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Abstract

A radar and communication integration (RCI) system has great flexibility in

allocating antenna resources to guarantee both radar and communication per-

formance. This paper considers the array allocation problems for multiple target

localization and multiple platforms communication in an RCI network. The ob-

jective of array allocation is to maximize the communication capacity for each

channel and to minimize the localization error for each target. In this paper, we

firstly build a localization and communication model for array allocation in an

RCI network. Minorization maximization (MM) is then applied to create sur-

rogate functions for multiple objective optimization problems. The projected

gradient descent (PGD) method is further employed to solve two array allocation

problems with and without a certain communication capacity constraint. Com-

puter simulations are conducted to evaluate the performance of the proposed

algorithms. The results show that the proposed algorithms have improved lo-

calization and communication performance after efficiently allocating the array
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resource in the RCI network.

Keywords: Array resource allocation, communication capacity,

majorization-minimization, projected gradient decent, radar & communication

integration, target localization

1. Introduction

Considerable effort has been put over the past years in studying radio fre-

quency integration technology to share the hardware and software resources [1,

2]. Spectrum sharing technology between multiple-input multiple-out (MIMO)

radar and communication is studied in [3], where an optimization algorithm

is presented to design the integrated transceivers that can maximize the radar

detection probability and guarantee the communication quality. A spectrum

sharing algorithm is proposed in [4] that incorporates communication informa-

tion into radar waveforms. When the radar and communication systems are

operated over the same frequency band, orthogonal frequency division multi-

plexing (OFDM) waveform design based on power minimization under mutual

information constraints is considered in [5]. Two waveform designs are proposed

for an OFDM integrated radar and communication system [6]. A dual-function

radar-communication system is proposed by using the sidelobe manipulation

concept [7], where the communication signals are transmitted at the null radia-

tion direction of the radar’s main beam. The waveform is designed to minimize

the multi-user interference by developing an appropriate beam pattern [8]. Us-

ing a similar approach, communication symbols are embedded into the radar

waveform by introducing a weighted coefficient to make a balance between the

communication performance and radar sidelobe [9]. An integrated vehicular

radar-communication system at 60 GHz is developed in [10] based on the auto-

correlation property at zero-Doppler. A joint radar-communication system is

designed based on time modulated array in [11] according to the civil and mili-

tary requirements. These works on radar and communication integration (RCI)

mainly focus on addressing spectrum sharing [3]-[4], waveform optimization [5]-
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[9] and system design [10]-[11]. The problem of resource allocation for the

integration network is rarely considered.

Meanwhile, networked radar systems have been shown to offer better perfor-

mance for target tracking or localization. A joint antenna selection and power

allocation for MIMO radar networks based on convex optimization method is

presented in [12]. In the same MIMO radar network, power combined with

bandwidth and beam is optimized for the best radar performance [13] and [14].

References [15, 16] and [17] present the power allocation schemes for target de-

tection, target tracking, and target classification in a radar network, respectively.

An adaptive radar receivers placement approach is proposed in [18] to maximize

the signal-to-interference-plus ratio for all channels. References [19, 20] develop

power allocation methods for target tracking in a radar network, which employ

optimization methods to allocate power resources. Using the maximum block

improvement method in cellular networks and radar systems, an optimization

framework is developed for resource allocation in [21]. Resource optimization

is solved in [22] for the wireless-powered integrated radar and communication

system subject to the performance constraints. A transmit antenna selection

method for iterative receivers is presented in [23], and a joint transmitter and

receiver antenna selection method is investigated [24, 25, 26]. The transmit

power and the number of active antennas are jointly optimized to get the high-

est energy efficiency [27]. The performance of actual antenna systems using the

antenna selection methods is evaluated and examined in [28, 29, 30].

Although the above-mentioned radar resource management [12]-[22] and an-

tenna selection [23]-[30] methods are informative, they are developed for a single

radar or communication scenario. For complex RCI networks, the advantages

of array resource allocation have not been realized.

This paper investigates the array allocation problem through mathematical

derivations and computer simulations for multiple channel communication and

multiple target localization. The main contributions of this paper are summa-

rized as follows:
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1. An array allocation model is developed for multiple channel communica-

tion and multiple target localization in an RCI network, which is then

converted to a linear model.

