
HAL Id: hal-02433477
https://hal.science/hal-02433477

Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using the Proximal Gradient and the Accelerated
Proximal Gradient as a Canonical Polyadic tensor

decomposition Algorithms in difficult situations
Marouane Nazih, Khalid Minaoui, Pierre Comon

To cite this version:
Marouane Nazih, Khalid Minaoui, Pierre Comon. Using the Proximal Gradient and the Accelerated
Proximal Gradient as a Canonical Polyadic tensor decomposition Algorithms in difficult situations.
Signal Processing, 2020, 171, pp.107472. �10.1016/j.sigpro.2020.107472�. �hal-02433477�

https://hal.science/hal-02433477
https://hal.archives-ouvertes.fr

Using the Proximal Gradient and the Accelerated
Proximal Gradient as a Canonical Polyadic tensor
decomposition Algorithms in difficult situations

Marouane Naziha, Khalid Minaouia, Pierre Comonb

aLRIT Laboratory, associated unit to CNRST (URAC29), IT Rabat Center, Faculty of
sciences in Rabat, Mohammed V University, Rabat, Morocco.
bGIPSA-lab, Univ. Grenoble Alpes, CNRS, Grenoble, France.

Abstract

Canonical Polyadic (CP) tensor decomposition is useful in many real-world

applications due to its uniqueness, and the ease of interpretation of its factor

matrices. This work addresses the problem of calculating the CP decomposition

of tensors in difficult cases where the factor matrices in one or all modes are

almost collinear – i.e. bottleneck or swamp problems arise. This is done by

introducing a constraint on the coherences of the factor matrices that ensures

the existence of a best low-rank approximation, which makes it possible to

estimate these highly correlated factors. Two new algorithms optimizing the

CP decomposition based on proximal methods are proposed. Simulation results

are provided and demonstrate the good behaviour of these algorithms, as well

as a better compromise between accuracy and convergence speed than other

algorithms in the literature.

Keywords: CP decomposition; Tensor; Proximal gradient; Accelerated

proximal gradient; Optimization

Email addresses: marouane.nazih1@gmail.com (Marouane Nazih),
khalid.minaoui@um5.ac.ma (Khalid Minaoui), pierre.comon@grenoble-inp.fr (Pierre
Comon)

Preprint submitted to Journal of Signal Processing November 5, 2019

1. INTRODUCTION

In a wide range of applications, it is necessary to handle quantities with

several indices. These quantities are often referred to as tensors. The definition

of a tensor will generally depend on the scientific field in which it is used.

Generally, a tensor is treated as a mathematical object that owns the property5

of multi-linearity when changing the coordinate system [1]. We consider that a

tensor of order N represents a multidimensional array in which every element is

addressed via N indices. For example, a scalar is a tensor of order 0, a vector is

a tensor of order 1, a matrix is a second-order tensor and a cube of values is a

third-order tensor, etc. In this paper, we focus on tensors of order higher than10

two since they possess properties which are not valid for matrices and vectors.

Among tensor decompositions, we shall be mainly interested in the so-called

Canonical Polyadic (CP) decomposition [2], rediscovered forty years and named

Parafac [3, 4] or Candecomp [5]. As pointed out in [6, 7], the acronym ”CP”

decomposition can smartly stand for either “Canonical Polyadic” or “CanDe-15

comp/Parafac”, and we shall follow this terminology. The CP decomposition

has been used in various fields, such as Chemometrics [8] [9], Telecommunica-

tions [10, 11, 12, 13] and in Denoising of Hyperspectral Images [14]. The most

interesting feature of the CP decomposition is its essential uniqueness for orders

strictly larger than two [15] [16], which permits parameter identification.20

Another decomposition of interest is Tucker3 [17], and in particular its im-

plementation as a High-Order Singular Value decomposition (HOSVD), where

changes of bases are orthogonal. Both HOSVD and CP decomposition reduce

to the usual Singular Value decomposition (SVD) in the case of matrices [18],

which are second order tensors. HOSVD is mainly used for the purposes of25

compression since it is not unique.

There are many situations where CP decomposition algorithms may suffer

from the absence or slowness of convergence, and which can be due to degen-

eracies of the tensor. These situations have been well classified by Richard

Harshman [19] in the following three cases:30

2

• Bottleneck: A bottleneck arises when two or more factors in one of the

modes are almost collinear [20].

• Swamp: The swamp phenomenon occurs when all modes have at least

two quasi-collinear factors [20] [21] [22], which can be seen as a general

case of bottleneck.35

• CP-degeneracies: CP-degeneracies can be considered as special case of

swamps phenomenon, where some of the factors diverge and, at the same

time, tend to cancel each other, leading to a better quality of the fit pro-

gresses [23] [24].

40

There are many algorithms for calculating the CP decomposition. Due to

its simplicity of implementation, the most popular in the literature is the Al-

ternating Least Squares (ALS) originally proposed in [5], which is an iterative

optimization process that alternately estimates the factor matrices by updating

each matrix individually while keeping the others fixed. In this way, the system45

to be solved is then turned into simple least square (LS) sub-problems. The ALS

algorithm is known to converge towards a local minimum under mild conditions

[25]. However, the ALS algorithm is highly sensitive to initialization, and its

convergence to the global minimum can sometimes be slow, if ever met. In ad-

dition, the convergence of the algorithm may, in some cases, fall in swamps [21],50

where the convergence rate is very low and the error between two consecutive

iterations does not decrease.

