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Abstract

Location based access in wireless sensor networks (WSN) are vulnerable to lo-

cation spoofing attacks. In this paper, we investigate the physical layer (PHY-

layer) authentication in the threat of an intelligent location spoofing attack.

The intelligent attack can emulate the legitimate channel information and max-

imize its long-term cumulative reward. First, we analyze the feasibility of this

intelligent attack and investigate how it threats to the networks. Specifically,

we derive the optimal transmit power allocation and find the worst case for the

defenders, namely optimal intelligent attack, in which the attacker can learn

the intelligent attack action based on the beamforming with optimal transmit

power allocation. To defend against such an intelligent attack with high ac-

curacy and low overhead, we develop a cooperative PHY-layer authentication

scheme. Then, we provide an in-depth analysis on the belief and derive the belief

bounds and the closed-form expression for the belief threshold. Furthermore,

considering the whole computation complexity and the double counting problem

in a loopy graph, we propose the cooperative neighbour selection algorithm to
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accelerate belief convergence and reduce the overhead. Finally, the simulation

results reveal that the proposed method can significantly improve the defense

performance compared with the state-of-art methods.

Keywords: Physical layer authentication, intelligent location spoofing, WSN.

1. Introduction

Today, wireless sensor networks (WSN) have played an important role in In-

ternet of mission critical things (IoMCT), i.e., battlefield, border patrol, search

and rescue, etc. The location verification in WSN is key to location based

security IoMCT services [1, 2]. For example, as the location based access obvi-5

ates the need to establish shared secrets in advance, it can apace authenticate

a transmitter via the received signal strength (RSS). However, the open air

nature of wireless systems makes it vulnerable to physical layer (PHY-layer)

security threats [3]. One serious threat is called location spoofing attack, which

makes the attack impersonate the legitimate location to access networks. Such10

an attack can further cause denial-of-service (DoS), session hijacking, man-in-

the-middle (MITM) attacks, which makes PHY-layer authentication extremely

challenging.

Many location spoofing detection or robust localization algorithms have been

developed to address the location spoofing threats. The key idea is to distinguish15

radio transmitters by exploiting uncorrelated PHY-layer spatial information be-

tween the legitimate users and the adversary, such as RSS [4, 5, 6, 7] and channel

state information (CSI) [8, 9, 10, 11]. In [6], the optimal strategies to attack an

RSS based wireless location verification system (LVS), have been analyzed for

the spatially correlated shadowing channel. Similarly, the optimal attack strat-20

egy and the optimal LVS performance have been investigated in Rician fading

channel [7]. To withstand the location spoofing attack, a robust localization

algorithm has been developed in [12]. Compared with RSS, the CSI contains

more location characteristic information [8], thus can improve the localization

and spoofing detection performance. In [8], a user authentication approach25
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has been developed by exploiting power spectral densities, where the optimal

test threshold for a specified false alarm probability is derived. In [11], a CSI

based authentication scheme with optimal attack strategy has been proposed

over multiple input multiple output correlated fading channel. In addition, ma-

chine learning techniques have emerged to integrate with RSS or CSI scheme30

to further optimize spoofing detection performance [13, 14, 15, 16]. In complex

dynamic communication models, i.e., the hydraulic systems inspired communi-

cation models [17], the optimal solutions can be obtained by using metaheuristic

algorithms [18, 19].

However, the existing work mainly focuses on optimizing the attack strate-35

gies and the detection performances with respect to a “blunt” location spoofing

attack. The term “blunt” refers to attack action, i.e., whether launch attack,

without changing with the communication environments. Nowadays, the ma-

chine learning is emerging not only to enhance WSN security [20, 21], but also

to threaten WSN security. With the rapid development of artificial intelligence,40

the attackers can be smarter and more harmful than we have ever considered.

For example, different from obtaining the conventional instantaneous reward,

the attacker can use machine learning, i.e., Q-learning, to choose attack action

based on the communication environments and to maximize the reward based

on a series of time events. This reward is called long-term cumulative reward45

[22]. By using Q-learning, the maximum long-term cumulative reward can be

obtained by an attacker over a period of time.

The intelligent location spoofing attack investigated in this paper is an attack

that can emulate the legitimate channel information via beamforming and max-

imize its long-term cumulative reward. Specifically, the intelligent attacker can50

find the worst case for the defenders, namely optimal intelligent attack. That is,

the intelligent attacker can falsify the legitimate CSI and RSS via beamforming

with optimal transmit power allocation. Then, based on this optimal power

allocation, the intelligent attacker further learns the intelligent attack action to

maximize its long-term cumulative reward. Thereby, the channel information is55

forged and attack action is shifty, this intelligent location spoofing attack will
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have a significant impact to the normal operation of WSN. In related work [23],

one perfect location spoofing attack has been investigated, which can perfectly

mimic the location of legitimate user. However, compared with the aforemen-

tioned intelligent location spoofing attack, this attack is not smart enough, i.e.,60

the attack action cannot shift with the communication environments. Besides,

the work of [23] focuses more on how to design one attack but inadequately

tackles on how to defend against it. It is important to study the attack defense

strategies. Inherently, once the performance and characteristics of a new attack

are found, the emphasis is to propose the defense strategies with respect to this65

new attack. Thereby, motivated by the importance to study the attack defense

strategy, we develop a PHY-layer authentication scheme under the threats of

the investigated intelligent location spoofing attack and provide some detailed

analysis.

In developing the aforementioned PHY-layer authentication scheme, some70

key factors should be concerned. First, since WSN is resource-limited, the PHY-

layer authentication scheme should be with low overhead to prolong the life of

the network. Then, the WSN are generally multi-hop networks with various

topologies, which motivates us to consider a decentralized scheme to reduce

maintenance cost [24]. Moreover, the PHY-layer authentication problem can be75

transformed into the signal detection problem, and cooperative detection can

effectively improve the signal detection performance [25, 26, 27]. Whereas, there

is lack of adequate attention to bring cooperation in PHY-layer authentication

[4, 5, 6, 7, 8, 9, 10, 11].

Inspired by the above mentioned work [23, 24, 25, 26, 27], we propose a80

cooperative distributed PHY-layer authentication scheme to address intelligent

location spoofing attack. To the best of our knowledge, the answers to the

following questions are still missing:

• Is it possible to have an intelligent location spoofing attack to threaten

WSN?85

• How to address such intelligent location spoofing threats in PHY-layer
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authentication?

The key contributions of this paper are summarized as follows:

• We study a new intelligent location spoofing attack, which can maximize

the long-term cumulative reward. The feasibility of intelligent attack is90

analyzed and the optimal intelligent attack is exposed. Specifically,

1. The beamforming is derived based on maximum likelihood estimator

(MLE);

2. The maximum long-term cumulative reward is obtained via Q-learning;

3. The optimal transmit power allocation is derived by optimizing the95

Kullback-Leibler (KL) divergence.

• To address the intelligent attack, we propose a cooperative PHY-layer

authentication scheme via belief forecasting propagation. The developed

scheme only needs to communicate a short belief message with each other

rather than a long message, which leads to little transmission overhead.100

Specifically:

1. We design the local function and the compatibility function for Markov

random field (MRF);

2. We derive the belief bounds and obtain the closed-form expression

for belief threshold;105

3. We propose the cooperative neighbour selection algorithm to accel-

erate the belief convergence and reduce the overhead.