2. The MM optimization method is employed to tackle the multi-objective

problem, i.e., maximizing the communication capacity and minimizing the

tracking errors with the total array resource constraint. After designing

the surrogate function based on the MM, it is converted to be a single

objective optimization problem for multiple target localization. It is then

solved by a joint method of MM and PGD.

Notations: Bold uppercase (e.g., H) and lowercase (e.g., b) letters represent

the matrices and vectors, respectively. The notations Tr(·), (·)T and (·)H stand

for trace, transpose and Hermitian of their argument, respectively. ‖·‖2 denotes

the l2 norm of a vector. IN denotes the identity matrix of the size N × N ,

while 0N and 1N stands for vectors of the size N with all its elements equal

to zero and one, respectively. 1M×N denotes a matrix of N × N with all its

elements equal to one. vec(A) denotes the column vector of matrix A. The sets

of M ×N integer matrices and the integer space are denoted by NM×N and N.

The symbols ⊗, ◦ and � represent the Kronecker and Hadamard Products and

Hadamard division, respectively. The use of ◦ together with a function indicates

element-wise (a.k.a Hadamard) operation, e.g. x◦2 denotes element-wise square.

Finally, the gradient of f at x is denoted by ∇f(x).

This paper is organized as follows. Section 2 describes the system model for

the RCI. Section 3 presents the array allocation problems using two different

approaches after the brief introduction of MM theory. There, a hard-to-tackle

multi-objective problem is converted to a simpler single-objective by applying

MM and is then solved by the PGD. The performance of the proposed algorithms

is evaluated in Section 4 through computer simulations. Section 5 gives the

conclusion of this paper.
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Figure 1: Radar and communication integration network

2. System model

We consider the RCI network, with M array platforms and N targets for

localization, as depicted in Fig. 1. The array resource on every platform is

desired to be divided into N + (M − 1) parts, which are used for localization

and communication, respectively. The tasks for every platform include the

communication with M−1 platforms, and localization for N targets. A denotes

the array resource allocation result for all the platforms, which will be solved by

our proposed method. The array resource allocation matrix A can be written

as

A =



a1,1 · · · a1,M a1,M+1 a1,M+2 · · · a1,M+N

a2,1 · · · a2,M a2,M+1 a2,M+2 · · · a2,M+N

...
. . .

...
...

...
. . .

...

aM,1 · · · aM,M aM,M+1 aM,M+2 · · · aM,M+N


, (1)

where ai,i = 0,i = 1, 2, ...M . ai,j denotes antenna number of the communication

task between i-th platform and the j-th platform when i 6= j, j = 1, 2, ...,M .

It also denotes antenna number for the (j −M)-th localization task of the i-th

platform when i 6= j, j = M + 1,M + 2, ...,M +N .
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2.1. Communication model for array allocation

Communication capacity among different platforms is selected as one of the

objective functions here. The communication capacity between the i-th and

j-th platform, denoted by C(ai,j), can be expressed as follows [31, 32]

C(ai,j) = log2

[
det

(
Iai,j +

Pi,jHHH

ai,jN0

)]
, i, j = 1, 2, ...,M, i 6= j, (2)

where Iai,j is the identity matrix of size ai,j , Pi,j denotes the transmit power

using ai,j antennas, N0 is the channel noise covariance, and H is the channel

coefficient matrix. The element hm,n of H is given by [31]

hm,n =
λ

rm,m
exp(−j2π rm,n

λ
), (3)

where λ is the waveform length, rm,m is the distance from the m-th transmit

antenna on the i-th platform to the n-th receiver antenna on the j-th platform.

Although the sparse array provides much more degrees of freedom for antenna

configuration, it is also associated with unpredictable sidelobe behavior, which

brings high complexity in beampattern design. Here, the transmit and receiver

antennas on a platform are equally spaced, while the distance between the i-th

platform and the j-th platform is di,j meters, where di,j � d. Therefore, all

elements of H are assumed to be the equal and equation (3) can be written as

hm,n =
λ

di,j
exp(−j2πdi,j

λ
). (4)

Then, equation (2) can be formulated as:

C(ai,j) = log2

[
det

(
Iai,j +

(
λ

di,j

)2

1ai,j×ai,j
ai,j∆P

N0

)]
, i, j = 1, 2...M, i 6= j.(5)

where ∆P represents the transmit power of every antenna.

