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Coordinate Descent Algorithms for Phase Retrieval
Wen-Jun Zeng, Member, IEEE, and H. C. So, Fellow, IEEE

Abstract—Phase retrieval aims at recovering a complex-valued
signal from magnitude-only measurements, which attracts much
attention since it has numerous applications in many disci-
plines. However, phase recovery involves solving a system of
quadratic equations, indicating that it is a challenging nonconvex
optimization problem. To tackle phase retrieval in an effective
and efficient manner, we apply coordinate descent (CD) such
that a single unknown is solved at each iteration while all
other variables are kept fixed. As a result, only minimization
of a univariate quartic polynomial is needed which is easily
achieved by finding the closed-form roots of a cubic equation.
Three computationally simple algorithms referred to as cyclic,
randomized and greedy CDs, based on different updating rules,
are devised. It is proved that the three CDs globally converge
to a stationary point of the nonconvex problem, and specifically,
the randomized CD locally converges to the global minimum and
attains exact recovery at a geometric rate with high probability if
the sample size is large enough. The cyclic and randomized CDs
are also modified via minimization of the ℓ1-regularized quartic
polynomial for phase retrieval of sparse signals. Furthermore, a
novel application of the three CDs, namely, blind equalization in
digital communications, is proposed. It is demonstrated that the
CD methodology is superior to the state-of-the-art techniques in
terms of computational efficiency and/or recovery performance.

I. INTRODUCTION

Phase retrieval refers to the recovery of a complex-valued

signal from only intensity or squared-magnitude measurements

of its linear transformation [1], [2], [3]. It has been a very

active field of research because of its wide applicability in

science and engineering, which include areas of optical imag-

ing [3], crystallography [4], electron microscopy [5], neutron

radiography [6], digital communications [7], astronomy [8]

and computational biology [9]. The first model for phase re-

trieval investigates the problem of recovering a signal from the

squared-magnitude of its Fourier transform. To address various

applications, the power spectrum measurement model has been

extended to different formulations, including the short-time

Fourier transform [10], [11], coded diffraction patterns [12],

and random measurements [2], [13]–[15]. Nevertheless, in all

these models, observations of the signal-of-interest (SOI) are

obtained via a linear mapping, and we can only measure the

intensity.

Early approach to phase retrieval is based on error reduction,

which includes the most representative Gerchberg-Saxton (GS)

algorithm [16] and its modified version proposed by Fienup

[17], as well as other variants [18]–[20]. In essence, the

error reduction techniques apply the concept of alternating

projection. That is, at each iteration, the current SOI estimate

is projected onto one constraint set such that the magnitudes

of its linear mapping match the observations, and then the
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signal is projected onto another constraint set to conform to

the a priori knowledge about its structure [13], [16]. This

methodology works well in practice but its convergence is

unclear because projection onto nonconvex sets is involved.

Recently, the guarantee of convergence to global solution for

the GS algorithm is proved under the condition of resampling

[18]. The number of measurements required in the resampled

GS scheme is on the order of N log3N with N being the

signal length. Nevertheless, it will be clear later that this

sampling complexity is not optimal compared with other

advanced methods.

In fact, phase recovery corresponds to a nonconvex opti-

mization problem. To be specific, it requires solving a system

of quadratic equations, or equivalently, minimizing a multi-

variate fourth-order polynomial, which is generally known to

be NP-hard [13], [15], [21], [22]. The convex relaxation based

methods, including PhaseLift [2], [14] and PhaseCut [23],

relax the original nonconvex problem into a convex program.

The PhaseLift converts the quadratic equations into linear ones

by lifting the N -dimensional signal vector to an N ×N rank-

one matrix. Then it approximates the minimum rank problem

using trace norm minimization, which is convex and can be

solved by semidefinite programming (SDP). The sampling

complexity of PhaseLift is O(N logN), which is lower than

that of the resampled alternating projection method [18] and

is nearly optimal [14]. On the other hand, the PhaseCut

recasts phase retrieval as a quadratically constrained quadratic

program (QCQP) which is then approximately solved via

semidefinite relaxation [24], [25]. It has similar sampling

complexity to PhaseLift and both exhibit good retrieval per-

formance. However, the computational load of the SDP based

methods is very high, especially when the signal length or

number of observations is large, since the PhaseLift and

PhaseCut involve matrix variables with O(N2) and O(M2)
elements, respectively, where M is the measurement number.

As a result, the convex relaxation approach cannot deal with

large-scale problems.

To circumvent the high computational requirement,

Wirtinger flow (WF) [13], which is essentially a gradient

descent technique for complex-valued variables, is developed

for minimizing the nonconvex quartic polynomial. In general,

the gradient method is only guaranteed to converge to a

stationary point of a nonconvex objective function. In other

words, it can trap in a saddle point or local minimum. That is

to say, convergence to the global solution is not guaranteed for

general nonconvex optimization problems using the gradient

descent. Surprisingly, when initiated via a spectral method

[13] and the sample size is O(N logN), Candès et al. prove

that the WF algorithm converges to the global solution at

a geometric rate with high probability. The truncated WF

[22] further enhances the recovery performance by adaptively
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selecting a portion of measurements at each iteration while

the optimal stepsize for convergence rate acceleration has been

derived in [26]. Still, the convergence speed of the gradient-

based WF approach is not fast.

In many applications, the SOI is sparse or only contains a

few nonzero entries in some basis. Recovering a sparse signal

from the intensity-only measurements is called quadratic

compressed sensing. Like classic compressed sensing based

on linear measurements [27], [28], the sampling complexity

of phase retrieval can be reduced by exploiting sparsity.

Several above-mentioned phase recovery schemes for non-

sparse signals have been adapted to handle sparse SOIs. For

example, performing hard-thresholding at each iteration of the

GS or Fienup scheme yields the so-called the sparse Fienup

algorithm [29]. Similarly, applying a thresholding operation1

to the WF method elicits the thresholded WF algorithm [30].

Both will yield desirable solution because either soft- or hard-

thresholding enforces the signal to be sparse. Furthermore, by

borrowing the idea from orthogonal matching pursuit [31],

[32], a greedy algorithm is designed for sparse phase retrieval

in [33].

In this work, we develop effective and computationally

efficient algorithms with faster convergence rate for mini-

mizing the nonconvex quartic polynomial in phase retrieval.

Our approach is based on coordinate descent (CD), which

adopts the strategy of “one at a time” [34], [35]. That is, CD

solves a multivariate minimization problem by successively

finding a single unknown at each iteration while keeping

the remaining variables fixed. According to different rules

for coordinate selection, our scheme includes three variants,

namely, cyclic, randomized, and greedy CDs. One motivation

using CD for phase retrieval is that the exact minimizer of

each coordinate is easily obtained by finding the roots of

a univariate cubic equation. It is believed that the proposed

methodology provides a new path to solve phase retrieval and

related problems.

We summarize the contributions of this paper as follows.

(i) An algorithmic framework including cyclic, randomized,

and greedy CDs, is proposed to solve the quartic polyno-

mial minimization for phase retrieval. The CD algorithm

is computationally simple and converges much faster than

the gradient descent methods such as WF and its variants

[13], [22], [26].