Several variants of the ALS algorithm have been proposed in the literature

in order to reduce the slow convergence of the ALS algorithm. A proper solution55

has been proposed in [26, 27, 12]. This solution is also known as direct trilinear

decomposition [26]; it consists in obtaining a first estimate of the factor matri-

ces by constructing a Generalized Eigenvalue (GEVD) problem from two tensor

slices. However, such an initialization requires that the two factor matrices are

3

of full rank, and that the third one does not contain zero elements. In [28],60

the estimation of the factor matrices of the CP decomposition is linked to the

simultaneous matrix diagonalization problem. Another way to improve the con-

vergence speed of the ALS algorithm is to resort to a TUCKER3 compression

[29, 30]; this is useful at initialization when the dimensions of the tensor are

large. In [12], an algorithm that accelerates ALS convergence is proposed, and65

applies the TUCKER3 compression method followed by an initialization based

on the proper analysis; this has now become a usual practice to reduce the com-

putational burden [7]. The convergence of the ALS algorithm was also improved

by the Enhanced Line Search (ELS) method [31], which has proven its useful-

ness when the tensor is affected by degenerative factors (Factor degeneracies),70

or to decrease its sensitivity to initialization [32].

The above algorithms improve the speed of the ALS algorithm but remain

inadequate to overcome difficult cases when the factor matrices in one or all

modes are highly collinear, i.e, when the problem of swamp or bottleneck arises.

Recent works [13, 33] have demonstrated that the introduction of coherence75

constraints avoids this issue. The proposition in [33] is a direct modification of

the ALS based on the Dykstra projection algorithm on all correlation matrices,

while in proposal [13], which consists in simultaneously estimating factor matri-

ces, this method has proven to be one of the most useful methods to overcome

the difficulty where the estimated factors are highly collinear.80

In this paper, we propose two algorithms to improve both accuracy and con-

vergence speed of the CP decomposition in difficult situations, where swamp

and bottleneck problems arise. These algorithms are based on proximal meth-

ods [34] [35], which are now reliable and powerful optimization tools, leading

to a variety of proximal algorithms, such as the proximal point algorithm, the85

proximal gradient algorithm, the accelerated proximal gradient algorithm, and

several others including linearization and/or splitting. We shall be particularly

interested in the proximal gradient algorithm and its accelerated version, since

they fulfill the assumptions of the CP decomposition problem.

90

4

The rest of the paper is organized as follows. The next section presents

notations and some properties of third-order tensors. In section 3, we define the

coherence constraint ensuring the existence of a best low-rank approximation

and then we introduce the proximal methods used in our context. In Section

4 we introduce our new optimization algorithms. In Section 5 we deal with95

analysis of the simulation results and finally Section 6 concludes the paper.

2. NOTATIONS AND PRELIMINARIES

2.1. Notations and definitions

Let us begin by introducing some key notations and definitions that will

be used in this document. Tensors are denoted by calligraphic letters, e.g., T ,100

matrices are denoted by boldface capital letters, e.g., M, vectors are denoted by

boldface lowercase letters, e.g., a and Scalars are denoted by lowercase letters,

e.g., a. In addition, the pth column of matrix A is denoted by ap, the pth

element of a vector a is denoted by ap, the entry of a matrix A in position (i, j)

is denoted by Aij and the entry of a tensor T in position (i, j, k) is denoted by105

Tijk.

Definition 1. The outer product of two vectors a ∈ CI and b ∈ CJ defines a

matrix M ∈ CI×J

M = a⊗ b = abT

Similarly, the outer product of three vectors a ∈ CI , b ∈ CJ and c ∈ CK

produces a third order decomposable tensor T ∈ CI×J×K :

T = a⊗ b⊗ c (1)

In Equation (1) above, ⊗ represents the tensor outer product, so that entry

(i, j, k) of tensor T is defined by the product

Tijk = aibjck.

A tensor T ∈ CI×J×K is said to be rank-1 (also referred to as a decomposable

tensor [36, 37, 38]) if each of its elements can be represented as : Tijk = aibjck,

5

in other words, if it can be expressed as the outer product of three vectors,

which will be denoted in a compact form as in (1).110

Definition 2. The scalar product between two tensors with the same size, X , Y

∈ CI×J×K , is defined as:

〈X ,Y〉 =

I∑
i=1

J∑
j=1

K∑
k=1

X∗i,j,kYi,j,k (2)

where∗ stands for the complex conjugation.

Definition 3. The Frobenius norm ‖.‖F of a tensor T ∈ CI×J×K is derived from

the scalar tensor product:

‖T ‖F =
√
〈T , T 〉 =

√
(
∑
i,j,k

| Tijk |2) (3)

Consequently, the quadratic distance between two tensors X and Y of the same

size I × J ×K can be determined by the quantity:

‖X − Y‖2F (4)

Definition 4. Let T ∈ CI×J×K be a tensor, then vec{T } ∈ CIJK×1 represents

the column vector defined by :[
vec{T }

]
i+(j−1)I+(k−1)IJ = Tijk (5)

2.2. PRELIMINARIES115

A tensor of order N is a mathematical entity defined on a product between N

linear spaces, and once the bases of these spaces are fixed, then the tensor may

be represented by a N -way array of coordinates [38]. For the sake of simplicity,

we use the term tensor in a restricted sense, i.e. as a three-dimensional array

of complex numbers (i.e. N = 3), but the generalization to Nth order tensors,

N ≥ 3, is straightforward. Let us consider a tensor T of order 3 with size

I × J ×K, its CP-decomposition is defined as follows:

T =

R∑
r=1

λrD(r), (6)

6

= + +... +
I

J

K

a
1

b
1

c
1

a
2

b
2

c
2

a
R

b
R

c
R

λ
1

λ
2

λ
R

Figure 1: Visualization of the CP decomposition for a third-order tensor

where coefficients λr can always be chosen to be real positive, and decomposable

tensors D(r) to have unit norm.

From Definition (1) of decomposable tensors, another writing of the CP decom-

position makes it more explicit :

T =

R∑
r=1

λr(ar ⊗ br ⊗ cr), (7)

where λ = [λ1, λ2, ..., λR] is a vector containing the scaling factors λr and the

three matrices A= [a1,a2, ...,aR] ∈ CI×R, B= [b1,b2, ...,bR] ∈ CJ×R and

C= [c1, c2, ..., cR] ∈ CK×R represent the factor matrices. When the number R

of terms in (7) is minimal, it is called the rank of tensor T , and decomposition

(7) is called the Canonical Polyadic Decomposition (CPD) of T [1]. Note that

(7) can be rewritten in terms of tensor entries as:

Tijk =

R∑
r=1

λr airbircir. (8)

The CP decomposition is visualized for third-order tensors in Figure 1.

