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Abstract

With the powerful deep network architectures, such as generative adversarial
networks, one can easily generate photorealistic images. Although the generated
images are not dedicated for fooling human or deceiving biometric authentica-
tion systems, research communities and public media have shown great concerns
on the security issues caused by these images. This paper addresses the problem
of identifying deep network generated (DNG) images. Taking the differences
between camera imaging and DNG image generation into considerations, we
analyze the disparities between DNG images and real images in different color
components. We observe that the DNG images are more distinguishable from
real ones in the chrominance components, especially in the residual domain.
Based on these observations, we propose a feature set to capture color image
statistics for identifying DNG images. Additionally, we evaluate several detec-
tion situations, including the training-testing data are matched or mismatched
in image sources or generative models and detection with only real images.
Extensive experimental results show that the proposed method can accurately
identify DNG images and outperforms existing methods when the training and
testing data are mismatched. Moreover, when the GAN model is unknown, our
methods also achieves good performance with one-class classification by using
only real images for training.
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1. Introduction

In recent years, we have witnessed the inspiring development of image gener-
ative models [1, 2, 3]. Traditionally, image generative models could only create
simple image textures, and the image contents were far from realistic. There-
fore, it was not difficult to differentiate between such generated images and
real images with naked eyes. However, the situation has changed with the
tremendous advancement of machine learning. With the modern deep network
architectures, especially the generative adversarial networks (GANs) [1], the
quality of generated images has been dramatically improved [4, 5, 6], and thus
it is no longer easy to identify the deep network generated (DNG) images with
human visual system. Although the advancements of image generative models
have facilitated many applications, such as image super-resolution [7, 8], image
translation [9, 10], and image inpainting [11], the photorealistic DNG images
may also lead to many serious security risks. For example, the generated scenes
can be used to falsify images or videos and fabricate fake news, the generated
faces can be posted on social networks to counterfeit personal information or be
used to attack biometric authentication systems. Recently, both public media
[12] and research communities [13] have shown great concerns on the negative
impacts of DNG images, and some governments [14] have even amended laws
to prevent the malicious sharing of fake media contents generated by machine
learning software like DeepFake. In order to determine the authenticity of im-
ages and avoid the potential security issues, it is of importance to identify DNG
images.

Identification of fake images is much related to the research field of infor-
mation security, particularly in image forensics [15] and biometric anti-spoofing
[16]. Due to the fact that fabricating a fake image would inevitably introduce
some traces, the key to the identification is to analyze and extract features that
represent the corresponding traces. For example, the quantization artifacts are
used in JPEG image forensics [17, 18], the joint artifacts left by different image
operations can be used to determine the operation chains [19, 20, 21], the splicing
inconsistences are exploited to locate tampered image regions [22, 23], and the
displaying/imaging distortions are utilized in face spoofing detection [24, 25].
Recently, some works have been developed to identify fake images generated
by deep networks. Some of them employ the visual artifacts [26] or saturation
abnormalities [27] in DNG images, and some of them are based on deep learing
paradigm [28, 29, 30, 31]. Although these works introduced some applicable
approaches to identify DNG images, they did not analyze the common inherent
traces left in generated images and thus failed to provide interpretable conclu-
sions. Furthermore, they did not fully consider some challenging scenarios, e.g.,
the image sources or the generative models are different in the training and
testing phases, which need to be carefully coped with in practice. To this end,
more efforts should be devoted to the identification of DNG images.

In this paper, we propose an effective and interpretable method to identify
DNG images. Considering the difference between camera imaging and DNG im-
age generation, we analyze the disparity between DNG images and real images
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and observe that the DNG images are more distinguishable in residual domain
of chrominance components. Based on the observations, we design a feature set
to identify DNG images, which is composed by co-occurrence matrix of residual
images in different color components. Furthermore, we address several challeng-
ing detection scenarios, including the cases when the training and testing data
are mismatched and the GAN model is unaware. Extensive experimental results
have shown the effectiveness of the proposed method: 1) When the training and
testing data are matched, the proposed method achieves high accuracies. 2)
When the training and testing images are generated by the same type of GAN
but with different semantic content types, the proposed method outperforms ex-
isting methods; this situation has not been studied in previous works. 3) When
the training and testing images are generated by different GANs, the proposed
method also achieves superior performance, although the performance varies in
different cases. 4) When the GAN model is unaware, the proposed method can
obtain promising results with one-class classification. The contributions of this
paper are summarized as follows.

• Considering that DNG image generation is different from camera imaging,
we have conducted the analysis and demonstrated the disparities between
DNG images and real images. By measuring the correlations between
adjacent pixels in some color spaces, we have found that the statistical
properties of DNG images and real images are different in the chrominance
components of HSV and YCbCr color spaces, while the disparities are
more distinct in the residual domain.

• We have proposed an effective feature set for DNG image identification.
The feature set consists of co-occurrence matrices extracted from the resid-
ual images of several color components. The proposed feature set is of low
dimension, and achieves good detection performance even with a small
training set.

• We have evaluated the identification performance in different detection
scenarios. The proposed method outperforms the existing methods when
the image semantic types or the GAN models are mismatched in the train-
ing and testing phases. It is worthy to mention that, in the GAN model-
unaware case (only real images are available for training), we can still
achieve good results by performing one-class classification.

The rest of this paper is organized as follows. Section 2 introduces some
related works. Section 3 presents the details of the proposed method. Section 4
reports and discusses the experimental results. Finally, the concluding remarks
are drawn in Section 5.

2. Related Works

2.1. Image Generative Models and GANs

A generative model can be trained with some given data, and it aims to
produce samples that follow the same distribution as the training data. In an
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ideal case, by improving the model and increasing the amount and the quality of
training data, the generative model is expected to eventually generate plausible
samples similar to those coming from real world. Currently the most popu-
lar generative models are based on deep neural networks, including Generative
Adversarial Networks (GANs) [1], Variational Autoencoders (VAEs) [2], and au-
toregressive models [3]. VAEs and autoregressive models usually produce images
of poor quality compared to GANs, which would limit their applications. Hence,
most of the state-of-the-art image generative models are built with GANs.