(ii) Theoretically, we prove that the CD globally converges

to a stationary point of the nonconvex problem, where

the gradient is non-Lipschitz continuous. It is worth

pointing out that the proof is nontrivial because the

existing convergence analyses of CD assuming convexity

and Lipschitz continuity [34], [35] are not applicable to

our problem.

(iii) It is proved that the randomized CD locally converges

to the global minimum at a geometric rate with high

probability using O(N logN) measurements.

(iv) The CD algorithms are extended for phase retrieval

of sparse signals, where the minimization of the ℓ1-

regularized quartic polynomial is solved.

1The thresholding operator can be soft or hard.

(v) Currently, the applications of phase retrieval mainly focus

on imaging. Here, we open up a new use of phase

retrieval for blind equalization in digital communications,

i.e., removing the adverse effect induced by channel

propagation.

The remainder of this paper is organized as follows. The

phase retrieval problem is formulated and three CD algorithms

are introduced in Section II. In Section III, two types of

convergence, namely, global convergence to a stationary point

and local convergence to the global minimum, are theoretically

proved. Section IV presents the ℓ1-regularized CD algorithms

for sparse phase retrieval. The application to blind equalization

is investigated in Section V. Simulation results are provided

in Section VI. Finally, conclusions are drawn in Section VII.

We use bold capital upper case and lower case letters to

represent matrices and vectors, respectively. The ith element

of a vector is expressed as [·]i, and similarly, the (i, j) entry

of a matrix is [·]i,j . The identity matrix is denoted by III .

The superscripts (·)T , (·)∗ and (·)H stand for the transpose,

complex conjugate and Hermitian transpose, respectively. The

imaginary unit is j =
√
−1 while E[·] is expectation operator.

The Re(·) and Im(·) denote the real and imaginary parts of

a complex-valued scalar, vector or matrix. The ℓ2-, ℓ1-, and

ℓ∞-norms of a vector are denoted as ‖ · ‖, ‖ · ‖1, and ‖ · ‖∞,

respectively. The inner product is represented as 〈, 〉 and | · |
means the absolute value of a real number or the modulus of

a complex number. Finally, R and C denote the fields of real

and complex numbers, respectively.

II. CD FOR PHASE RETRIEVAL

A. Problem Formulation

We consider the problem of recovering a complex-valued

signal xxx ∈ C
N from M phaseless observations bm ∈ R:

bm =
∣

∣aaaHmxxx
∣

∣

2
+ νm, m = 1, · · · ,M (1)

where aaam ∈ CN are known sampling vectors, and νm ∈ R are

additive zero-mean noise terms, and and generally M > N .

Note that in case of magnitude-only measurements bm =
∣

∣aaaHmxxx
∣

∣+ νm, we can convert it to b2m. The measurements are

collected into a vector bbb = [b1, · · · , bM ]T ∈ R
M . Finding

a solution of (1) in the noiseless case refers to solving a

quadratic system of equations. Apparently, xxx can only be

recovered up to a global phase φ ∈ [0, 2π) because ejφxxx is

also a solution. Adopting the least squares (LS) criterion, xxx is

determined from:

min
xxx∈CN

f(xxx) :=
M
∑

m=1

(

∣

∣aaaHmxxx
∣

∣

2 − bm
)2

. (2)

When the noise is independent and identically distributed

(i.i.d.) and Gaussian, the LS estimate given by (2) is equiv-

alent to the maximum likelihood solution. Nevertheless, the

optimization problem of (2) is not easy to solve because it is

not only nonlinear but also nonconvex.
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B. Outline of CD

To derive the CD, we first analyze the structure of the

objective function in (2). The mth (m = 1, · · · ,M ) term in

(2) is

fm(xxx) =
(

∣

∣aaaHmxxx
∣

∣

2 − bm
)2

=
(

xxxHAAAmxxx− bm
)2

(3)

where AAAm = aaamaaa
H
m ∈ C

N×N is a rank-one Hermitian

matrix. Our first step is to convert the complex-valued problem

into a real-valued one. It will be revealed shortly why we

deal with the real-valued variables instead of complex-valued

parameters. Define the expanded real-valued matrix

ĀAAm =

[

Re(AAAm) −Im(AAAm)
Im(AAAm) Re(AAAm)

]

∈ R
2N×2N (4)

and vector

x̄xx =

[

Re(xxx)
Im(xxx)

]

∈ R
2N . (5)

Note that ĀAAm is symmetric due to Re(AAAm) = Re(AAAm)T and

Im(AAAm) = −Im(AAAm)T because AAAm is Hermitian. It is also

not difficult to see xxxHAAAmxxx = x̄xxTĀAAmx̄xx. Denoting the quadratic

form as

qm(x̄xx) = x̄xxTĀAAmx̄xx (6)

we then rewrite (3) as

fm(x̄xx) = (qm(x̄xx)− bm)2 (7)

and the original optimization problem of (2) becomes

min
x̄xx∈R2N

f(x̄xx) :=

M
∑

m=1

(qm(x̄xx)− bm)
2
. (8)

The objective function f(x̄xx) is a multivariate quartic poly-

nomial of x̄xx = [x̄1, · · · , x̄2N ]T since qm(x̄xx) is quadratic.

Minimizing multivariate fourth-order polynomial is known to

be NP-hard in general [13]. In this work, we exploit the

coordinate update strategy to minimize f(x̄xx). CD is an iterative

procedure that successively minimizes the objective function

along coordinate directions. Denote the result of the kth itera-

tion as x̄xxk = [x̄k1 , · · · , x̄k2N ]T . In the kth iteration, we minimize

f with respect to the ikth (ik ∈ {1, · · · , 2N}) variable while

keeping the remaining 2N − 1 variables {x̄ki }i6=ik fixed. This

is equivalent to performing a one-dimensional search along

the ikth coordinate, which can be expressed as

αk = argmin
α∈R

f
(

x̄xxk + αeeeik
)

(9)

where eeeik is the unit vector with the ikth entry being one and

all other entries being zero. Then x̄xx is updated by

x̄xxk+1 = x̄xxk + αkeeeik (10)

which implies that only the ikth component is updated:

x̄k+1
ik
← x̄kik + αk (11)

while other components remain unchanged. Since x̄xxk is

known, f
(

x̄xxk + αeeeik
)

is a univariate function of α. Thus, (9)

is a one-dimensional minimization problem. We will detail

how to solve it in the next subsection. Now one reason

why we convert the complex-valued problem into real is

clear: this makes the scalar minimization problem of (9) real-

valued and easier to solve. Otherwise, we still face a problem

with a complex number, which in fact is a two-dimensional

optimization on the complex plane. The CD is outlined in

Algorithm 1.

Algorithm 1 CD for Phase Retrieval

Initialization: Choose x̄xx0 ∈ R
2N .

for k = 0, 1, · · · , do

Choose index ik ∈ {1, · · · , 2N};
αk = argmin

α∈R

f
(

x̄xxk + αeeeik
)

;

x̄k+1
ik
← x̄kik + αk;

Stop if termination condition is satisfied.

end for

There are several fashions to select the coordinate index

ik. The following three selection rules are considered in this

paper.

• Cyclic rule: ik first takes 1, then 2 and so forth

through 2N . The process is then repeated starting with

ik = 1 again. That is, ik takes value cyclically from

{1, · · · , 2N}. Every 2N iterations are called one cycle

or sweep. The cyclic rule is similar to the Gauss-Seidel

iterative method for solving linear systems of equations

[36], where each coordinate is updated using a cyclic

order.