The rest of the paper is organized as follows. In Section 2, we present the

system model. In Section 3, the details of the investigated intelligent location

spoofing attack are discussed. In Section 4, we propose the cooperative PHY-110

layer authentication scheme with respect to the intelligent attack discussed in

Section 3. Simulations are presented in Section 5 and future work are discussed

in Section 6. We summarize this paper in Section 7.
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2. system model

In this section, we first introduce the channel model and then present the115

attack model. For ease of reference, important notations are summarized in

Table 1.

Table 1: Summary of Notations

Symbols Notations

V Matrix

v Vector

V> Transpose of matrix

V† Hermitian transpose of matrix

v̂ Estimation vector

Cm×n Complex space

Rm×n Real space

| · | Absolute value

E[·] Expectation operator

d·e Upper bound

b·c Lower bound

, Defined as

i.i.d. Independent and identically distributed

N Number of samples

M Number of sensors

K Number of channel states

γ Threshold of likelihood ratio test

Ei(·) Exponential integral function

DKL[·] KL divergence

S State set

a Action set

U(s, a) Reward obtained when a ∈ A is taken

in state s

ε Learning rate of Q-learning

$ Discount factor of Q-learning

ε Probability that the attacker chooses the

non-optimal action

Oi Observation state of sensor i

Si Hidden state of sensor i

κ Forgetting factor

bT Belief threshold
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2.1. Channel Model

We consider a static WSN that consists of a sink node, multiple sensor nodes

and an intelligent attacker. We assume that the sink node and the sensor nodes120

are with fixed locations and are resource-limited devices with a single antenna.

The attacker is with fixed location once it is deployed and is equipped with

multi-antennas. Let b be the sink node, i ∈ {1, · · · ,M} be the i-th sensor node,

s be the attacker. The channel coefficient from source a to destination d is

denoted as had =
√
d−ηad h̃ad with a, d ∈ {b, i}, a 6= d, where dad represents the125

distance between source a and destination d, η is path loss exponent and h̃ad

represents small-scale block fading, which follows zero-mean complex Gaussian

distribution with unit-variance. The channel had eavesdropped by s via antenna

c is denoted as had→s(c). All of the channels are assumed to be reciprocal and

spatially correlated.130

The received signal at the i-th sensor is denoted as1

yi =
√
pbhbixb + Φ

√
psih

†
ib→swixsi + n, (1)

where pb and psi are the power budgets for the sink node and from the attacker

to sensor i, respectively. xb and xsi are the unit-energy genuine signal for the

sink node and illegitimate signal from the attacker to sensor i, respectively.

wi ∈ Cρ×1 is the beamforming using ρ antennas and hib→s = [hib→s(iρ + 1 −135

ρ), · · · , hib→s(iρ)] ∈ Cρ×1 is the wiretap channel vector to sensor i, n is denoted

as channel noise and is assumed to be independent of signal and follows complex

Gaussian distribution with zero-mean and variance σ2. Φ = 1 and Φ = 0

represent the present and absent of the attack, respectively.

1Note that this argument assumes perfect synchronization of sink node and attack’s trans-
missions when Φ = 1. Any imperfect synchronization is important in the detection process,
but they are out of scope in this work.
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Figure 1: The intelligent location spoofing attack model.

2.2. Attack Model140

The intelligent location spoofing attack is depicted in Fig. 1, which has two

stages:

Wiretapping: When the sink node and sensors are communicating, the intel-

ligent attacker wiretaps uplink and downlink channel which can be denoted as

Hi→s = [h1b→s; · · · ; hMb→s] and Hb→s = [hb1→s; · · · ; hbM→s], respectively2.145

Spoofing: The intelligent attacker emulates the legitimate channel informa-

tion and learns the intelligent attack action to maximum long-term cumulative

reward.

In WSN, the sink node and the sensors communicate frequently, the attacker

do not wait to attack until the networks are idle. In other words, this intelligent150

attacker is an active attacker, which can launch attack when the sink node

and sensors are communicating. To attack successfully, the attacker should

guarantee the received deceiving signal power higher than the received legitimate

signal power per sensor [2].

2We assume that the wiretap channel estimation are perfect and the channel statistics, i.e.,
channel correlation matrix, are known.
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3. Intelligent Attack155

In this section, we analyze the feasibility of intelligent attack which can em-

ulate the legitimate channel information via beamforming and maximize long-

term cumulative reward via Q-learning. Then, we investigate an optimal intel-

ligent attack.

3.1. Feasibility of Intelligent Attack160

3.1.1. Beamforming

From (1), sensor i can decode the deceiving signal only when the i-th mimic

channel, gbi = h†ib→swi, is very close to hbi, that is |gbi − hbi| ≤ β for some

β > 0. The beamforming to sensor i is to maximize the probability P that

|gbi − hbi| ≤ β, which can be denoted by165

g∗bi = arg max
gbi

P [|gbi − hbi| ≤ β], (2)

where g∗bi is the optimal emulated channel.

By choosing the same column of uplink and downlink channel matrixes

Hi→s and Hb→s, respectively, i.e., the ρ-th column, we can get the vectors

hs↑ = [h1b→s(ρ), · · · , hMb→s(Mρ)]† and hs↓ = [hb1→s(ρ), · · · , hbM→s(Mρ)]†.

Denote vector h = [g>b ,h
>
s↓,h

>
s↑]
>, where h follows zero-mean complex Gaus-170

sian distribution with correlation matrix

R = E[hh†]. (3)

Then, for a given estimation vector ĥ(ĝb) = [ĝ>b ,h
>
s↓,h

>
s↑]
>, the optimal channel

g∗b = [g∗b1, · · · , g∗bM ]† can be achieved with MLE, which is given by [28, 11]

g∗b = arg min
ĝb

ĥ†(ĝb)R
−1ĥ(ĝb), (4)

where R−1 is the inverse of the block matrix R. Denote matrix V = R−1, and
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we can write matrix V as175

V =


V11 V12 V13

V†12 V22 V23

V†13 V†23 V33

 . (5)

By calculating the gradient of ĥ†(ĝb)Vĥ(ĝb) with respect to ĝb and setting

it to zero, i.e., ∂ĥ†(ĝb)Vĥ(ĝb)
∂ĝb

= 0, we have

g∗b = −V−1
11 (V12hs↓ + V13hs↑) . (6)

The optimal beamformer vector of sensor i is obtained by

w∗i = (h†ib→s)
−1g∗bi, i = 1, 2, · · · ,M (7)

where (h†ib→s)
−1 is the Moore-Penrose inverse of h†ib→s.

3.1.2. Q-learning180

The objective of attack is to learn the intelligent attack action to maximize

the long-term cumulative reward. We quantize the channel had with a, d ∈

{b, i}, a 6= d into K levels and model it as an i.i.d. K state Markov chain

with had ∈ {h1, · · · , hK} [29]. In one time slot, the attacker chooses an action

to decide whether launch an attack or not. The action is determined by the185

feedback reward of the communication environments, i.e., channel coefficient.

