antenna gain. This efficiency is evaluated by means
of the quotient

ηBFN =
PTM
R

P ST
R

, (22)

where P ST
R is the total mean power radiated by a

uniform static array with N elements.
Let us now analyze in detail both efficiencies. We

will start by deriving the expression of ηTMA. In the
proposed design, PTM

R is given by [24]

PTM
R =

∞∑
k=−∞

∑
q∈Υ1

(p1)
k
q +

∑
q∈Υ2

(p2)
k
q

 , (23)

being (p1)
k
q and (p2)

k
q the mean transmit power

values at the harmonics ωc + (k + q)ω0 and ωc +
(k − q)ω0, respectively. Since (p1)

k
q = (p2)

k
q =

4π
∑N−1

n=0 |(In)kq |2 [24], by considering (19), we have

(p1)
k
q = (p2)

k
q =

128

π(1 +
√
2)2

N−1∑
n=0

ξ2n sinc
2(kπξn)/q

2.

(24)
Thus, we can rewrite (23) as

PTM
R =

128

π(1 +
√
2)2

N−1∑
n=0

∑
q∈Υ

∞∑
k=−∞

ξ2n sinc
2(kπξn)

q2
.

(25)
Having now in mind that for all ξn ∈
(0, 1] the sinc-square infinite series converges to∑∞

k=−∞ sinc2(kπξn) = 1/ξn, we can express the to-
tal mean power as

PTM
R =

128

π(1 +
√
2)2

∑
q∈Υ

1

q2

N−1∑
n=0

ξn, (26)

and since the infinite series
∑

q∈Υ 1/q2 =
1/64 (Ψ1(1/8) + Ψ1(7/8)), with Ψ1 the polygamma
function of order 1 (see Appendix A.2), by denot-
ing A0 =

∑
q∈Υ 1/q2 = 1.053, we then arrive at the
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Figure 3: By considering an array of N = 30 elements treated as the one illustrated in Fig. 2, we show the normalized
power radiated patterns for the following TMA configurations: (a) Phased array mode (SPST switches closed) with Dn = 0
(θscan = 90◦). The first undesired harmonic, at ωc − 7ω0, has a −16.90 dB peak level. The subsequent harmonics, at ωc +9ω0

and ωc − 15ω0, have peak levels of −19.08 dB and −23.52 dB, respectively. The efficiency of the time modulation is η = 0.56
(−2.55 dB). (b) Beamformer mode with Dn = 0 (θscan = 90◦). The SPST switches are governed by periodic sequences
with the ξn values specified in Table 2. The SLL of the desired pattern is now set at −17 dB. Notice that, apart from the
undesired harmonics of the phased array mode, the most significant harmonic due to the amplitude time modulation is the one
corresponding to ωc +2ω0, which is below −30 dB. The price to be paid for the SLL improvement is a certain worsening of the
efficiency: η = 0.46 (−3.37 dB). (c) Phased array mode with Dn selected to accomplish a θscan = 70◦. (d) Beamformer mode
with Dn selected to accomplish a θscan = 110◦.

ensuing compact expression

PTM
R =

128A0

π(1 +
√
2)2

N−1∑
n=0

ξn. (27)

On the other hand, the useful mean radiated power
is PTM

U = (p1)
0
1 and, by virtue of (24), we have that

PTM
U =

128

π(1 +
√
2)2

N−1∑
n=0

ξ2n, (28)

and by substituting (27) and (28) into (21), we have

ηTMA =

∑N−1
n=0 ξ2n

A0

∑N−1
n=0 ξn

. (29)

Regarding the term ηBFN, by quantifying P ST
R as

the total mean transmitted power over the array

factor F ST(θ) =
∑N−1

n=0 ejkzn cos θ, we have

P ST
R =

∫ 2π

0

∫ π

0

|F ST(θ)|2 sin(θ)dθdφ = 4πN.