• Random rule: ik is randomly selected from {1, · · · , 2N}
with equal probability.

• Greedy rule: ik is chosen as

ik = argmax
i
|∇fi(x̄xxk)| (12)

where

∇fi(x̄xx) =
∂f(x̄xx)

∂x̄i
(13)

is the partial derivative of f(x̄xx) with respect to x̄i, i.e.,

the ith component of the full gradient

∇f(x̄xx) =
[

∂f(x̄xx)

∂x̄1
, · · · , ∂f(x̄xx)

∂x̄2N

]T

. (14)

The greedy rule is also called Gauss-Southwell rule [37].

Obviously, it chooses the coordinate with the largest (in

absolute value) partial derivative. Hence, computing the

full gradient is required at each iteration while there is

no need for the cyclic and random rules. We refer the

three CD methods with cyclic, random, and greedy rules

to as CCD, RCD, and GCD, respectively. It will be seen

later that the GCD converges faster than CCD and RCD

at the expense of the extra full gradient calculation.

We call every 2N iterations of the CD as one cycle. Based

on Wirtinger calculus [13], the gradient of f with respect to

the complex vector xxx is computed as

∇f(xxx) = ∂f(xxx)

∂xxx∗
=

1

2

(

∂f

∂xxxR
+ j

∂f

∂xxxI

)

= 2

M
∑

m=1

(

∣

∣aaaHmxxx
∣

∣

2 − bm
)

aaamaaa
H
mxxx

(15)
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with a complexity of O(MN). The gradient of f with respect

to the real vector x̄xx is an expanded form of ∇f(xxx):

∇f(x̄xx) =
[

Re(∇f(xxx))
Im(∇f(xxx))

]

. (16)

C. Closed-Form Solution of Coordinate Minimization

The only remaining issue in the CD algorithm is on solving

the scalar minimization problem of (9). We now derive its

closed-form solution as follows. For notational simplicity, we

omit the superscript and subscript k in (9). That is, given the

variable x̄xx of the current iteration and the search direction eeei,
we consider minimizing the following univariate function

min
α∈R

ϕ(α) := f(x̄xx+ αeeei). (17)

Employing (8), ϕ(α) is expressed as

ϕ(α) =

M
∑

m=1

(qm(x̄xx+ αeeei)− bm)
2

(18)

where the mth term is

ϕm(α) = (qm(x̄xx + αeeei)− bm)2 . (19)

We expand the quadratic function

qm(x̄xx+ αeeei) = α2eeeTi ĀAAmeeei + 2αeeeTi ĀAAmx̄xx+ x̄xxT ĀAAmx̄xx
∆
= cm2,iα

2 + cm1,iα+ cm0
(20)

where cm2,i, c
m
1,i, and cm0 are the coefficients of the univariate

quadratic polynomial. Note that the constant cm0 has no relation

to i. According to (4), the coefficients of the quadratic term

can be simplified to

cm2,i = eeeTi ĀAAmeeei =
[

ĀAAm

]

i,i

=

{

|[aaam]i|2 , i = 1, · · · , N
|[aaam]i−N |2 , i = N + 1, · · · , 2N.

(21)

Using (4) and recalling AAAm = aaamaaa
H
m, it is revealed that

ĀAAmx̄xx =

[

Re(AAAmxxx)
Im(AAAmxxx)

]

=

[

Re
((

aaaHmxxx
)

aaam
)

Im
((

aaaHmxxx
)

aaam
)

]

. (22)

Hence, the coefficients of the linear term are computed as

cm1,i = 2eeeTi ĀAAmx̄xx

=

{

Re
((

aaaHmxxx
)

[aaam]i
)

, i = 1, · · · , N
Im

((

aaaHmxxx
)

[aaam]i−N

)

, i = N + 1, · · · , 2N.
(23)

The constant term is

cm0 = x̄xxT ĀAAmx̄xx = xxxHAAAmxxx =
∣

∣aaaHmxxx
∣

∣

2
. (24)

Since qm(x̄xx+αeeei) is quadratic, ϕm(α) of (19) is a univariate

quartic polynomial of α, which is expressed as

ϕm(α) = dm4,iα
4 + dm3,iα

3 + dm2,iα
2 + dm1,iα+ dm0 (25)

where {dmj,i}4j=1 and dm0 are the coefficients of the polynomial.

Note that dm0 is not related to i. Plugging (20) into (19), we

obtain
dm4,i =

(

cm2,i
)2

dm3,i = 2cm2,ic
m
1,i

dm2,i =
(

cm1,i
)2

+ 2cm2,i (c
m
0 − bm)

dm1,i = 2cm1,i (c
m
0 − bm)

dm0 = (cm0 − bm)
2
.

(26)

Since ϕ(α) =
∑M

m=1 ϕm(α), it is clear that the coefficients

of the quartic polynomial

ϕ(α) = d4,iα
4 + d3,iα

3 + d2,iα
2 + d1,iα+ d0 (27)

correspond to the sums of those of {ϕm(α)}Mm=1, i.e.,

d0 =

M
∑

m=1

dm0 , dj,i =

M
∑

m=1

dmj,i, j = 1, · · · , 4. (28)

The minimum point of ϕ(α) must be one of stationary points,

i.e., the roots of the derivative

ϕ′(α) = 4d4,iα
3 + 3d3,iα

2 + 2d2,iα+ d1,i = 0. (29)

Equation (29) refers to finding the roots of a univariate cubic

polynomial, which is easy and fast because there is a closed-

form solution [38]. Since the coefficients of the cubic equation

are real-valued, there are only two possible cases on the roots.

The first case is that (29) has a real root and a pair of complex

conjugate roots. In this case, the minimizer is the unique real

root because the optimal solution of a real-valued problem

must be real-valued. The second case is that (29) has three real

roots. Then the optimal α is the real root associated with the

minimum objective. Once the coefficients of (29) are obtained,

the complexity of calculating the roots of a cubic polynomial

is merely O(1). Herein, the second reason why we recast the

complex-valued problem into real is clear: by this fashion, it

results in root finding of a cubic equation with real coefficients,

which has a closed-form solution and is much simpler than the

case with complex coefficients.

Computational Complexity: The leading computational cost

at each iteration of the CD is calculating the coefficients

{dj,i}4j=1, or equivalently, computing cm2,i, c
m
1,i, and cm0 with

m = 1, · · · ,M .2 From (21), cm2,i is just the squared modulus

of [aaam]i and can be pre-computed in advance before iteration,

which requires O(M) multiplications for determining all M
coefficients {cm2,i}Mm=1. According to (23) and (24), we need

to compute {aaaHmxxx}Mm=1 in order to obtain {cm1,i}Mm=1 and

{cm0 }Mm=1. This involves a matrix-vector multiplication AAAxxx,

where the mth row of the matrix AAA is aaaHm, i.e.,

AAA =







aaaH1
...

aaaHM






∈ C

M×N . (30)

At first glance, the matrix-vector multiplication requires a

complexity of O(MN). However, this complexity can be

2This is because {dj,i}4j=1
can be easily calculated from cm

2,i
, cm

1,i
, and

cm
0

according to (26) and (28).
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reduced to O(M) per iteration for the CD. By observing