Thus, we model action choice process as a finite Markov decision process (MDP),

which can be denoted as a 4-tuple 〈S,a, U, P (·|s, a)〉

• S is the state set with s = (hb,g
∗
b ,ps) ∈ S, where the channel vector

hb = [hb1, · · · , hbM ]†, ps = {psi|i = 1, · · · ,M} and the number of states190

is K2M . The size of states can be reduced to KM with s = (hb,ps)
3.

3This simplification is reasonable since the beamforming makes g∗
b ≈ hb. If the system

states are large, the deep Q-network can be used [24].
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• a = {0, 1} is the action set, which represents whether to launch an attack

or not.

• U(s, a) is the immediate reward obtained when a ∈ a is taken in state s.

As in [30], we define the immediate reward as4

U(s, a) = a

M∑
i=1

log2

(
1 +

psi|g∗bi|2

pb|hbi|2 + σ2

)
︸ ︷︷ ︸

Throughput

− psiCs︸ ︷︷ ︸
Transmit cost

, (8)

where Cs is the unit transmit cost of the attack.

• P (·|s, a) is the transition probability of the next state, conditioned on195

action a being chosen in state s.

Q-learning can be used to generate a near-optimal solution to MDP [22].

Furthermore, Q-learning is a model-free reinforcement learning algorithm, and

we can obtain the optimal solution without knowing the state transition proba-

bility of MDP. We define Q(s, a) as the Q-function of state s with action a and

define V (s) = maxa∈aQ(s, a) as the maximum long-term cumulative reward of

state s with action a, respectively. Q-function is then iteratively via the iterative

Bellman equation,

Q(st−1, a) = (1− ε)Q(st−1, a) + ε
[
U(st−1, a) +$V (st)

]
V (st) = max

a∈a
Q(st, a), (9)

where ε ∈ (0, 1] is the learning rate, $ ∈ (0, 1] is the discount factor, st is

the next state. To adequately explore the state set, the attacker utilizes ε-

greedy policy [15]. On this occasion, the probability we choose action a∗ can be

4Since the ratio between the throughput and the signal-to-interference-plus-noise ratio
(SINR) is close to a constant throughout long range of bit rates [31], the SINR can be directly
used to represent the throughput in the simulations.
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expressed as200

P (a = a∗) =

 1− ε, a∗ = arg maxa∈aQ(s, a)

ε, otherwise
, (10)

where ε ∈ (0, 1) is a small positive value, i.e., ε = 0.1.

3.2. Optimal Intelligent Attack

From (1), when the attack is present (Φ = 1), the attacker and the sink

node are co-existence and the receive power is larger than normal (Φ = 0).

Particularly, the larger power the deceiving signal is, the higher risk the attack205

being detected. Hence, there is a tradeoff between transmit power and detection

probability of local observation. We find the worst case for the defenders, namely

optimal intelligent attack, in which the attacker can learn the intelligent attack

action based on the beamforming with optimal transmit power allocation. In

the following, we derive the optimal transmit power allocation.210

We define the local observation of sensor i as

ψ(yi) = E[y†iyi], (11)

where yi ∈ CN×1 is the receive signal in (1) with sampling number N . Let

f(ψ(yi)|HΦ) be the probability density function (PDF) of the observation ψ(yi)

under hypothesis HΦ for Φ = 0, 1. The generalized likelihood ratio test is given

by215

Λ(ψ(yi)) ,
f(ψ(yi)|H1)

f(ψ(yi)|H0)

Oi=0

≶
Oi=1

γ, (12)

where Λ(ψ(yi)) is the test statistic, γ is the threshold, Oi = 0 and Oi = 1

are the observation states of the attack. If the test statistic is less than the

threshold, the sensor accepts the hypothesis H0, otherwise, the sensor accepts

the hypothesis H1. If each term yi of yi is an i.i.d. complex Gaussian random

variable with zero-mean and variance σ2
y, for large N , ψ(yi) can converge with220
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probability one to a Gaussian distribution with mean µ∞ = σ2
y and variance

σ2
∞ =

σ4
y

N . Under H0, ψ(yi) approximately follows a Gaussian distribution,

given by

f(ψ(yi)|H0) ∼ N

(
pbd
−η
bi + σ2,

(pbd
−η
bi + σ2)2

N

)
. (13)

Similarly, under H1, ψ(yi) is given by

f(ψ(yi)|H1) ∼ N

(
psid

−η
bi + 2d−ηbi

√
pbpsi +K,

(psid
−η
bi + 2d−ηbi

√
pbpsi +K)2

N

)
,

(14)

where K = pbd
−η
bi +σ2. The optimal transmit power allocation can be found by

minimizing the detection probability of local observation, subject to the ergodic225

transmit rate R̄si ≥ τ , which can be expressed as

arg min
psi

P locd,i

s.t. R̄si ≥ τ, (15)

where P locd,i =
∫ +∞
γ

f(ψ(yi)|H1)dψ(yi).

However, the problem (15) is non-convex, since the ergodic transmit rate R̄si
is not a convex function. To make (15) tractable, we use the Jensen’s inequality

[32] to obtain the upper bound on R̄si. The upper bound dR̄sie is given in (16),
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where Ei(z) = −
∫ +∞
−z

exp(−ξ)
ξ dξ.

R̄si = E

[
log2

(
1 +

psiw
†
ihib→sh

†
ib→swi

pb|hbi|2 + σ2

)]

=
1

ln 2

{
E

[
ln

(
1 +

(pb + psi)d
−η
bi

σ2
|h̃bi|2

)]
− E

[
ln

(
1 +

pbd
−η
bi

σ2
|h̃bi|2

)]}

≤ 1

ln 2

{
ln

(
1 + E

[
(pb + psi)d

−η
bi

σ2
|h̃bi|2

])
−
∫ +∞

0

1

z1 + 1
exp

(
− z1σ

2

pbd
−η
bi

)
dz1

}

=
1

ln 2

{
ln

(
1 +

(pb + psi)d
−η
bi

σ2

)
+ exp

(
σ2

pbd
−η
bi

)
Ei

(
− σ2

pbd
−η
bi

)}
(16)

Then, the problem (15) can be transformed to minimize the KL divergence from

f(ψ(yi)|psi,H1) to f(ψ(yi)|H0), subject to dR̄sie ≥ τ . As a result, we have

arg min
psi

DKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

s.t. dR̄sie ≥ τ, (17)

where230

DKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

=

∫ +∞

−∞
ln
f(ψ(yi)|psi,H1)

f(ψ(yi)|H0)
f(ψ(yi)|psi,H1)dψ(yi)

=
NA2

2K2
+

1

2

[(
K +A
K

)2

− ln

(
K +A
K

)2

− 1

]
, (18)

withA = psid
−η
bi +2d−ηbi

√
pbpsi. Based on the closed-form expression for function

DKL, the first derivative of DKL with respect to psi is derived as

dDKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

dpsi

=
NAA′

K2
+
AA′(2K +A)

K2(K +A)
, (19)

where A′ = (d−ηbi +d−ηbi
√
pb/
√
psi). Following (19), the second derivative of DKL
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with respect to psi is denoted as

d2DKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

d2psi

=
N(A′2 +AA′′)