GAN was first proposed by Goodfellow et al . [1]. Basically, a GAN consists
of two networks: a generator and a discriminator. The generator tries to gen-
erate synthetic samples as the one drawing from real data distribution, and the
discriminator tries to correctly classify whether samples are coming from the
generator or the real data. The training of GAN works as solving a two-player
zero-sum game between the generator and the discriminator. While the discrim-
inator notices some differences between the real distribution and the generated
distribution, the generator adjusts its parameters to produce samples closer to
the real distribution. And then, the discriminator tries to tell apart the two
distributions again by adjusting its parameters. In an ideal case, the generator
is expected to eventually reproduce the distribution of real data, and the dis-
criminator fails to distinguish between generated samples and real samples. Up
to now, many works [32, 33, 34, 35, 36, 4, 5, 6] have been proposed to improve
the vanilla GAN. For example, Radford et al . [32] designed deep convolutional
GAN (DCGAN), Arjovsky et al . [35] adopted Wasserstein distance in GAN to
make the training more stable, Gulrajani et al . [36] made an improvement for
Wasserstein GAN with gradient penalty (WGAN-GP). More recently, the qual-
ity and variation of generated images have been further improved by progressive
growing of GANs (ProGAN) [4], large scale training with architectural changes
and modified regularization scheme (BigGAN) [5], designing style-based gener-
ator architecture (StyGAN) [6], and generating images by parts based on their
conditional spatial coordinates (CocoGAN) [37].

In this paper, we consider DNG images generated from six popular GAN
models, including DCGAN [32], WGAN-GP [36], ProGAN [4], StyGAN [6],
BigGAN [5], and CocoGAN [37]. While some of these GANs have already
been considered in the recently-developed image database FaceForensic++ [38],
we include some more different GAN models to evaluate the generalization ca-
pability of detection methods.

2.2. Fake Image Identification

Before the appearance of DNG images, many methods were developed to
identify fake images subjected to editing and/or rebroadcasting. Most of those
methods rely on specific traces regarding to the processing pipelines of fake
images, such as the JPEG compression errors of a recompressed image [17] and
the quality distortions of a spoofing face image [39, 40]. Hence, such targeted
methods are not suitable for detecting DNG images. On the other hand, there
are some general methods that are based on either statistical features extracted
from image textures [25, 41] or deep neural networks equiped with a constrained
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convolutional layer[42]. Such approaches may be used to detect DNG images, as
long as retraining a detector with DNG image samples. Nevertheless, since these
approaches do not take into account the traces left by the generation pipeline
of DNG images, they cannot always achieve satisfactory performance.

With the growing interest in identifying DNG images, a few methods have
been designed to differentiate between DNG images and real images. Some of
these methods rely on feature engineering. McCloskey and Albright [27] found
that the normalization of an image generator is different from a real camera,
and proposed to detect GAN-generated images with saturation cues. The best
result of the area under the ROC curve (AUC) obtained by this method was
just around 0.70. Matern et al . [26] reported that some generated face images
exhibited visual artifacts in eyes, teeth and facial contours, and utilized such
artifacts for identification, obtaining the AUC around 0.85. Marra et al . [43]
showed that each GAN leaves a specific fingerprint in the images generated by
itself. Some low-level facial artifacts can be used to expose the images/videos
generated by DeepFake, such as the absence of eye blinking [44], the errors of
estimated 3-D head poses [45], the inconsistences in facial parts locations [46],
and the correlations of facial expressions and movements [47]. However, such
facial abnormalities can be only applicable to generated face images/videos,
and thus they are not suitable for detecting DNG images with other types of
semantic contents.

Other methods resort to deep learning (DL). Marra et al . [28] tested the
performance of several DL architectures for detecting images produced by image-
to-image translation [9]. Mo et al . [29] and Dang et al . [30] designed customized
convolutional neural networks (CNN) to identify fake face images generated
by GANs. Afchar et al . [48] employed networks focusing on the mesoscopic
properties of images to perform detection. In addition to directly feeding the
images into CNNs, some works tried to improve the detection performance by
incorporating specific domain knowledge. For example, training the network
with co-occurrence matrices extracted from an image in the pixel domain of
RGB space [49], prompting the network to learning the affine face warping
artifacts [50] or up-sampling artifacts [51].

A big potential practical problem for identifying DNG images is the mis-
match between the training and testing data. In order to mitigate the perfor-
mance degradation of a trained detector in such case, researchers have tried
to utilize more advanced learning mechanisms, e.g., weakly-supervised transfer
learning [52], incremental learning [53] and two-step pairwise learning [31]. How-
ever, these approaches still need to appropriately collect enough DNG images
for the training procedure.

3. DNG Image Identification

In this section, we first analyze some possible artifacts of DNG images and
investigate the disparities between DNG images and real images in some color
spaces. Then, we construct a feature set to capture the artifacts of DNG images
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so as to identify them. Finally, we discuss several detection scenarios and the
corresponding detection strategies.

3.1. Analysis from the Perspective of Color

3.1.1. The generation pipeline of DNG images

In order to distinguish DNG images from real images, it needs to inspect
the artifacts left by GANs during creating images. Typically, the generator of
a GAN takes a random latent vector as input and employs several convolu-
tion/deconvolution layers to gradually expand the spatial size of the random
vector. In the last layer of the generator, several feature maps are transformed
into a tensor with three channels, where the three channels represent the R, G,
and B components of the generated image, respectively. During this procedure,
the convolution operations would introduce some inherent properties into the
DNG images. By contrast, a real image is captured from real scene by camera,
where the color components are decomposed and digitalized from real world,
meaning that the real pixels should be inherently correlated in a different way.
Since the generation of DNG images is quite different from camera imaging,
there should be certain disparities between DNG images and real images from
the perspective of color. Therefore, it is reasonable to assume that some prop-
erties among the color components of DNG images are different from real ones.
In the following analysis, we will show some experimental evidences to support
this assumption.