(9), we know that only one single element changes in two

consecutive iterations. Specifically, we have

xxxk+1 − xxxk = (xk+1
j − xkj )eeej , j =

{

ik, if j ≤ N
ik −N, otherwise

(31)

which yields

AAAxxxk+1 = AAAxxxk + (xk+1
j − xkj )AAA:,j (32)

where AAA:,j represents the jth column of AAA. It is only required

to compute AAAxxx0 before iteration. After that, this matrix-

vector product can be efficiently updated from that of the

previous iteration by a cheap computation of a scalar-vector

multiplication (xk+1
j − xkj )AAA:,j , which merely costs O(M)

operations. In summary, the complexity of CCD and RCD

is O(M) per iteration. Therefore, the complexity of 2N
iterations, i.e., a cycle for CCD, is the same as that of the

WF method using full gradient descent. While for GCD, an

extra cost for computing the full gradient is needed, which

results in a complexity of O(MN).
Initialization and Termination: The spectral method in [13]

provides a good initial value for phase retrieval. For Gaussian

measurement model and in the absence of noise, we have [13]

E

[

1

M

M
∑

m=1

bmaaamaaa
H
m

]

= III + 2xxxxxxH . (33)

Since xxx is the principal eigenvector of III + 2xxxxxxH associated

with the largest eigenvalue, the principal eigenvector3 of the

matrix 1
M

∑M
m=1 bmaaamaaa

H
m, which is an estimate of III+2xxxxxxH ,

is taken as the initial value xxx0. More details of the spectral

method for initialization can be found in [13]. There are sev-

eral measures for terminating the CD algorithm. For example,

the reduction of the objective function can be used to check

for convergence. Specifically, the iteration is terminated when

f(x̄xxk)− f(x̄xxk+1) < TOL (34)

holds, where TOL > 0 is a small tolerance parameter. Note

that the CD monotonically decreases the objective function,

implying f(x̄xxk)− f(x̄xxk+1) > 0.

III. CONVERGENCE ANALYSIS

Most existing convergence analyses for CD assume that

the objective function is convex and the gradient is Lipschitz

continuous [34], [35], [39]. However, the objective function

for phase retrieval is quartic and hence nonconvex. As shown

in (15) and (16), the gradient is not Lipschitz continuous.

Therefore, the available convergence analyses are not appli-

cable to the CD for phase retrieval. In this section, We first

prove that the three CD algorithms globally converge to a

stationary point from any initial value. Then, it is proved that

the sequence of the iterates generated by the RCD locally

converges to the global minimum point in expectation at a

geometric rate under a mild assumption. This implies that in

the absence of noise, the RCD achieves exact phase retrieval

under a moderate condition.

3The squared norm of the eigenvector is set to (N‖bbb‖1)/(
∑

m ‖aaam‖2).

A. Global Convergence to Stationary Point

We first present two lemmas used in the proof.

Lemma 1: Given any finite initial value x̄xx0 ∈ R2N and

f(x̄xx0) = f0, the sublevel set of f(x̄xx)

Sf0 = {x̄xx|f(x̄xx) ≤ f0} (35)

is compact, viz. bounded and closed. The iterates of the three

CD algorithms, i.e., x̄xxk, k = 0, 1, · · · , are in the compact set

Sf0 .

Proof: If ‖x̄xx‖ → ∞, then f(x̄xx)→∞ since f(x̄xx) is quartic.

The converse-negative proposition implies that f(x̄xx) ≤ f0 <
∞ guaranteeing ‖x̄xx‖ < ∞ for all x̄xx ∈ Sf0 . Hence, Sf0 is

bounded. Now it is clear that all the points in the sublevel

set satisfy f(x̄xx) ∈ [0, f0] as we also have f(x̄xx) ≥ 0. Since

the mapping f(x̄xx) is continuous and the image [0, f0] is a

closed set, the inverse image {x̄xx|0 ≤ f(x̄xx) ≤ f0} is also

closed. This completes the proof that Sf0 is compact. The

CD monotonically decreases f(x̄xx), meaning that f(x̄xxk) ≤
f(x̄xxk−1) ≤ · · · ≤ f(x̄xx0) = f0. Therefore, all the iterates {x̄xxk}
must be in the compact set Sf0 . �

Lemma 1 guarantees that we can limit the analysis in the

compact set Sf0 rather than the whole domain of f(x̄xx). In the

following, Lemma 2 states that the partial derivatives of f(x̄xx)
are locally Lipschitz continuous on Sf0 , although they are not

globally Lipschitz continuous over the whole domain R2N .

Lemma 2: On the compact set Sf0 , the gradient ∇f(x̄xx) is

component-wise Lipschitz continuous. That is, for each i =
1, · · · , 2N , we have

|∇if(x̄xx+ teeei)−∇if(x̄xx)| ≤ Li|t|, t ∈ R (36)

for all x̄xx, x̄xx + teeei ∈ Sf0 , where Li > 0 is referred to as the

component-wise Lipschitz constant on Sf0 . Further, it follows

f(x̄xx+ teeei) ≤ f(x̄xx) + t∇if(x̄xx) +
Li

2
t2. (37)

Proof: For t = 0, both sides of (36) are equal to 0 and (36)

holds. For t 6= 0, it means that ‖x̄xx+ teeei − x̄xx‖ = t 6= 0. Since

the function |∇if(x̄xx+ teeei)−∇if(x̄xx)|
‖x̄xx+ teeei − x̄xx‖

(38)

is continuous on the compact set Sf0 , its minimum over Sf0 ,

namely, Li, is attained by Weierstrass’ theorem [40]. Then

max
|∇if(x̄xx+ teeei)−∇if(x̄xx)|

‖x̄xx+ teeei − x̄xx‖
= Li (39)

immediately elicits (36). The following second-order partial

derivative

∇2
i,if(x̄xx) =

∂2f(x̄xx)

∂x̄2i
. (40)

is well defined since f(x̄xx) is twice continuously differentiable,

which represents the (i, i) entry of the Hessian matrix:

∇2f(x̄xx) =
∂2f(x̄xx)

∂x̄xx∂x̄xxT
∈ R

2N×2N . (41)

Noting that ∇2
i,if(x̄xx) is the partial derivative of ∇if(x̄xx) with

respect to x̄i and by (36), we obtain

∇2
i,if(x̄xx) = lim

t→0

∇if(x̄xx+ teeei)−∇if(x̄xx)

t
≤ Li (42)
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which holds for all x̄xx ∈ Sf0 . Applying Taylor’s theorem and

(42), there exists a γ ∈ [0, 1] with x̄xx+ γteeei ∈ Sf0 such that

f(x̄xx+ teeei) = f(x̄xx) + t∇f(x̄xx)Teeei +
t2

2
eeeTi ∇2f(x̄xx+ γteeei)eeei

= f(x̄xx) + t∇fi(x̄xx) +
t2

2
∇2

i,if(x̄xx+ γteeei)

≤ f(x̄xx) + t∇fi(x̄xx) +
Li

2
t2.