K2
+

2(A′2 +AA′′)
(K +A)2

+
K3A(2A′2 + 3AA′′) +K2A2(A′2 +AA′′)

K4(K +A)2
, (20)

whereA′′ = −d−ηbi
√
pb/2p

3
2
si. Obviously, we can obtain d2DKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

d2psi
>235

0, which indicates that DKL is a convex function in psi. Following a similar pro-

cedure, we have d2dR̄sie
d2psi

< 0, thus dR̄sie is a concave function. Then, problem

(17) is a convex optimization problem and the Lagrangian Lpsi,α is defined as

Lpsi,α = DKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]− α(R̄si − τ),

where α is a Lagrange multiplier. Setting the derivative of L(psi, α) with re-

spect to psi to be zero, the necessary and sufficient Karush-Kuhn-Tucker (KKT)

conditions (21), (22), (23) are given as follows

Dual feasibility:α > 0 (21)

Complementary slackness:

α

(
1

ln 2

{
ln

(
1 +

(pb + psi)d
−η
bi

σ2

)
+ exp

(
σ2

pbd
−η
bi

)
Ei

(
− σ2

pbd
−η
bi

)}
− τ

)
= 0

(22)

Stationarity:
NAA′

K2
+
AA′(2K +A)

K2(K +A)
− α

ln 2

{
d−ηbi

σ2 + (pb + psi)d
−η
bi

}
= 0. (23)

For the problem of (17), the optimal transmit power allocation is given in

Theorem 1, proved in Appendix A.240

Theorem 1. For R̄si ≥ τ , the optimal transmit power allocation to minimize

15



the KL divergence is given by

p∗si =


 2τ

exp
(

exp
(

σ2

pbd
−η
bi

)
Ei
(
− σ2

pbd
−η
bi

))
− 1

 dηbiσ
2 − pb. (24)

Remark 1. We note that (24) explicitly captures the effects of the transmitter

location on p∗si. For example, when the distance between the sink node and

the i-th sensor is smaller, the optimal transmit power allocation will be higher245

than the case when the distance is longer. It is interesting to show that the

optimal transmit power allocation is irrelevant to the location of the attacker

(location-free). The reason is that the attacker utilizes the beamforming to

emulate the legitimate channel. This result emphasizes that this attacker can

perfectly hide its physical location, so it cannot be well detected via PHY-layer250

spatial decorrelation information, i.e., RSS, CSI.

4. Cooperative PHY-Layer Authentication

In this section, we propose the cooperative PHY-layer authentication scheme

with respect to the intelligent location spoofing attack discussed in section 4,

which is shown in Fig. 2. In the following, our analysis is based on the optimal255

intelligent attack, which is the worst case for defenders. Specifically, we formu-

late the cooperative detection model as MRF and provide the location function

and the compatibility function. Then, we develop the complete scheme and an-

alyze the performance. Finally, we propose the cooperative neighbour selection

algorithm to accelerate belief convergence and reduce the overhead.260

4.1. Cooperative Detection Model

When a sink node requests to access the sensors via location based proto-

col, the sensors cooperatively authenticate the sink node. We model sensors as

random nodes and multi-hop communication links as edges in set E = {ed|d =

1, · · · ,U}. For example, if two random nodes i and j can communicate mutual-265

ly, it is called neighbour nodes and there is an edge ed connects them, otherwise
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Figure 2: The process of cooperative PHY-layer authentication scheme.

there is no connections between them. We assume each random node i is inde-

pendent of non-neighbour nodes. In this case, the sensor networks are regarded

as an undirected graph G = (V, E), which can be further represented as a MRF

[33].270

In MRF, it defines two types of potential function, which are the local func-

tion φi(Si|Λ(ψ(yi))) and the compatibility function ϕij(Si, Sj |Λ(ψ(yi)),Λ(ψ(yj))),

respectively. The first one defines how confidence the sensor has to infer the

hidden state (real-life state) from the observation state. The latter one rep-

resents the correlation between hidden state Si and hidden state Sj . For275

simplify, let φi(Si|Λ(ψ(yi))) , φi(Si|Λi) and ϕij(Si, Sj |Λ(ψ(yi)),Λ(ψ(yj))) ,

ϕij(Si, Sj |Λi,Λj). We also define the potential function index set F = F1 ∪F2,

where F1 = V for local function and F2 ⊆ {{i, j} : i, j ∈ V, i 6= j} for compati-

bility function. Next, we analyze the two functions in details.

4.2. Local Function and Compatibility Function280

The local function φi(Si|Λi) denotes the inference relation between test s-

tatistic Λi (observation states Oi) and hidden state Si. In the following, we
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analyze the design of local function. Denote P (at∗|at−1) and P (ãt∗|at−1) as

the probabilities that the attack action will be change from an action at−1 ∈

{at−1∗, ãt−1∗} to the optimal action at∗ and non-optimal action ãt∗, respectively.285

Then

P (at∗|at−1) = P (st, at∗|st−1, at−1)

= P (st|st−1, at−1)P (at∗)

= P (ht−1
b ,pt−1∗

s |htb,pt∗s )(1− ε), (25)

P (ãt∗|at−1) = P (st, ãt∗|st−1, at−1)

= P (st|st−1, a)P (ãt∗)

= P (ht−1
b ,pt−1∗

s |htb,pt∗s )ε, (26)

where s = (hb,p
∗
s) is the state with respect to the optimal intelligent attack.

Since the intelligent attack action is time correlated and the current state is

correlated with the state in the previous time slot. Thus, it can be exploited for

intelligent attack detection.290

To simplify analysis, we set ε = 0, that is P (a = a∗) = 1. Note that

this simplification is reasonable since ε is a small positive value, i.e., ε = 0.01,

P (ãt∗|at−1) ≈ 0, and our analyses can be easily extended to the case of ε 6= 0.

When ε = 0, we can regard the intelligent attack action as a two-state Markov

chain. In such Markov chain, P (at∗|at−1∗) represents an intelligent attack action295

transition probability from time slot t− 1 to t.

In MRF, the belief can be used to estimate the marginal probability which

decides the real-life state of the attack. For example, in time slot t, if the belief

bi,t is less than a threshold, we use Si,t = 0 to represent the absence of the

attack, otherwise, we use Si,t = 1 to represent the presence of the attack. For300

this intelligent attack, the transition probability of the hidden state between

time slot t − 1 and t is given by P (Si,t|Si,t−1), where Si,t, Si,t−1 ∈ {0, 1} with

P (1|0)+P (0|0) = 1 and P (0|1)+P (1|1) = 1. It is seen that the state transition

probability of the hidden state is equal to the transition probability of the
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intelligent attack action.305

Remark 2. Here, we obtain an important insight that the state transition

probability is proportional to the channel time-vary speed which is related to the

variation of communication environments. Thus, the intelligent location spoof-

ing attack is more serious in time-vary complex communication environments,

such as crowed urban areas.310

As analyzed, the current hidden state is correlated with the hidden state in

the previous time slot, we develop a temporal dimension on the local function

of MRF. Fig. 3 shows the relations among the current hidden state Si,t, the

current test statistic Λi,t, the previous belief bi,t−1, and compatibility function.