3. CP-DECOMPOSITION AND PROXIMAL OPERATOR

3.1. CP-DECOMPOSITION

3.1.1. Low rank

Even if the tensor of interest is of low-rank, it is often necessary to look for

an approximation of low rank R of the observed tensor because of the presence

of noise. In the latter case, the observed tensor is indeed generally of generic

7

rank, strictly larger than R [38]. In the low-rank approximation problem [11],

the goal is to minimize an objective function Υ of the form:

Υ(A,B,C;λ) =
∥∥∥X − X̂∥∥∥2

F

=

∥∥∥∥∥X −
R∑
r=1

λr (ar ⊗ br ⊗ cr)

∥∥∥∥∥
2

F

(9)

Alternatively, the minimization of (9) can be written using vectorization defined

in (5) with x = vec{X} as:

min
x̂

Υ(x̂) = min
x̂
‖x− x̂‖2F

= min
A,B,C,λ

∥∥∥∥∥x−
R∑
r=1

λr(ar � br � cr)

∥∥∥∥∥
2

F

(10)

where symbol � represents the Kronecker product [39, 38].120

3.1.2. Coherence

Let’s introduce the concept of coherence that we will use later, when talking

about the conditioning of the problem. The notion of coherence has received

different names in the literature: the mutual incoherence of two dictionaries125

[40], the mutual coherence of two dictionaries [41], the coherence of a subspace

projection [42], etc. The version here follows that of [43], which has been used

particularly as a measure of the ability of algorithms such as basis pursuit and

matching pursuit to accurately identify the correct representation of a sparse

signal.130

Mathematically, let H be a Hilbert space endowed with the scalar product

〈a,b〉 = aHb, and A ⊆ H be a finite set of elements ai with unit norm. The co-

herence of A is defined as the maximum absolute value of the cross-correlations

between the columns of A:

µ(A) = max
i 6=j
|aHi aj | (11)

It is obvious that 0 ≤ µ(A) ≤ 1, that µ(A) = 0 if and only if a1, ...,aR are

orthonormal, and that µ(A) = 1 if and only if A contains at least two collinear

8

vectors, i.e. ∃i 6= j, λ 6= 0 : ai = λaj . It should be noted that the L∞ norm may

be bounded by the L2p norms for large p. This result will allow to bound the

coherence by a differentiable quantity:135

µ(A) ≤ µp(A)
def
=
(∑
i 6=j

|aHi aj |2p
) 1

2p (12)

3.1.3. Conditioning of the problem

One of the interesting properties of tensors of order higher than two, N > 2,

is that their CP decomposition is often unique, which is not the case of matrix

decompositions [3] [39][12] (the decomposition of a matrix into a sum of rank-

one matrices also exists, but it is not unique, unless some strong constraints are140

imposed, such as orthogonality or non-negativity).

Uniqueness means that there is only one set of rank-1 tensors whose sum

exactly equals tensor T [44]. Note that permutation indeterminacy is inherent

in a sum, and that scaling indeterminacy is inherent in the construction of rank-

1 tensors [38]. When the decomposition is unique in that sense, factor matrices145

are sometimes said to be essentially unique. From the above definition of the

CP decomposition, it is clear that decomposition (7) is insensitive to:

• Permutation of the rank-1 terms, which refers to the permutation inde-

terminacy.

• Scaling of vectors ar, br and cr, provided the produt of the scaling factors150

is equal to 1, which refers to the scaling indeterminacy.

In numerical algorithms, it is useful to fix indeterminacies. For instance,

columns of factor matrices can be normalized and their norm stored in scaling

factor λ [39]. Another approach described in [11] and used in our present paper

consists in calculating the optimal value of the scaling factor λ to properly

control the conditioning of the problem. For this purpose, and for a given

matrices A, B and C, the optimal value λo minimizing the error Υ is determined

by cancelling the gradient of (9) w.r.t. λ, which then results to the linear system:

9

Gλo = f (13)

where G is the Gram matrix of size R×R defined by: Gpq = (ap�bp�cp)H(aq�

bq�cq) and f is the R-dimensional vector defined by: fr = ΣijkTijkAirBjrCkr.

Note that entries of G can preferably be obtained by Gpq = aHp aq b
H
p bq c

H
p cq.

Equation (13) indicates that coherence plays a central role in the condition-155

ing of the problem. And we can see that scalar products do not appear indi-

vidually but via their products. Such a statement has profound consequences,

particularly on the existence and uniqueness of the solution to problem (9).

3.1.4. Existence

It has been demonstrated in [45] that if

µ(A)µ(B)µ(C) ≤ 1

R− 1
(14)

then the best rank-R approximation exists and that the infimum of (9) is at-160

tained. The reason is that the error (9) becomes coercive once (14) is satisfied,

and then must reach its minimum since it is continuous.

Constraint (14) contains max operators, which are not differentiable. This

difficulty can be circumvented by using L2p norms defined in (12), and imposing

differentiable constraints Cp(x):165

Cp(x)
def
= 1−R+

1

µp(A)µp(B)µp(C)
> 0 (15)

3.1.5. Uniqueness

There is a sufficient condition for ensuring the uniqueness of the CP-decomposition

(7) in which the coherences are involved [45]. However, the use of the following

condition[28] is less restrictive

R ≤ K & R(R− 1) ≤ I(I − 1)J(J − 1) (16)

10

3.2. PROBLEM FORMULATION170

As pointed out in (10), for the sake of simplicity, columns of factor matrices

are gathered in a single vector x = vec{[AT ,BT ,CT]}. The objective to be

minimized consists of two terms: one related to ’data fidelity’, which is defined

in (9) by the cost function Υ, and another one linked to a priori information

on model parameters, named ’constraint’, which is presently defined in (15)

and which will be represented by G. One way of reformulating this constrained

problem is to consider the unconstrained minimization of:

F(x) = Υ(x)︸ ︷︷ ︸
datafidelity

+ G(x)︸︷︷︸
constraint

(17)

where the function G acts as a barrier in the interior point methods [46] [47];

for example G may be defined as the logarithmic term −ln(Cp(x)) weighed

by a barrier parameter η > 0. But in order to be able to fully compare our

proposed methods with the one proposed in [13] that is based on gradient descent

algorithm, we have chosen to keep the same objective function, namely:

F(x) = Υ(x) + η exp(−γCp(x)) (18)

where γ is a parameter that controls the sharpness of the penalty Cp(x) and η

is a penalty weight, which decreases through iterations.