(43)

�

The component-wise Lipschitz constant Li is not easy to

compute or estimate because the partial derivatives are compli-

cated multivariate polynomials. However, our CD algorithms

do not require Li. This quantity is just used for theoretical

convergence analysis. The minimum and maximum of all the

component-wise Lipschitz constants, respectively, are:

Lmin = min
1≤i≤2N

Li, Lmax = max
1≤i≤2N

Li. (44)

Employing similar steps of Lemma 2, we can prove that the

full gradient ∇f(x̄xx) is Lipschitz continuous:

‖∇f(x̄xx)−∇f(z̄zz)‖ ≤ L‖x̄xx− z̄zz‖ (45)

with L being the “full” Lipschitz constant. It is not difficult

to show L ≤∑

i Li and thus we further have L ≤ 2NLmax.

Theorem 1: The CCD, RCD, and GCD globally converge to

a stationary point of the multivariate quartic polynomial from

an arbitrary initialization.

Proof: Based on the component-wise Lipschitz continuous

property of (37), it is derived that:

f(x̄xxk+1) = min
α
f(x̄xxk + αeeeik)

≤ f(x̄xxk + αeeeik)|α=−∇i
k
f(x̄xxk)/Li

k

= f

(

x̄xxk − ∇ikf(x̄xx
k)

Lik

eeeik

)

≤ f(x̄xxk)− (∇fik(x̄xxk))2
Lik

+
Lik

2

(∇fik(x̄xxk))2
L2
ik

= f(x̄xxk)− 1

2Lik

(∇fik(x̄xxk))2

≤ f(x̄xxk)− 1

2Lmax
(∇fik(x̄xxk))2

(46)

from which we obtain a lower bound on the progress made

by each CD iteration

f(x̄xxk)− f(x̄xxk+1) ≥ 1

2Lmax
(∇fik(x̄xxk))2. (47)

For different rules of index selection, the right-hand side of

(47) will differ. We discuss the GCD, RCD, and CCD, one by

one as follows. For GCD, it chooses the index with the largest

partial derivative in magnitude. With the use of (12), we then

have:

(∇fik (x̄xxk))2 = ‖∇f(x̄xxk)‖2∞ ≥
1

2N
‖∇f(x̄xxk)‖2. (48)

Substituting (48) into (47) leads to the following lower bound

of the progress of one GCD iteration

f(x̄xxk)− f(x̄xxk+1) ≥ 1

4NLmax
‖∇f(x̄xxk)‖2. (49)

This means that one GCD iteration decreases the objective

function with an amount of at least
‖∇f(x̄xxk)‖2

4NLmax
. Setting k =

0, · · · , j, in (49) and summing over all inequalities yields

j
∑

k=0

‖∇f(x̄xxk)‖2 ≤ 4NLmax

(

f(x̄xx0)− f(x̄xxj+1)
)

≤ 4NLmaxf0

(50)

where we use f(x̄xxj+1) ≥ 0. Taking the limit as j → ∞ on

(50), we get a convergent series

∞
∑

k=0

‖∇f(x̄xxk)‖2 ≤ 4NLmaxf0. (51)

If a series converges, then its terms approach to zero, which

indicates

lim
k→∞

∇f(x̄xxk) = 000 (52)

i.e., the GCD converges to a stationary point.

For RCD, since ik is a random variable, f(x̄xxk+1) is also

random and we consider its expected value:

E
[

f(x̄xxk+1)
]

≤ E

[

f(x̄xxk)− 1

2Lmax
(∇fik(x̄xxk))2

]

= f(x̄xxk)− 1

2Lmax

2N
∑

i=1

1

2N
(∇fi(x̄xxk))2

= f(x̄xxk)− 1

4NLmax
‖∇f(x̄xxk)‖2

(53)

where the fact that ik is uniformly sampled from {1, · · · , 2N}
with equal probability of 1/(2N) is employed. Then the

RCD at least obtains a reduction on the objective function

in expectation

f(x̄xxk)− E
[

f(x̄xxk+1)
]

≥ 1

4NLmax
‖∇f(x̄xxk)‖2. (54)

Following similar steps in the GCD, it is easy to prove that the

expected gradient of the RCD approaches to the zero vector

and thus it converges to a stationary point in expectation. For

CCD, ik takes value cyclically from {1, · · · , 2N}. Applying

Lemma 3.3 in [39] for cyclic block CD, we can derive a lower

bound of the decrease of the objective function after 2N CCD

iterations:

f(x̄xxk)− f(x̄xxk+2N ) ≥ ‖∇f(x̄xxk)‖2
4Lmax(1 + 2NL2/L2

min)
. (55)

Setting k = 0, 2N, · · · , 2jN , in (55) and summing over all

the inequalities yields

j
∑

k=0

‖∇f(x̄xx2kN )‖2 ≤
(

f(x̄xx0)− f
(

x̄xx2(j+1)N
))

4Lmax(1 + 2NL2/L2
min)

≤ f(x̄xx0)

4Lmax(1 + 2NL2/L2
min)

.

(56)

Taking the limit as j →∞ of (56) yields a convergent series.

Thus, the gradient approaches to zero, indicating that the CCD

converges to a stationary point. �

We emphasize that the “global” convergence to a stationary

point means that CD converges from an arbitrary initial value.

Unlike local convergence, it does not require the initial value

to be close enough to the stationary point.
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Remark 1: Several existing convergence analyses of (block)

CD, e.g., Proposition 2.7.1 of Bertsekas’ book [41] and

page 153 of [37], assume that the minimum of each

block/coordinate is uniquely attained. However, our analysis

in Theorem 1 does not require this assumption.

Remark 2: Theorem 6.1 of [42] provides a convergence

result for a descent method using update formula x̄xxk+1 =
x̄xxk + δkttt

k, where tttk is a descent direction and δk > 0 is the

stepsize. Theorem 6.1 of [42] has proved
〈

∇f(x̄xxk), tttk
〉

→ 0 (57)

if δk > 0 is determined by an inexact line search procedure

to ensure sufficient decrease at each iteration. Since the full

gradient descent method adopts tttk = −∇f(x̄xxk), (57) becomes

‖f(x̄xxk)‖ → 0 and hence f(x̄xxk) → 000. Then Theorem 6.1

of [42] proves that the full gradient descent converges to

a stationary point. For CDs, it has tttk = eeeik and (57)

becomes ∇ikf(x̄xx
k) → 0. Clearly, we can only conclude a

single partial derivative approaches zero and cannot conclude

other partial derivatives approach zero. Therefore, Theorem

6.1 of [42] cannot be used to prove the convergence to a

stationary point for CDs. Moreover, the proof of Theorem 6.1

of [42] requires the gradient is globally Lipschitz continuous,

which results in that it is not applicable to our problem. In

addition, [42] uses an inexact line search for stepsize while the

CDs adopt exact coordinate minimization. The self-contained

convergence analysis of CDs is totally different from [42].

Remark 3: Even when there are enough samples, the Hes-

sian matrix ∇2f(x̄xx) close to the minimizer x̄xx⋆ has 2N − 1
positive eigenvalues, and the remaining eigenvalue can be zero,

positive, or negative. This implies that f(x̄xx) can never be

locally convex no matter how small the local region around

x̄xx⋆ is. Therefore, the established results [34], [35], [39] for

convergence rate using convexity are not applicable for our

nonconvex problem.