3.1.2. Discernibility of color component

As GANs usually generate images in RGB space, they tend to follow the
properties of real images in RGB space, while paying less attention to the prop-
erties in other color spaces. In this way, although the differences between DNG
images and real ones are inapparent in RGB color space, they may be more
obvious in other color spaces. Therefore, we consider analyzing DNG images
in three different color spaces, i.e., RGB, HSV, and YCbCr, and try to use
a metric to examine which color component is more discernible for identifying
DNG images. Firstly, we construct the discernibility metric as follows.

a) For the i-th image I in a dataset, we calculate the correlation coeffi-
cient between the adjacent pixels in each of its color component Ic (c ∈
{R,G,B,H, S,V,Y,Cb,Cr}), which can be formulated as:

rci =

∑m

j=1

∑n−1
k=1

(

Icj,k − Īc
)(

Icj,k+1 − Īc
)

√

∑m

j=1

∑n−1
k=1

(

Icj,k − Īc
)2

∑m

j=1

∑n−1
k=1

(

Icj,k+1 − Īc
)2

, (1)

where Īc is the mean value of Ic, and m and n are the height and width
of the image. In this way, the value of rci represents the relevance of the
adjacent pixel values. The larger the rci , the higher correlation between the
adjacent pixel values in Ic. Please note that we only employ the correlation
analysis on horizontal adjacent pixels for simplifying the analysis, and
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similar results can be obtained by considering adjacent pixels in other
directions.

b) For a set of DNG images, we calculate rci for each image and construct the
histogram of rci as Hc

DNG. Similarly, for a set of real images, we construct
the histogram H

c
Real. Then, we measure the similarity between the two

histograms with Chi-square distance

dχ2(Hc
DNG,H

c
Real) =

1

2

∑

x

(Hc
DNG(x) −H

c
Real(x))

2

H
c
DNG(x) +H

c
Real(x)

, (2)

where x is the bin index. dχ2 (Hc
DNG,H

c
Real) can serve as the discernibility

metric. The larger the discernibility metric, the disparities between DNG
images and real images are more significant. In other words, the color
component c is more powerful for distinguishing between DNG images
and real images with a larger value of dχ2(Hc

DNG,H
c
Real) .

To evaluate the effectiveness of the discernibility metric, we perform some
analytical experiments. We use the StyGAN [6] model trained with the FFHQ
dataset [6] as an example of image generative model. With the trained model, we
generate a large amount of DNG images. We randomly select 10,000 DNG im-
ages and 10,000 real images from the generated dataset and the FFHQ dataset,
respectively, and then compute the rci (c ∈ {R,G,B,H, S,V,Y,Cb,Cr}) as in-
troduced above. Then, we construct the histograms H

c
DNG and H

c
Real. The

histograms for different color components are shown in Fig. 1. It can be ob-
served that the non-overlapping regions of Hc

DNG and H
c
Real are quite small for

the R, G, and B channels, meaning that the disparities between DNG images
and real images are not apparent in the RGB color space. This can be explained
by the DNG generation process where R, G, B channels are directly generated
to follow the distributions of real images. Via converting the images from RGB
space into HSV/YCbCr spaces, the R, G, and B channels are merged by linear
or non-linear combinations to form the other color channels. In this way, the
disparities between DNG images and real images will be amplified, and thus
the non-overlapping regions of Hc

DNG and H
c
Real become larger, especially for

the four chrominance components, i.e., H, S, Cb, and Cr. Such phenomena can
be supported by the discernibility metrics, i.e., dχ2(Hc

DNG,H
c
Real). As shown in

the sub-captions of the corresponding sub-figures in Fig. 1, we observe that the
values of dχ2(Hc

DNG,H
c
Real) for the four chrominance components are all exceed

0.011, which are larger than those for the luminance components (i.e., V and Y)
and R, G, and B components (all being less than 0.005). These results indicate
that the chrominance components are more discernible than the others.

3.1.3. Discernibility analysis in first-order differential residual domain

In the above analysis, we directly derive the observations from the image
spatial domain. However, the contents of DNG images and real images are not
always visually distinguishable, meaning that the contents in DNG images and
real images are quite similar. This would have negative impacts on analyzing
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Figure 1: The histograms H
c

DNG
(red) and H

c

Real
(blue) for different color components. The

values of d
χ2 (Hc

DNG
,Hc

Real
) are included in the sub-captions.

their disparities. Therefore, it is more reasonable to suppress image contents
with high-pass filtering and then investigate the disparities in image residuals.
In fact, extracting features from high-pass filtered image residuals have been
successfully used in some imperceptible pattern recognition applications, such
as image steganalysis [54] and image forensics [41].

We apply a first-order differential operator as an example to obtain image
residuals, namely,

Rc
j,k = Icj,k − Icj,k+1, c∈{R,G,B,H, S,V,Y,Cb,Cr}. (3)

where Ic is the c-th component of image I and Rc is the corresponding residual.
We only consider horizontal difference here, and similar results can be obtained
by considering vertical difference. Having the image residuals in residual do-
main, we replace Ic and Īc in Equation (1) with Rc and R̄c, respectively, and
then conduct the discernibility analysis with the same image datasets as de-
scribed in Section 3.1.2. The histograms H

c
DNG and H

c
Real for different color

components in residual domain are shown in Fig. 2. From this figure, it is ob-
served that the non-overlapping regions of Hc

DNG and H
c
Real become much more

noticeable, implying that the DNG image and real image are indeed more dis-
tinguishable in the residual domain. This phenomenon can also be explained by
the fact that DNG images are undergone a different processing pipeline from real
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Figure 2: The histograms H
c

DNG
(red) and H

c

Real
(blue) for different color components in the

residual domain. The values of d
χ2 (Hc

DNG
,Hc

Real
) are included in the sub-captions.

images so that their statistics are different in the residual domain. Moreover,
the observations obtained in spatial domain still hold in residual domain: 1)
the non-overlapping regions of Hc

DNG and H
c
Real for the H, S, Cb,Cr components

are larger than those for R, G, B, V, Y components, and 2) the discernibility
metrics for the four chrominance components are also greater than those for
the other components. We have also conducted the same analysis on images
generated by other types of GANs and obtained consistent results, indicating
that some statistical features extracted from the chrominance components in
residual domain would be beneficial for identifying DNG images.

3.2. Extracting Features from Color Components

Based on the previous analysis, we decide to extract features from the
chrominance components in residual domain of an image. The overall frame-
work of the proposed method is illustrated in Fig. 3. For a given image, we
first compute the features from color components and then concatenate them
into a feature vector, and finally train a classifier to predict whether the image
is real or is generated by deep networks. In the feature extraction stage, we
first calculate the image residuals with the first-order differential operators and
pre-process them with truncation. Then, the co-occurrence matrix [55], which
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Figure 3: The overall framework of the proposed method.

has been widely used in image textural analysis as a kind of feature descriptor,
is extracted from the image residuals and merged to form the feature set.