3.3. PROXIMAL MAPPING

Proximal mapping has a simple definition yet has long been a powerful tool

in optimization, leading to a wide range of algorithms, such as the proximal-175

point algorithm, the proximal-gradient algorithm, and many other algorithms

involving linearization and/or splitting.

Given a function G, the proximal mapping (or proximal operator) [34] maps

an input point x to the minimizer of G restricted to small proximity to x. The

definition of the proximal operator is recalled hereafter.180

11

3.3.1. Definition

Let G ∈ Γ0(RN)1, for every x ∈ RN , the minimization problem (with pa-

rameter µ > 0)

minimize
y∈RN

G(y) +
1

2µ
‖x− y‖22 (19)

admits a unique solution, which is denoted by proxµG(x).185

The operator proxµG : RN −→ RN thus defined is the prox-operator of

G, and the parameter µ controls the stretch to which the proximal operator

maps points towards the minimum of G, with larger values of µ associated with

mapped points near the minimum, and smaller values giving a smaller move-190

ment towards the minimum [34].

In other words, when we evaluate the prox-operator of G, we are attempting

to reduce the value of G by penalizing this reduction to not deviate too much

from x (The parameter µ is like a ”step-size” that controls how much we are

penalized for moving away from x).195

The proximal mapping gets really handy for composite problem when the

minimization has the form of Υ + G with Υ convex and differentiable and G

convex with ”simple” proximal mapping in the sense that G does not require to

be differentiable and that its proximal operator can be evaluated efficiently, i.e.200

its prox-operator admits a closed form [34]. This general composite problem can

be solved with one of the proximal methods mentioned above, but those that

reply to the assumptions of our specific problem (18), and which are the main

proposals in this paper, are the proximal gradient method and the accelerated

proximal gradient method. A natural strategy of those methods is firstly to205

reduce the value of Υ by using unconstrained iterative optimization methods

such as descent methods or Newton’s method, followed by the reduction of the

1is the class of lower semicontinuous convex functions from RN to]−∞; +∞] such that

dom G 6= ∅.

12

value of G by applying the prox-operator of G (using the same step-size) and

repeat until convergence to a minimizer (under some further conditions). This

strategy yields the following iteration:210

x(k+1) = proxµ(k)G(x(k) + µ(k)d(k)) (20)

This last strategy describes the general principle of the proximal gradient

algorithm. The accelerated proximal gradient algorithm performs an extrapo-

lation at each iteration, by taking into account information from current and

previous iterations.

4. PROPOSED OPTIMIZATION METHOD215

In this article, we propose two methods to overcome swamp and bottleneck

problems based on the proximal gradient (PG) and the accelerated proximal

gradient (APG) in order to solve the optimization problem defined in (18).

The general principle of the proposed approaches is detailed in the following

paragraphs and summarized in Algorithm 1 and Algorithm 2. There are220

essentially of two basic steps:

• A gradient step associated with the data fidelity term (denoted by the

function Υ).

• A proximal step related to the coherence constraint term (denoted by the

function G).225

4.1. Gradient step

This step improves the approximate solution, by acting only on the data

fidelity - regardless of the constraint. This step also involves two other stages.

(i) The first one consists in calculating the descent direction d(k) of Υ,

yielding the steepest decrease. In this paper, we propose to use gradient descent

method to keep the minimization as simple as possible, and despite its slow

convergence, especially for large data set [48], these drawbacks will be overcome

13

by the second step of the proximal algorithm. The direction is defined as follows:

d(k) = −∇Υ(x(k)) (21)

where gradient expressions required to determine the direction of descent d(k)

are of the form:230

∂Υ

∂A
= 2AMA − 2NA (22)

with

MA
pq

def
= ΣjkλpBjpCkpC

∗
kqB

∗
jqλ
∗
q

NA
ip
def
= ΣjkTijkB

∗
jpC

∗
kpλ
∗
p

(23)

Expressions for gradients w.r.t B and C are similar.

(ii) The second stage concerns the determination of the step-size ρ(k) along

the chosen direction d(k). Among many different methods of searching for a

good step-size, Backtracking, is widely used. It depends on two parameters α235

and β, with 0 < α < 0.5 and 0 < β < 1. The idea is to start with a sufficiently

large step-size ρ(k) (e.g. ρ = 1) at the beginning, and then reduce it as ρ← ρ∗β,

until the following Armijo condition [49] is verified:

Υ(x(k) + ρ(k)d(k)) < Υ(x(k)) (4)

To conclude, the gradient step can be summarized as:

z(k) = x(k) + ρ(k)d(k). (5)

4.2. Proximal step

Since the previous step concerns only the data fidelity term Υ, the proximal240

step should adjust the search orientation based on the constraint on coherences

G. And to do this, we apply the proximal algorithm to the previous point

14

resulting from the previous step of the gradient, i.e. z(k), as follows:

z(k+1) = proxρ(k)G(x(k) + ρ(k)d(k)) = proxρ(k)G(z(k))

= arg min
x

(G(x) +
1

2ρ(k)
‖x− z(k)‖22)︸ ︷︷ ︸

H(x)

(6)

This step indicates that proxG(z(k)) is a point that compromises between min-

imizing G and being near to z(k). In the general case, the function describing245

the constraints may not require to be differentiable but it is recommended to

be simple in the sense that its proximal operator can be efficiently evaluated.