(30)
By substituting (27) and (30) into (22), we arrive
at

ηBFN =
32A0

∑N−1
n=0 ξn

π2(1 +
√
2)2N

. (31)

5. Numerical Examples

In this section we examine the behavior of the
proposed TMA in its two possible configurations:
(1) basic (or phased array) mode, with only phase
weighting of the array excitations; and (2) full-
featured (or beamformer) mode, with amplitude-
phase weighting of the array excitations.
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5.1. Phased Array Mode

Let us consider a uniform linear array with
N = 30 elements spaced d = λ/2 apart with
unitary static excitations treated as the one illus-
trated in Fig. 2. We configure the TMA by set-
ting cn(t) = 1 and, hence, the SPST switches are
permanently closed. In other words, k is set to
zero and Cn0 = 1, n ∈ {0, 1, . . . , N − 1}. Ini-
tially, the time-delays Dn are also set to zero, hence
the scanning angle of all patterns (see (19)) will
be θscan = 90◦. Fig. 3a illustrates that the pro-
posed scheme is capable of concentrating the ra-
diated power on the desired first harmonic pat-
tern, |F1(θ, t)

0
1|2, located at ωc + ω0. The most

meaningful unwanted harmonic patterns —in de-
creasing order of significance— are: |F2(θ, t)

0
7|2 at

ωc − 7ω0, |F1(θ, t)
0
9|2 at ωc + 9ω0, and |F2(θ, t)

0
15|2

at ωc−15ω0. It is remarkable that the highest peak
level of the unwanted harmonics (−16.90 dB, corre-
sponding to ωc − 7ω0) is approximately 4 dB below
the level of the main secondary lobes (−13 dB) of
the desired pattern at ωc+ω0. The subsequent har-
monics, at ωc + 9ω0 and ωc − 15ω0, have peak lev-
els of −19.08 dB and −23.52 dB, respectively. On
the other hand, by virtue of (20), (29) and (31),
the corresponding efficiencies2 are ηTMA = 0.96
(−0.16 dB) and ηBFN = 0.58 (−2.39 dB), leading
to η = 0.56 (−2.55 dB).
Fig. 3c illustrates the scanning capability of the

proposed TMA scheme. The Dn values are selected
to accomplish a θscan = 70◦ by simply assigning
progressive phases to the array elements. Notice
that the Dn values (see (24)) have no effect on the
efficiency. Also, as we are exclusively performing a
phase weighting of the array excitations, the radi-
ated power patterns in Figs. 3a and 3c are, neces-
sarily, uniform.

5.2. Beamformer Mode

In this mode, the SPST switches are governed
by the periodic sequences cn(t). Fig. 3b illustrates
the normalized power radiated pattern when Dn are
set to zero (θscan = 90◦) and the normalized pulse
durations ξn of the modulating sequences cn(t) are
those in Table 2. Such time durations were obtained
by means of a simulating annealing algorithm as

2Throughout this paper we express the efficiencies both
in natural units (as defined in (29), (31) and (20)) and in
dB, i.e., as 10 log10(·) of the corresponding efficiencies. The
latter is more convenient to specify the power losses of the
TMA.

explained in [13]. Under the assumption of sym-
metric dynamic excitations, for each index q, the
optimization algorithm is capable (in this example)
of setting the SLL of the desired pattern (k = 0)
to −17 dB, while the remainder harmonics patterns
(k ̸= 0) are kept below −30 dB. Notice that, due to
this additional time modulation, apart from the un-
desired harmonics of the phased array mode (asso-
ciated to different indexes q and whose correspond-
ing SLL are also set to −17 dB with respect to their
maxima), other harmonic patterns are generated,
as it was analyzed in Section 3. Among them, the
most significant is |F1(θ, t)

1
1|2 at ωc + 2ω0 which,

as we can observe, is below −30 dB. The price
to be paid for the SLL improvement is a certain
worsening of the TMA efficiencies: ηTMA = 0.91
(−0.41 dB) and ηBFN = 0.50 (−3.01 dB), leading to
η = 0.46 (−3.42 dB). Fig. 3d illustrates both the
scanning and the amplitude reconfiguration capa-
bilities of the proposed TMA by showing the nor-
malized power radiated pattern when Dn are se-
lected to accomplish a θscan = 110◦, whereas cn(t)
are the same as those in Fig. 3b.

The results in Figs. 3b and 3d are similar to
those presented in [34]. Nevertheless, the architec-
ture proposed in this work allows for a maximum
signal bandwidth Bmax = 8f0 (the first unwanted
harmonic is q = −7), whereas in [34], Bmax = 4f0,
and hence, improving the bandwidth response of
the TMA by 100%.