2.2. Radars’ localization model for array allocation

In the platform network of this paper, the orthogonal waveform for target

localization is assumed to be transmitted by platform i, reflected by the target,

and received by platform i itself. The noise and clutters from other targets
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and platforms are assumed to be well suppressed by other filtering techniques.

In the localization process, the variation of the targets’ center of mass, is also

supposed to be small with respect to the system resolution capabilities here [33].

The Cramer-Rao bound (CRB) matrix, Ez, provides a lower bound for the

localization mean-square error (MSE) of z-th target. The lower bound on the

sum of localization MSE, Lz, is denoted as the trace of CRB matrix. The Ez

and Lz can be respectively written as [33, 34]

Ez =

[
M∑
i=1

pz(ai,M+z)G

]−1

, i = 1, 2...M, z = 1, 2...N (6)

Lz(a1,M+z, ..., aM,M+z) = Tr (Ez)

=
bTpz(a1,M+z, ..., aM,M+z)

pz(a1,M+z, ..., aM,M+z)TQpz(a1,M+z, ..., aM,M+z)
,

(7)

where G and Q are the system parameter matrices defined in [33, 34]. Here,

pz(ai,M+z) is an element of pz(a1,M+z, ..., aM,M+z), which is the transmit power

of the sensor network for localizing the z-th target, and can be written as

pz(a1,M+z, ..., aM,M+z) = ∆P [a1,M+z, ..., aM,M+z]
T
. (8)

3. Optimal Array allocation for the RCI network

Based on the array resource allocation models for localization and commu-

nication, the proposed mathematical problems will be further derived based

on Minorization Maximization (MM) method. The projected gradient descent

(PGD) method is then used to solve the array allocation problems for the RCI

network, in order to improve the localization and communication performance.

3.1. MM Theroy

MM is the dual method for majorization minimization [35], a powerful mini-

mization technique widely applied to engineering applications. Suppose we seek
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the solution of following optimization

max
x

f(x) (9)

s.t. x ∈ X , (10)

where x is decision variable, X ⊂ Rn is feasible set and f(.) is the objec-

tive. The MM propose optimizing a minorizer problem iteratively: xm+1 =

arg maxx g(x|xm), where the minorizer function g(.|xm) satisfies the following

golden conditions:

1)f(x) ≥ g(x|xm),x,xm ∈ X , (11)

2)f(xm) = g(xm|xm),xm ∈ X . (12)

It is easy to verify that the sequence {xm} converges to the optimal solu-

tion of (9) by increasing the objective in each step [35]. In fact, f(xm+1) ≥

g(xm+1|xm) ≥ g(xm|xm) = f(xm) which ensures a non-decreasing path for

the sequence. The following Lemma is applied for finding the majorizer in this

paper.

Lemma 3.1. Suppose f : Rn → R is a continuously differentiable function

with a Lipschitz continuous gradient. Also, suppose that there exist a matrix

M such that M ≤ ∇2f(x). That is, ∇2f(x)−M positive semi-definite for every

x ∈ Rn. Then, we have

f(x) ≥ f(y) +∇f(y)T (x− y) +
1

2
(x− y)TM(x− y), (13)

for every x,y ∈ Rn

Proof. This Lemma is the dual form of Lemma 12 in [35]. To observe the proof,

define f̄(.) := −f(.) and M̄ = −M, then f̄(.) and M̄ satisfy the assumptions in

Lemma 12 of [35]. Therefore, we have

f̄(x) ≤ f̄(y) +∇f̄(y)T (x− y) +
1

2
(x− y)TM̄(x− y), (14)

for every x,y ∈ Rn. By multiplying both side to −1, (13) is derived.
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3.2. Maximizing channel capacities and minimizing CRLB

Two basic problems are given as follows with the constraint of total number

of antennas to design the optimal array allocation strategy:

max
A

C(ai,j) i, j = 1, ...M, i 6= j,

max
A

1

Lz(a1,M+z, ..., aM,M+z)
z = 1, 2, ..., N, (15)

s.t.