Now it remains to calculate an approximation of the proximal operator of G.

We proceed in two stages.

Gradient of H. The gradient of H takes the form:

∇H(x) = ∇G(x) +
1

ρ(k)
(x− z(k)) (24)

where the gradient ∇G(X) is calculated as in [13]:250

∂G
∂A

=
γ

exp(γCp)
LApA[(AHA)� ΩA − I] (25)

where � denotes the Hadamard entry-wise product,

LAp
def
= (Σp<q|aHp aq|2p)

−1
2p −1µ(B, p)−1µ(C, p)−1,

and ΩApq
def
= |aHq ap|2p−2. The expressions are similar for the components of B

and C.

The minimization in the proximal step is stopped as soon as we meet a

good candidate that improves zk, meaning that the new iterate zk+1 ensures255

the minimization of the function G as well as it does not deviate too much from

the iterate zk based on data fidelity.

Monitoring. the Accelerated Proximal Gradient (APG) algorithm first extrap-

olates a point yk by a combination of the current point and the previous point

15

as:

yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1)

and then solves a proximal operator problem. However, for a bad extrapolation

yk, F(xk) may be arbitrarily greater than F(xk+1); this may occur because

APG is not a monotonous algorithm [50]. For this purpose, we introduce a260

monitor that ensures the descent property F(x(k+1)) < F(x(k)); it is defined as

follows:

xk+1 =

zk+1 if F(zk+1) < F(xk)

xk otherwise.

(26)

5. RESULTS AND DISCUSSION

In this section, we test the performance of the proposed algorithms on three

scenarios: (i) in the first one, the limit point lies in the admissible region, i.e.265

when the constraint is not active (Cp ≥ 0) at convergence, (ii) the second sce-

nario is a concrete example in which it is necessary to deal with the swamp

problem, i.e. where the factor matrices are highly correlated in all three modes

and the constraint is active (Cp ≤ 0) at convergence, and (iii) the last scenario

addresses the bottleneck problem, where the factors of the first mode are chosen270

to be co-linear.

To see the interest of our algorithms, we compare them to two other CPD

algorithms: i) their counterpart without constraint and without calculating the

optimal value of λ defined in (7), ii) the constrained gradient descent algorithm275

[13].

The performances are evaluated according to three criteria: the error be-

tween the calculated and actual factor matrices, the best sum of the ”congru-

ences” [51], and the execution speed. The best congruence sum requires finding

16

Algorithm 1: Proximal Gradient algorithm (PG) to minimize (18)

1 Initialize (A0,B0,C0) to matrices with unit-norm columns ;

2 calculation of the optimal scaling factor λ∗ using (13) such as: G0λ
∗ = f0

;

3 for k ≥ 1 and subject to a stopping criterion, do

1. Gradient Step

(a) Compute the descent direction d(k) as the

gradient according to (23) w.r.t. xk:

d(k) = −∇Υ(xk)

(b) Calculate a step-size ρk using the backtracking method such:

Υ(xk + ρkd
(k)) < Υ(xk)

(c) Update

zk = yk + ρkd
(k)

2. Proximal Step

(a) Compute the approximate proximal operator

of G at zk using (24) such as:

x(k+1) = proxρkG(zk)

3. Extract the three blocks of Xk+1: Ak+1, Bk+1

and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. calculation of the optimal scaling factor λ∗

using (13) such as: Gλ∗ = f

4 end for

17

Algorithm 2: Accelerated Proximal Gradient algorithm (APG) to mini-

mize (18)

1 Initialize (A0,B0,C0) to matrices with unit-norm columns, and the

interpolation parameters to : t0 = 0, t1 = 1 ;

2 calculation of the optimal scaling factor λ∗ using (13) such as: G0λ
∗ = f0

;

3 for k ≥ 1 and subject to a stopping criterion, do

4 yk = xk +
tk−1
tk

(zk − xk) +
tk−1 − 1

tk
(xk − xk−1);

5 tk =

√
4t2k + 1 + 1

2

1. Gradient Step

(a) Compute the descent direction d(k) as

the gradient according to (23) w.r.t. yk:

d(k) = −∇Υ(yk)

(b) Calculate a step-size ρk using the backtracking method such:

Υ(yk + ρkd
(k)) < Υ(yk)

(c) Update

zk = yk + ρkd
(k)

2. Proximal Step

(a) Compute the approximate proximal operator

of G at zk using (24) such as:

z(k+1) = proxρkG(zk)

(b) Monitoring

xk+1 =

zk+1 if F(zk+1) < F(xk)

xk otherwise.

3. Extract the three blocks of Xk+1: Ak+1, Bk+1

and Ck+1

4. Normalize the columns of Ak+1, Bk+1 and Ck+1

5. calculation of the optimal scaling factor λ∗

using (13) such as: Gλ∗ = f using (13)

6 end for

18

the best permutation σ among the factor matrix columns; it is defined as :280

max
σ

=

R∑
r=1

|aHr âσ(r)|
‖ar‖‖âσ(r)‖

|bHr b̂σ(r)|
‖br‖‖b̂σ(r)‖

|cHr ĉσ(r)|
‖cr‖‖ĉσ(r)‖

(27)

In order to obtain comparable results and to visualize the behaviour of each

algorithm, the starting points for all methods – namely the unconstrained al-

gorithm, denoted by ”Algo Unconstrained”, constrained algorithm resolved by

gradient descent, denoted by ”Algo Constrained Gradient”, proximal gradient

algorithm denoted by (”Algo PG”) and the accelerated proximal gradient, de-285

noted by (”Algo APG”) – are initialized using the same initial points and share

the same stopping criteria:

• The tolerance on the Frobenius norm of the gradient divided by the num-

ber of entries in the gradient is set at 10−8.