3.2.1. Truncating image residuals

Once the image residuals of H, S, Cb, Cr components have been obtained
with the first-order differential operators, we need to pre-process the residuals
before computing co-occurrence matrix. The reason is that there are too many
distinct element values in the residuals, and it would result in a co-occurrence
matrix with huge dimension if the raw residual data is directly used. In order to
reduce the number of distinct values, the residual images Rc (c∈{H, S,Cb,Cr})
are truncated as follow:

Řc(x, y) =











τ, Rc(x, y) ≥ τ,

Rc(x, y), −τ < Rc(x, y) < τ,

−τ, Rc(x, y) ≤ −τ,

(4)

where (x, y) is the position index of an element within the residual image and
τ >0 is the truncation threshold. After truncation, the resulting residual images
Řc only contain integer values within the range of [−τ, τ ]. They are then used
to compute the co-occurrence matrices.

3.2.2. Extracting co-occurrence features

In total, we have four co-occurrence matrices, which are calculated from ŘH,
ŘS, ŘCb, and ŘCr, respectively. Typically, the co-occurrence matrix of a 2-D
array V is computed by

C(θ1, θ2, . . . , θd) =
1

n

∑

x,y

1

(

V(x, y) = θ1,

V(x +∆x, y +∆y) = θ2, . . . ,

V(x + (d− 1)∆x, y + (d− 1)∆y) = θd

)

,

(5)

where 1(·) is an indicator function, (θ1, θ2, . . . , θd) is the index of co-occurrence
matrix, d is the order of co-occurrence matrix, n is the normalization factor,
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and ∆x, ∆y are the offsets for two neighboring elements. The dimensionality
of each the co-occurrence matrix for Řc is (2τ + 1)d.

Since the co-occurrence matrix is symmetric, we can decrease the feature
dimension by combining the two bins, C(θ1, θ2, . . . , θd) and C(θd, θd−1, . . . , θ1),
into one bin. After combination, the dimensionality of co-occurrence matrix is
substantially decreased: the co-occurrence matrices for Řc (c∈ {H, S,Cb,Cr})
have only ((2τ + 1)d + (2τ + 1)d−1)/2 bins. Please note that the reduction of
feature dimension is motivated by the natural symmetry property of images,
thus it would not significantly decrease the detection performance. In fact,
the resulting relatively low dimensional features will speed up the training of
classifier.

3.2.3. Practical implementation

In our practical implementation, we use two first-order differential opera-
tors, one in horizontal direction and one in vertical direction, to obtain the
image residuals. The residuals are then processed as described above, where
the truncation threshold is set as τ =2, and the order of co-occurrence matrix
is set as d= 3. We choose the offsets as (∆x, ∆y) ∈ {(0, 1), (1, 0)}, and thus
we have 4 co-occurrence matrices (2 residuals × 2 offsets) for each color com-
ponent. Finally, we take the element-wise sum of the 4 co-occurrence matrices
as the features. In total, a 300-D feature set is obtained, in which the feature
dimension for each of ŘH, ŘS, ŘCb, and ŘCr is (53 + 52)/2 = 75.

3.3. Detection Scenarios and Strategies

In practice, there are many types of generative models, and they can be
trained with different real data for producing images with diverse contents.
As a result, DNG images generated by different models that are trained with
different datasets may not exhibit the same characteristic, leading to difficulties
in distinguishing them from real images. Based on the information that is
available in the training phase and the source of testing data, we divide the
detection scenarios into three cases, and discuss the corresponding detection
strategies as follows.

3.3.1. Matched training-testing data

In this case, the training and testing DNG images are generated by the
same model trained with the same real image dataset. This is the simplest case
and was considered by default in some existing works, e.g., [28, 29, 27, 30]. To
perform the detection, the investigator just need to train a binary classifier with
real images and DNG images, and uses the trained classifier to predict the class
labels for the testing images.

3.3.2. Mismatched training-testing data

In this case, the training and testing DNG images are from different sources.
For example, they are generated by the same type of GAN but with different
datasets or even different image semantic content types, or they have the same
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type of image semantic contents but are generated with different GANs. Binary
classification is also used in this case. Due to the mismatched sources, this case
can be exploited to evaluate the generalization ability of a detection method.
The better results a method achieves in this case, the better the method is
expected to perform in real applications. Some existing works (e.g., [52, 53,
31]) have been aware of this problem and tried to improve the performance
with advanced learning mechanisms, but they have not intensively studied the
performance for such mismatch cases.

3.3.3. Model-unaware case

It is not rare that the investigator does not have any knowledge about the
generative model, and thus has no DNG image samples when building a classi-
fier. This is the most challenging case presented to the investigator. To our best
knowledge, such situation has never been considered in the existing works on
DNG image identification. To cope with this case, a possible way is to train a
one-class classifier with only real images and use the classifier to detect whether
the testing image is real or not. If a testing image is not predicted as real, then
it will be treated as a generated one.

4. Experiments

In this section, we will evaluate the performance of the proposed method.
We first introduce the common experimental settings, and then present the
experimental results for the three detection scenarios described in Section 3.3.

4.1. Experimental Setups

4.1.1. Real image datasets

Five real images datasets with two types of semantic contents (i.e., face and
bedroom) and different resolutions were used in the experiments. Each real
image dataset is denoted as Rα, where the subscript α indicates image source
and resolution. The details of the real image datasets are described as follows,
and their basic information can be referred to the upper part of Table 1.

• Low-Resolution (LR) Face (RF-LR and RFl-LR): The RF-LR dataset con-
sists of 200,000 celebrity face images that were randomly selected from
the “Align&Cropped” PNG images in the CelebA dataset [56]. We first
cropped a 138 × 138 facial region from each image to remove the back-
ground, and then resized the cropped region to 128 × 128. The RFl-LR

dataset contains 10,000 face images in the LFW dataset [57]. These images
are with the original size of 250 × 250. For each image, we first cropped
a 150× 150 facial region and then resize it to 128× 128. Please note that
since RFl-LR contains much fewer images than others, the images in this
dataset (and the DNG images related to this datasets) are only used for
testing in the data-mismatch case (Section 4.3.1).
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Table 1: The real and generated datasets used in the experiments.