M+N∑
j=1

ai,j ≤ γi, ai,j ∈ N, A ∈ NM×(M+N),

where C(ai,j) is the communication capacity from the i-th platform to the j-th

platform, Lz(a1,M+z, ..., aM,M+z) is defined in (7) for the z-th target, γi is the

total transmit antennas number of the i-th platform. The objective functions in

our algorithm, will be designed based the scalarization of performance metrics

for communication and localization in the network, which have been defined

here.

In (15), the constraint function can be simplified as:

M∑
i=1

M+N∑
j=1

ai,j = 1TMA1M+N , (16)

First note that log2(.) is an increasing function. Therefore, this function can be

omitted in maximizing each C(ai,j). Consequently, by combining (5), (7) and

(8), the multi-objective problem can be rewritten as

max
A

det

(
Iai,j +

(
λ

di,j

)2

1ai,j×ai,j
ai,j∆P

N0

)
, (17)

i 6= j = 1, ...M,

max
A

∆P [a1,M+z, ..., aM,M+z] Q [a1,M+z, ..., aM,M+z]
T

bT [a1,M+z, ..., aM,M+z]
T

z = 1, 2, ..., N, (18)

s.t. 1TMA1M+N ≤ γi ai,j ∈ N. (19)

To further simplify the problem, we employ the following approximation from

[36] for small values of ε:

det(I + εX) ∼= 1 + det(X) + εTr (X) +
1

2
ε2Tr (X)2 − 1

2
ε2Tr (X2). (20)
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In this regard, note that λ
di,j
� 1. Therefore, we have

det

(
Iai,j +

(
λ

di,j

)2

1ai,j×ai,j
ai,j∆P

N0

)

∼= 1 + det

(
1ai,j×ai,j

ai,j∆P

N0

)
+

(
λ

di,j

)2

Tr

(
1ai,j×ai,j

ai,j∆P

N0

)
+

1

2

(
λ

di,j

)4

Tr

(
1ai,j×ai,j

ai,j∆P

N0

)2

−1

2

(
λ

di,j

)4

Tr

(
1ai,j×ai,j1ai,j×ai,j

(
ai,j∆P

N0

)2
)

' 1 +

(
λ

di,j

)2
(ai,j)

2∆P

N0
. (21)

Hence, the first set of objectives, i.e., (18) can be rephrased as the following

multi-objective problem:

max
A

[(
λ

di,j

)2
(ai,j)

2∆P

N0
; i, j = 1, ...M, i 6= j

]
. (22)

This problem can be converted to a single-objective problem by using scalariza-

tion. Define x = vec(A); then, this problem is equivalent to

max
A

µT
(

∆P

N0
vec(Λ) ◦ x◦2

)
= µT

[
∆P

N0
Diag (Diag (vec(Λ))x)x

]
, (23)

where µ = [µ1, µ2, ..., µM×(M+N)] is the scalarization coefficient vector, de-

termined by the relative importance of objectives. a ◦ b and x◦2 represent

Hadamard product and power, respectively. Also, Diag (.) is the main diagonal

linear operator, and

Λ =



(
λ
d1,1

)2 (
λ
d1,2

)2
· · ·

(
λ

d1,M

)2
0TN(

λ
d2,1

)2 (
λ
d2,2

)2
· · ·

(
λ

d2,M

)2
0TN

...
...

. . .
... 0TN(

λ
dM,1

)2 (
λ

dM,2

)2
· · ·

(
λ

dM,M

)2
0TN


. (24)

Furthermore, the second set of objectives, i.e., (18) can be also rephrased as:

max
A

[
eTz ATQAez

bTAez
; z = 1, 2, ..., N

]
, (25)
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where

ez = [0, 0, ..., 1(M+z), ..., 0]T . (26)

In the denominator of (25), we have

bTAez = Tr (bTAez) = Tr (ezb
TA) = vec(beTz )T vec(A) = kTx, (27)

where k = vec(beTz ) and x = vec(A). The numerator of (25) can also be

simplified:

eTz ATQAez = Tr (eTz ATQAez) = Tr (ATQAeze
T
z ) = vec(A)T vec(QAeze

T
z )

= vec(A)T (eze
T
z ⊗Q)vec(A) = xT (eze

T
z ⊗Q)x = xTBzx, (28)

where

Bz = eze
T
z ⊗Q. (29)