• The maximum number of iteration is set to 103.290

In all experiments, The computations are run in Matlab on a computer

with Intel i5 CPU (2.6GHz) and 10GB memory running 64bit Mac OS. And

the results are obtained from 100 Monte Carlo runs for all scenarios. At each

iteration and for each SNR value, a new noise realization is drawn. Note also

that we fix the same heuristic choices ρ = 10 and γ = 5 as in [13].295

5.1. Simulation 1

In this experience, we generate a random CP model of size 4 × 3 × 6 with

rank 3 and with coherences µ(A) = µ(B) = µ(C) = 0.99, which implies that

µ(A)µ(B)µ(C) = 0.97 is larger than 1
R−1 = 1

2 . This configuration describes the

case where the constraint is active (Cp ≤ 0) at convergence.300

η is varied through iterations. More specifically in this first experiment,

η is initialized to 1, and is divided by 10 when Υ(x) is reduced by less than

10−4. Figure 2 illustrates the estimation errors of the matrix as a function

of SNR. From these results obtained with 100 different initial points, we can

see that the unconstrained algorithm produces poor results compared to other305

19

(a) Matrix A (b) Matrix B (c) Matrix C

Figure 2: Matrix estimation errors, with a random tensor of size 4× 3× 6 and rank 3.

Figure 3: Congruence versus SNR results, µ(A) = µ(B) = µ(C) = 0.99 up to a precision of

10−6 and results with 100 random initializations at each SNR.

algorithms. On the other hand, we can also observe that the two proposed

proximal algorithms are more accurate than the constrained gradient algorithm.

Figure 3 represents the best sum of congruences as a function of SNR. We can

visualize that with the same initializations, the results are much more promising,

especially at a high SNR, which confirms the accuracy of the proposed proximal310

algorithms.

In order to show a deeper difference between the Algorithms, we will examine

the convergence speed of the tensor reconstruction according to the number of

iterations, and we will also explore the CPU time to highlight the run time

of each algorithm to achieve an accuracy of 10−6. Figure 4 indicates that the315

accelerated proximal gradient algorithm converges faster than other algorithms

20

(a) Up to 1000 iteration

(b) Up to a precision of 10−6

Figure 4: Reconstruction error (9) as a function of the number of iterations. For a tensor of

size 4× 3× 6 and rank 3.

in terms of number of iterations, followed by proximal gradient algorithm, then

by constrained gradient algorithm and finally the unconstrained algorithm which

requires a lot of iterations to achieve an accuracy of 10−6. This convergence

speed result is also clearly presented in Table 1, which indicates the machine320

time required for each algorithm to achieve an accuracy of 10−6, and where it

is clearly observed that accelerated proximal gradient yields superior results to

deal with the swamp phenomenon.

5.2. Simulation 2

In this second experience, we generate a random CP model of size 4× 3× 6325

with rank 3 and with coherences µ(A) = µ(B) = µ(C) = 0.6, which implies that

µ(A)µ(B)µ(C) = 0.216 is less than 1
R−1 = 1

2 . This configuration describes the

case where the constraint is not active (Cp ≥ 0) at convergence. The starting

points for all methods are randomly generated, followed by 5 iterations of the

21

SNR

Algorithms 0 10 20 30 40

Unconstrained 2.10 1.67 1.44 0.80 0.61

Constrained Gradient 1.83 1.22 1.20 0.64 0.45

PG 1.71 1.13 1.11 0.59 0.44

APG 1.62 0.83 0.76 0.46 0.43

Table 1: CPU time (in seconds) versus SNR results, µ(A) = µ(B) = µ(C) = 0.99 up to a

precision of 10−6 and results with 100 random initializations at each SNR.

Alternating Least Square (ALS). In this experiment, η is initialized to 0.1, and330

is divided by 100 when Υ(x) is reduced by less than 10−4.

Figure 5 reports the Reconstruction error (9) as a function of the number of

iterations. It can hence be observed that the accelerated proximal gradient al-

gorithm converges faster than other algorithms in terms of number of iterations,

followed by proximal gradient algorithm, then by the by constrained gradient335

algorithm, and finally by the unconstrained algorithm. A deeper inspection

also reveals that the accelerated proximal algorithm, the proximal gradient al-

gorithm and the constrained gradient algorithm yield 99% of correct estimations

whereas the unconstrained algorithm yields 97%.

5.3. Simulation 3340

In this last experience, we generate a random CP model of size 4 × 3 × 6

with rank 3 and with coherences µ(A) = 0.99, µ(B) = 0.6, µ(C) = 0.6. This

configuration addresses the problem of bottleneck, where we chose factors of the

first mode (i.e, A) to be almost co-linear. In this experiment, η is initialized to

0.1, and is divided by 100 when Υ(x) is reduced by less than 10−4. Figure 6345

illustrates the estimation errors of the matrix as a function of SNR. And from

these results obtained with 100 different initial points, we can still observe that

22

Figure 5: Reconstruction error (9) as a function of the number of iterations. For a tensor of

size 4× 3× 6 and rank 3.

(a) Matrix A (b) Matrix B (c) Matrix C

Figure 6: Matrix estimation errors, with a random tensor of size 4× 3× 6 and rank 3.

the unconstrained algorithm produces mediocre results compared to other al-

gorithms. On the other hand, the proximal gradient algorithm produces results

similar to those of the constrained gradient algorithm in higher SNR values, par-350

ticularly for the factors of the correlated matrix A. This may be explained by

the fact that in higher SNRs, the proximal gradient algorithm is sensitive to the

starting points; however the accelerated proximal algorithm remains insensitive

to starting points and provides more accuracy than other algorithms.

Figure 8 indicates that the accelerated proximal gradient algorithm con-355

verges faster than other algorithms in terms of number of iterations, where

both proximal gradient and constrained gradient algorithms yield similar re-

sults succeeded by the unconstrained algorithm that requires many iterations.