As in [34], if the test statistic Λi,t belongs to Oi,t = 0, no attack is detected
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Figure 3: The MRF with the temporal dimension. The green node represents random node
which is composed by the observation state Oi,t and the hidden state Si,t.

315

at sensor i. In this case, it is given a small value to represent the hidden state

Si,t = 0. When Λi,t belongs to Oi,t = 1, the attack is detected at sensor i. In

this case, it is given a large value to show the confidence of the hidden state

Si,t = 1.

Based on the above analysis, the local function can be written as320

φi(Si,t|Λi,t, bi,t−1) =

ς(
1
Ω + κb̂i,t), Oi,t = 0

ς(δ(Oi,t = 1) + κb̂i,t), Oi,t = 1

, (27)
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where

b̂i,t =
∑
Si,t−1

P (Si,t|Si,t−1)bi,t−1 (28)

represents the one-step ahead belief prediction of the hidden state Si,t based on

Bayesian forecasting [35], 1
Ω with Ω ≥ 2 is a uniform distribution, δ(Oi,t = 1)

is an impulse distribution, ς = 1
1+κ is a normalization factor, and κ ∈ (0, 1) is

a forgetting factor represents how sensor views the importance of the previous325

belief5.

Remark 3. Note that the local function gives a large value to the node when

infers the hidden state Si = 1 and gives a small value to the node, i.e., ς( 1
Ω +

κb̂i,t), when infers the hidden state Si = 0.

In the following, if no confusions occur, we omit the symbol bi,t−1 in φi(·) and330

the time slot index t in the subscript of Si,t, Oi,t and Λi,t. Note that the local

function has to update in each time slot, we propose the update process in Fig.

4. We find that the algorithm is recursive, that is, the local function φi in time

slot t is calculated by the belief bi,t−1 in time slot t − 1. For the initial belief

bi,0 in time slot t = 0, we consider an arbitrary value, i.e., bi,0 = 0.5.335

Start

Predict the belief in current time slot via (28)

Update the local function via (27)

Predict the belief 

Yes

EndNo

Figure 4: The process of local function update.

5Note that our proposed authentication scheme can be used to authenticate traditional
“blunt” location spoofing attack by setting the forgetting factor κ to be zero.
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The compatibility function ϕij(Si, Sj |Λi,Λj) represents the correlation be-

tween sate Si and state Sj . Sensor i and sensor j that are close to each other

are more likely to have correlated receive signal power, which means the ob-

servations from these users are more related than that from further away. For

illustrative purposes, we use the receive signal power correlation between sensor340

i and sensor j to represent ϕij(Si, Sj |Λi,Λj). Considering a less computationally

complex solution, we define the following simple compatibility function between

two neighbours via the Potts model [34]

ϕij(Si, Sj |Λi,Λj) =

θij , Si = Sj

1−θij
Ω−1 , Si 6= Sj

, (29)

where θij = exp
(
−ψ(yi) log ψ(yi)

ψ(yj)

)
with 0 < θij < 1, θij � (1− θij)/(Ω− 1).

Remark 4. The larger θij is, the higher correlation the neighbour sensors will345

be. We see that the compatibility function encourages neighbour sensor to have

the same state.

4.3. Complete Scheme and Performance Metrics

Here, we propose the complete scheme and analyze the related performance

metrics. Belief propagation is an information passing algorithm, which oper-350

ates in a pairwise MRF to compute marginal probability associated with the

joint probability [36]. Since the cooperation of the sensors, all neighbouring sen-

sors can predict and exchange the information with each other using Bayesian

forecasting and belief propagation, namely, belief forecasting propagation.

The joint probability S conditional on Λ can be written as355

P (S|Λ) =

M∏
i=1

φi(Si|Λi)
∏
i 6=j

ϕij{Si, Sj |Λi,Λj}. (30)

where S = {Si| i = 1, · · · ,M} is the hidden state set, and Λ = {Λi|i =

1, · · · ,M} is the test statistic set. The goal is to independently compute the
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marginal probability P (Si|Λ) refers to belief for each sensor, and make decision-

s. We define an information passing from sensor j to sensor i as mij(Si). Since

belief forecasting propagation can be used to iteratively calculate the marginal360

probability for each hidden state, conditional on any observation states. In the

l-th iteration, the information ml
ij(Si) that sensor j transmits to sensor i can

be updated by

ml
ij(Si) = Cj

∑
Sj

φj(Sj |Λj)ϕij(Si, Sj |Λi,Λj)
∏
k 6=i,j

ml−1
kj (Sj), (31)

where Cj is a normalization factor so that ml
ij(Si = 1) +ml

ij(Si = 0) = 1, ml
ij

means the belief about the state of sensor i, which is estimated by sensor j.365

When the algorithm convergence, i.e., n iterations, each sensor obtains its final

belief which is represented as

bi(Si) = ciφi(Si|Λi)
∏
i6=j

mn
ij(Si), (32)

where ci is a normalization factor. Then the marginal probability P (Si|Λ) can

be approximately estimated via belief bi(Si). Theorem 2 proves the convergence

of the algorithm, and the proof is in Appendix B.370

Theorem 2. For binary variables with pairwise interactions, if

|Jij | < arctan

(
1

M − 1

)
, (33)

where |Jij | = − ln θij is the “couplings” of sensor i and sensor j, then belief

forecasting propagation is an `1-contraction and converges with probability one

to an unique fixed point irrespective of the initial information.

Remark 5. Here, we obtain an insight that when the number of sensors is375

large-scale, a smaller θij is required to satisfy the belief convergence condition.

We find that the convergence constraint is relaxed with the increasing of the

number of sensors. In other words, the more sensors within the WSN, the better
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convergence performance the algorithm will be.

When all the sensors obtain the final beliefs, they compare the belief with a380

belief threshold bT and the decision rule is given by

bi
H0

Q
H1

bT . (34)

If the belief of sensor i is higher than the threshold bT , sensor i considers the

attack is present, i.e., Si = 1, otherwise not. The complete cooperative PHY-

layer authentication scheme is presented in Algorithm 1.