Since the decision variable, x = vec(A), appears both in numerator and de-

nominator, we apply the ln(.) function on the objectives for z = 1, ..., N . Note

that the resulting problem is equivalent to (25) because ln(.) is an increasing

function. After scalarization the problem is given by

max
x

N∑
z=1

ζz ln

(
xTBzx

kTx

)
(30)

where ζz, z = 1, ..., N , are scalarization coefficients defining relative importance

of the objectives. The order to describe the optimization problems more clearly,

the tasks in the resource scheduling problems are often assumed to be the same

important in for designing the objective function [37][38] or constraint condi-

tion [20]. So all channel capacities and radar antenna links are assumed to

be equally important in our algorithm, and scalarization coefficients are all set

to one. Without loss of generality, we continue our development by assuming

µ = 1M×(M+N) and ζz = 1, z = 1, ..., N ; other scenarios can be developed by

following the same steps.

Moreover, equation (19) can be expressed in matrix vector format:

A1M+N ≤ γ0, (31)

11



where γ0 = [γ1, γ2, ..., γM ]T and ≤ denotes element-wise relation. Based on the

vec(.) operator in [36], (31) can also be expressed as:

V0x ≤ γ0, (32)

where

V0 =



1 0TM−1 · · · 1 0TM−1

0 1 0TM−2 · · · 0TM−2

. . .
. . .

. . .
. . .

. . .

0TM−1 1 · · · 0TM−1 1


M×[M(M+N)]

, (33)

and in the first row of V0, there are M +N groups of [1,0TM−1].

To simplify notations, we define the following functions as the objective

functions:

f1 =
∆P

N0
1TM×(M+N) [Diag (Diag (vec(Λ))x)x] , (34)

f2 =

N∑
z=1

(
ln(xTBzx)− ln(kTx)

)
=

N∑
z=1

f2z, (35)

where f2z :=
(
ln(xTBzx)− ln(kTx)

)
. According to the MM theory [39, 35, 40],

we construct the following quadratic functions g1(.|xm) and g2(.|xm) as the

minorizer functions:

g1(x|xm) = f1(xm) +∇f1(xm)T (x− xm)

+
1

2
(x− xm)TM1(x− xm) (36)

and

g2(x|xm) =

N∑
z=1

[f2z(x
m) +∇f2z(xm)T (x− xm)

+
1

2
(x− xm)TM2z(x− xm)], (37)

12



where

∇f1(x) = 2
∆P

N0
Diag (vec(Λ))xm, (38)

M1 =
∆P

N0
Diag (vec(Λ)), (39)

∇f2z =
(Bz + BT

z )x

xTBzx
− k

kTx
, (40)

and

M2z =
Bz + BT

z

(xm)TBzxm
− (Bz + BT

z )xm(xm)T (Bz + BT
z )

((xm)TBzxm)2
− 2

kkT

(kTxm)2
.

Consequently, we have M1 ≤ ∇2f1(xm) and M2z ≤ ∇2f2z(x
m). Using Lemma

3.1, we find that f1(.) and f2(.) are minorized by g1(.|xm) and g2(.|xm), respec-

tively. Omitting the constants and combining the two objective functions using

scalarization, the final objective function can be written as:

max
x

Ψ1(x)

s.t. x ∈ N, V0x ≤ γ0, (41)

where

Ψ1(x) = ∇f1(xm)(x− xm) +
1

2
(x− xm)TM1(x− xm)

+ w0

[
N∑
z=1

(
∇f2z(xm)T (x− xm) +

1

2
(x− xm)TM2z(x− xm)

)]
(42)

and w0 is the unification weight or scalarization coefficient. The PGD method

[41, 42] is employed here to conclude the solution of this array allocation prob-

lem. The gradient of Ψ1(x) can be written as:

∇Ψ1(x) = ∇f1(xm) +
1

2
(M1 + MT

1 )(x− xm)

+ w0

[
N∑
z=1

(
∇f2z(xm)T +

1

2
(M2z + MT

2z)(x− xm)

)]
. (43)

Using the PGD, xk can be computed iteratively by:

xk = prox(xk−1 − tk∇Ψ1(xk−1)), k = 1, 2, 3... (44)

13



where prox(x) is the Euclidean projection and is derived by:

prox(x) = arg min
z
‖z− x‖22 (45)

s.t.x ∈ N, V0x ≤ γ0.