Notice that the proposed architecture handles
two types of time parameters:

1. The time delays Dn for the modulating sig-
nals, which are selected to synthesize progres-
sive phases, i.e., Dn/T0 = n cos(θscan), where
θscan is the direction of the first positive har-
monic beam.

2. The pulse durations, ξn, corresponding to the
on-state duration of the rectangular pulses that
govern cn(t). The values of ξn are obtained
by means of an optimization algorithm [12]

Table 2: Normalized pulse durations of the sequences that
govern the SPST switches shown in Fig. 2. ξn values are
provided in [13] where symmetric dynamic excitations are
considered in an array of N = 30 elements. Hence, n ∈
{0, 1, . . . , 29}.

element 1, 28 2, 27 3, 26 4, 25 5, 24 9, 20 others

ξn 0.136 0.050 0.953 0.947 0.689 0.926 1
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which selects the Fourier coefficients of cn(t),
Cnk = ξn sinc(kπξn)e

−jkπξn , to obtain a ra-
diation diagram for k = 0 with a given SLL,
whereas the rest of harmonics (k ̸= 0) are kept
below a threshold.

With respect to the scanning ability of the TMA,
we observe in Fig. 4 a TMA scanning range of ±68
degrees from the broad sight direction. Although
the threshold level of the unwanted harmonics is
not being affected by the steering of the beam, the
half power beam width of the exploited harmonic
widens as it moves away from the center.

On the other hand, we have analyzed the impact
of the rise-fall times of the switches (see Fig. 5),
and we have realized that there is a time interval
(and hence we can select an adequate switch, as in
[26, 34]), during which the switches can be prof-
itably used to decrease the peak level of the unex-
ploited harmonics, thus improving ηTMA. However,
this is achieved at the expense of reducing the over-
all time modulation efficiency, η, and degrading the
TMA frequency performance because, due to the
appearance of new harmonics, the time modulation
frequency must be duplicated to faithfully send (re-
ceive) signals with the same bandwidth as in the
case of considering ideal pulses.

We have considered a rise-fall time 0.06T0 to-
gether with a set of ξn (see Table 3) to ensure that
SLL = −20 dB and a threshold for the harmon-
ics equal to −20 dB. Fig. 6 shows the correspond-
ing power radiated pattern. With respect to the
TMA efficiencies we obtain: ηTMA = 0.99 (ηTMA =
−0.04 dB) and ηBFN = 0.36 (ηBFN = −4.45 dB),
leading to η = 0.35 (η = −4.49 dB). We observe
a trade-off between the SLL and the overall effi-
ciency of the TMA and that, in any case, the total
insertion losses introduced by the TMA technique
are lower than those corresponding to off-the-shelf
VPSs (see Fig. 9).

Table 3: Normalized nonideal pulse durations of the se-
quences that govern the SPST switches shown in Fig. 2.

element 2 4 5 6 7

ξn 0.063 0.078 0.076 0.063 0.880

element 14 18 19 20

ξn 0.962 0.175 0.471 0.977

6. Features of the SSB TMA Beamformer

In this section we discuss some practial issues re-
garding the proposed SSB TMA beamforming tech-
nique. In particular, we show the advantages of the
proposed scheme with respect to conventional beam
scanning antenna systems in relation to the follow-
ing aspects:

1. Cost: a common feature to all high fre-
quency reconfigurable devices is the signifi-
cant increased cost with respect to their non-
reconfigurable or fixed counterparts. For ex-
ample, tunable phase shifters (e.g., [2, 3, 4,
6, 7]) are still an expensive option when com-
pared to fixed broadband phase shifters, which
can be manufactured using low-cost printed
circuit board technology [8]. A similar reason-
ing can be applied to fixed RF attenuators [5]
with respect to variable ones [7]. On the other
hand, the use of SP4T switches provides a cost-
effective solution (see e.g., [2]) to carry out
the time modulation with stair-step periodic
pulses. We could consider other non-switched
alternatives, e.g., by using variable gain am-
plifiers (VGAs) [21, 23] or analog multipliers
[23].
Nevertheless, the implementation of the time
modulation requires such devices be suitable to
work in the band of the carrier frequency. As a
matter of fact, these devices perform the time
modulation by properly processing the trans-
mitted signal at the antenna level, either mod-
ulating such a signal in amplitude or multi-
plying it by a periodic pulse. Therefore, an
increase in the carrier frequency translates to
a significant cost increase. For instance, if the
TMA beam scanning operates at a carrier fre-
quency ωc, it is enough that the SP4T switches
be suitable to work at the signal bandwidth B
regardless of ωc, whereas the VGAs or the ana-
log multipliers must work at ωc.