Algorithm 1 Cooperative PHY-layer authentication

1: Initialize M , bi,0, Si,0, κ, bT , n;
2: Each sensor calculates the local observation via (12);
3: Each sensor infers the observation state Oi via (11);
4: Each sensor calculates the local function value and the compatibility func-

tion value via (27) and (29);
5: for iteration ← 1 to n do
6: Each sensor exchanges messages among neighbours and updates the in-

formation ml
ij(Si) via (31);

7: end for
8: Calculates the final belief via (32);
9: Each sensor finally decides the state (hidden state) of the attack via (34);

10: if Si = 1 then
11: The transmitter is unauthenticated;
12: else
13: The transmitter is authenticated.
14: end if

The detection probability and the false alarm probability are presented as385

follows

Pf,i = Pr(bi > bT |H0)

=
bi(0) ∩ bi(1)

bi(0)
, (35)

Pd,i = Pr(bi > bT |H1)

= 1− bi(0) ∩ bi(1)

bi(1)
, (36)

where Pr(·|·) is the conditional probability, bT is the belief threshold, bi(Si)
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is the belief of the state with Si ∈ {0, 1}. After belief iterating, the belief of

sensor i under the attack and without the attack are given by (C.2) and (C.4)

in Appendix C, respectively. After some algebraic computations, the bounds on390

belief can be expressed as

bbi(1)c = B1

[(
1

Ω
+ κb̂j,t

)
1

Ω− 1

]m
, (37)

dbi(1)e = B1

[
δ + κb̂j,t

]m
, (38)

bbi(0)c =

 B0

[
1
Ω + κb̂j,t

]m
, if b̂j,t <

1
κ(Ω2−2Ω) ,

B0

[(
δ + κb̂j,t

)
1

Ω−1

]m
, if b̂j,t ≥ 1

κ(Ω2−2Ω) ,
(39)

dbi(0)e =

 B0

[
1
Ω + κb̂j,t

]m
, if b̂j,t ≥ 1

κ(Ω2−2Ω) ,

B0

[(
δ + κb̂j,t

)
1

Ω−1

]m
, if b̂j,t <

1
κ(Ω2−2Ω) ,

(40)

where B1 = ciς
m+1

[
δ + κb̂i,t

]
, B0 = ciς

m+1
[

1
Ω + κb̂i,t

]
, and we omit Oi = 1 in

δ(·) for brevity. Please see the derivation in Appendix C.

Remark 6. From (37)-(40), We can deeply understand the algebraic relation395

among current belief, the previous belief, state transition probability and the

number of neighbours. For example, the bounds are exponential functions with

respect to the number of neighbours m.

The closed-form expression for belief threshold bT and the specific value of

it can be given in Theorem 3 which is proved in Appendix D.400

Theorem 3. For ∀ Pf,i, the closed-form expression for belief threshold bT is

obtained by

bT = Pf,ibbi(0)c+ (1− Pf,i)dbi(0)e, (41)

and the specific value of belief threshold bT can be obtained by predetermining a

false alarm probability, i.e., Pf,i = 0.1.
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4.4. Cooperative Neighbour Selection405

Since the whole computation complexity takes a time proportional to the

number of links in the graph, and the belief propagation are not exact due to

the double counting problem in a loopy graph [36], we propose the cooperative

neighbour selection algorithm to accelerate belief convergence and reduce the

overhead. In WSN, the quality of service (QoS) of each multi-hop link is different410

[37]. Our optimization goal is to select the neighbour sensor who has the optimal

multi-hop link to maximize global QoS, subject to no loop in the network.

Definition 1. Let the weight of edge is a mapping ω : E →W with the weight

set W = {wd|d = 1, · · · ,U}. Define the weight complement of edge ed as wcd =∑U
d=1 wd − wd, and define the new graph Gc as the complement graph of G.415

Based on graph theory [38], we formulate the optimization problem as finding

the maximum spanning tree T, which can be written as

max
wd

T

s.t. ∀ed ∈ E, ed ∪ T contains a loop.

This optimization problem can be solved by exploiting the following theorem,

which is proved in Appendix E.

Theorem 4. Solving the minimum spanning tree Tc of complement graph Gc420

is equal to search the maximum spanning tree of graph G. In other words, the

greedy algorithm can be utilized to maximize spanning tree T.

The weight of the edge ed is designed as

wd = Cω|hid|2, d = 1, · · · ,U (42)

where Cω is the unit weight, and |hid|2 is the instantaneous channel gain between

the i-th sensor and its d-th neighbour. The complete algorithm is described in425

Algorithm 2.
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Remark 7. Complexity analysis: The standard implementation of the infor-

mation passing on the loopy graph takes O(ML2n) run time, where n is the

number of iterations, and L is the number of the possible state for sensors, i.e.,

here L = 2. While, the run time reduces to O(ML2) by using the proposed430

cooperative neighbour selection algorithm in that the iteration passes through

each sensor on the tree only once. We find that the run time is linear increasing

with the number of sensors, which suggests that the overhead is low even in

large-scale networks. Furthermore, in information passing, only a short belief

message is needed to communicate with neighbours, which takes a low overhead.435

Remark 8. Efficiency analysis: To calculate the receive signal power, we as-

sume that each sensor takes O(1) run time. Then, with Remark 7, the total run

time of a single sensor is O(1)+O(L2). Similarly, we can calculate the total run

time of M cooperative sensors as O(1) + · · ·+O(1)︸ ︷︷ ︸
M

+O(L2) + · · ·+O(L2)︸ ︷︷ ︸
M

=

MO(1) + MO(L2). For M cooperative sensors, the average run time for each440

sensor is MO(1)+MO(L2)
M = O(1) + O(L2), which means the run time is linear

increasing with the number of sensors and the run time for each sensor remains

unchanged. In addition, with the number of sensors increases, the detection

performance has been significantly improved, which proves the efficiency.

Algorithm 2 Cooperative neighbour selection

1: Initialize probe messages;
2: for sensor ← 1 to M do
3: Broadcast probe message to the neighbours;
4: Feed back probe messages from neighbours to sensor;
5: Calculate the weight of each edge via (42).
6: end for
7: Obtain the maximum spanning tree via greedy algorithm.

5. Simulations and Performance Analysis445

We verify the theoretical analysis and show the performance of the proposed

cooperative authentication scheme by simulations. In the simulations, we set
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the transmit power pb = 30 dBm, the number of samples N = 200, the noise

variance σ = −10 dBm, the path loss exponent η = 2 [39]. We set the WSN

coverage radius to be 2 km, the location of the sink node to be (0, 0), the450

location of the attack to be (0.5,−0.5). We set state transition probability to

be P (1|0) = P (0|1) = 0.4, P (1|1) = P (0|0) = 0.6, initial belief bi,0 = 0.5.

The optimal spanning tree topologies are obtained by using Algorithm 2. For

example, as shown in Fig. 5 with M = 9, 11, 13, 15, the topologies are optimal

spanning trees with no loop in networks. These optimal topologies are obtained455

via random generated sensors, and the following analysis are based on these

topologies.
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Figure 5: The network topologies via cooperative neighbour selection algorithm, where M =
9, 11, 13, 15.

Fig. 6 is obtained via Q-learning on ε-greedy policy with learning rate ε =

0.8, discount factor $ = 0.9 and ε = 0.15, 0.1, 0.05, Cs = 1 dB = 1.3 mW,

K = 3. As shown in the figure, the long-term cumulative reward converges to460

105.2 dB, 117.4 dB and 119.1 dB after 900 time slots, respectively. We conclude

that the intelligent attack can achieve a stable long-term cumulative reward

via Q-learning. Specifically, a high exploration, i.e., ε = 0.15, can converge to

a higher cumulative reward than a low exploration. This is because the high
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Figure 7: The belief bounds vs. the number of neighbours.

exploration can avoid converging to the local optimum at the training process.465

However, the high exploration reduces the Q-learning convergence speed. For

example, the algorithm converges to theoretical reward at 500 time slot with

ε = 0.15, while it converges to theoretical reward at 300 time slot with ε = 0.05.
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Fig. 7 demonstrates the lower bound and the upper bound on belief of

sensor i with Ω = 3, 3, 4 and κ = 0, 0.5, 0.5, respectively. With regard to these470

three subfigures, we find that the belief bounds are inversely proportional to the

number of its neighbours, except the upper bound on bi(1) with Ω = 3, κ = 0.