23

Figure 7: Congruence versus SNR results, µ(A) = 0.99, µ(B) = 0.6, µ(C) = 0.6 up to a

precision of 10−8 and results with 100 random initializations at each SNR.

Figure 8: Reconstruction error (9) as a function of the number of iterations. For a tensor of

size 4× 3× 6 and rank 3.

This convergence speed result is also clearly presented in Table 2, which indi-

cates the CPU time required for each algorithm to reach an accuracy of 10−7,360

and it should be noted that the proximal gradient algorithm is a slightly faster

compared to the constrained gradient algorithm, while the accelerated proximal

gradient algorithm remains the fastest to achieve an accuracy of 10−7.

6. Conclusions

We have described two methods to overcome swamp and bottleneck prob-365

lems, based on the proximal gradient (PG) and the accelerated proximal gra-

24

SNR

Algorithms 0 10 20 30 40

Unconstrained 1.85 1.66 1.19 0.95 0.62

Constrained Gradient 1.38 1.16 0.79 0.57 0.35

PG 1.37 1.15 0.77 0.52 0.36

APG 1.35 1.12 0.74 0.47 0.30

Table 2: CPU time (in seconds) versus SNR results, µ(A) = 0.99 and µ(B) = µ(C) = 0.6 up

to a precision of 10−7 and results with 100 random initializations at each SNR.

dient (APG), with a simple and effective monitoring strategy capable of cal-

culating the minimal CP decomposition of three-way arrays. We performed a

complete comparison based on computer experiments, which proved the good

behaviour of both algorithms in terms of accuracy and convergence speed, even370

in the presence of bad conditioning, compared to other iterative algorithms

available in the literature.

References

[1] P. Comon, Tensor decompositionsstate of the art and applications, keynote

address in ima conf, Mathematics in Signal Processing, Warwick, UK.375

[2] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of

products, J. Math. and Phys. 6 (1) (1927) 165–189.

[3] R. A. Harshman, et al., Foundations of the parafac procedure: Models and

conditions for an” explanatory” multimodal factor analysis.

[4] R. A. Harshman, Determination and proof of minimum uniqueness condi-380

tions for parafac1, UCLA Working Papers in phonetics 22 (111-117) (1972)

3.

25

[5] J. D. Carroll, J.-J. Chang, Analysis of individual differences in multidimen-

sional scaling via an n-way generalization of eckart-young decomposition,

Psychometrika 35 (3) (1970) 283–319.385

[6] H. A. L. Kiers, Towards a standardized notation and terminology in mul-

tiway analysis, J. Chemometrics 14 (2000) 105–122.

[7] P. Comon, X. Luciani, A. L. De Almeida, Tensor decompositions, alternat-

ing least squares and other tales, Journal of Chemometrics: A Journal of

the Chemometrics Society 23 (7-8) (2009) 393–405.390

[8] R. Bro, Parafac. tutorial and applications, Chemometrics and intelligent

laboratory systems 38 (2) (1997) 149–171.

[9] K. R. Murphy, C. A. Stedmon, D. Graeber, R. Bro, Fluorescence spec-

troscopy and multi-way techniques. parafac, Analytical Methods 5 (23)

(2013) 6557–6566.395

[10] C. Jutten, J. Herault, Blind separation of sources, part i: An adaptive

algorithm based on neuromimetic architecture, Signal processing 24 (1)

(1991) 1–10.

[11] A. Rouijel, K. Minaoui, P. Comon, D. Aboutajdine, Cp decomposition

approach to blind separation for ds-cdma system using a new performance400

index, EURASIP Journal on Advances in Signal Processing 2014 (1) (2014)

128.

[12] N. D. Sidiropoulos, G. B. Giannakis, R. Bro, Blind parafac receivers for

ds-cdma systems, IEEE Transactions on Signal Processing 48 (3) (2000)

810–823.405

[13] S. Sahnoun, P. Comon, Joint source estimation and localization, IEEE

Transactions on Signal Processing 63 (10) (2015) 2485–2495.

[14] X. Liu, S. Bourennane, C. Fossati, Denoising of hyperspectral images using

the parafac model and statistical performance analysis, IEEE Transactions

on Geoscience and Remote Sensing 50 (10) (2012) 3717–3724.410

26

[15] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decom-

positions, with application to arithmetic complexity and statistics, Linear

algebra and its applications 18 (2) (1977) 95–138.

[16] A. Stegeman, N. D. Sidiropoulos, On kruskals uniqueness condition for

the candecomp/parafac decomposition, Linear Algebra and its applications415

420 (2-3) (2007) 540–552.

[17] L. R. Tucker, Some mathematical notes on three-mode factor analysis,

Psychometrika 31 (3) (1966) 279–311.

[18] G. H. Golub, Cf van loan, matrix computations, The Johns Hopkins.

[19] J. Kruskal, R. Harshman, M. Lundy, How 3-mfa data can cause degenerate420

parafac solutions, among other relationships, Multiway data analysis (1989)

115–122.

[20] M. Rajih, P. Comon, R. A. Harshman, Enhanced line search: A novel

method to accelerate parafac, SIAM journal on matrix analysis and appli-

cations 30 (3) (2008) 1128–1147.425

[21] B. C. Mitchell, D. S. Burdick, Slowly converging parafac sequences: swamps

and two-factor degeneracies, Journal of Chemometrics 8 (2) (1994) 155–168.

[22] W. S. Rayens, B. C. Mitchell, Two-factor degeneracies and a stabilization

of parafac, Chemometrics and Intelligent Laboratory Systems 38 (2) (1997)

173–181.430

[23] R. A. Harshman, The problem and nature of degenerate solutions or decom-

positions of 3-way arrays, in: Talk at the Tensor Decompositions Workshop,

Palo Alto, CA, American Institute of Mathematics, 2004.

[24] P. Paatero, Construction and analysis of degenerate parafac models, Jour-

nal of Chemometrics: A Journal of the Chemometrics Society 14 (3) (2000)435

285–299.