Dataset Category Content Resolution Quantity Note

RF-LR Real Face 128× 128 200,000 Selected from CelebA
RFl-LR Real Face 128× 128 10,000 Selected from LFW
RB-LR Real Bedroom 128× 128 200,000 Selected from LSUN bedroom
RF-HR Real Face 1024× 1024 100,000 Combination of CelebA-HQ and FFHQ
RB-HR Real Bedroom 256× 256 100,000 Selected from LSUN bedroom

G∗
F-LR

† Generated Face 128× 128 200,000 GANs trained with CelebA
G∗
Fl-LR Generated Face 128× 128 10,000 GANs trained with LFW
G∗
B-LR Generated Bedroom 128× 128 200,000 GANs trained with LSUN bedroom

G∗
F-HR Generated Face 1024× 1024 100,000 GANs trained with CelebA-HQ or FFHQ

G∗
B-HR Generated Bedroom 256× 256 100,000 GANs trained with bedroom images

† The asterisk ∗ denotes the type of GAN. ∗ ∈ {DCGAN,WGAN-GP} for LR datasets,
and ∗ ∈ {ProGAN, StyGAN,BigGAN,CocoGAN} for HR bedroom datasets,
and ∗ ∈ {ProGAN, StyGAN} for HR face datasets.

• Low-Resolution Bedroom (RB-LR): This dataset consists of 200,000 bed-
room images that were randomly selected from the LSUN Bedroom dataset
[58]. We first cropped the central region with the size of 256 × 256 from
each image, and then resized the cropped region into 128× 128.

• High-Resolution (HR) Face (RF-HR): This dataset consists of 100,000
face images, including 30,000 images in the CelebA-HQ dataset [4] and
70,000 images in the FFHQ dataset [6]. These images are with the size
of 1024× 1024, and they are resized to 256× 256 in experiments so as to
reduce the computational time (especially for deep learning based meth-
ods). Although the images have been pre-processed with down-scaling,
the detection decision obtained by the classifier can also be applied to the
original large images.

• High-Resolution Bedroom (RB-HR): This dataset consists of 100,000 bed-
room images, which were randomly selected from the LSUN Bedroom
dataset [58]. We cropped the central 256× 256 region from each image.

4.1.2. DNG image datasets

In the experiments, we adopted DNG images generated by six types of GANs,
including DCGAN [32], WGAN-GP [36], ProGAN [4], StyGAN [6], BigGAN
[5], and CocoGAN [37]. For DCGAN and WGAN-GP, we used the implemen-
tation available online1 and trained GANs with the LR real image datasets (i.e.,
RF-LR, RFl-LR, andRB-LR). Hence, the trained GANs produce LR DNG images
with the size of 128× 128. For ProGAN, StyGAN, BigGAN and CocoGAN,
we used the corresponding trained models2 released by the authors to generate

1Available at https://www.github.com/igul222/improved_wgan_training.
2Available at https://drive.google.com/open?id=0B4qLcYyJmiz0NHFULTdYc05lX0U,

http://stylegan.xyz/drive, https://tfhub.dev/deepmind/biggan-128/2, and
https://drive.google.com/drive/folders/1r-BvW6cVMHKJw-0wMI6mUepMkboWwWqN, re-

spectively.
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HR images (i.e., 1024 × 1024 face images and/or 256 × 256 bedroom images).
The 1024× 1024 face images were resized to 256× 256 in our experiments. For
simplicity, in the following context we denote a DNG images dataset as Gβ

α,
where α represents image source and resolution, and β represents the type of
GAN model. For example, GDCGAN

F-LR denotes the LR CelebA face images gener-
ated by a DCGAN model. The basic information of the DNG image datasets
are summarized in the bottom part of Table 1. In total, more than 1,400,000
DNG images are involved in our experiments.

4.1.3. Comparative study

We have compared the proposed method with four hand-crafted feature
based methods and five deep learning based methods, including general-purpose
methods and targeted methods. The details are as follows.

• SRM [54] (General-purpose hand-crafted feature, 34671-D): It is originally
designed for image steganalysis. The features are extracted from image
residuals obtained by a series of high-pass filters.

• Sub-SRM [41] (General-purpose hand-crafted feature, 714-D): This is a
refined subset of SRM. It achieved good performance in image forensics.

• CoALBP+LPQ [25] (General-purpose hand-crafted feature, 19968-D): This
method is designed for face spoofing detection. The feature set is com-
posed of Co-Occurrence of Adjacent Local Binary Patterns and Local
Phase Quantization.

• Sat-Cues [27] (Targeted hand-crafted feature for DNG image detection,
24-D): It uses the saturation cues to classify the real images and images
generated by GANs.

• VGG-16 [59] (General-purpose DL based method): A famous CNN for
image classification.

• ResNet v2-50 [60] (General-purpose DL based method): Another famous
CNN for image classification, which uses identity connections to improve
performance.

• Mo et al . [29] (Targeted DL based method for DNG image detection): A
CNN for detecting the images generated by ProGAN.

• CGFace [30] (Targeted DL based method for DNG image detection): A
customized CNN for computer-generated face detection.

• TS-CDNN [31] (Targeted DL based method for DNG image detection): A
coupled deep neural network (CDNN) with a two-step learning approach
for detecting GAN generated face images.

Please note that we accordingly modified the fully connected layers of the orig-
inal CNN networks if necessary, so as to ensure that they are compatible with
the image sizes.
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Table 2: Classification results (%) for matched training and testing data.