B. Local Convergence to Global Minimum

Theorem 1 just shows that the CD algorithm converges

to a stationary point. A further question is: can the CD

converge to the global minimizer and hence exactly recovers

the original signal? At first glance, it seems impossible because

even finding a local minimum of a fourth-order polynomial

is known to be NP-hard in general [13], [21]. However, the

answer is yes under the condition that the sample size is large

enough. The backbone of the proof is based on a statistical

analysis of the gradient of the nonconvex objective function

established by Candès et al. [13]. It is worth mentioning that

the convergence analysis of WF [13] is for the complex-valued

full gradient method and cannot be directly applied to our real-

valued problem using coordinate minimization.

Recall that if xxx⋆ is an optimal solution of (2), then all the

elements of the following set

Pc :=
{

ejφxxx⋆, φ ∈ [0, 2π)
}

(58)

are also optimal solutions of (2). The distance of a vector

zzz ∈ CN to Pc is defined as:

dist(zzz,Pc) = min
φ
‖zzz − ejφxxx⋆‖ (59)

and the minimum of (59) attains at φ = φ(zzz). Similarly, the

set of all optimal solutions of the real-valued problem (8) is

defined as

P :=

{[

Re(ejφxxx⋆)
Im(ejφxxx⋆)

]

∆
= Tφ(x̄xx

⋆), φ ∈ [0, 2π)

}

(60)

where x̄xx⋆ = [Re(xxx⋆)T , Im(xxx⋆)T ]T is a global minimizer of

(8). That is, Tφ(x̄xx
⋆) denotes the effect of a phase rotation to

x̄xx⋆. The projection of x̄xxk onto P is the point in P closest to

x̄xxk, which is denoted as Tφk
(x̄xx⋆) where

φk = argmin
φ
‖x̄xxk − Tφ(x̄xx⋆)‖. (61)

Then the distance of x̄xxk to P is

dist(x̄xxk,P) = min
φ
‖x̄xxk − Tφ(x̄xx⋆)‖

= ‖x̄xxk − Tφk
(x̄xx⋆)‖.

(62)

Our goal is to prove dist(x̄xxk,P)→ 0. The following lemma of

[13], which essentially states that the gradient of the objective

function is well behaved, is crucial to our proof.

Lemma 3: For any zzz ∈ CN with dist(zzz,Pc) ≤ ǫ, the

regularity condition

Re
(〈

∇f(zzz), zzz − ejφ(zzz)xxx⋆
〉)

≥ ρ dist(zzz,Pc) + η‖∇f(zzz)‖2
(63)

where ρ > 0 and η > 0, holds with high probability if the

number of measurements satisfies M ≥ C0N logN with C0 >
0 being a sufficiently large constant.

The detailed proof of Lemma 3 can be found in Condition

7.9, Theorem 3.3, and Sections 7.5–7.7 of [13].

Although the regularity condition of Lemma 3 corresponds

to the complex-valued case, we at once obtain the real-valued

version according to (16), (60), and (61). For x̄xxk satisfying

dist(x̄xxk,P) ≤ ǫ, we have
〈

∇f(x̄xxk), x̄xxk − Tφk
(x̄xx⋆)

〉

≥ ρ dist(x̄xxk,P) + η‖∇f(x̄xxk)‖2.
(64)

Theorem 2: Assume that the sample size satisfies M ≥
C0N logN with a sufficiently large C0 and dist(x̄xx0,P) ≤ ǫ.
The iterates of the RCD with a slight modification, in which

the one-dimensional search is limited to a line segment, i.e.,

αk = argmin
α
f
(

x̄xxk + αeeeik
)

, s.t. |α| ≤ 2η|∇fik(x̄xxk)| (65)

satisfy dist(x̄xxk,P) ≤ ǫ for all k and converge to P in

expectation with high probability at a geometric rate4

E
[

dist2(x̄xxk+1,P)
]

≤
(

1− ργmin

N

)k

dist2(x̄xx0,P) (66)

where γmin > 0.

Proof: The updating equation of the CD, i.e., x̄xxk+1 = x̄xxk +
αkeeeik , is equivalently expressed as

x̄xxk+1 = x̄xxk − γk∇fik(x̄xxk)eeeik (67)

where γk = −αk/∇fik(x̄xxk). It requires γk > 0 to ensure

f(x̄xxk+1) < f(x̄xxk). Hence, |αk| ≤ 2η|∇fi(x̄xxk)| means 0 <

4The geometric convergence rate is also called linear convergence rate in
the optimization literature. It indicates that the logarithm of the error decreases
linearly.
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γk ≤ 2η. Employing the development starting from (62), it

follows

dist2(x̄xxk+1,P) = ‖x̄xxk+1 − Tφk+1
(x̄xx⋆)‖2

≤ ‖x̄xxk+1 − Tφk
(x̄xx⋆)‖2

= ‖x̄xxk − γk∇fi(x̄xxk)eeeik − Tφk
(x̄xx⋆)‖2

= ‖x̄xxk − Tφk
(x̄xx⋆)‖2 + γ2k(∇fik (x̄xxk))2

− 2γk∇fik(x̄xxk)eeeTik
(

x̄xxk − Tφk
(x̄xx⋆)

)

= dist2(x̄xxk,P) + γ2k(∇fik(x̄xxk))2

− 2γk∇fik(x̄xxk)
[

x̄xxk − Tφk
(x̄xx⋆)

]

ik
.

(68)

It is already known that E
[

(∇fik(x̄xxk))2
]

= ‖∇f(x̄xxk)‖2/(2N)
by (53). We also have

E

[

∇fik(x̄xxk)
[

x̄xxk − Tφk
(x̄xx⋆)

]

ik

]

=
1

2N

2N
∑

i=1

∇fi(x̄xxk)
[

x̄xxk − Tφk
(x̄xx⋆)

]

i

=
1

2N

〈

∇f(x̄xxk), x̄xxk − Tφk
(x̄xx⋆)

〉

≥ ρ

2N
dist(x̄xxk,P) + η

2N
‖∇f(x̄xxk)‖2

(69)

where the last line follows from (64). Combining (68) and

(69) yields

E
[

dist2(x̄xxk+1,P)
]

≤
(

1− ργk
N

)

dist2(x̄xxk,P) + γk
2N

(γk − 2η)‖∇f(x̄xxk)‖2

≤
(

1− ργk
N

)

dist2(x̄xxk,P)
(70)

where the last inequality follows from 0 < γk ≤ 2η.

Successively applying (70), we get

E
[

dist2(x̄xxk+1,P)
]

≤
k
∏

j=1

(

1− ργj
N

)

dist2(x̄xx0,P)

≤
(

1− ργmin

N

)k

dist2(x̄xx0,P)
(71)

where γmin = min
1≤j≤k

γj . �

Remark 4: To guarantee convergence to the globally optimal

solution, it requires |α| ≤ 2η|∇fik(x̄xxk)| or equivalently 0 <
γk ≤ 2η. If η is known or can be estimated, we can perform the

one-dimensional search of (65) limited to a line segment. Note

that (65) is on minimizing a univariate quartic polynomial in

an interval. This problem is easy to solve because its solution

belongs to the stationary points in the interval (if there indeed

exists such a stationary point in the interval) or the endpoints

of the interval. However, η is always not easy to estimate

in practice. From simulations, we find that dropping the box

constraint 0 < γk ≤ 2η will not destroy the convergence.

This implies that the box constraint is automatically satisfied.

We conjecture η is large enough such that γk ≤ 2η is always

guaranteed when there are enough samples. Therefore, this

empirical observation ensures us to ignore the constraint γk ≤
2η at each coordinate minimization.