2. Complexity: when we are restricted to a
single-beam exploitation, non-switched TMA
architectures [21, 23] are apparently more com-
plex not only in terms of hardware (especially
if the devices have analog control due to the
requirements of the digital-to-analog convert-
ers (DACs)), but also in terms of software.
Whereas SP4T switches are governed by the
switch-on and switch-off time instants of bi-
nary sequences, non-switched TMAs are ca-
pable of constructing, in the digital domain,
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Figure 4: Normalized power radiated pattern showing a TMA scanning range of ±68◦ from the broad sight direction. The
TMA is configured in the beamforming mode with the pulse durations ξn in Table 2. The threshold level of the unwanted
harmonics is not being affected by the beam steering, but the half power beam width of the exploited harmonic widens as it
moves away from the center.

Figure 5: Nonideal stair step pulse. We have considered a
rise-fall time of the SP4T switches, ∆, and a linear response
of the transient, analogously to [34, 26].

other complex waveforms, such as the sum-
of-weighted-cosines (SWC) pulses [23] or pre-
processed rectangular pulses [21]. Although
non-switched TMAs can perform multibeam
harmonic beamforming, they have the serious
handicap of their hardware implementation at
high frequencies (VGAs fast enough to follow
a wideband signal, e.g., with a bandwidth of
1GHz, or analog multipliers at the millimeter
wave band).

On the other hand, it is well-known that TMA
is a bandwidth-limited technique because, in
general, the time modulation frequency (f0)
must satisfy that B < f0, with B being the
signal bandwidth. Such a restriction is nec-
essary to avoid spectral overlapping between
the signal replicas located at adjacent har-
monics [19]. In our proposal, as the harmon-
ics up to the seventh order are removed, the
restriction becomes B < 8f0, and hence it
is possible to handle signal bandwidths eight

Figure 6: Normalized power radiated pattern of a TMA em-
ploying nonideal stair step pulses with a rise-fall time equal
to 0.06T0 and considering the set of ξn specified in Table 3 to
ensure that SLL = −20 dB. The threshold for the harmonics
is equals to −20 dB, hence improving the efficiency, ηTMA,
but at the expense of degrading the overall efficiency, verify-
ing the trade-off between the SLL and the overall efficiency.
As a matter of fact, we have obtained: ηTMA = 99.0% and
ηBFN = 35.8%, leading to η = 35.5% (η = −4.45 dB).

times bigger than those handled by multibeam
TMAs. As we have seen in Sections 1 and 2,
the mathematical background of the TMAs
synthesized in this work consists in approxi-
mating a pure sinusoid (a single harmonic) by
means of stair-step pulses, while keeping the
remaining (and inherently generated) harmon-
ics below a threshold. Therefore, the ability
of efficiently synthesizing a sum of pure si-
nusoids with SPMT switches for beamform-
ing purposes paves the road for future inves-
tigations. Nevertheless, a promising applica-

10



Figure 7: Block diagram of the overall TM-AFN in terms of
the individual SPMT feeding networks of each element (see
Fig. 2), specifying the fundamental frequency of the periodic
pulses ω0, and their time delays Dn.

tion of the proposed TMA feeding network is
the transmission (reception) of multiple signals
through the same antenna array with different
spatial signatures.

Fig. 7 shows the block diagram of the overall
TM-AFN corresponding to the proposed archi-
tecture. Notice that such a TM-AFN is char-
acterized by the time-modulation frequency ω0

and the time-delays Dn of the periodic pulses.