Method
FPR FNR ACC

Average (Best/Worst) Average (Best/Worst) Average (Best/Worst)

Sub-SRM [41] 0.11 ( 0.00 / 0.82) 0.05 ( 0.00 / 0.40) 99.92 (100.0 / 99.39)
SRM [54] 0.03 ( 0.00 / 0.19) 0.01 ( 0.00 / 0.07) 99.98 (100.0 / 99.87)
CoALBP+LPQ [25] 0.01 ( 0.00 / 0.08) 0.01 ( 0.00 / 0.03) 99.99 (100.0 / 99.95)
Sat-Cues [27] 30.66 (17.77 / 42.76) 25.53 (17.59 / 38.59) 71.91 (80.69 / 59.33)
VGG-16 [59] 0.28 ( 0.01 / 1.32) 0.55 ( 0.01 / 2.40) 99.58 (99.99 / 98.14)
ResNet v2-50 [60] 0.56 ( 0.01 / 1.99) 0.74 ( 0.01 / 2.57) 99.35 (99.99 / 98.04)
Mo et al . [29] 0.51 ( 0.00 / 3.51) 0.56 ( 0.00 / 2.43) 99.46 (100.0 / 97.03)
CGFace [30] 4.75 ( 0.04 / 37.81) 4.67 ( 0.01 / 41.78) 95.29 (99.97 / 60.20)
TS-CDNN [31] 7.04 ( 0.04 / 22.32) 10.47 ( 0.20 / 67.30) 91.24 (99.88 / 63.91)
Proposed 0.25 ( 0.00 / 1.96) 0.27 ( 0.00 / 2.14) 99.74 (100.0 / 97.95)

4.1.4. Training and testing protocol

Unless otherwise specified, we followed the descriptions below for training
and testing. In each experiment, 50,000 pairs of DNG images and real images
(25% of the LR images and 50% of the HR images) were randomly selected for
training, while the remaining images were used for testing. For the hand-crafted
feature based methods, we trained the ensembles of LDA (linear discriminative
analysis) learners [61] as classifiers. The parameters were set as defaults used
in [61]. For the DL based methods, we trained the networks with 90% of the
training data and kept 10% for validation. The Momentum optimizer was used
in training the network of Mo et al . and VGG-16, while the Adam optimizer was
used in training ResNet v2-50, CGFace, and TS-CDNN; the learning rates were
searched within a certain range and the optimal ones were respectively selected
for the networks. The networks were trained 50 epochs with a batch size of 64
(for the network of Mo et al . , VGG-16, ResNet v2-50, and CGFace) or 128 (for
TS-CDNN). We saved the models every 1 epoch and chose the ones with the
best validation accuracies as the final models. In the testing stage, we computed
and reported the false positive rate (FPR, the probability that real images are
identified as generated ones), false negative rate (FNR, the probability that
generated images are identified as real ones), and the overall accuracy (ACC).

4.2. Performance on Matched Training-testing Data

In this subsection, we evaluate the performance for identifying DNG images
in the case that the training and testing data are matched. For each detec-
tion method, we respectively trained 10 classifiers to classify the fake images in
the 10 DNG image datasets (i.e., GDCGAN

F-LR , GWGAN-GP
F-LR , GDCGAN

B-LR , GWGAN-GP
B-LR ,

GProGAN
F-HR , GStyGAN

F-HR , GProGAN
B-HR , GStyGAN

B-HR , GBigGAN
B-HR , and GCocoGAN

B-HR ) and their
corresponding real images. The results are summarized in Table 2, where the
average, the best, and the worst results of FPR, FNR, and ACC obtained by
the 10 classifiers for each method are reported. From Table 2, it is observed
that all methods achieve an average accuracy over 90% except the method based
on saturation cues. These results indicate that the DNG images can be accu-
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Figure 4: Classification accuracies for
{

RF-LR,GWGAN-GP

F-LR

}

with different amounts of training
sample pairs.

rately identified when a classifier is trained with corresponding data. Among all
the methods, CoALBP+LPQ achieves the best average performance (99.99%),
and the proposed method obtains competitive results (only 0.25% less). Please
note that comparing with the high-dimensional CoALBP+LPQ feature, the
proposed feature set is of much lower dimension, which can significantly reduce
computational cost.

Another merit of the proposed feature is its advantages for small amount
of training samples. We conducted an extra experiment to classify the images
in RF-LR and GWGAN-GP

F-LR by reducing training data. Fig. 4 shows the test-
ing accuracies obtained with different amounts of training image pairs. It is
observed that the proposed method achieves the testing accuracy of 98% even
when using 10 pairs of training images, significantly outperforming the others
in the same case. It means that the proposed method is less dependent on the
amount of training data. When the number of training image pairs reaches
1,000, Sub-SRM, SRM, and CoALBP+LPQ can obtain almost the same per-
formance with the proposed method, while the DL based methods only obtain
accuracies that are less than 83%. According to Fig. 4, The DL based methods
require more than 20,000 training image pairs to get competitive performance
with the proposed method.

4.3. Performance on Mismatched Training-testing Data

In practice, the image source or the type of GAN model may not be fully
known by the investigator. In this case, there is a mismatch between the training
and testing data. In this subsection, we consider three sub-cases. In the first
case, the training and testing images are from different sources and have the
same type of semantic content, such as face or bedroom, while in the second
case the image semantic content types are different in the training and testing
phases. The last case is that the types of GAN models are mismatched.
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Table 3: Classification results (%) for mismatched image sources (same semantic type).

Method FPR FNR ACC

train:
{

RF-LR,GDCGAN

F-LR

}

test:
{

RFl-LR,GDCGAN

Fl-LR

}

Sub-SRM [41] 0.00 0.00 100.0

SRM [54] 0.00 0.00 100.0

CoALBP+LPQ [25] 0.00 0.00 100.0

Sat-Cues [27] 42.68 10.65 73.34
VGG-16 [59] 1.86 94.98 51.58
ResNet v2-50 [60] 0.00 100.0 50.00
Mo et al . [29] 0.00 0.00 100.0

CGFace [30] 1.25 99.02 49.87
TS-CDNN [31] 0.04 99.85 50.06
Proposed 0.00 0.00 100.0

train:
{

RF-LR,GWGAN-GP

F-LR

}

test:
{

RFl-LR,GWGAN-GP

Fl-LR

}

Sub-SRM [41] 0.01 0.00 100.0

SRM [54] 0.05 0.00 99.98
CoALBP+LPQ [25] 0.00 0.11 99.95
Sat-Cues [27] 65.54 25.06 54.70
VGG-16 [59] 1.87 0.45 98.84
ResNet v2-50 [60] 8.29 87.98 51.87
Mo et al . [29] 52.73 19.59 63.84
CGFace [30] 0.64 1.30 99.03
TS-CDNN [31] 14.83 39.76 72.71
Proposed 0.00 2.50 98.75