Remark 5: We only prove convergence to the global mini-

mizer for RCD. For CCD and GCD, theoretical proof of the

convergence remains open and constitutes a future research.

Nonetheless, it is observed from the numerical simulations

that the GCD converges faster than the RCD, and CCD has

comparable performance to RCD. Therefore, empirically, the

GCD and CCD also converge to the global minimum point

with high probability if the sample size is large enough.

IV. CDA FOR SPARSE PHASE RETRIEVAL WITH

ℓ1-REGULARIZATION

The CD algorithms discussed in Section II are applicable

for general signals. If the SOI is sparse, which is frequently

encountered in practice, e.g., see [27], [33], we can exploit

the sparsity to enhance the recovery performance. In particular,

sparsity is helpful to reduce the sample number. If xxx is sparse,

then the real-valued x̄xx is also sparse. Inspired by the Lasso [43]

and basis pursuit [44] in compressed sensing [28], we adopt

the following ℓ1-regularization for sparse phase retrieval

min
x̄xx∈R2N

g(x̄xx) :=

M
∑

m=1

(

x̄xxT ĀAAmx̄xx− bm
)2

+ τ‖x̄xx‖1 (72)

where ‖x̄xx‖1 =
∑

i |x̄i| is the ℓ1-norm, τ > 0 is the

regularization factor and g(x̄xx) = f(x̄xx) + τ‖x̄xx‖1. Note that the

objective function of (72) is non-differentiable due to the non-

smooth ℓ1-norm. As there is no gradient for (72), the GCD

is not implementable because it requires gradient for index

selection. Therefore, we only discuss the CCD and RCD for

the ℓ1-regularization, and they are referred to as ℓ1-CCD and

ℓ1-RCD, respectively. The steps of the CD for solving (72) are

similar to those in Algorithm 1. The only difference is that an

ℓ1-norm term is added to the scalar minimization problem of

(17), which is shown as

min
α∈R

{ϕ(α) + τ‖x̄xx+ αeeei‖1} . (73)

By ignoring the terms independent to α, (73) is equivalent to

min
α∈R

{ϕ(α) + τ |α + x̄i|} . (74)

Making a change of variable β = α + x̄i, substituting α =
β− x̄i into (27), and ignoring the constant term, we obtain an

equivalent scalar minimization problem

min
β∈R

ψ(β) := u4β
4 + u3β

3 + u2β
2 + u1β + τ |β| (75)

where the coefficients of the quartic polynomial {uj}4j=1 are

calculated as

u4 = d4,i

u3 = d3,i − 4x̄id4,i

u2 = d2,i − 3x̄id3,i + 6x̄2i d4,i

u1 = d1,i − 2x̄id2,i + 3x̄2i d3,i − 4x̄3i d4,i.

(76)

It is interesting that the solution of (75) reduces to the well-

known soft-thresholding operator in compressed sensing [45]

if u4 = u3 = 0, where the quartic polynomial reduces to

a quadratic function. Therefore, (75) is a generalization of

the soft-thresholding operator from quadratic to fourth-order

functions. We call it fourth-order soft-thresholding (FOST).

Although ψ(β) is non-smooth due to the absolute term, the
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closed-form solution of its minimum can still be derived. We

study the minimizer of ψ(β) in two intervals, namely, [0,∞)
and (−∞, 0). Define the set S+ containing the stationary

points of ψ(β) in the interval [0,∞). That is, S+ is the set of

real positive roots of the cubic equation

4u4β
3 + 3u3β

2 + 2u2β + (u1 + τ) = 0, β ≥ 0. (77)

The S+ can be empty, or has one or three elements because

(77) may have none, one, or three real positive roots. Similarly,

S− is the set that contains the stationary points of ψ(β) in

(−∞, 0), i.e., real negative roots of

4u4β
3 + 3u3β

2 + 2u2β + (u1 − τ) = 0, β < 0. (78)

Again, S− can be empty, or has one or three entries. The

minimizer of ψ(β) in β ∈ [0,∞) must be the boundary, i.e.,

0, or one element of S+. The minimizer in (−∞, 0) must

be an element of S−. In summary, the minimizer of (75) is

limited to the set {0 ∪ S+ ∪ S−} which has at most seven

elements, i.e.,

β⋆ = argmin
β
ψ(β), β ∈ {0 ∪ S+ ∪ S−}. (79)

Therefore, we only need to evaluate ψ(β) over a set of at most

seven elements, whose computation is easy and simple. The

coordinate of the ℓ1-regularized CD is updated as x̄k+1
ik
← β⋆.

If S+ ∪ S− = ∅, then x̄k+1
ik

= β⋆ = 0, which makes the

solution sparse. Certainly, even when S+ ∪ S− 6= ∅, β⋆ may

still be 0. This is why the ℓ1-regularized formulation of (72),

which involves the FOST operator of (75) at each iteration,

yields a sparse solution. Clearly, τ controls the sparseness of

the solution. Generally speaking, a larger τ leads to a sparser

result.

V. APPLICATION TO BLIND EQUALIZATION

We illustrate the application of phase retrieval to blind

equalization, which is a fundamental problem in digital com-

munications. Consider a communication system with discrete-

time complex baseband signal model

r(n) = s(n) ∗ h(n) + ν(n) (80)

where r(n) is the received signal, s(n) is the transmitted data

symbol, h(n) is the channel impulse response, ν(n) is the

additive white noise, and ∗ denotes convolution. The received

signal is distorted due to the inter-symbol interference (ISI)

induced by the propagation channel. Channel equalization is

such a technique to mitigate the ISI. Blind equalization aims

at recovering the transmitted symbols without knowing the

channel response. Define the equalizer with P coefficientswww =
[w0, · · · , wP−1]

T and rrrn = [r(n), · · · , r(n − P + 1)]T , the

equalizer output is

y(n) =

P−1
∑

i=0

w∗
i r(n− i) = wwwHrrrn. (81)

As many modulated signals in communications such as phase

shift keying (PSK), frequency modulation (FM), and phase

modulation (PM), are of constant modulus (CM), we apply

the CM criterion [46], [47] to obtain the equalizer:

min
www

fCM(www) :=
∑

n

(

|wwwHrrrn|2 − κ
)2

(82)

where κ > 0 is the dispersion constant defined as [46]:

κ =
E
[

|s(n)|4
]

E [|s(n)|2] . (83)

If s(n) is of strictly constant modulus, e.g., for PSK signals,

then κ equals the square of modulus. It is obvious that the

problem of CM based blind equalization in (82) has the same

form as the phase retrieval of (2). Both of them are multivari-

ate quartic polynomials. The only difference between phase

retrieval and blind equalization is that the decision variable of

the former is the unknown signal xxx while that of the latter

is the equalizer www. Therefore, the WF and CD methods can

be applied to solve (82). By defining the composite channel-

equalizer response as v(n) = h(n) ∗w(n), the quantified ISI,

which is expressed as

ISI =

∑

n |v(n)|2 −maxn |v(n)|2
maxn |v(n)|2

(84)

reflects the equalization quality. Smaller ISI implies better

equalization. If ISI = 0, then the channel is perfectly equalized

and the transmitted signal is exactly recovered up to a delay

and a scalar. Perfect equalization is only possible when there

is no noise and the equalizer length P is infinite for finite

impulse response (FIR) channel5. Otherwise, only approximate

equalization can be achieved, which results in a residual ISI.