27

[25] N. Li, S. Kindermann, C. Navasca, Some convergence results on the reg-

ularized alternating least-squares method for tensor decomposition, Lin.

Algebra Appl. 438 (2) (2013) 796–812.

[26] E. Sanchez, B. R. Kowalski, Tensorial resolution: a direct trilinear decom-440

position, Journal of Chemometrics 4 (1) (1990) 29–45.

[27] S. Leurgans, R. Ross, R. Abel, A decomposition for three-way arrays, SIAM

Journal on Matrix Analysis and Applications 14 (4) (1993) 1064–1083.

[28] L. De Lathauwer, A link between the canonical decomposition in multi-

linear algebra and simultaneous matrix diagonalization, SIAM journal on445

Matrix Analysis and Applications 28 (3) (2006) 642–666.

[29] C. A. Andersson, R. Bro, Improving the speed of multi-way algorithms::

Part i. tucker3, Chemometrics and intelligent laboratory systems 42 (1-2)

(1998) 93–103.

[30] R. Bro, C. A. Andersson, Improving the speed of multiway algorithms: Part450

ii: Compression, Chemometrics and intelligent laboratory systems 42 (1-2)

(1998) 105–113.

[31] M. Rajih, P. Comon, R. Harshman, Enhanced line search : A novel method

to accelerate Parafac, SIAM Journal on Matrix Analysis Appl. 30 (3) (2008)

1148–1171. doi:10.1137/06065577.455

URL http://link.aip.org/link/?SML/30/1128/1

[32] V. Zarzoso, P. Comon, Robust independent component analysis, IEEE

Trans. Neural Networks 21 (2) (2010) 248–261, hal-00457300. doi:10.

1109/TNN.2009.2035920.

[33] R. C. Farias, J. H. de Morais Goulart, P. Comon, Coherence constrained460

alternating least squares, in: 2018 26th European Signal Processing Con-

ference (EUSIPCO), IEEE, 2018, pp. 613–617.

28

http://link.aip.org/link/?SML/30/1128/1
http://link.aip.org/link/?SML/30/1128/1
http://link.aip.org/link/?SML/30/1128/1
http://dx.doi.org/10.1137/06065577
http://link.aip.org/link/?SML/30/1128/1
http://dx.doi.org/10.1109/TNN.2009.2035920
http://dx.doi.org/10.1109/TNN.2009.2035920
http://dx.doi.org/10.1109/TNN.2009.2035920

[34] N. Parikh, S. Boyd, et al., Proximal algorithms, Foundations and Trends R©

in Optimization 1 (3) (2014) 127–239.

[35] P. L. Combettes, J.-C. Pesquet, Proximal splitting methods in signal pro-465

cessing, in: Fixed-point algorithms for inverse problems in science and

engineering, Springer, 2011, pp. 185–212.

[36] M. V. Catalisano, A. V. Geramita, A. Gimigliano, Ranks of tensors, secant

varieties of Segre varieties and fat points, Linear Algebra Appl. 355 (2002)

263–285.470

[37] V. D. Silva, L.-H. Lim, Tensor rank and the ill-posedness of the best

low-rank approximation problem, SIAM Journal on Matrix Analysis Appl.

30 (3) (2008) 1084–1127.

[38] P. Comon, Tensors: a brief introduction, IEEE Signal Processing Magazine

31 (3) (2014) 44–53.475

[39] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM

review 51 (3) (2009) 455–500.

[40] D. L. Donoho, M. Elad, Optimally sparse representation in general

(nonorthogonal) dictionaries via 1 minimization, Proceedings of the Na-

tional Academy of Sciences 100 (5) (2003) 2197–2202.480

[41] E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling,

Inverse problems 23 (3) (2007) 969.

[42] E. J. Candès, T. Tao, The power of convex relaxation: Near-optimal matrix

completion, arXiv preprint arXiv:0903.1476.

[43] R. Gribonval, M. Nielsen, Sparse representations in unions of bases, Ph.D.485

thesis, INRIA (2002).

[44] I. Domanov, L. De Lathauwer, On the uniqueness of the canonical polyadic

decomposition of third-order tensors—part i: Basic results and uniqueness

29

of one factor matrix, SIAM Journal on Matrix Analysis and Applications

34 (3) (2013) 855–875.490

[45] L.-H. Lim, P. Comon, Blind multilinear identification, IEEE Transactions

on Information Theory 60 (2) (2013) 1260–1280.

[46] M. H. Wright, Interior methods for constrained optimization, Acta numer-

ica 1 (1992) 341–407.

[47] J. Gondzio, Interior point methods 25 years later, European Journal of495

Operational Research 218 (3) (2012) 587–601.

[48] E. Lee, S. Waziruddin, Applying gradient projection and conjugate gradient

to the optimum operation of reservoirs 1, JAWRA Journal of the American

Water Resources Association 6 (5) (1970) 713–724.

[49] L. Zhang, W. Zhou, D. Li, Global convergence of a modified fletcher–reeves500

conjugate gradient method with armijo-type line search, Numerische Math-

ematik 104 (4) (2006) 561–572.

[50] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for

linear inverse problems, SIAM journal on imaging sciences 2 (1) (2009)

183–202.505

[51] G. Tomasi, R. Bro, A comparison of algorithms for fitting the parafac

model, Computational Statistics & Data Analysis 50 (7) (2006) 1700–1734.

30

	INTRODUCTION
	NOTATIONS AND PRELIMINARIES
	Notations and definitions
	PRELIMINARIES

	CP-DECOMPOSITION AND PROXIMAL OPERATOR
	CP-DECOMPOSITION
	Low rank
	Coherence
	Conditioning of the problem
	Existence
	Uniqueness

	PROBLEM FORMULATION
	PROXIMAL MAPPING
	Definition

	PROPOSED OPTIMIZATION METHOD
	Gradient step
	Proximal step

	RESULTS AND DISCUSSION
	Simulation 1
	Simulation 2
	Simulation 3

	Conclusions