From the figure, we can conclude that the upper bound on bi(1) depends on κ

rather than Ω. We can also observe that the gap of the belief bounds become

smaller, with the increasing of Ω and forgetting factor κ. It implies that by475

considering the belief of the previous time slot, the uncertainty of the current

belief is decline. Furthermore, we can see that the bound bi(0) belongs to

the bound bi(1), which suggests that the false alarm probability Pf,i and the

miss detection probability 1 − Pd,i always exist. These phenomenons are also

confirmed by the Theorem 3.
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Figure 8: The belief threshold bT vs. the number of neighbours.

480

Fig. 8 analyzes the variation trend of the belief threshold. As the number of

neighbours increase, we see that the belief threshold is decreased exponentially,

which can also be confirmed by the insights in Remark 6. We also see that a

higher Ω and forgetting factor κ can lead to a lower belief threshold.

Fig. 9 illustrates the effect of different distance from the sink node to the485
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Figure 9: The final belief mean, variance vs. distance between attack and sink node.

attacker on the final belief with M = 9, 13. The simulation result is obtained

from 1000 times Monte-Carlo simulations. It is shown that when the distance

increase from 0.5 km to 2 km, the mean final belief and variance are almost

stable, which means the attack is location-free as analyzed in Remark 1. We

also find that the more sensors cooperation, the higher final belief the algorithm490

has. For example, the mean final belief is around 0.65 when the sensor number

is M = 13, while the mean final belief is around 0.5 when the sensor number

is M = 9. The result shows that the more sensors cooperation, the higher

robust the algorithm is. Note that although the intelligent attack is location-

free, the long distance between sink node and attack will increase the difficulty495

of beamforming.

Fig. 10 evaluates the performance of the proposed scheme via the receiver

operating characteristic (ROC) curves in 10000 times Monte-Carlo simulations.

When the intelligent attack uses the beamforming with optimal transmit pow-

er allocation, the detection performance reduces more than 5% than the case500

with random transmit power allocation. Moreover, although more sensors can

cooperation to improve detection performance, it is hard to offset the influence
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that the optimal transmit power allocation brings. Thus, the optimal intelligent

attack which uses beamforming with optimal transmit power allocation is the

worst case in our analysis.
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Fig. 11 illustrates the detection performance of the proposed scheme and

the benchmark methods under the threat of the optimal intelligent attack. In

the figure, the dotted line represents the traditional methods and the solid line

represents the machine learning inspired methods. It is shown that the proposed

scheme can significantly improve the detection performance. For example, the510

performance gain of our scheme over traditional CSI based method [10] more

than 50% with Pf,i = 0.1 and over traditional RSS based method [5] more than

40% with Pf,i = 0.1. It suggests that both CSI and RSS based method are

hardly detect such an attack. The performance of the CSI based method is the

lowest because the intelligent attack imitates the channel via beamforming. In515

addition, we leverage the RSS method as a benchmark and further compare our

method with RSS in three fusion rules, i.e., RSS-OR, RSS-Majority, RSS-AND.

The results show that our method obviously outperforms the RSS in three fusion

rules. As a machine learning inspired method, the extreme learning machine

(ELM) based authentication [16] has a better detection performance than the520

traditional methods. It is because that the machine learning inspired method

can obtain the deep channel characteristics from training data, thus can identify

the attacker more accurately. However, our proposed method is superior to the

ELM based authentication. Since the sensor cooperation and the history infor-

mation consideration are important factors in detecting the proposed intelligent525

location spoofing attack. In addition, when the number of sensors increases

from 9 to 15, the detection performance has obviously improved. It suggests

that the more sensors cooperation, the better performance the scheme will be.

6. Future Work

In this paper, we mainly focus on the static WSN scenario. It has many im-530

portant applications in mission critical internet of things, such as border patrol.

In such a scenario, the sensor are fixed deployment on the border to monitor bor-

der security. The mobile WSN also has widely applications in practice. Thus, in

the future works, we will investigate the cooperative PHY-layer authentication
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scheme in mobile WSN. In addition, the non-Gaussian noise generally exists in535

nonlinear stochastic models [40, 41], i.e., wireless channel model. We should

also consider the effect of non-Gaussian noise on measurements in the practical

systems.

7. Conclusion

In this paper, we have proposed a cooperative PHY-layer authentication540

scheme to defend against an intelligent location spoofing attack in WSN. To

attack, we have analyzed the feasibility of it and found the optimal intelligent

attack. To protect, we have modeled the networks as a MRF and have de-

signed the local function and the compatibility function. We have obtained the

expressions for the detection probability and false alarm probability. We have545

obtained the belief bounds and the closed-form expression for belief threshold.

We have proposed the cooperative neighbour selection algorithm to accelerate

belief convergence and reduce the overhead. The simulations have validated

the theoretical analysis and compared with five benchmark methods. Some in-

sightful remarks have obtained, for example: 1) The optimal transmit power550

allocation is irrelevant to the location of the attack. 2) We should be more

alert on such an attack in time-vary complex communication environments, i.e.,

crowed urban areas.

Appendix A. Proof of Theorem 1

According to the necessary and sufficient KKT conditions, the optimal trans-555

mit power allocation can be p∗si = dR̄−1
si (τ)e or take a value in the open interval

(dR̄−1
si (τ)e,+∞). This gives rise to the following two cases:

Case 1: Suppose p∗si = dR̄−1
si (τ)e, in this case, (22) requires that α ≥ 0.

Substituting this into (23), we have dDKL
dpsi

/ddR̄siedpsi
≥ 0. Therefore, equation (19)

satisfying560

dDKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

dpsi
≥ 0. (A.1)
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Note that (24) satisfies equation (A.1).

Case 2: Suppose dR̄−1
si (τ)e < p∗si < +∞, in this case, (22) requires that

α = 0. Substituting this into (23), we have dDKL
dpsi

/ddR̄siedpsi
= 0. Therefore,

equation (19) satisfying

dDKL[f(ψ(yi)|psi,H1)||f(ψ(yi)|H0)]

dpsi
= 0. (A.2)

However, p∗si does not satisfy the supposing constraint, then the proof is com-565

pleted.

Appendix B. Proof of Theorem 2

Lemma 1. Let (Q, ‖ · ‖) be a normed space (a normed finite dimensional real

vector space) and f : Q→ Q a differentiable mapping. Then, for q1, q2 ∈ Q

‖ f(q1)− f(q2) ‖≤‖ q1 − q2 ‖ · sup
q3∈[q1,q2]

‖ f ′(q3) ‖, (B.1)

where denote [q1, q2] as the segment {ξq1 + (1− ξ)q2 : ξ ∈ [0, 1]} joining q1 and

q2 [42].

Combining contracting mapping principle [33] and Lemma 1, we have the fol-570

lowing lemma.