In summary, the first array resource allocation procedures in the RCI network

is described in Algorithm 1.

Algorithm 1: Array Allocation for Radar and Communication Inte-

gration (A2RCI)

Input: Information of localization and communication targets, Number

of iterations (K1,K2)

Result: Allocated antennas

1. Set m = 0; start from one random sequence x(0) which satisfies the

constraint in (41).

2. repeat

3. Construct surrogate functions, g1 and g2, using formulas (36) and

(37)

4. Design the objective function in (41)

5. Set k = 0 and x(0) as the initial vectors

6. repeat

7. Compute the intermediate variable rk = xk−1 − tk∇Ψ1(xk−1)

8. Obtain xk after projection based (45)

9. Round each element of xk to the nearest integer number

10. k = k + 1

until k ≥ K2;

11. m = m+ 1

until m ≥ K1;

Remark 1. The optimization in (15) is a NP-hard problem. To observe this,

note that they are instances of integer programming because of their criterion; it
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is NP-complete and NP-hard. Interestingly, MM has been applied to solve NP-

hard optimization problems previously [43, 44, 45] with very satisfying results,

and it is naturally expected to have promising results here as well. To further

analyze the algorithm, note that it consists of two loops: an outer loop derived

from MM and an inner loop derived from PGD. The MM guarantees a non-

decreasing path and hence the convergence. However, this convergence might

be to a local maximum. The PGD part can avoid this because it is using a

limited number of steps, i.e., for k ≤ K2, if the tk is properly tuned.

3.3. Allocating Communication Channels First

In this section, another algorithm is proposed to optimize the radar local-

ization performance that guarantees the desired communication performance.

Henceforth, we express the design problem in terms of A or x = vec(A) when-

ever necessary to avoid repeating the derivations. Consider the following design

problem

max
x

f2(x) (46)

s.t. log2

[
det

(
Iai,j +

(
λ

di,j

)2

[1]ai,j×ai,j
ai,j∆P

N0

)]
≤ η, (47)

i, j = 1, 2, ...,M, i 6= j,

x ∈ N, V0x ≤ γ0, (48)

where η is the desired threshold for every communication channel and f2(.) is

defined in (35). As mentioned above, f2(.) is minorized by

Ψ2(x) = g2(x|xm) =

N∑
z=1

(
f2z(x

m) +∇f2z(xm)T (x− xm) +
1

2
(x− xm)TM2z(x− xm)

)
.

We divide the minorizer problem into two subproblems and cyclically update

the result.

First, the capacity constraint is separated from the problem. Following the

same steps introduced in (21) and (23), equation (47) can be converted to

∆P

N0
Λ ◦A◦2 ≤ F, (49)

15



where

F = [2η−11M×M ,0M,N ]. (50)

Also, (49) can be rewritten as:

vec(F− ∆P

N0
Λ ◦A◦2) = f− ∆P

N0
vec(Λ) ◦ x◦2 ≤ 0M2+MN , (51)

where

f = vec(F). (52)

We further suppose that each channel first gets its maximum allowable resource.

In this case, the inequality in (51) converts to equality and we have

x∗ =

(
N0

∆P
f � vec(Λ)

)◦ 1
2

, (53)

where � denotes element-wise division. Note that this amount represents array

resource dedicated to communication. The remaining resource can define the

available resources for radar.

After removing the capacity constraint, the minorizer problem is of the form

max
x

Ψ2(x), (54)

s.t. x ∈ N, V1x ≤ γ1,

where γ1 is determined by the remaining resource for the radar. That is, it is

obtained by γ1 = γ0 −V0x
∗. Also, V1 is given by

V1 =



0TM2 1 0TM−1 · · · 1 0TM−1

0TM2 0 1 0TM−2 · · · 0TM−2

...
. . .

. . .
. . .

. . .
. . .