Let us consider a transceiver capable of trans-
mitting M linearly modulated digital signals
over the downlink frequency ωDL using dif-
ferent spatial signatures as well as capable of
receiving M signals with different direction
of arrivals (DoAs) over the uplink frequency
ωUL. To this end, we consider the multibeam
transceiver architecture shown in Fig. 8, which
is equipped with M TM-AFNs such as the one
shown in Fig. 7.

In the downlink, each complex-valued base-
band signal si, i ∈ {1, · · · ,M}, is I/Q mod-
ulated at a different intermediate frequency,
ωI − iω0. The I/Q modulated digital signal
is then converted to the analog domain by us-
ing a single DAC with a sampling frequency
higher than twice the total bandwidth of the
composite signal. The obtained analog sig-
nal is up-converted to the downlink frequency,
ωDL. Next, each individual signal located at
ωDL − iω0 is filtered out by the correspond-
ing duplexer (equipped with a passband fil-
ter centered at such a frequency) before being
processed by the corresponding i-th TM-AFN,
which will shift the incoming signal in fre-

quency to the downlink frequency ωDL and will
endow it with a spatial signature controlled by
Dn, while keeping the undesired harmonics be-
low a threshold level.
With respect to the uplink, the different har-
monic patterns are designed to hold spatial or-
thogonality and, hence, at the output of the
i-th TM-AFN, we have the corresponding re-
ceived signal ri located at ωUL + iω0. After
crossing the corresponding duplexers, all the
received signals at ωUL + iω0, i ∈ {1, . . . ,M},
are combined and down-converted to the in-
termediate frequency, ωI . The obtained sig-
nal is next sampled at a frequency higher than
twice the total signal bandwidth in order to
be converted to the digital domain by a single
ADC. Each digital signal is I/Q decomposed
at a different intermediate frequency ωI + iω0

to obtain the baseband complex signal ri. We
highlight that, in contrast to antenna arrays
with VPS architectures [15, Fig. 10], TMAs
employ a single down- (up-) converter and a
single ADC (DAC), although requiring a wider
bandwidth.
In sum, when compared to multibeam non-
switched TMAs, the proposed multibeam
structure is feasible at high frequencies al-
though requiring a higher complexity. Nev-
ertheless, it is also true that our proposal is
less complex than the non-switched alterna-
tives when we are restricted to the exploitation
of a single beam. When compared to multi-
beam arrays based on VPSs and amplifiers,
the proposed TMA solution only needs a sin-
gle down- (up-) converter and a single ADC
(DAC).

3. Size: when mobility at high frequencies is in-
dispensable, the size is a crucial aspect. In this
sense, RF switches and fixed attenuators are
available as monolithic microwave integrated
circuit (MMIC) devices [5, 2], while fixed phase
shifters can be manufactured, for instance, us-
ing printed circuit board technology [8].

4. Performance: a parameter of paramount im-
portance which may determine the applicabil-
ity of the proposed architecture at high fre-
quencies is the time modulation efficiency η,
theoretically derived in Section 4 and specifi-
cally quantified in Section 5. The counterpart
of such an efficiency in standard beamformers
based on VPSs are the insertion losses. As a
matter of fact, Fig. 9 plots a point cloud show-

11



Figure 8: Proposed multibeam transceiver architecture based on TMAs with SPMT switches.

Figure 9: Insertion loss (IL) versus frequency (bands L, S,
C, X and Ku) of off-the-shelf MMIC digital phase shifters
[7], [2],[4], [6], [3], [1].

ing the insertion losses of off-the-shelf MMIC
digital phase shifters [1, 2, 3, 4, 6, 7] for sev-
eral bands up to 20GHz. The point cloud re-
veals a certain linearity (Pearson correlation
coefficient r = 0.7) between insertion losses
and frequency at these frequencies. The inser-
tion losses (in dB) show the following statis-
tics: range [2.5 dB, 11.0 dB], the mean value is
5.91 dB, and the standard deviation is 0.81 dB.
An advantage of the TMA scheme proposed in
this work is not only that the time modula-
tion efficiency is independent of the carrier fre-
quency, but also that shows competitive values
when compared to the VPSs insertion losses.