VI. SIMULATION RESULTS

In our simulation study, all methods use the same initial

value obtained from the spectral method [13]. The sampling

vectors {aaam} satisfy a complex standard i.i.d. Gaussian dis-

tribution.

A. Convergence Behavior

We first investigate the convergence behavior of the three

CD algorithms. The signal xxx and noise νm are i.i.d. Gaussian

distributed. In this test, we set N = 64 and M = 6N .

The WF [13] and WFOS [26] that uses optimal stepsize for

accelerating the convergence speed of WF, are employed for

comparison. Note that it is fair to compare 2N iterations (one

cycle) for the CD with one WF or WFOS iteration because

the computational complexity of the CCD and RCD per cycle

is the same as the WF per iteration. The GCD has a higher

complexity for every 2N iterations than WF, CCD, and RCD.

But still, we plot the results of GCD per cycle. Two quantities

are plotted to evaluate the convergence rate. The first quantity

is the reduction of the objective function normalized with

respect to ‖bbb‖2:
f(x̄xxk)− f(x̄xx⋆)

‖bbb‖2 (85)

5The equalizer is the inverse system of the channel. If the channel is of
FIR, then its inverse has infinite impulse response (IIR). Hence, an equalizer
with infinite length is required for perfectly equalizing an FIR channel.
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Fig. 1. Normalized reduction of objective function versus number of itera-
tions/cycles with 50 independent trials in noise-free case.

where f(x̄xx⋆) = 0 if there is no noise. For the noisy case, f(x̄xx⋆)
can be computed in advance to the machine accuracy using

the CD or WF method. The second quantity is the relative

recovery error, i.e.,

dist2(x̄xxk,P)
‖x̄xx⋆‖2 (86)

which reflects the convergence speed to the original signal.

Fig. 1 plots the objective reduction while Fig. 2 shows the

recovery error, versus the number of iterations (cycles for

CD) in the absence of noise with 50 independent trials. The

averaged results are also provided with thick lines. We see that

all methods converge to the global minimum point at a linear

rate. They exactly recover the true signal. For the noisy case,

the signal-to-noise ratio (SNR) in (1) is defined as

SNR =
E
[

‖bbb‖2
]

Mσ2
ν

(87)

where σ2
ν is variance of νm. Figs. 3 and 4 show the normalized

objective reduction and recovery error, respectively, at SNR =
20 dB. We clearly see that the three CD algorithms converge

faster than the WF and WFOS schemes. Among them, the

convergence speed of the GCD is the fastest.

B. Statistical Performance

The experiment settings are the same as in Section VI-A

exceptM and SNR vary. The performance of the GS algorithm

is also examined here. We use the empirical probability of

success and normalized mean square error (NMSE), which is

the mean of the relative recovery error in (86), to measure

the statistical performance. All results are averaged over 200

independent trials. In the absence of noise, if the relative re-

covery error of a phase retrieval scheme is smaller than 10−5,

we call it success in exact recovery. Fig. 5 plots the empirical

probability of success versus number of measurements M . It

is observed that the GCD is slightly better than WF while

CCD and RCD are slightly inferior to the WF. Fig. 6 shows
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Fig. 2. Relative recovery error versus number of iterations/cycles with 50
independent trials in noise-free case.
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Fig. 3. Normalized reduction of objective function versus number of itera-
tions/cycles with 50 independent trials at SNR = 20 dB.

the NMSE versus SNR from 6 dB to 30 dB. We see that the

three CD algorithms and WF have comparable NMSEs and

they are superior to the GS algorithm.

C. Phase Retrieval of Sparse Signal

In this subsection, we investigate phase retrieval of a sparse

signal with K nonzero elements. In addition to WF, the

two convex relaxation based methods, namely, PhaseLift [14]

and PhaseCut [23], and sparse GS algorithm using hard-

thresholding are examined for comparison. The sparse GS

algorithm needs to know K . We set the regularization factor as

τ = 2.35M for the ℓ1-CCD and ℓ1-RCD. The support of the

sparse signal is randomly selected from [1, N ]. The real and

imaginary parts of the nonzero coefficients of xxx are drawn as

random uniform variables in the range
[

−2√
2
, −1√

2

]

∪
[

1√
2
, 2√

2

]

.

Fig. 7 shows the recovered signal with K = 5 and M = 2N in
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Fig. 4. Relative recovery error versus number of iterations/cycles with 50
independent trials at SNR = 20 dB.
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Fig. 5. Empirical probability of success versus number of measurements.
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Fig. 8. Probability of success versus number of measurements for sparse
phase retrieval.

the noise-free case. The WF, PhaseLift, PhaseCut, and sparse

GS algorithms cannot recover the signal when the sampling

size M is relatively small while the ℓ1-CCD and ℓ1-RCD work

well. Fig. 8 plots the probability of success versus M/N .

By harnessing sparsity, the ℓ1-CCD and ℓ1-RCD significantly

improve the recovery performance.
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Fig. 9. Scatter plots of constellations of received signal and equalizer outputs.

D. Blind Equalization

We investigate the application of the CD and WF methods

to blind equalization in the presence of white Gaussian noise.

The results of the super-exponential (SE) algorithm [48]

are also included. The transmitted signal adopts quadrature

PSK (QPSK) modulation, namely, s(n) ∈ {1,−1, j,−j}. A

typical FIR communication channel with impulse response

{0.4, 1,−0.7, 0.6, 0.3,−0.4, 0.1} is adopted [48]. Fig. 9 shows

the constellations of the received signal and equalizer outputs

of 1000 samples at SNR = 20 dB. We observe that the received

signal is severely distorted due to the channel propagation. The

SE, WF and CD methods succeed in recovering the transmitted

signal up to a global phase rotation. We clearly see that the

CCD and GCD have a higher recovery accuracy. Fig. 10 plots

the ISI versus the number of iterations/cycles at SNR = 25 dB

with 2000 samples. The ISI is averaged over 100 independent

trials. In addition to faster convergence than the WF, WFOS,

and SE, the CDs (especially CCD) arrive at a lower ISI. This

means that the CDs also achieve a more accurate recovery.

VII. CONCLUSION

This paper designs CD algorithms for efficiently solving

the quartic polynomial minimization in phase retrieval. One

appealing characteristic of our scheme is the conceptual

and computational simplicity: the minimum of each one-

dimensional coordinate optimization is obtained by root find-

ing of a univariate cubic equation, which has a closed-form

solution. Three different rules for coordinate selection yield

three CD variants, namely, CCD, RCD, and GCD. The GCD

selecting the coordinate associated with the largest absolute

partial derivative converges faster than the cyclic and random-

ized CDs. Theoretically, we prove that the three CD algorithms

converge to a stationary point for any initial value. We also

prove that the RCD converges to the global minimum and

achieves exact recovery with high probability provided that

the sample size is large enough. The main advantage of the

CD over the full gradient methods such as WF and WFOS is its
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Fig. 10. ISI versus number of iterations/cycles.

faster convergence speed. The CD is also extended to solving

the ℓ1-regularized quartic minimization for phase retrieval of

sparse signals. In the new application to blind equalization,

the CD can achieve lower ISI and higher recovery accuracy

than several existing methods.
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