0TM2 0TM−1 1 · · · 0TM−1 1


. (55)

where its size is M × [M(M +N)], and in the first row of V1, there are N

groups of [1,0TM−1]. Finally, the problem in (54) can be solved by using PGD

as in (44) and (45). Consequently, the second array resource allocation strategy

for the RCI network is presented in Algorithm 2.
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Algorithm 2: Array Allocation for RCI , Algorithm 2 (A2RCI-II)

Input: Information of localization and communication targets, Number

of iterations (K1,K2), desird threshold η for communication

Result: Allocated antennas

1. Construct Λ and f using (24) and (52)

2. Allocate array resource for communication using (53)

3. Update the left array resource γ1

4. Set m = 0; start from one random sequence x(0) which satisfies the

constraint V1x ≤ γ1

5. repeat

6. Construct surrogate functions of g2 using the formula of (37)

7. Design the objective function in (54)

8. Set k = 0 and x(0) as the initial vectors

9. repeat
10. Compute the intermediate variable

rk = xk−1 − tk∇Ψ2(xk−1)

11. Obtain xk after projection

12. Round each element of xk to the nearest integer number

13. k = k + 1

until k ≥ K2;

14. m = m+ 1

until m ≥ K1;

4. Simulations

In this section, we present computer simulations to validate the efficiency

of the proposed array allocation strategies. In an RCI network, each platform

is considered having the same uniform linear array comprising 600 transmit

antennas. Without loss of generality, the transmit power of every antenna is set

to ∆P = 1 kW. We only consider the allocation approaches for transmitting

17
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Figure 2: Communication capacity comparison (3 targets and 3 platforms)

and suppose the receiver array resources are sufficient. All the simulations

are analyzed and realized using the Matlab R2014a version, performing on a

standard PC (with CPU Core i5, 2.4GHz, and 4GB of RAM).

To evaluate the proposed approach, we compare the localization and com-

munication performance obtained by A2RCI (Algorithm 1), the nondominated

sorting genetic algorithm II (NSGA-II) [46] and the multiple optimizations based

on particle swarm optimization (MOPSO) [47], which are the classical multi-

objective optimization methods. Three targets and three platforms are gener-

ated randomly over ten times in this simulation(Case-I). Figs. 2 and 3 show

the comparison of communication capacity and localization Root Cramer-Rao

bound (RCRB). It is observed that Algorithm 1 has much better communication

and localization performance due to the efficient array allocation.

Fig. 4 depicts the radar and communication integration network with 12

platforms and 12 targets(Case-II). In this scenario, the communication capacity

of every platform and the localization performance of each target are shown in

Figs. 5 and 6, respectively. The average communication capacity(ACC) and

average localization CRLB (ALC) are also listed in Table 1. It can be observed
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Figure 3: Localization performance comparison (3 targets and 3 platforms)

that both of NSGA-II and MOPSO based array allocation methods get worse

performance than the proposed one. These results show that due to the increase

of numbers of targets and platforms, there are many variables for the NSGA-II

and MOPSO methods, which result in poorer performance.
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Figure 4: Radar and Communication integration network scenario (12 targets and 12 plat-

forms)
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Figure 5: Communication Capacity comparison (12 targets and 12 platforms)
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Figure 6: Localization performance comparison (12 targets and 12 platforms)

Four different scenarios are considered in the second experiment, including

three targets and three platforms, six targets and six platforms, nine targets and

20



Table 1: Performance comparisons based on Algorithm 1

Methods
Case− I Case− II

ACC(bits/s/Hz) ALC(km) ACC(bits/s/Hz) ALC(km)

The first algorithm 5.251 0.519 4.721 0.741

NSGA− II 3.263 0.624 2.277 0.963

MOPSO 3.061 0.616 2.554 1.003

nine platforms, 12 targets, and 12 platforms. With 100 Monte Carlo simulations,

Fig. 7 shows the average communication capacity of each platform, while Fig.

8 shows the average localization RCRB of each target. In Algorithm 1, the MM

is employed to create two surrogate functions for the RCI network, and then

PGD is used to solve for this problem. As a result, Algorithm 1 can obtain

an optimal array of resource allocation in different radar and communication

integration networks.
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Figure 7: Average Communication Capacity comparison in different scenarios
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Figure 8: Average Localization performance comparison in different scenarios