4.3.1. Mismatched image sources (same semantic type)

It is reasonable to assume that the architecture of GAN is known, but the
real images used to train the model are not available. To perform the detection,
the investigator first trains a GAN with the same network architecture by using
an alternative dataset, and then use the trained GAN to produce DNG samples.
With these samples, the investigator can train a binary classifier to detect DNG
images. In this experiment, we trained the binary classifiers with the LR face
images related to the CelebA dataset (i.e., RF-LR, G

DCGAN
F-LR , and GWGAN-GP

F-LR ),
and than tested them with the LR face images related to the LFW dataset (i.e.,
RFl-LR, G

DCGAN
Fl-LR , and GWGAN-GP

Fl-LR ). The detection results are shown in Table
3. It can be observed that all hand-crafted features except Sat-Cues achieve
high accuracies in both cases, while the DL based methods perform poor in
either of the two cases (VGG-16, Mo et al ., CGFace, and TS-CDNN), or both
(ResNet v2-50). The proposed method can perfectly detect the images gener-
ated by DCGAN even when they are from different sources, and also obtains
very good result for detecting the images generated by WGAN-GP, though un-
derperforms Sub-SRM by 1.25%.

4.3.2. Mismatched image sources (different semantic types)

To simulate the mismatch of image semantic contents, we first used the clas-
sifiers trained with face images to classify the bedroom images, and then used
the classifiers trained with bedroom images to classify the face images. For
example, a classifier trained with RF-LR and GDCGAN

F-LR is used to classify the
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Table 4: Classification results (%) formismatched image sources (different semantic types).

Method
FPR FNR ACC

Average (Best/Worst) Average (Best/Worst) Average (Best/Worst)

Sub-SRM [41] 23.72 ( 0.00 / 99.96) 17.54 ( 0.00 / 84.88) 79.37 (99.94 / 50.02)
SRM [54] 23.04 ( 0.00 / 99.58) 17.77 ( 0.00 / 99.00) 79.59 (100.0 / 50.21)
CoALBP+LPQ [25] 28.08 ( 0.00 / 98.77) 12.86 ( 0.00 / 88.28) 79.53 (99.99 / 49.74)
Sat-Cues [27] 42.72 (16.11 / 62.53) 45.54 (16.64 / 78.97) 55.87 (64.15 / 50.46)
VGG-16 [59] 19.81 ( 0.01 / 79.47) 61.26 ( 3.74 / 99.98) 59.46 (91.05 / 49.99)
ResNet v2-50 [60] 4.30 ( 0.00 / 23.40) 95.19 (75.28 / 99.99) 50.26 (51.34 / 49.64)
Mo et al . [29] 17.45 ( 0.02 / 87.48) 50.01 ( 0.08 / 99.99) 66.27 (99.95 / 48.48)
CGFace [30] 16.77 ( 0.07 / 44.16) 63.87 ( 0.82 / 99.85) 59.68 (81.97 / 45.96)
TS-CDNN [31] 11.71 ( 0.01 / 28.37) 79.40 (49.92 / 99.97) 54.45 (72.13 / 50.02)
Proposed 28.33 ( 0.00 / 96.29) 9.45 ( 0.00 / 41.53) 81.11 (99.99 / 51.85)

images in RB-LR and GDCGAN
B-LR , and another classifier trained with RB-LR and

GDCGAN
B-LR is used to classify the images in RF-LR and GDCGAN

F-LR . The testing for
LR images and HR images were conducted separately, and the DNG images in
training and testing stages are produced by the same type of GAN, so there
are totally 8 cases (Please note that the DNG images generated by BigGAN
and CocoGAN were not included in this experiment since they are all bedroom
images). The average, best, and worst results are shown in Table 4. We observe
that the DL based methods significantly underperform most of the feature based
methods, implying that they over-fit on image contents and thus have poor gen-
eralization performance for images with different semantic types. The proposed
method obtains lower FNR than others and achieves the best average perfor-
mance (81.11%), outperforming the second place (i.e., SRM) by 1.5%. On the
other hand, it is observed that the detection performance varies greatly in dif-
ferent cases. For example, the proposed method achieves 99% accuracy on the
best case (testing RB-LR and GDCGAN

B-LR with the classifier trained on RF-LR and
GDCGAN
F-LR ), while it behaves close to random guessing in the worst case (testing

RF-HR and GProGAN
F-HR with the classifier trained on RB-HR and GProGAN

B-HR ).

4.3.3. Mismatched GAN models

To simulate the mismatch of GAN models, we used the classifiers trained
with the images generated by a certain GAN to classify the images generated
by another GAN. The experiments for LR images and HR images were also
conducted separately, and thus there are totally 18 cases (2 for LR face images,
2 for LR bedroom images, 2 for HR face images, and 12 for HR bedroom im-
ages). The experimental results are shown in Table 5. On average, the proposed
method performs the best (91.87%) among all the methods, since it obtains good
accuracies for testing the HR bedroom images even when the GAN models are
mismatched. However, it dose not always have good performance. In the worst
case, namely, using the classifier trained with RF-LR and GDCGAN

F-LR to test the
images in RF-LR and GWGAN-GP

F-LR , all the DNG images are mistakenly classi-
fied, resulting in the accuracy of 50%. The reason may be that DCGAN is
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Table 5: Classification results (%) for mismatched GAN models in training and testing.

Method
FPR FNR ACC

Average (Best/Worst) Average (Best/Worst) Average (Best/Worst)