7. Conclusion

We have presented a novel SSB TMA method,
based on periodic stair-step pulses, valid for both
beam-steering and beamforming purposes. The

architecture is equipped with SP4T and SPST
switches together with non-reconfigurable RF de-
vices. The proposed TMA structure exhibits the
following advantages: higher efficiency and flexibil-
ity, performance invariant to the carrier frequency,
better cost-effectiveness, and small size. Accord-
ingly, such a structure is particularly suitable for
the design of multibeam transceivers.

Appendix A. Appendixes

Appendix A.1. Derivation of the Expression of the
Sign in (3)

The Triangular numbers 1, 3, 6, 10, 15, . . . , given
by the formula Tn = n(n + 1)/2, n ∈ N∗, have the
property that T4k+1 and T4k+2 are odd and that
T4k+3 and T4k+4 are even for k ∈ N. Thus, the
expression

(−1)Tn = (−1)
n(n+1)

2 (A.1)

alternates its sign according to: −1, −1, +1, +1,
−1, −1, . . . , and we realize that the sign behavior
for n = 1, n = 2, . . . , corresponds to q = 3, q = 5,
. . . , in the series of (3). Hence, by relating n and
q through an arithmetic progression, we have that
q = 2n + 1 or, equivalently, n = (q − 1)/2. By
substituting this expression of n in (A.1) we finally
arrive at the following expression of the sign in (3):

(−1)
(q+1)(q−1)

8 . (A.2)

Appendix A.2. Derivation of the Sum of the Infi-
nite Series in (26)

The polygamma function is a special function de-
noted by Ψn(z) which is defined as the (n + 1)-th
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derivative of the logarithm of the gamma function
Γ (z):

Ψn(z) =
dn+1

dzn+1
ln (Γ (z)) . (A.3)

For n > 0, the polygamma function can be written
as [9, Chapter 6.4, pp. 260-263]

Ψn(z) = (−1)n+1n!
∞∑

n=0

1

(z + k)n+1
. (A.4)

In particular, for n = 1, we have that

Ψ1(z) =
∞∑

n=0

1

(z + k)2
. (A.5)

Hence, the infinite series in the expression of PTM
R

(26) will satisfy

∞∑
k=1

1

(8k − 7)2
=

1

64

∞∑
k=0

1

(k + 1− 7
8 )

2
=

1

64
Ψ1

(
1

8

)
,

(A.6)
and, analogously

∞∑
k=1

1

(8k − 1)2
=

1

64

∞∑
k=0

1

(k + 1− 1
8 )

2
=

1

64
Ψ1

(
7

8

)
,

(A.7)
being Ψ1(1/8) = 65.3881 and Ψ1(7/8) = 2.0057,
and therefore,

∑
q∈Υ 1/q2 = 1.053.
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Alkhateeb, A., & Heath, R. W. (2016). Hybrid
MIMO architectures for millimeter wave communica-
tions: Phase shifters or switches? IEEE Access, 4 ,
247–267.

[28] Poli, L., Moriyama, T., & Rocca, P. (2014). Pulse
splitting for harmonic beamforming in time-modulated
linear arrays. International Journal of Antennas and
Propagation , 1 , 1–9.

[29] Poli, L., Rocca, P., Oliveri, G., & Massa, A. (2011).
Harmonic beamforming in time-modulated linear ar-
rays. IEEE Trans. Antennas Propag., 59 , 2538–2545.

[30] Rocca, P., Zhu, Q., Bekele, E., Yang, S., & Massa, A.
(2014). 4-D arrays as enabling technology for cogni-
tive radio systems. IEEE Trans. Antennas Propag.,
62 , 1102–1116.

[31] Shanks, H. (1961). A new technique for electronic scan-
ning. IRE Transactions on Antennas and Propagation ,
9 , 162–166.

[32] Tong, Y., & Tennant, A. (2010). Simultaneous control
of sidelobe level and harmonic beam steering in time-
modulated linear arrays. Electronics Letters , 46 , 201–
202.

[33] Tong, Y., & Tennant, A. (2012). A two-channel time
modulated linear array with adaptive beamforming.
IEEE Trans. Antennas Propag., 60 , 141–147.

[34] Yao, A. M., Wu, W., & Fang, D. G. (2015). Single-
sideband time-modulated phased array. IEEE Trans.
Antennas Propag., 63 , 1957–1968.

14