In the third simulation, Algorithm 2 is compared with the traditional Genetic

algorithm (GA) optimization [48], and Particle swarm optimization(PSO)[49]

methods, which seem to be good at solving the single-objective optimization

problems. Ten scenarios with three targets and three platforms are considered

here. The average localization RCRB of each target for all scenarios is shown

in Fig. 9, when the communication capacity threshold is set at 5 bits/s/Hz. As

expected, Algorithm 2 can obtain a lower RCRB than the GA and PSO based

methods. In one of the scenarios, localization performance is evaluated with

different communication capacity thresholds from 1 bit/s/Hz to 5 bits/s/Hz, as

illustrated in Fig. 10. The communication tasks need much more array resources

due to the increase of capacity threshold. The localization performance becomes

poorer with the decrease of the array resource used for radar localization.
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Figure 9: Average Localization performance comparison(3 targets and 3 platforms)
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Figure 10: Average Localization performance comparison (different communication capacity

threshold)

Consequently, the same four simulation scenarios for Algorithm 1 are con-

sidered. Fig. 11 depicts the average localization performance, under the same

communication capacity constraint. It is clear that the proposed method has
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better localization performance, especially for the third and fourth scenarios, in

which there are more targets and platforms. Fig. 12 displays the localization

performance in the environment of 12 targets and 12 platforms. Once again,

we see that Algorithm 2 outperforms the GA and PSO methods in allocating

arrays for the RCI network.
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Figure 11: Average Localization performance comparison in different scenarios
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Figure 12: Localization performance comparison of every target

5. Conclusion

We proposed a joint method of MM and PGD to perform array resource

allocation in an RCI network. The RCI model, including localization and com-

munication function, is used. To further simplify the optimization problem, the

MM method is employed to design the surrogate functions for array allocation.

With and without communication capacity constraint, the PGD method is used

to solve the two optimization problems. Our simulation results show that the

two proposed algorithms have improved performance compared to the classic

optimization methods.

References

[1] J. Moghaddasi, K. Wu, Multifunctional transceiver for future radar sensing

and radio communicating data-fusion platform, IEEE Access 4 (2016) 818–

838.

[2] D. Pastina, F. Santi, F. Pieralice, M. Bucciarelli, H. Ma, D. Tzagkas,

M. Antoniou, M. Cherniakov, Maritime moving target long time integra-

tion for gnss-based passive bistatic radar, IEEE Transactions on Aerospace

and Electronic Systems 54 (6) (2018) 3060–3083.

[3] K. Singh, S. Biswas, T. Ratnarajah, F. A. Khan, Transceiver design and

power allocation for full-duplex mimo communication systems with spec-

trum sharing radar, IEEE Transactions on Cognitive Communications and

Networking 4 (3) (2018) 556–566.

[4] Q. Zhang, Y. Zhou, L. Zhang, Y. Gu, J. Zhang, Waveform design for a dual-

function radar-communication system based on ce-OFDM-pm signal, Sonar

Navigation IET Radar 13 (4) (2019) 566–572. doi:10.1049/iet-rsn.

2018.5260.

25

http://dx.doi.org/10.1049/iet-rsn.2018.5260
http://dx.doi.org/10.1049/iet-rsn.2018.5260


[5] C. Shi, F. Wang, M. Sellathurai, J. Zhou, S. Salous, Power minimization-

based robust OFDM radar waveform design for radar and communication

systems in coexistence, IEEE Transactions on Signal Processing 66 (5)

(2018) 1316–1330. doi:10.1109/TSP.2017.2770086.

[6] Y. Liu, G. Liao, Z. Yang, J. Xu, Multiobjective optimal waveform design

for ofdm integrated radar and communication systems, Signal Processing

141 (2017) 331–342. doi:10.1016/j.sigpro.2017.06.026.

[7] S. Y. Nusenu, S. Huaizong, P. Ye, W. Xuehan, A. Basit, Dual-function

radar-communication system design via sidelobe manipulation based on

fda butler matrix, IEEE Antennas and Wireless Propagation Letters 18 (3)

(2019) 452–456. doi:10.1109/LAWP.2019.2894015.

[8] F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, A. Petropulu, Toward dual-

functional radar-communication systems: Optimal waveform design, IEEE

Transactions on Signal Processing 66 (16) (2018) 4264–4279. doi:10.1109/

TSP.2018.2847648.

[9] Y. Gu, L. Zhang, Y. Zhou, Q. Zhang, Embedding communication symbols

into radar waveform with orthogonal FM scheme, IEEE Sensors Journal

18 (21) (2018) 8709–8719. doi:10.1109/JSEN.2018.2868542.
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