Sub-SRM [41] 0.06 ( 0.00 / 0.82) 39.45 ( 0.00 / 100.0) 80.25 (100.0 / 50.00)
SRM [54] 0.02 ( 0.00 / 0.19) 35.11 ( 0.00 / 100.0) 82.44 (100.0 / 50.00)
CoALBP+LPQ [25] 0.01 ( 0.00 / 0.08) 22.05 ( 0.00 / 100.0) 88.97 (100.0 / 49.99)
Sat-Cues [27] 26.79 (17.77 / 42.76) 40.18 (17.19 / 63.48) 66.52 (78.43 / 48.82)
VGG-16 [59] 0.34 ( 0.01 / 1.32) 77.09 ( 0.35 / 99.94) 61.29 (99.77 / 49.92)
ResNet v2-50 [60] 0.54 ( 0.01 / 1.99) 82.09 (12.82 / 100.0) 58.68 (93.56 / 49.64)
Mo et al . [29] 0.32 ( 0.00 / 3.51) 58.04 ( 0.00 / 99.99) 70.82 (99.95 / 48.39)
CGFace [30] 6.87 ( 0.04 / 37.81) 71.18 ( 0.20 / 99.91) 60.98 (99.84 / 48.54)
TS-CDNN [31] 6.96 ( 0.04 / 22.32) 84.19 (55.68 / 99.96) 54.42 (68.16 / 46.81)
Proposed 0.14 ( 0.00 / 1.96) 16.12 ( 0.00 / 100.0) 91.87 (100.0 / 50.00)

simpler than WGAN-GP, and thus the images generated by DCGAN are more
distinguishable than those generated by WGAN-GP, leading to that the trained
classifier is too simple to identify the images generated by WGAN-GP. This
indicates that the DNG samples must be carefully selected during training a
binary classifier, otherwise the trained detector would produce wrong decisions
in some mismatch cases.

4.4. Performance on Model-unaware One-class Classification

As mentioned above, the performance of a binary classifier for identifying
DNG images may vary when the training and testing data are mismatch, and
thus it is important to train the binary classifier with compatible DNG images.
However, in practice the GAN model is sometimes unknown and there are no
suitable DNG images available for training, thus it is difficult to build a feasi-
ble binary classifier. To perform the detection, an alternative way is to build
a one-class classifier, which fits a model via learning the properties of real im-
ages and regard the DNG images as outliers. In this subsection, we evaluate
the performance of the proposed method in one-class classification. Since it is
not a trivial task to adapt a deep network for one-class classification, we only
considered the feature based methods in this experiment (Sat-Cues was also
excluded for its poor performance). We employed the support vector machine
(SVM) with Gaussian kernel implemented in LIBSVM [62] as one-class classi-
fier. The parameter γ of the Gaussian kernel was determined via a grid search.
The parameter υ, which controls the upper bound of training error (i.e., the
probability of that regarding the training real images as outliers), was set as
0.10 and 0.05, respectively. In this experiment, the real face images and real
bedroom images are combined together, and thus there are a LR real image
dataset RF-LR +RB-LR and a HR real image dataset RF-HR +RB-HR. Hence,
we trained four classifiers for each method, corresponding to the two values of
υ and LR/HR images, respectively. In the training phase, 50,000 real images
were randomly selected to train the one-class SVMs. In the testing phase, the
remaining real images and all DNG images were fed to the trained models to
calculate the accuracies.
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Table 6: Detection accuracies (%) obtained by one-class classification.

υ
Train
dataset

Method
RF-LR

+
RB-LR

Best Worst Average

0.10
RF-LR

+
RB-LR

Sub-SRM [41] 88.99 100.0 12.56 65.94
SRM [54] 89.81 100.0 2.15 53.32
CoALBP+LPQ [25] 89.64 100.0 13.49 67.80
Proposed 89.90 100.0 99.85 99.94

0.05
RF-LR

+
RB-LR

Sub-SRM [41] 93.76 100.0 8.00 62.82
SRM [54] 94.93 100.0 0.55 51.51
CoALBP+LPQ [25] 94.66 100.0 4.35 59.45
Proposed 94.91 100.0 99.19 99.69

υ
Train
dataset

Method
RF-HR

+
RB-HR

Best Worst Average

0.10
RF-HR

+
RB-HR

Sub-SRM [41] 89.65 99.95 4.44 46.38
SRM [54] 90.15 77.44 5.67 30.71
CoALBP+LPQ [25] 90.04 67.62 1.33 27.04
Proposed 89.86 98.09 4.89 49.82

0.05
RF-HR

+
RB-HR

Sub-SRM [41] 94.29 99.81 1.92 41.26

SRM [54] 95.03 64.14 2.56 22.66
CoALBP+LPQ [25] 95.20 50.51 0.45 17.60
Proposed 94.78 94.57 2.02 39.49

† RF-LR + RB-LR denotes the combination of LR real image datasets RF-LR and RB-LR,
and RF-HR + RB-HR denotes the combination of HR real image datasets RF-HR and RB-HR.

The classification results are shown in Table 6, where the top half part
contains the results for LR images and the bottom half part contains the results
for HR images. In this table, we report the accuracies for detecting real images,
as well as the average, best, and worst results for detecting DNG images. On the
one hand, we observe that the detection performance for real images is related
to the parameter υ. Specifically, when υ is 0.10 or 0.05, the testing errors for
real images are correspondingly around 10% or 5%, respectively. It means that
the trained classifier can adequately model the distribution of real images. On
the other hand, it is observed that the proposed method can accurately detect
the LR DNG images, outperforming the other methods by a large margin. For
the HR DNG images, although our method obtains poor result in the worst
case (for detecting the HR face images generated by ProGAN), it achieves
relatively good performance on average. Based on these experimental results,
it is promising to employ one-class classification with the proposed features to
identify DNG images when only real images are available for training.

5. Conclusion

In this paper, we have investigated some new issues on identifying deep
network generated images. We have analyzed and observed that the disparities
between DNG images and real images are apparent in the residual domain of the
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chrominance color components. Based on the observations, a feature set based
on color statistical features is proposed. The feature set is compact and effective.
We have evaluated the performance in some situations with different assumption
on the availability of training data. The experimental results show that the
proposed features equipped with a binary classifier can accurately differentiate
between DNG images and real images when the training and testing data are
matched, and outperforms existing methods when the image semantic types or
the GAN models are mismatched in the training and testing phases. Moreover,
in the model-unaware case, the proposed features can still effectively identify
some types of DNG images with a one-class classifier.

In addition to the proposed detection method, this paper also provides some
useful insights for the research community. Typically, the generative models
generate images by imitating real images in RGB color space. Although the
generated image may be visually visually appealing and be indistinguishable
from real images for human eyes, they can be easily detected by the proposed
method. It means that many inherent properties of real images, such as the
properties in different color components, have not been properly depicted by
the existing generative models. In order to further improve the quality of DNG
images, more constrains should be considered in generative models.

In the future, we will improve the performance of our method to meet the
requirements in practical detection situations. Furthermore, we will try to de-
tect the modern image processing techniques that utilize deep networks based
generative models as backbones, for example, image inpainting with GANs.
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