Lemma 2. Let (Q, ‖ · ‖) be a normed space and f : Q→ Q be a differentiable

mapping. If supq∈Q ‖ f ′(q) ‖< 1, then f is a ‖ · ‖ contraction. Moreover, we

deduce that for any q ∈ Q, the sequence q, f(q), f2(q), · · · converges to a unique

fixed point q∞ ∈ Q with a convergence rate that is at least linear.575

The belief forecasting propagation update (31) can be rewritten as [33]

tanh ν̃j→i = tanh(Jij) tanh

θj +
∑
v∈∂j\i

νv→j

 , (B.2)

where ν̃j→i is the information sent from variable j to i, θj is the “local fields”

with respect to φj and ∂j = {v ∈ V : {j, v} ∈ F2} are the variables that
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interact with i via a compatibility function. Defining the set of ordered pairs

D , {i → j : {i, j} ∈ F2}, we see that the parallel propagation update is a

mapping f : RD → RD, (B.2) specifies the component f(ν)i→j , ν̃i→j in terms

of the components of ν. Denote the `1 norm of a linear mapping A on RD as

‖ A ‖1= max
j∈{1,··· ,N}

N∑
i=1

|Aij |, (B.3)

where Aij , (Aej)i, ej is the j-th canonical basis vector. The derivative of f

is calculated from (B.2) and is given by

f ′(ν)j→i,k→l =
∂ν̃j→i
∂νk→l

= Aj→i,k→lBj→i(ν), (B.4)

where

Bj→i(ν) ,
1− tanh2(θj + Σv∈∂j\iνv→j)

1− tanh2(ν̃j→i(ν))
sgnJij (B.5)

and the linear mapping Aj→i,k→l , tanh |Jij |δj,l1∂j\i(k).

Since supν∈Q |B(ν)j→i| = 1 and Aj→i,k→l are nonnegative and independent

of ν. For everywhere on Q, we obtain
∣∣∣ ∂ν̃j→i∂νk→l

∣∣∣ ≤ Aj→i,k→l. Choosing the `1

norm on RD, we obtain

‖ f ′(ν)j→i,k→l ‖1 = max
k→l

∑
j→i

∣∣∣∣∂ν̃j→i∂νk→l

∣∣∣∣
≤ max

k→l

∑
i→j

tanh |Jij |δj,lI∂j\i(k)

= max
j∈V

max
k∈∂j

∑
i∈∂j\k

tanh |Jij |. (B.6)

Apply Lemma 2, we have

max
j∈V

max
k∈∂j

∑
i∈∂j\k

tanh |Jij | < 1. (B.7)

For random nodes j ∈ V, substituting the maximum dimension of its neigh-
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bouring random nodes, (33) is obtained and the proof is completed.

Appendix C. The Derivation of Belief Bounds

Supposing the number of neighbours of sensor i is m, the messages passing

from neighbour j to i are independent. Substituting (31) into (32), we derive

the belief with attack in (C.1) at the top of next page. Then, substituting

(29) and (27) into (C.1), (C.1) can be transformed to (C.2). After algebraic

manipulations, we find that (C.2) is a function of θij with 0 < θij < 1, j =

1, · · · ,m. Taking logarithm to (C.2), we have (C.3). Note that each term of

(C.3) is a convex function. By maximizing/minimizing the log-function of each

term, we obtain the bounds on the belief of (C.2) in (37), (38). Similarly, from

(C.4), (C.5), we obtain the bounds on the belief of (C.4) in (39), (40). In (39),

(40), the bounds are piecewise functions, which depend on the one-step ahead

belief prediction.

bi(1) = ciφi(1)m1(1) · · ·mm(1)

= ciφi(Si = 1)[P (S1 = 1|Λ1)P (Si = 1|S1 = 1) + P (S1 = 0|Λ1)P (Si = 1|S1 = 0)]

· · · [P (Sm = 1|Λm)P (Si = 1|Sm = 1) + P (Sm = 0|Λm)P (Si = 1|Sm = 0)].

(C.1)

bi(1)

= ciς
m+1

[
δ(Oi = 1) + κb̂i,t

] [(
δ(O1 = 1) + κb̂1,t

)
θi1 +

(
1

Ω
+ κb̂1,t

)
1− θi1
Ω− 1

]
· · ·
[(
δ(Om = 1) + κb̂m,t

)
θim +

(
1

Ω
+ κb̂m,t

)
1− θim
Ω− 1

]
= ciς

m+1
[
δ(Oi = 1) + κb̂i,t

] m∏
j=1

[(
δ(Oj = 1) + κb̂j,t

)
θij +

(
1

Ω
+ κb̂j,t

)
1− θij
Ω− 1

]
.

(C.2)
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ln bi(1) = ln ciς
m+1 + ln[δ(Oi = 1) + κb̂i,t]

+ ln

[(
δ(O1 = 1) + κb̂1,t

)
θi1 +

(
1

Ω
+ κb̂1,t

)
1− θi1
Ω− 1

]
+ · · ·+ ln

[(
δ(Om = 1) + κb̂m,t

)
θim +

(
1

Ω
+ κb̂m,t

)
1− θim
Ω− 1

]
. (C.3)

bi(0) = ciς
m+1

[
1

Ω
+ κb̂i,t

] m∏
j=1

[(
δ(Oj = 1) + κb̂j,t

) 1− θij
Ω− 1

+

(
1

Ω
+ κb̂j,t

)
θij

]
.

(C.4)

ln bi(0) = ln ciς
m+1 + ln

[
1

Ω
+ κb̂i,t

]
+ ln

[(
δ(O1 = 1) + κb̂1,t

) 1− θi1
Ω− 1

+

(
1

Ω
+ κb̂1,t

)
θi1

]
+ · · ·+ ln

[(
δ(Om = 1) + κb̂m,t

) 1− θim
Ω− 1

+

(
1

Ω
+ κb̂m,t

)
θim

]
. (C.5)

Appendix D. The Derivation of Belief Threshold580

From (37)-(40), we have bi(0) ∩ bi(1) 6= ∅, then from (35) (36), we have

Pf,i 6= 0 and Pd,i 6= 1 with probability one. We derive that ∀ (bi > bT |H0) ∈

bi(0) ∩ bi(1), ∃ (bi > bT |H1) ∈ bi(0) ∩ bi(1), and then we get bbi(1)c ≤ bT ≤

dbi(0)e. Since Pf,i 6= 1, we can further obtain bbi(0)c ≤ bT ≤ dbi(0)e.

In this case, the closed-form expression for belief threshold bT can be calcu-

lated by

dbi(0)e − bT
dbi(0)e − bbi(0)c

= Pf,i. (D.1)

After some algebraic manipulations, we obtain (41) and the proof is completed.585

Appendix E. Proof of Theorem 4

Define the weight sum of graph G as S =
∑U
d=1 wd, then the weight com-

plement of edge ed is wcd = S − wd. By exploiting greedy algorithm, the prob-
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lem can be transformed to minimize spanning tree of graph Gc, subject to

∀ed ∈ E, ed ∪ T contains a loop, which is given by590

min
wd

Tc =
∑
ed

(S − max
d=1,··· ,U

wd). (E.1)

After some algebraic manipulations, we can get

max
wd

T = (M − 1)S −min
wd

Tc. (E.2)
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